
A L G O R I T H M S
I N T R O D U C T I O N T O

T H I R D E D I T I O N

T H O M A S H.

C H A R L E S E.

R O N A L D L .

C L I F F O R D S T E I N

R I V E S T

L E I S E R S O N

C O R M E N

Introduction to Algorithms
Third Edition

Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

Introduction to Algorithms
Third Edition

The MIT Press
Cambridge, Massachusetts London, England

c� 2009 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

For information about special quantity discounts, please email special sales@mitpress.mit.edu.

This book was set in Times Roman and Mathtime Pro 2 by the authors.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Introduction to algorithms / Thomas H. Cormen . . . [et al.].—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper)
1. Computer programming. 2. Computer algorithms. I. Cormen, Thomas H.

QA76.6.I5858 2009
005.1—dc22

2009008593

10 9 8 7 6 5 4 3 2

mailto:sales@mitpress.mit.edu

Contents

Preface xiii

I Foundations

Introduction 3

1 The Role of Algorithms in Computing 5
1.1 Algorithms 5
1.2 Algorithms as a technology 11

2 Getting Started 16
2.1 Insertion sort 16
2.2 Analyzing algorithms 23
2.3 Designing algorithms 29

3 Growth of Functions 43
3.1 Asymptotic notation 43
3.2 Standard notations and common functions 53

4 Divide-and-Conquer 65
4.1 The maximum-subarray problem 68
4.2 Strassen’s algorithm for matrix multiplication 75
4.3 The substitution method for solving recurrences 83
4.4 The recursion-tree method for solving recurrences 88
4.5 The master method for solving recurrences 93

? 4.6 Proof of the master theorem 97

5 Probabilistic Analysis and Randomized Algorithms 114
5.1 The hiring problem 114
5.2 Indicator random variables 118
5.3 Randomized algorithms 122

? 5.4 Probabilistic analysis and further uses of indicator random variables
130

vi Contents

II Sorting and Order Statistics

Introduction 147

6 Heapsort 151
6.1 Heaps 151
6.2 Maintaining the heap property 154
6.3 Building a heap 156
6.4 The heapsort algorithm 159
6.5 Priority queues 162

7 Quicksort 170
7.1 Description of quicksort 170
7.2 Performance of quicksort 174
7.3 A randomized version of quicksort 179
7.4 Analysis of quicksort 180

8 Sorting in Linear Time 191
8.1 Lower bounds for sorting 191
8.2 Counting sort 194
8.3 Radix sort 197
8.4 Bucket sort 200

9 Medians and Order Statistics 213
9.1 Minimum and maximum 214
9.2 Selection in expected linear time 215
9.3 Selection in worst-case linear time 220

III Data Structures

Introduction 229

10 Elementary Data Structures 232
10.1 Stacks and queues 232
10.2 Linked lists 236
10.3 Implementing pointers and objects 241
10.4 Representing rooted trees 246

11 Hash Tables 253
11.1 Direct-address tables 254
11.2 Hash tables 256
11.3 Hash functions 262
11.4 Open addressing 269

? 11.5 Perfect hashing 277

Contents vii

12 Binary Search Trees 286
12.1 What is a binary search tree? 286
12.2 Querying a binary search tree 289
12.3 Insertion and deletion 294

? 12.4 Randomly built binary search trees 299

13 Red-Black Trees 308
13.1 Properties of red-black trees 308
13.2 Rotations 312
13.3 Insertion 315
13.4 Deletion 323

14 Augmenting Data Structures 339
14.1 Dynamic order statistics 339
14.2 How to augment a data structure 345
14.3 Interval trees 348

IV Advanced Design and Analysis Techniques

Introduction 357

15 Dynamic Programming 359
15.1 Rod cutting 360
15.2 Matrix-chain multiplication 370
15.3 Elements of dynamic programming 378
15.4 Longest common subsequence 390
15.5 Optimal binary search trees 397

16 Greedy Algorithms 414
16.1 An activity-selection problem 415
16.2 Elements of the greedy strategy 423
16.3 Huffman codes 428

? 16.4 Matroids and greedy methods 437
? 16.5 A task-scheduling problem as a matroid 443

17 Amortized Analysis 451
17.1 Aggregate analysis 452
17.2 The accounting method 456
17.3 The potential method 459
17.4 Dynamic tables 463

viii Contents

V Advanced Data Structures

Introduction 481

18 B-Trees 484
18.1 Definition of B-trees 488
18.2 Basic operations on B-trees 491
18.3 Deleting a key from a B-tree 499

19 Fibonacci Heaps 505
19.1 Structure of Fibonacci heaps 507
19.2 Mergeable-heap operations 510
19.3 Decreasing a key and deleting a node 518
19.4 Bounding the maximum degree 523

20 van Emde Boas Trees 531
20.1 Preliminary approaches 532
20.2 A recursive structure 536
20.3 The van Emde Boas tree 545

21 Data Structures for Disjoint Sets 561
21.1 Disjoint-set operations 561
21.2 Linked-list representation of disjoint sets 564
21.3 Disjoint-set forests 568

? 21.4 Analysis of union by rank with path compression 573

VI Graph Algorithms

Introduction 587

22 Elementary Graph Algorithms 589
22.1 Representations of graphs 589
22.2 Breadth-first search 594
22.3 Depth-first search 603
22.4 Topological sort 612
22.5 Strongly connected components 615

23 Minimum Spanning Trees 624
23.1 Growing a minimum spanning tree 625
23.2 The algorithms of Kruskal and Prim 631

Contents ix

24 Single-Source Shortest Paths 643
24.1 The Bellman-Ford algorithm 651
24.2 Single-source shortest paths in directed acyclic graphs 655
24.3 Dijkstra’s algorithm 658
24.4 Difference constraints and shortest paths 664
24.5 Proofs of shortest-paths properties 671

25 All-Pairs Shortest Paths 684
25.1 Shortest paths and matrix multiplication 686
25.2 The Floyd-Warshall algorithm 693
25.3 Johnson’s algorithm for sparse graphs 700

26 Maximum Flow 708
26.1 Flow networks 709
26.2 The Ford-Fulkerson method 714
26.3 Maximum bipartite matching 732

? 26.4 Push-relabel algorithms 736
? 26.5 The relabel-to-front algorithm 748

VII Selected Topics

Introduction 769

27 Multithreaded Algorithms 772
27.1 The basics of dynamic multithreading 774
27.2 Multithreaded matrix multiplication 792
27.3 Multithreaded merge sort 797

28 Matrix Operations 813
28.1 Solving systems of linear equations 813
28.2 Inverting matrices 827
28.3 Symmetric positive-definite matrices and least-squares approximation

832

29 Linear Programming 843
29.1 Standard and slack forms 850
29.2 Formulating problems as linear programs 859
29.3 The simplex algorithm 864
29.4 Duality 879
29.5 The initial basic feasible solution 886

x Contents

30 Polynomials and the FFT 898
30.1 Representing polynomials 900
30.2 The DFT and FFT 906
30.3 Efficient FFT implementations 915

31 Number-Theoretic Algorithms 926
31.1 Elementary number-theoretic notions 927
31.2 Greatest common divisor 933
31.3 Modular arithmetic 939
31.4 Solving modular linear equations 946
31.5 The Chinese remainder theorem 950
31.6 Powers of an element 954
31.7 The RSA public-key cryptosystem 958

? 31.8 Primality testing 965
? 31.9 Integer factorization 975

32 String Matching 985
32.1 The naive string-matching algorithm 988
32.2 The Rabin-Karp algorithm 990
32.3 String matching with finite automata 995

? 32.4 The Knuth-Morris-Pratt algorithm 1002

33 Computational Geometry 1014
33.1 Line-segment properties 1015
33.2 Determining whether any pair of segments intersects 1021
33.3 Finding the convex hull 1029
33.4 Finding the closest pair of points 1039

34 NP-Completeness 1048
34.1 Polynomial time 1053
34.2 Polynomial-time verification 1061
34.3 NP-completeness and reducibility 1067
34.4 NP-completeness proofs 1078
34.5 NP-complete problems 1086

35 Approximation Algorithms 1106
35.1 The vertex-cover problem 1108
35.2 The traveling-salesman problem 1111
35.3 The set-covering problem 1117
35.4 Randomization and linear programming 1123
35.5 The subset-sum problem 1128

Contents xi

VIII Appendix: Mathematical Background

Introduction 1143

A Summations 1145
A.1 Summation formulas and properties 1145
A.2 Bounding summations 1149

B Sets, Etc. 1158
B.1 Sets 1158
B.2 Relations 1163
B.3 Functions 1166
B.4 Graphs 1168
B.5 Trees 1173

C Counting and Probability 1183
C.1 Counting 1183
C.2 Probability 1189
C.3 Discrete random variables 1196
C.4 The geometric and binomial distributions 1201

? C.5 The tails of the binomial distribution 1208

D Matrices 1217
D.1 Matrices and matrix operations 1217
D.2 Basic matrix properties 1222

Bibliography 1231

Index 1251

Preface

Before there were computers, there were algorithms. But now that there are com-
puters, there are even more algorithms, and algorithms lie at the heart of computing.

This book provides a comprehensive introduction to the modern study of com-
puter algorithms. It presents many algorithms and covers them in considerable
depth, yet makes their design and analysis accessible to all levels of readers. We
have tried to keep explanations elementary without sacrificing depth of coverage
or mathematical rigor.

Each chapter presents an algorithm, a design technique, an application area, or a
related topic. Algorithms are described in English and in a pseudocode designed to
be readable by anyone who has done a little programming. The book contains 244
figures—many with multiple parts—illustrating how the algorithms work. Since
we emphasize efficiency as a design criterion, we include careful analyses of the
running times of all our algorithms.

The text is intended primarily for use in undergraduate or graduate courses in
algorithms or data structures. Because it discusses engineering issues in algorithm
design, as well as mathematical aspects, it is equally well suited for self-study by
technical professionals.

In this, the third edition, we have once again updated the entire book. The
changes cover a broad spectrum, including new chapters, revised pseudocode, and
a more active writing style.

To the teacher

We have designed this book to be both versatile and complete. You should find it
useful for a variety of courses, from an undergraduate course in data structures up
through a graduate course in algorithms. Because we have provided considerably
more material than can fit in a typical one-term course, you can consider this book
to be a “buffet” or “smorgasbord” from which you can pick and choose the material
that best supports the course you wish to teach.

xiv Preface

You should find it easy to organize your course around just the chapters you
need. We have made chapters relatively self-contained, so that you need not worry
about an unexpected and unnecessary dependence of one chapter on another. Each
chapter presents the easier material first and the more difficult material later, with
section boundaries marking natural stopping points. In an undergraduate course,
you might use only the earlier sections from a chapter; in a graduate course, you
might cover the entire chapter.

We have included 957 exercises and 158 problems. Each section ends with exer-
cises, and each chapter ends with problems. The exercises are generally short ques-
tions that test basic mastery of the material. Some are simple self-check thought
exercises, whereas others are more substantial and are suitable as assigned home-
work. The problems are more elaborate case studies that often introduce new ma-
terial; they often consist of several questions that lead the student through the steps
required to arrive at a solution.

Departing from our practice in previous editions of this book, we have made
publicly available solutions to some, but by no means all, of the problems and ex-
ercises. Our Web site, http://mitpress.mit.edu/algorithms/, links to these solutions.
You will want to check this site to make sure that it does not contain the solution to
an exercise or problem that you plan to assign. We expect the set of solutions that
we post to grow slowly over time, so you will need to check it each time you teach
the course.

We have starred (?) the sections and exercises that are more suitable for graduate
students than for undergraduates. A starred section is not necessarily more diffi-
cult than an unstarred one, but it may require an understanding of more advanced
mathematics. Likewise, starred exercises may require an advanced background or
more than average creativity.

To the student

We hope that this textbook provides you with an enjoyable introduction to the
field of algorithms. We have attempted to make every algorithm accessible and
interesting. To help you when you encounter unfamiliar or difficult algorithms, we
describe each one in a step-by-step manner. We also provide careful explanations
of the mathematics needed to understand the analysis of the algorithms. If you
already have some familiarity with a topic, you will find the chapters organized so
that you can skim introductory sections and proceed quickly to the more advanced
material.

This is a large book, and your class will probably cover only a portion of its
material. We have tried, however, to make this a book that will be useful to you
now as a course textbook and also later in your career as a mathematical desk
reference or an engineering handbook.

http://mitpress.mit.edu/algorithms/

Preface xv

What are the prerequisites for reading this book?

� You should have some programming experience. In particular, you should un-
derstand recursive procedures and simple data structures such as arrays and
linked lists.

� You should have some facility with mathematical proofs, and especially proofs
by mathematical induction. A few portions of the book rely on some knowledge
of elementary calculus. Beyond that, Parts I and VIII of this book teach you all
the mathematical techniques you will need.

We have heard, loud and clear, the call to supply solutions to problems and
exercises. Our Web site, http://mitpress.mit.edu/algorithms/, links to solutions for
a few of the problems and exercises. Feel free to check your solutions against ours.
We ask, however, that you do not send your solutions to us.

To the professional

The wide range of topics in this book makes it an excellent handbook on algo-
rithms. Because each chapter is relatively self-contained, you can focus in on the
topics that most interest you.

Most of the algorithms we discuss have great practical utility. We therefore
address implementation concerns and other engineering issues. We often provide
practical alternatives to the few algorithms that are primarily of theoretical interest.

If you wish to implement any of the algorithms, you should find the transla-
tion of our pseudocode into your favorite programming language to be a fairly
straightforward task. We have designed the pseudocode to present each algorithm
clearly and succinctly. Consequently, we do not address error-handling and other
software-engineering issues that require specific assumptions about your program-
ming environment. We attempt to present each algorithm simply and directly with-
out allowing the idiosyncrasies of a particular programming language to obscure
its essence.

We understand that if you are using this book outside of a course, then you
might be unable to check your solutions to problems and exercises against solutions
provided by an instructor. Our Web site, http://mitpress.mit.edu/algorithms/, links
to solutions for some of the problems and exercises so that you can check your
work. Please do not send your solutions to us.

To our colleagues

We have supplied an extensive bibliography and pointers to the current literature.
Each chapter ends with a set of chapter notes that give historical details and ref-
erences. The chapter notes do not provide a complete reference to the whole field

http://mitpress.mit.edu/algorithms/
http://mitpress.mit.edu/algorithms/

xvi Preface

of algorithms, however. Though it may be hard to believe for a book of this size,
space constraints prevented us from including many interesting algorithms.

Despite myriad requests from students for solutions to problems and exercises,
we have chosen as a matter of policy not to supply references for problems and
exercises, to remove the temptation for students to look up a solution rather than to
find it themselves.

Changes for the third edition

What has changed between the second and third editions of this book? The mag-
nitude of the changes is on a par with the changes between the first and second
editions. As we said about the second-edition changes, depending on how you
look at it, the book changed either not much or quite a bit.

A quick look at the table of contents shows that most of the second-edition chap-
ters and sections appear in the third edition. We removed two chapters and one
section, but we have added three new chapters and two new sections apart from
these new chapters.

We kept the hybrid organization from the first two editions. Rather than organiz-
ing chapters by only problem domains or according only to techniques, this book
has elements of both. It contains technique-based chapters on divide-and-conquer,
dynamic programming, greedy algorithms, amortized analysis, NP-Completeness,
and approximation algorithms. But it also has entire parts on sorting, on data
structures for dynamic sets, and on algorithms for graph problems. We find that
although you need to know how to apply techniques for designing and analyzing al-
gorithms, problems seldom announce to you which techniques are most amenable
to solving them.

Here is a summary of the most significant changes for the third edition:

� We added new chapters on van Emde Boas trees and multithreaded algorithms,
and we have broken out material on matrix basics into its own appendix chapter.

� We revised the chapter on recurrences to more broadly cover the divide-and-
conquer technique, and its first two sections apply divide-and-conquer to solve
two problems. The second section of this chapter presents Strassen’s algorithm
for matrix multiplication, which we have moved from the chapter on matrix
operations.

� We removed two chapters that were rarely taught: binomial heaps and sorting
networks. One key idea in the sorting networks chapter, the 0-1 principle, ap-
pears in this edition within Problem 8-7 as the 0-1 sorting lemma for compare-
exchange algorithms. The treatment of Fibonacci heaps no longer relies on
binomial heaps as a precursor.

Preface xvii

� We revised our treatment of dynamic programming and greedy algorithms. Dy-
namic programming now leads off with a more interesting problem, rod cutting,
than the assembly-line scheduling problem from the second edition. Further-
more, we emphasize memoization a bit more than we did in the second edition,
and we introduce the notion of the subproblem graph as a way to understand
the running time of a dynamic-programming algorithm. In our opening exam-
ple of greedy algorithms, the activity-selection problem, we get to the greedy
algorithm more directly than we did in the second edition.

� The way we delete a node from binary search trees (which includes red-black
trees) now guarantees that the node requested for deletion is the node that is
actually deleted. In the first two editions, in certain cases, some other node
would be deleted, with its contents moving into the node passed to the deletion
procedure. With our new way to delete nodes, if other components of a program
maintain pointers to nodes in the tree, they will not mistakenly end up with stale
pointers to nodes that have been deleted.

� The material on flow networks now bases flows entirely on edges. This ap-
proach is more intuitive than the net flow used in the first two editions.

� With the material on matrix basics and Strassen’s algorithm moved to other
chapters, the chapter on matrix operations is smaller than in the second edition.

� We have modified our treatment of the Knuth-Morris-Pratt string-matching al-
gorithm.

� We corrected several errors. Most of these errors were posted on our Web site
of second-edition errata, but a few were not.

� Based on many requests, we changed the syntax (as it were) of our pseudocode.
We now use “D” to indicate assignment and “==” to test for equality, just as C,
C++, Java, and Python do. Likewise, we have eliminated the keywords do and
then and adopted “//” as our comment-to-end-of-line symbol. We also now use
dot-notation to indicate object attributes. Our pseudocode remains procedural,
rather than object-oriented. In other words, rather than running methods on
objects, we simply call procedures, passing objects as parameters.

� We added 100 new exercises and 28 new problems. We also updated many
bibliography entries and added several new ones.

� Finally, we went through the entire book and rewrote sentences, paragraphs,
and sections to make the writing clearer and more active.

xviii Preface

Web site

You can use our Web site, http://mitpress.mit.edu/algorithms/, to obtain supple-
mentary information and to communicate with us. The Web site links to a list of
known errors, solutions to selected exercises and problems, and (of course) a list
explaining the corny professor jokes, as well as other content that we might add.
The Web site also tells you how to report errors or make suggestions.

How we produced this book

Like the second edition, the third edition was produced in LATEX 2". We used the
Times font with mathematics typeset using the MathTime Pro 2 fonts. We thank
Michael Spivak from Publish or Perish, Inc., Lance Carnes from Personal TeX,
Inc., and Tim Tregubov from Dartmouth College for technical support. As in the
previous two editions, we compiled the index using Windex, a C program that we
wrote, and the bibliography was produced with BIBTEX. The PDF files for this
book were created on a MacBook running OS 10.5.

We drew the illustrations for the third edition using MacDraw Pro, with some
of the mathematical expressions in illustrations laid in with the psfrag package
for LATEX 2". Unfortunately, MacDraw Pro is legacy software, having not been
marketed for over a decade now. Happily, we still have a couple of Macintoshes
that can run the Classic environment under OS 10.4, and hence they can run Mac-
Draw Pro—mostly. Even under the Classic environment, we find MacDraw Pro to
be far easier to use than any other drawing software for the types of illustrations
that accompany computer-science text, and it produces beautiful output.1 Who
knows how long our pre-Intel Macs will continue to run, so if anyone from Apple
is listening: Please create an OS X-compatible version of MacDraw Pro!

Acknowledgments for the third edition

We have been working with the MIT Press for over two decades now, and what a
terrific relationship it has been! We thank Ellen Faran, Bob Prior, Ada Brunstein,
and Mary Reilly for their help and support.

We were geographically distributed while producing the third edition, working
in the Dartmouth College Department of Computer Science, the MIT Computer

1We investigated several drawing programs that run under Mac OS X, but all had significant short-
comings compared with MacDraw Pro. We briefly attempted to produce the illustrations for this
book with a different, well known drawing program. We found that it took at least five times as long
to produce each illustration as it took with MacDraw Pro, and the resulting illustrations did not look
as good. Hence the decision to revert to MacDraw Pro running on older Macintoshes.

http://mitpress.mit.edu/algorithms/

Preface xix

Science and Artificial Intelligence Laboratory, and the Columbia University De-
partment of Industrial Engineering and Operations Research. We thank our re-
spective universities and colleagues for providing such supportive and stimulating
environments.

Julie Sussman, P.P.A., once again bailed us out as the technical copyeditor. Time
and again, we were amazed at the errors that eluded us, but that Julie caught. She
also helped us improve our presentation in several places. If there is a Hall of Fame
for technical copyeditors, Julie is a sure-fire, first-ballot inductee. She is nothing
short of phenomenal. Thank you, thank you, thank you, Julie! Priya Natarajan also
found some errors that we were able to correct before this book went to press. Any
errors that remain (and undoubtedly, some do) are the responsibility of the authors
(and probably were inserted after Julie read the material).

The treatment for van Emde Boas trees derives from Erik Demaine’s notes,
which were in turn influenced by Michael Bender. We also incorporated ideas
from Javed Aslam, Bradley Kuszmaul, and Hui Zha into this edition.

The chapter on multithreading was based on notes originally written jointly with
Harald Prokop. The material was influenced by several others working on the Cilk
project at MIT, including Bradley Kuszmaul and Matteo Frigo. The design of the
multithreaded pseudocode took its inspiration from the MIT Cilk extensions to C
and by Cilk Arts’s Cilk++ extensions to C++.

We also thank the many readers of the first and second editions who reported
errors or submitted suggestions for how to improve this book. We corrected all the
bona fide errors that were reported, and we incorporated as many suggestions as
we could. We rejoice that the number of such contributors has grown so great that
we must regret that it has become impractical to list them all.

Finally, we thank our wives—Nicole Cormen, Wendy Leiserson, Gail Rivest,
and Rebecca Ivry—and our children—Ricky, Will, Debby, and Katie Leiserson;
Alex and Christopher Rivest; and Molly, Noah, and Benjamin Stein—for their love
and support while we prepared this book. The patience and encouragement of our
families made this project possible. We affectionately dedicate this book to them.

THOMAS H. CORMEN Lebanon, New Hampshire
CHARLES E. LEISERSON Cambridge, Massachusetts
RONALD L. RIVEST Cambridge, Massachusetts
CLIFFORD STEIN New York, New York

February 2009

Introduction to Algorithms
Third Edition

I Foundations

Introduction

This part will start you thinking about designing and analyzing algorithms. It is
intended to be a gentle introduction to how we specify algorithms, some of the
design strategies we will use throughout this book, and many of the fundamental
ideas used in algorithm analysis. Later parts of this book will build upon this base.

Chapter 1 provides an overview of algorithms and their place in modern com-
puting systems. This chapter defines what an algorithm is and lists some examples.
It also makes a case that we should consider algorithms as a technology, along-
side technologies such as fast hardware, graphical user interfaces, object-oriented
systems, and networks.

In Chapter 2, we see our first algorithms, which solve the problem of sorting
a sequence of n numbers. They are written in a pseudocode which, although not
directly translatable to any conventional programming language, conveys the struc-
ture of the algorithm clearly enough that you should be able to implement it in the
language of your choice. The sorting algorithms we examine are insertion sort,
which uses an incremental approach, and merge sort, which uses a recursive tech-
nique known as “divide-and-conquer.” Although the time each requires increases
with the value of n, the rate of increase differs between the two algorithms. We
determine these running times in Chapter 2, and we develop a useful notation to
express them.

Chapter 3 precisely defines this notation, which we call asymptotic notation. It
starts by defining several asymptotic notations, which we use for bounding algo-
rithm running times from above and/or below. The rest of Chapter 3 is primarily
a presentation of mathematical notation, more to ensure that your use of notation
matches that in this book than to teach you new mathematical concepts.

4 Part I Foundations

Chapter 4 delves further into the divide-and-conquer method introduced in
Chapter 2. It provides additional examples of divide-and-conquer algorithms, in-
cluding Strassen’s surprising method for multiplying two square matrices. Chap-
ter 4 contains methods for solving recurrences, which are useful for describing
the running times of recursive algorithms. One powerful technique is the “mas-
ter method,” which we often use to solve recurrences that arise from divide-and-
conquer algorithms. Although much of Chapter 4 is devoted to proving the cor-
rectness of the master method, you may skip this proof yet still employ the master
method.

Chapter 5 introduces probabilistic analysis and randomized algorithms. We typ-
ically use probabilistic analysis to determine the running time of an algorithm in
cases in which, due to the presence of an inherent probability distribution, the
running time may differ on different inputs of the same size. In some cases, we
assume that the inputs conform to a known probability distribution, so that we are
averaging the running time over all possible inputs. In other cases, the probability
distribution comes not from the inputs but from random choices made during the
course of the algorithm. An algorithm whose behavior is determined not only by its
input but by the values produced by a random-number generator is a randomized
algorithm. We can use randomized algorithms to enforce a probability distribution
on the inputs—thereby ensuring that no particular input always causes poor perfor-
mance—or even to bound the error rate of algorithms that are allowed to produce
incorrect results on a limited basis.

Appendices A–D contain other mathematical material that you will find helpful
as you read this book. You are likely to have seen much of the material in the
appendix chapters before having read this book (although the specific definitions
and notational conventions we use may differ in some cases from what you have
seen in the past), and so you should think of the Appendices as reference material.
On the other hand, you probably have not already seen most of the material in
Part I. All the chapters in Part I and the Appendices are written with a tutorial
flavor.

1 The Role of Algorithms in Computing

What are algorithms? Why is the study of algorithms worthwhile? What is the role
of algorithms relative to other technologies used in computers? In this chapter, we
will answer these questions.

1.1 Algorithms

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values, as
output. An algorithm is thus a sequence of computational steps that transform the
input into the output.

We can also view an algorithm as a tool for solving a well-specified computa-
tional problem. The statement of the problem specifies in general terms the desired
input/output relationship. The algorithm describes a specific computational proce-
dure for achieving that input/output relationship.

For example, we might need to sort a sequence of numbers into nondecreasing
order. This problem arises frequently in practice and provides fertile ground for
introducing many standard design techniques and analysis tools. Here is how we
formally define the sorting problem:

Input: A sequence of n numbers ha1; a2; : : : ; ani.
Output: A permutation (reordering) ha0

1; a0
2; : : : ; a0

ni of the input sequence such
that a0

1 � a0
2 � � � � � a0

n.

For example, given the input sequence h31; 41; 59; 26; 41; 58i, a sorting algorithm
returns as output the sequence h26; 31; 41; 41; 58; 59i. Such an input sequence is
called an instance of the sorting problem. In general, an instance of a problem
consists of the input (satisfying whatever constraints are imposed in the problem
statement) needed to compute a solution to the problem.

6 Chapter 1 The Role of Algorithms in Computing

Because many programs use it as an intermediate step, sorting is a fundamental
operation in computer science. As a result, we have a large number of good sorting
algorithms at our disposal. Which algorithm is best for a given application depends
on—among other factors—the number of items to be sorted, the extent to which
the items are already somewhat sorted, possible restrictions on the item values,
the architecture of the computer, and the kind of storage devices to be used: main
memory, disks, or even tapes.

An algorithm is said to be correct if, for every input instance, it halts with the
correct output. We say that a correct algorithm solves the given computational
problem. An incorrect algorithm might not halt at all on some input instances, or it
might halt with an incorrect answer. Contrary to what you might expect, incorrect
algorithms can sometimes be useful, if we can control their error rate. We shall see
an example of an algorithm with a controllable error rate in Chapter 31 when we
study algorithms for finding large prime numbers. Ordinarily, however, we shall
be concerned only with correct algorithms.

An algorithm can be specified in English, as a computer program, or even as
a hardware design. The only requirement is that the specification must provide a
precise description of the computational procedure to be followed.

What kinds of problems are solved by algorithms?

Sorting is by no means the only computational problem for which algorithms have
been developed. (You probably suspected as much when you saw the size of this
book.) Practical applications of algorithms are ubiquitous and include the follow-
ing examples:

� The Human Genome Project has made great progress toward the goals of iden-
tifying all the 100,000 genes in human DNA, determining the sequences of the
3 billion chemical base pairs that make up human DNA, storing this informa-
tion in databases, and developing tools for data analysis. Each of these steps
requires sophisticated algorithms. Although the solutions to the various prob-
lems involved are beyond the scope of this book, many methods to solve these
biological problems use ideas from several of the chapters in this book, thereby
enabling scientists to accomplish tasks while using resources efficiently. The
savings are in time, both human and machine, and in money, as more informa-
tion can be extracted from laboratory techniques.

� The Internet enables people all around the world to quickly access and retrieve
large amounts of information. With the aid of clever algorithms, sites on the
Internet are able to manage and manipulate this large volume of data. Examples
of problems that make essential use of algorithms include finding good routes
on which the data will travel (techniques for solving such problems appear in

1.1 Algorithms 7

Chapter 24), and using a search engine to quickly find pages on which particular
information resides (related techniques are in Chapters 11 and 32).

� Electronic commerce enables goods and services to be negotiated and ex-
changed electronically, and it depends on the privacy of personal informa-
tion such as credit card numbers, passwords, and bank statements. The core
technologies used in electronic commerce include public-key cryptography and
digital signatures (covered in Chapter 31), which are based on numerical algo-
rithms and number theory.

� Manufacturing and other commercial enterprises often need to allocate scarce
resources in the most beneficial way. An oil company may wish to know where
to place its wells in order to maximize its expected profit. A political candidate
may want to determine where to spend money buying campaign advertising in
order to maximize the chances of winning an election. An airline may wish
to assign crews to flights in the least expensive way possible, making sure that
each flight is covered and that government regulations regarding crew schedul-
ing are met. An Internet service provider may wish to determine where to place
additional resources in order to serve its customers more effectively. All of
these are examples of problems that can be solved using linear programming,
which we shall study in Chapter 29.

Although some of the details of these examples are beyond the scope of this
book, we do give underlying techniques that apply to these problems and problem
areas. We also show how to solve many specific problems, including the following:

� We are given a road map on which the distance between each pair of adjacent
intersections is marked, and we wish to determine the shortest route from one
intersection to another. The number of possible routes can be huge, even if we
disallow routes that cross over themselves. How do we choose which of all
possible routes is the shortest? Here, we model the road map (which is itself
a model of the actual roads) as a graph (which we will meet in Part VI and
Appendix B), and we wish to find the shortest path from one vertex to another
in the graph. We shall see how to solve this problem efficiently in Chapter 24.

� We are given two ordered sequences of symbols, X D hx1; x2; : : : ; xmi and
Y D hy1; y2; : : : ; yni, and we wish to find a longest common subsequence of
X and Y . A subsequence of X is just X with some (or possibly all or none) of
its elements removed. For example, one subsequence of hA; B; C; D; E; F; Gi
would be hB; C; E; Gi. The length of a longest common subsequence of X

and Y gives one measure of how similar these two sequences are. For example,
if the two sequences are base pairs in DNA strands, then we might consider
them similar if they have a long common subsequence. If X has m symbols
and Y has n symbols, then X and Y have 2m and 2n possible subsequences,

8 Chapter 1 The Role of Algorithms in Computing

respectively. Selecting all possible subsequences of X and Y and matching
them up could take a prohibitively long time unless m and n are very small.
We shall see in Chapter 15 how to use a general technique known as dynamic
programming to solve this problem much more efficiently.

� We are given a mechanical design in terms of a library of parts, where each part
may include instances of other parts, and we need to list the parts in order so
that each part appears before any part that uses it. If the design comprises n

parts, then there are nŠ possible orders, where nŠ denotes the factorial function.
Because the factorial function grows faster than even an exponential function,
we cannot feasibly generate each possible order and then verify that, within
that order, each part appears before the parts using it (unless we have only a
few parts). This problem is an instance of topological sorting, and we shall see
in Chapter 22 how to solve this problem efficiently.

� We are given n points in the plane, and we wish to find the convex hull of
these points. The convex hull is the smallest convex polygon containing the
points. Intuitively, we can think of each point as being represented by a nail
sticking out from a board. The convex hull would be represented by a tight
rubber band that surrounds all the nails. Each nail around which the rubber
band makes a turn is a vertex of the convex hull. (See Figure 33.6 on page 1029
for an example.) Any of the 2n subsets of the points might be the vertices
of the convex hull. Knowing which points are vertices of the convex hull is
not quite enough, either, since we also need to know the order in which they
appear. There are many choices, therefore, for the vertices of the convex hull.
Chapter 33 gives two good methods for finding the convex hull.

These lists are far from exhaustive (as you again have probably surmised from
this book’s heft), but exhibit two characteristics that are common to many interest-
ing algorithmic problems:

1. They have many candidate solutions, the overwhelming majority of which do
not solve the problem at hand. Finding one that does, or one that is “best,” can
present quite a challenge.

2. They have practical applications. Of the problems in the above list, finding the
shortest path provides the easiest examples. A transportation firm, such as a
trucking or railroad company, has a financial interest in finding shortest paths
through a road or rail network because taking shorter paths results in lower
labor and fuel costs. Or a routing node on the Internet may need to find the
shortest path through the network in order to route a message quickly. Or a
person wishing to drive from New York to Boston may want to find driving
directions from an appropriate Web site, or she may use her GPS while driving.

1.1 Algorithms 9

Not every problem solved by algorithms has an easily identified set of candidate
solutions. For example, suppose we are given a set of numerical values represent-
ing samples of a signal, and we want to compute the discrete Fourier transform of
these samples. The discrete Fourier transform converts the time domain to the fre-
quency domain, producing a set of numerical coefficients, so that we can determine
the strength of various frequencies in the sampled signal. In addition to lying at
the heart of signal processing, discrete Fourier transforms have applications in data
compression and multiplying large polynomials and integers. Chapter 30 gives
an efficient algorithm, the fast Fourier transform (commonly called the FFT), for
this problem, and the chapter also sketches out the design of a hardware circuit to
compute the FFT.

Data structures

This book also contains several data structures. A data structure is a way to store
and organize data in order to facilitate access and modifications. No single data
structure works well for all purposes, and so it is important to know the strengths
and limitations of several of them.

Technique

Although you can use this book as a “cookbook” for algorithms, you may someday
encounter a problem for which you cannot readily find a published algorithm (many
of the exercises and problems in this book, for example). This book will teach you
techniques of algorithm design and analysis so that you can develop algorithms on
your own, show that they give the correct answer, and understand their efficiency.
Different chapters address different aspects of algorithmic problem solving. Some
chapters address specific problems, such as finding medians and order statistics in
Chapter 9, computing minimum spanning trees in Chapter 23, and determining a
maximum flow in a network in Chapter 26. Other chapters address techniques,
such as divide-and-conquer in Chapter 4, dynamic programming in Chapter 15,
and amortized analysis in Chapter 17.

Hard problems

Most of this book is about efficient algorithms. Our usual measure of efficiency
is speed, i.e., how long an algorithm takes to produce its result. There are some
problems, however, for which no efficient solution is known. Chapter 34 studies
an interesting subset of these problems, which are known as NP-complete.

Why are NP-complete problems interesting? First, although no efficient algo-
rithm for an NP-complete problem has ever been found, nobody has ever proven

10 Chapter 1 The Role of Algorithms in Computing

that an efficient algorithm for one cannot exist. In other words, no one knows
whether or not efficient algorithms exist for NP-complete problems. Second, the
set of NP-complete problems has the remarkable property that if an efficient algo-
rithm exists for any one of them, then efficient algorithms exist for all of them. This
relationship among the NP-complete problems makes the lack of efficient solutions
all the more tantalizing. Third, several NP-complete problems are similar, but not
identical, to problems for which we do know of efficient algorithms. Computer
scientists are intrigued by how a small change to the problem statement can cause
a big change to the efficiency of the best known algorithm.

You should know about NP-complete problems because some of them arise sur-
prisingly often in real applications. If you are called upon to produce an efficient
algorithm for an NP-complete problem, you are likely to spend a lot of time in a
fruitless search. If you can show that the problem is NP-complete, you can instead
spend your time developing an efficient algorithm that gives a good, but not the
best possible, solution.

As a concrete example, consider a delivery company with a central depot. Each
day, it loads up each delivery truck at the depot and sends it around to deliver goods
to several addresses. At the end of the day, each truck must end up back at the depot
so that it is ready to be loaded for the next day. To reduce costs, the company wants
to select an order of delivery stops that yields the lowest overall distance traveled
by each truck. This problem is the well-known “traveling-salesman problem,” and
it is NP-complete. It has no known efficient algorithm. Under certain assumptions,
however, we know of efficient algorithms that give an overall distance which is
not too far above the smallest possible. Chapter 35 discusses such “approximation
algorithms.”

Parallelism

For many years, we could count on processor clock speeds increasing at a steady
rate. Physical limitations present a fundamental roadblock to ever-increasing clock
speeds, however: because power density increases superlinearly with clock speed,
chips run the risk of melting once their clock speeds become high enough. In order
to perform more computations per second, therefore, chips are being designed to
contain not just one but several processing “cores.” We can liken these multicore
computers to several sequential computers on a single chip; in other words, they are
a type of “parallel computer.” In order to elicit the best performance from multicore
computers, we need to design algorithms with parallelism in mind. Chapter 27
presents a model for “multithreaded” algorithms, which take advantage of multiple
cores. This model has advantages from a theoretical standpoint, and it forms the
basis of several successful computer programs, including a championship chess
program.

1.2 Algorithms as a technology 11

Exercises

1.1-1
Give a real-world example that requires sorting or a real-world example that re-
quires computing a convex hull.

1.1-2
Other than speed, what other measures of efficiency might one use in a real-world
setting?

1.1-3
Select a data structure that you have seen previously, and discuss its strengths and
limitations.

1.1-4
How are the shortest-path and traveling-salesman problems given above similar?
How are they different?

1.1-5
Come up with a real-world problem in which only the best solution will do. Then
come up with one in which a solution that is “approximately” the best is good
enough.

1.2 Algorithms as a technology

Suppose computers were infinitely fast and computer memory was free. Would
you have any reason to study algorithms? The answer is yes, if for no other reason
than that you would still like to demonstrate that your solution method terminates
and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a problem
would do. You would probably want your implementation to be within the bounds
of good software engineering practice (for example, your implementation should
be well designed and documented), but you would most often use whichever
method was the easiest to implement.

Of course, computers may be fast, but they are not infinitely fast. And memory
may be inexpensive, but it is not free. Computing time is therefore a bounded
resource, and so is space in memory. You should use these resources wisely, and
algorithms that are efficient in terms of time or space will help you do so.

12 Chapter 1 The Role of Algorithms in Computing

Efficiency

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to c1n2 to sort n items, where c1

is a constant that does not depend on n. That is, it takes time roughly proportional
to n2. The second, merge sort, takes time roughly equal to c2n lg n, where lg n

stands for log2 n and c2 is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that c1 < c2.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as c1n � n and merge sort’s running time as c2n � lg n. Then we see that where
insertion sort has a factor of n in its running time, merge sort has a factor of lg n,
which is much smaller. (For example, when n D 1000, lg n is approximately 10,
and when n equals one million, lg n is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n

becomes large enough, merge sort’s advantage of lg n vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller c1 is
than c2, there will always be a crossover point beyond which merge sort is faster.

For a concrete example, let us pit a faster computer (computer A) running inser-
tion sort against a slower computer (computer B) running merge sort. They each
must sort an array of 10 million numbers. (Although 10 million numbers might
seem like a lot, if the numbers are eight-byte integers, then the input occupies
about 80 megabytes, which fits in the memory of even an inexpensive laptop com-
puter many times over.) Suppose that computer A executes 10 billion instructions
per second (faster than any single sequential computer at the time of this writing)
and computer B executes only 10 million instructions per second, so that com-
puter A is 1000 times faster than computer B in raw computing power. To make
the difference even more dramatic, suppose that the world’s craftiest programmer
codes insertion sort in machine language for computer A, and the resulting code
requires 2n2 instructions to sort n numbers. Suppose further that just an average
programmer implements merge sort, using a high-level language with an inefficient
compiler, with the resulting code taking 50n lg n instructions. To sort 10 million
numbers, computer A takes

2 � .107/2 instructions

1010 instructions/second
D 20,000 seconds (more than 5.5 hours) ;

while computer B takes

1.2 Algorithms as a technology 13

50 � 107 lg 107 instructions

107 instructions/second
� 1163 seconds (less than 20 minutes) :

By using an algorithm whose running time grows more slowly, even with a poor
compiler, computer B runs more than 17 times faster than computer A! The advan-
tage of merge sort is even more pronounced when we sort 100 million numbers:
where insertion sort takes more than 23 days, merge sort takes under four hours.
In general, as the problem size increases, so does the relative advantage of merge
sort.

Algorithms and other technologies

The example above shows that we should consider algorithms, like computer hard-
ware, as a technology. Total system performance depends on choosing efficient
algorithms as much as on choosing fast hardware. Just as rapid advances are being
made in other computer technologies, they are being made in algorithms as well.

You might wonder whether algorithms are truly that important on contemporary
computers in light of other advanced technologies, such as

� advanced computer architectures and fabrication technologies,

� easy-to-use, intuitive, graphical user interfaces (GUIs),

� object-oriented systems,

� integrated Web technologies, and

� fast networking, both wired and wireless.

The answer is yes. Although some applications do not explicitly require algorith-
mic content at the application level (such as some simple, Web-based applications),
many do. For example, consider a Web-based service that determines how to travel
from one location to another. Its implementation would rely on fast hardware, a
graphical user interface, wide-area networking, and also possibly on object ori-
entation. However, it would also require algorithms for certain operations, such
as finding routes (probably using a shortest-path algorithm), rendering maps, and
interpolating addresses.

Moreover, even an application that does not require algorithmic content at the
application level relies heavily upon algorithms. Does the application rely on fast
hardware? The hardware design used algorithms. Does the application rely on
graphical user interfaces? The design of any GUI relies on algorithms. Does the
application rely on networking? Routing in networks relies heavily on algorithms.
Was the application written in a language other than machine code? Then it was
processed by a compiler, interpreter, or assembler, all of which make extensive use

14 Chapter 1 The Role of Algorithms in Computing

of algorithms. Algorithms are at the core of most technologies used in contempo-
rary computers.

Furthermore, with the ever-increasing capacities of computers, we use them to
solve larger problems than ever before. As we saw in the above comparison be-
tween insertion sort and merge sort, it is at larger problem sizes that the differences
in efficiency between algorithms become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one characteristic
that separates the truly skilled programmers from the novices. With modern com-
puting technology, you can accomplish some tasks without knowing much about
algorithms, but with a good background in algorithms, you can do much, much
more.

Exercises

1.2-1
Give an example of an application that requires algorithmic content at the applica-
tion level, and discuss the function of the algorithms involved.

1.2-2
Suppose we are comparing implementations of insertion sort and merge sort on the
same machine. For inputs of size n, insertion sort runs in 8n2 steps, while merge
sort runs in 64n lg n steps. For which values of n does insertion sort beat merge
sort?

1.2-3
What is the smallest value of n such that an algorithm whose running time is 100n2

runs faster than an algorithm whose running time is 2n on the same machine?

Problems

1-1 Comparison of running times
For each function f .n/ and time t in the following table, determine the largest
size n of a problem that can be solved in time t , assuming that the algorithm to
solve the problem takes f .n/ microseconds.

Notes for Chapter 1 15

1 1 1 1 1 1 1
second minute hour day month year century

lg n
p

n

n

n lg n

n2

n3

2n

nŠ

Chapter notes

There are many excellent texts on the general topic of algorithms, including those
by Aho, Hopcroft, and Ullman [5, 6]; Baase and Van Gelder [28]; Brassard and
Bratley [54]; Dasgupta, Papadimitriou, and Vazirani [82]; Goodrich and Tamassia
[148]; Hofri [175]; Horowitz, Sahni, and Rajasekaran [181]; Johnsonbaugh and
Schaefer [193]; Kingston [205]; Kleinberg and Tardos [208]; Knuth [209, 210,
211]; Kozen [220]; Levitin [235]; Manber [242]; Mehlhorn [249, 250, 251]; Pur-
dom and Brown [287]; Reingold, Nievergelt, and Deo [293]; Sedgewick [306];
Sedgewick and Flajolet [307]; Skiena [318]; and Wilf [356]. Some of the more
practical aspects of algorithm design are discussed by Bentley [42, 43] and Gonnet
[145]. Surveys of the field of algorithms can also be found in the Handbook of The-
oretical Computer Science, Volume A [342] and the CRC Algorithms and Theory of
Computation Handbook [25]. Overviews of the algorithms used in computational
biology can be found in textbooks by Gusfield [156], Pevzner [275], Setubal and
Meidanis [310], and Waterman [350].

2 Getting Started

This chapter will familiarize you with the framework we shall use throughout the
book to think about the design and analysis of algorithms. It is self-contained, but
it does include several references to material that we introduce in Chapters 3 and 4.
(It also contains several summations, which Appendix A shows how to solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem
introduced in Chapter 1. We define a “pseudocode” that should be familiar to you if
you have done computer programming, and we use it to show how we shall specify
our algorithms. Having specified the insertion sort algorithm, we then argue that it
correctly sorts, and we analyze its running time. The analysis introduces a notation
that focuses on how that time increases with the number of items to be sorted.
Following our discussion of insertion sort, we introduce the divide-and-conquer
approach to the design of algorithms and use it to develop an algorithm called
merge sort. We end with an analysis of merge sort’s running time.

2.1 Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced in Chap-
ter 1:

Input: A sequence of n numbers ha1; a2; : : : ; ani.
Output: A permutation (reordering) ha0

1; a0
2; : : : ; a0

ni of the input sequence such
that a0

1 � a0
2 � � � � � a0

n.

The numbers that we wish to sort are also known as the keys. Although conceptu-
ally we are sorting a sequence, the input comes to us in the form of an array with n

elements.
In this book, we shall typically describe algorithms as programs written in a

pseudocode that is similar in many respects to C, C++, Java, Python, or Pascal. If
you have been introduced to any of these languages, you should have little trouble

2.1 Insertion sort 17

2
♣

♣

♣ 2
♣

4
♣♣ ♣

♣♣ 4
♣

5
♣♣ ♣

♣♣ 5
♣

♣

7♣

♣
♣ ♣

♣ ♣

♣♣
7

♣

10♣ ♣
♣ ♣
♣ ♣

♣
♣♣
♣♣

10
♣

Figure 2.1 Sorting a hand of cards using insertion sort.

reading our algorithms. What separates pseudocode from “real” code is that in
pseudocode, we employ whatever expressive method is most clear and concise to
specify a given algorithm. Sometimes, the clearest method is English, so do not
be surprised if you come across an English phrase or sentence embedded within
a section of “real” code. Another difference between pseudocode and real code
is that pseudocode is not typically concerned with issues of software engineering.
Issues of data abstraction, modularity, and error handling are often ignored in order
to convey the essence of the algorithm more concisely.

We start with insertion sort, which is an efficient algorithm for sorting a small
number of elements. Insertion sort works the way many people sort a hand of
playing cards. We start with an empty left hand and the cards face down on the
table. We then remove one card at a time from the table and insert it into the
correct position in the left hand. To find the correct position for a card, we compare
it with each of the cards already in the hand, from right to left, as illustrated in
Figure 2.1. At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

We present our pseudocode for insertion sort as a procedure called INSERTION-
SORT, which takes as a parameter an array AŒ1 : : n� containing a sequence of
length n that is to be sorted. (In the code, the number n of elements in A is denoted
by A: length.) The algorithm sorts the input numbers in place: it rearranges the
numbers within the array A, with at most a constant number of them stored outside
the array at any time. The input array A contains the sorted output sequence when
the INSERTION-SORT procedure is finished.

18 Chapter 2 Getting Started

1 2 3 4 5 6

5 2 4 6 1 3(a)
1 2 3 4 5 6

2 5 4 6 1 3(b)
1 2 3 4 5 6

2 4 5 6 1 3(c)

1 2 3 4 5 6

2 4 5 6 1 3(d)
1 2 3 4 5 6

2 4 5 61 3(e)
1 2 3 4 5 6

2 4 5 61 3(f)

Figure 2.2 The operation of INSERTION-SORT on the array A D h5; 2; 4; 6; 1; 3i. Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)–(e) The iterations of the for loop of lines 1–8. In each iteration, the black rectangle holds the
key taken from AŒj �, which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT.A/

1 for j D 2 to A: length
2 key D AŒj �

3 // Insert AŒj � into the sorted sequence AŒ1 : : j � 1�.
4 i D j � 1

5 while i > 0 and AŒi� > key
6 AŒi C 1� D AŒi�

7 i D i � 1

8 AŒi C 1� D key

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for A D h5; 2; 4; 6; 1; 3i. The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j , the subarray consisting
of elements AŒ1 : : j � 1� constitutes the currently sorted hand, and the remaining
subarray AŒj C 1 : : n� corresponds to the pile of cards still on the table. In fact,
elements AŒ1 : : j � 1� are the elements originally in positions 1 through j � 1, but
now in sorted order. We state these properties of AŒ1 : : j � 1� formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
AŒ1 : : j �1� consists of the elements originally in AŒ1 : : j �1�, but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

2.1 Insertion sort 19

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration
of the loop. (Of course, we are free to use established facts other than the loop
invariant itself to prove that the loop invariant remains true before each iteration.)
Note the similarity to mathematical induction, where to prove that a property holds,
you prove a base case and an inductive step. Here, showing that the invariant holds
before the first iteration corresponds to the base case, and showing that the invariant
holds from iteration to iteration corresponds to the inductive step.

The third property is perhaps the most important one, since we are using the loop
invariant to show correctness. Typically, we use the loop invariant along with the
condition that caused the loop to terminate. The termination property differs from
how we usually use mathematical induction, in which we apply the inductive step
infinitely; here, we stop the “induction” when the loop terminates.

Let us see how these properties hold for insertion sort.

Initialization: We start by showing that the loop invariant holds before the first
loop iteration, when j D 2.1 The subarray AŒ1 : : j � 1�, therefore, consists
of just the single element AŒ1�, which is in fact the original element in AŒ1�.
Moreover, this subarray is sorted (trivially, of course), which shows that the
loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the for loop works by
moving AŒj � 1�, AŒj � 2�, AŒj � 3�, and so on by one position to the right
until it finds the proper position for AŒj � (lines 4–7), at which point it inserts
the value of AŒj � (line 8). The subarray AŒ1 : : j � then consists of the elements
originally in AŒ1 : : j �, but in sorted order. Incrementing j for the next iteration
of the for loop then preserves the loop invariant.

A more formal treatment of the second property would require us to state and
show a loop invariant for the while loop of lines 5–7. At this point, however,

1When the loop is a for loop, the moment at which we check the loop invariant just prior to the first
iteration is immediately after the initial assignment to the loop-counter variable and just before the
first test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the
variable j but before the first test of whether j � A: length.

20 Chapter 2 Getting Started

we prefer not to get bogged down in such formalism, and so we rely on our
informal analysis to show that the second property holds for the outer loop.

Termination: Finally, we examine what happens when the loop terminates. The
condition causing the for loop to terminate is that j > A: length D n. Because
each loop iteration increases j by 1, we must have j D n C 1 at that time.
Substituting n C 1 for j in the wording of loop invariant, we have that the
subarray AŒ1 : : n� consists of the elements originally in AŒ1 : : n�, but in sorted
order. Observing that the subarray AŒ1 : : n� is the entire array, we conclude that
the entire array is sorted. Hence, the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this
chapter and in other chapters as well.

Pseudocode conventions

We use the following conventions in our pseudocode.

� Indentation indicates block structure. For example, the body of the for loop that
begins on line 1 consists of lines 2–8, and the body of thewhile loop that begins
on line 5 contains lines 6–7 but not line 8. Our indentation style applies to
if-else statements2 as well. Using indentation instead of conventional indicators
of block structure, such as begin and end statements, greatly reduces clutter
while preserving, or even enhancing, clarity.3

� The looping constructs while, for, and repeat-until and the if-else conditional
construct have interpretations similar to those in C, C++, Java, Python, and
Pascal.4 In this book, the loop counter retains its value after exiting the loop,
unlike some situations that arise in C++, Java, and Pascal. Thus, immediately
after a for loop, the loop counter’s value is the value that first exceeded the for
loop bound. We used this property in our correctness argument for insertion
sort. The for loop header in line 1 is for j D 2 to A: length, and so when
this loop terminates, j D A: length C 1 (or, equivalently, j D n C 1, since
n D A: length). We use the keyword to when a for loop increments its loop

2In an if-else statement, we indent else at the same level as its matching if. Although we omit the
keyword then, we occasionally refer to the portion executed when the test following if is true as a
then clause. For multiway tests, we use elseif for tests after the first one.

3Each pseudocode procedure in this book appears on one page so that you will not have to discern
levels of indentation in code that is split across pages.

4Most block-structured languages have equivalent constructs, though the exact syntax may differ.
Python lacks repeat-until loops, and its for loops operate a little differently from the for loops in
this book.

2.1 Insertion sort 21

counter in each iteration, and we use the keyword downto when a for loop
decrements its loop counter. When the loop counter changes by an amount
greater than 1, the amount of change follows the optional keyword by.

� The symbol “//” indicates that the remainder of the line is a comment.

� A multiple assignment of the form i D j D e assigns to both variables i and j

the value of expression e; it should be treated as equivalent to the assignment
j D e followed by the assignment i D j .

� Variables (such as i , j , and key) are local to the given procedure. We shall not
use global variables without explicit indication.

� We access array elements by specifying the array name followed by the in-
dex in square brackets. For example, AŒi� indicates the i th element of the
array A. The notation “: :” is used to indicate a range of values within an ar-
ray. Thus, AŒ1 : : j � indicates the subarray of A consisting of the j elements
AŒ1�; AŒ2�; : : : ; AŒj �.

� We typically organize compound data into objects, which are composed of
attributes. We access a particular attribute using the syntax found in many
object-oriented programming languages: the object name, followed by a dot,
followed by the attribute name. For example, we treat an array as an object
with the attribute length indicating how many elements it contains. To specify
the number of elements in an array A, we write A: length.

We treat a variable representing an array or object as a pointer to the data rep-
resenting the array or object. For all attributes f of an object x, setting y D x

causes y: f to equal x: f . Moreover, if we now set x: f D 3, then afterward not
only does x: f equal 3, but y: f equals 3 as well. In other words, x and y point
to the same object after the assignment y D x.

Our attribute notation can “cascade.” For example, suppose that the attribute f

is itself a pointer to some type of object that has an attribute g. Then the notation
x: f :g is implicitly parenthesized as .x: f /:g. In other words, if we had assigned
y D x: f , then x: f :g is the same as y:g.

Sometimes, a pointer will refer to no object at all. In this case, we give it the
special value NIL.

� We pass parameters to a procedure by value: the called procedure receives its
own copy of the parameters, and if it assigns a value to a parameter, the change
is not seen by the calling procedure. When objects are passed, the pointer to
the data representing the object is copied, but the object’s attributes are not. For
example, if x is a parameter of a called procedure, the assignment x D y within
the called procedure is not visible to the calling procedure. The assignment
x: f D 3, however, is visible. Similarly, arrays are passed by pointer, so that

22 Chapter 2 Getting Started

a pointer to the array is passed, rather than the entire array, and changes to
individual array elements are visible to the calling procedure.

� A return statement immediately transfers control back to the point of call in
the calling procedure. Most return statements also take a value to pass back to
the caller. Our pseudocode differs from many programming languages in that
we allow multiple values to be returned in a single return statement.

� The boolean operators “and” and “or” are short circuiting. That is, when we
evaluate the expression “x and y” we first evaluate x. If x evaluates to FALSE,
then the entire expression cannot evaluate to TRUE, and so we do not evaluate y.
If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the
value of the entire expression. Similarly, in the expression “x or y” we eval-
uate the expression y only if x evaluates to FALSE. Short-circuiting operators
allow us to write boolean expressions such as “x ¤ NIL and x: f D y” without
worrying about what happens when we try to evaluate x: f when x is NIL.

� The keyword error indicates that an error occurred because conditions were
wrong for the procedure to have been called. The calling procedure is respon-
sible for handling the error, and so we do not specify what action to take.

Exercises

2.1-1
Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the
array A D h31; 41; 59; 26; 41; 58i.
2.1-2
Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of non-
decreasing order.

2.1-3
Consider the searching problem:

Input: A sequence of n numbers A D ha1; a2; : : : ; ani and a value �.

Output: An index i such that � D AŒi� or the special value NIL if � does not
appear in A.

Write pseudocode for linear search, which scans through the sequence, looking
for �. Using a loop invariant, prove that your algorithm is correct. Make sure that
your loop invariant fulfills the three necessary properties.

2.1-4
Consider the problem of adding two n-bit binary integers, stored in two n-element
arrays A and B . The sum of the two integers should be stored in binary form in

2.2 Analyzing algorithms 23

an .nC 1/-element array C . State the problem formally and write pseudocode for
adding the two integers.

2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the algo-
rithm requires. Occasionally, resources such as memory, communication band-
width, or computer hardware are of primary concern, but most often it is compu-
tational time that we want to measure. Generally, by analyzing several candidate
algorithms for a problem, we can identify a most efficient one. Such analysis may
indicate more than one viable candidate, but we can often discard several inferior
algorithms in the process.

Before we can analyze an algorithm, we must have a model of the implemen-
tation technology that we will use, including a model for the resources of that
technology and their costs. For most of this book, we shall assume a generic one-
processor, random-access machine (RAM) model of computation as our imple-
mentation technology and understand that our algorithms will be implemented as
computer programs. In the RAM model, instructions are executed one after an-
other, with no concurrent operations.

Strictly speaking, we should precisely define the instructions of the RAM model
and their costs. To do so, however, would be tedious and would yield little insight
into algorithm design and analysis. Yet we must be careful not to abuse the RAM
model. For example, what if a RAM had an instruction that sorts? Then we could
sort in just one instruction. Such a RAM would be unrealistic, since real computers
do not have such instructions. Our guide, therefore, is how real computers are de-
signed. The RAM model contains instructions commonly found in real computers:
arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling), data
movement (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return). Each such instruction takes a constant amount of time.

The data types in the RAM model are integer and floating point (for storing real
numbers). Although we typically do not concern ourselves with precision in this
book, in some applications precision is crucial. We also assume a limit on the size
of each word of data. For example, when working with inputs of size n, we typ-
ically assume that integers are represented by c lg n bits for some constant c � 1.
We require c � 1 so that each word can hold the value of n, enabling us to index the
individual input elements, and we restrict c to be a constant so that the word size
does not grow arbitrarily. (If the word size could grow arbitrarily, we could store
huge amounts of data in one word and operate on it all in constant time—clearly
an unrealistic scenario.)

24 Chapter 2 Getting Started

Real computers contain instructions not listed above, and such instructions rep-
resent a gray area in the RAM model. For example, is exponentiation a constant-
time instruction? In the general case, no; it takes several instructions to compute xy

when x and y are real numbers. In restricted situations, however, exponentiation is
a constant-time operation. Many computers have a “shift left” instruction, which
in constant time shifts the bits of an integer by k positions to the left. In most
computers, shifting the bits of an integer by one position to the left is equivalent
to multiplication by 2, so that shifting the bits by k positions to the left is equiv-
alent to multiplication by 2k. Therefore, such computers can compute 2k in one
constant-time instruction by shifting the integer 1 by k positions to the left, as long
as k is no more than the number of bits in a computer word. We will endeavor to
avoid such gray areas in the RAM model, but we will treat computation of 2k as a
constant-time operation when k is a small enough positive integer.

In the RAM model, we do not attempt to model the memory hierarchy that is
common in contemporary computers. That is, we do not model caches or virtual
memory. Several computational models attempt to account for memory-hierarchy
effects, which are sometimes significant in real programs on real machines. A
handful of problems in this book examine memory-hierarchy effects, but for the
most part, the analyses in this book will not consider them. Models that include
the memory hierarchy are quite a bit more complex than the RAM model, and so
they can be difficult to work with. Moreover, RAM-model analyses are usually
excellent predictors of performance on actual machines.

Analyzing even a simple algorithm in the RAM model can be a challenge. The
mathematical tools required may include combinatorics, probability theory, alge-
braic dexterity, and the ability to identify the most significant terms in a formula.
Because the behavior of an algorithm may be different for each possible input, we
need a means for summarizing that behavior in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a given al-
gorithm, we still face many choices in deciding how to express our analysis. We
would like a way that is simple to write and manipulate, shows the important char-
acteristics of an algorithm’s resource requirements, and suppresses tedious details.

Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input: sorting a
thousand numbers takes longer than sorting three numbers. Moreover, INSERTION-
SORT can take different amounts of time to sort two input sequences of the same
size depending on how nearly sorted they already are. In general, the time taken
by an algorithm grows with the size of the input, so it is traditional to describe the
running time of a program as a function of the size of its input. To do so, we need
to define the terms “running time” and “size of input” more carefully.

2.2 Analyzing algorithms 25

The best notion for input size depends on the problem being studied. For many
problems, such as sorting or computing discrete Fourier transforms, the most nat-
ural measure is the number of items in the input—for example, the array size n

for sorting. For many other problems, such as multiplying two integers, the best
measure of input size is the total number of bits needed to represent the input in
ordinary binary notation. Sometimes, it is more appropriate to describe the size of
the input with two numbers rather than one. For instance, if the input to an algo-
rithm is a graph, the input size can be described by the numbers of vertices and
edges in the graph. We shall indicate which input size measure is being used with
each problem we study.

The running time of an algorithm on a particular input is the number of primitive
operations or “steps” executed. It is convenient to define the notion of step so
that it is as machine-independent as possible. For the moment, let us adopt the
following view. A constant amount of time is required to execute each line of our
pseudocode. One line may take a different amount of time than another line, but
we shall assume that each execution of the i th line takes time ci , where ci is a
constant. This viewpoint is in keeping with the RAM model, and it also reflects
how the pseudocode would be implemented on most actual computers.5

In the following discussion, our expression for the running time of INSERTION-
SORT will evolve from a messy formula that uses all the statement costs ci to a
much simpler notation that is more concise and more easily manipulated. This
simpler notation will also make it easy to determine whether one algorithm is more
efficient than another.

We start by presenting the INSERTION-SORT procedure with the time “cost”
of each statement and the number of times each statement is executed. For each
j D 2; 3; : : : ; n, where n D A: length, we let tj denote the number of times the
while loop test in line 5 is executed for that value of j . When a for or while loop
exits in the usual way (i.e., due to the test in the loop header), the test is executed
one time more than the loop body. We assume that comments are not executable
statements, and so they take no time.

5There are some subtleties here. Computational steps that we specify in English are often variants
of a procedure that requires more than just a constant amount of time. For example, later in this
book we might say “sort the points by x-coordinate,” which, as we shall see, takes more than a
constant amount of time. Also, note that a statement that calls a subroutine takes constant time,
though the subroutine, once invoked, may take more. That is, we separate the process of calling the
subroutine—passing parameters to it, etc.—from the process of executing the subroutine.

26 Chapter 2 Getting Started

INSERTION-SORT.A/ cost times

1 for j D 2 to A: length c1 n

2 key D AŒj � c2 n � 1

3 // Insert AŒj � into the sorted
sequence AŒ1 : : j � 1�. 0 n � 1

4 i D j � 1 c4 n � 1

5 while i > 0 and AŒi� > key c5

Pn

j D2 tj

6 AŒi C 1� D AŒi� c6

Pn

j D2.tj � 1/

7 i D i � 1 c7

Pn

j D2.tj � 1/

8 AŒi C 1� D key c8 n � 1

The running time of the algorithm is the sum of running times for each state-
ment executed; a statement that takes ci steps to execute and executes n times will
contribute cin to the total running time.6 To compute T .n/, the running time of
INSERTION-SORT on an input of n values, we sum the products of the cost and
times columns, obtaining

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

nX
j D2

tj C c6

nX
j D2

.tj � 1/

C c7

nX
j D2

.tj � 1/C c8.n � 1/ :

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in INSERTION-SORT, the best
case occurs if the array is already sorted. For each j D 2; 3; : : : ; n, we then find
that AŒi� � key in line 5 when i has its initial value of j � 1. Thus tj D 1 for
j D 2; 3; : : : ; n, and the best-case running time is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5.n � 1/C c8.n � 1/

D .c1 C c2 C c4 C c5 C c8/n � .c2 C c4 C c5 C c8/ :

We can express this running time as anC b for constants a and b that depend on
the statement costs ci ; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst
case results. We must compare each element AŒj � with each element in the entire
sorted subarray AŒ1 : : j � 1�, and so tj D j for j D 2; 3; : : : ; n. Noting that

6This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed n times does not necessarily reference mn distinct
words of memory.

2.2 Analyzing algorithms 27

nX
j D2

j D n.nC 1/

2
� 1

and
nX

j D2

.j � 1/ D n.n � 1/

2

(see Appendix A for a review of how to solve these summations), we find that in
the worst case, the running time of INSERTION-SORT is

T .n/ D c1nC c2.n � 1/C c4.n � 1/C c5

�
n.nC 1/

2
� 1

�
C c6

�
n.n � 1/

2

�
C c7

�
n.n � 1/

2

�
C c8.n � 1/

D
�c5

2
C c6

2
C c7

2

�
n2 C

�
c1 C c2 C c4 C

c5

2
� c6

2
� c7

2
C c8

�
n

� .c2 C c4 C c5 C c8/ :

We can express this worst-case running time as an2 C bnC c for constants a, b,
and c that again depend on the statement costs ci ; it is thus a quadratic function
of n.

Typically, as in insertion sort, the running time of an algorithm is fixed for a
given input, although in later chapters we shall see some interesting “randomized”
algorithms whose behavior can vary even for a fixed input.

Worst-case and average-case analysis

In our analysis of insertion sort, we looked at both the best case, in which the input
array was already sorted, and the worst case, in which the input array was reverse
sorted. For the remainder of this book, though, we shall usually concentrate on
finding only the worst-case running time, that is, the longest running time for any
input of size n. We give three reasons for this orientation.

� The worst-case running time of an algorithm gives us an upper bound on the
running time for any input. Knowing it provides a guarantee that the algorithm
will never take any longer. We need not make some educated guess about the
running time and hope that it never gets much worse.

� For some algorithms, the worst case occurs fairly often. For example, in search-
ing a database for a particular piece of information, the searching algorithm’s
worst case will often occur when the information is not present in the database.
In some applications, searches for absent information may be frequent.

28 Chapter 2 Getting Started

� The “average case” is often roughly as bad as the worst case. Suppose that we
randomly choose n numbers and apply insertion sort. How long does it take to
determine where in subarray AŒ1 : : j � 1� to insert element AŒj �? On average,
half the elements in AŒ1 : : j � 1� are less than AŒj �, and half the elements are
greater. On average, therefore, we check half of the subarray AŒ1 : : j � 1�, and
so tj is about j=2. The resulting average-case running time turns out to be a
quadratic function of the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the average-case running time
of an algorithm; we shall see the technique of probabilistic analysis applied to
various algorithms throughout this book. The scope of average-case analysis is
limited, because it may not be apparent what constitutes an “average” input for
a particular problem. Often, we shall assume that all inputs of a given size are
equally likely. In practice, this assumption may be violated, but we can sometimes
use a randomized algorithm, which makes random choices, to allow a probabilistic
analysis and yield an expected running time. We explore randomized algorithms
more in Chapter 5 and in several other subsequent chapters.

Order of growth

We used some simplifying abstractions to ease our analysis of the INSERTION-
SORT procedure. First, we ignored the actual cost of each statement, using the
constants ci to represent these costs. Then, we observed that even these constants
give us more detail than we really need: we expressed the worst-case running time
as an2 C bn C c for some constants a, b, and c that depend on the statement
costs ci . We thus ignored not only the actual statement costs, but also the abstract
costs ci .

We shall now make one more simplifying abstraction: it is the rate of growth,
or order of growth, of the running time that really interests us. We therefore con-
sider only the leading term of a formula (e.g., an2), since the lower-order terms are
relatively insignificant for large values of n. We also ignore the leading term’s con-
stant coefficient, since constant factors are less significant than the rate of growth
in determining computational efficiency for large inputs. For insertion sort, when
we ignore the lower-order terms and the leading term’s constant coefficient, we are
left with the factor of n2 from the leading term. We write that insertion sort has a
worst-case running time of ‚.n2/ (pronounced “theta of n-squared”). We shall use
‚-notation informally in this chapter, and we will define it precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another if its worst-
case running time has a lower order of growth. Due to constant factors and lower-
order terms, an algorithm whose running time has a higher order of growth might
take less time for small inputs than an algorithm whose running time has a lower

2.3 Designing algorithms 29

order of growth. But for large enough inputs, a ‚.n2/ algorithm, for example, will
run more quickly in the worst case than a ‚.n3/ algorithm.

Exercises

2.2-1
Express the function n3=1000 � 100n2 � 100nC 3 in terms of ‚-notation.

2.2-2
Consider sorting n numbers stored in array A by first finding the smallest element
of A and exchanging it with the element in AŒ1�. Then find the second smallest
element of A, and exchange it with AŒ2�. Continue in this manner for the first n�1

elements of A. Write pseudocode for this algorithm, which is known as selection
sort. What loop invariant does this algorithm maintain? Why does it need to run
for only the first n � 1 elements, rather than for all n elements? Give the best-case
and worst-case running times of selection sort in ‚-notation.

2.2-3
Consider linear search again (see Exercise 2.1-3). How many elements of the in-
put sequence need to be checked on the average, assuming that the element being
searched for is equally likely to be any element in the array? How about in the
worst case? What are the average-case and worst-case running times of linear
search in ‚-notation? Justify your answers.

2.2-4
How can we modify almost any algorithm to have a good best-case running time?

2.3 Designing algorithms

We can choose from a wide range of algorithm design techniques. For insertion
sort, we used an incremental approach: having sorted the subarray AŒ1 : : j � 1�,
we inserted the single element AŒj � into its proper place, yielding the sorted
subarray AŒ1 : : j �.

In this section, we examine an alternative design approach, known as “divide-
and-conquer,” which we shall explore in more detail in Chapter 4. We’ll use divide-
and-conquer to design a sorting algorithm whose worst-case running time is much
less than that of insertion sort. One advantage of divide-and-conquer algorithms is
that their running times are often easily determined using techniques that we will
see in Chapter 4.

30 Chapter 2 Getting Started

2.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of n=2

elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine” step. We merge by calling an auxiliary procedure
MERGE.A; p; q; r/, where A is an array and p, q, and r are indices into the array
such that p � q < r . The procedure assumes that the subarrays AŒp : : q� and
AŒq C 1 : : r� are in sorted order. It merges them to form a single sorted subarray
that replaces the current subarray AŒp : : r�.

Our MERGE procedure takes time ‚.n/, where n D r � p C 1 is the total
number of elements being merged, and it works as follows. Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish to merge the two piles into a single
sorted output pile, which is to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto

2.3 Designing algorithms 31

the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ‚.n/

time.
The following pseudocode implements the above idea, but with an additional

twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use 1 as the sentinel value, so that
whenever a card with1 is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r � p C 1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE.A; p; q; r/

1 n1 D q � p C 1

2 n2 D r � q

3 let LŒ1 : : n1 C 1� and RŒ1 : : n2 C 1� be new arrays
4 for i D 1 to n1

5 LŒi� D AŒp C i � 1�

6 for j D 1 to n2

7 RŒj � D AŒq C j �

8 LŒn1 C 1� D 1
9 RŒn2 C 1� D 1

10 i D 1

11 j D 1

12 for k D p to r

13 if LŒi� � RŒj �

14 AŒk� D LŒi�

15 i D i C 1

16 else AŒk� D RŒj �

17 j D j C 1

In detail, the MERGE procedure works as follows. Line 1 computes the length n1

of the subarray AŒp : : q�, and line 2 computes the length n2 of the subarray
AŒq C 1 : : r�. We create arrays L and R (“left” and “right”), of lengths n1 C 1

and n2 C 1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4–5 copies the subarray AŒp : : q� into LŒ1 : : n1�,
and the for loop of lines 6–7 copies the subarray AŒq C 1 : : r� into RŒ1 : : n2�.
Lines 8–9 put the sentinels at the ends of the arrays L and R. Lines 10–17, illus-

32 Chapter 2 Getting Started

A

L R
1 2 3 4 1 2 3 4

i j

k

(a)

2 4 5 7 1 2 3 6

A

L R
1 2 3 4 1 2 3 4

i j

k

(b)

2 4 5 7

1

2 3 61

2 4 5 7 1 2 3 6 4 5 7 1 2 3 6

A

L R

9 10 11 12 13 14 15 16

1 2 3 4 1 2 3 4

i j

k

(c)

2 4 5 7

1

2 3 61

5 7 1 2 3 62 A

L R
1 2 3 4 1 2 3 4

i j

k

(d)

2 4 5 7

1

2 3 61

7 1 2 3 62 2

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 168
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

Figure 2.3 The operation of lines 10–17 in the call MERGE.A; 9; 12; 16/, when the subarray
AŒ9 : : 16� contains the sequence h2; 4; 5; 7; 1; 2; 3; 6i. After copying and inserting sentinels, the
array L contains h2; 4; 5; 7;1i, and the array R contains h1; 2; 3; 6;1i. Lightly shaded positions
in A contain their final values, and lightly shaded positions in L and R contain values that have yet
to be copied back into A. Taken together, the lightly shaded positions always comprise the values
originally in AŒ9 : : 16�, along with the two sentinels. Heavily shaded positions in A contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)–(h) The arrays A, L, and R, and their respective indices k, i , and j

prior to each iteration of the loop of lines 12–17.

trated in Figure 2.3, perform the r�pC1 basic steps by maintaining the following
loop invariant:

At the start of each iteration of the for loop of lines 12–17, the subarray
AŒp : : k � 1� contains the k � p smallest elements of LŒ1 : : n1 C 1� and
RŒ1 : : n2 C 1�, in sorted order. Moreover, LŒi� and RŒj � are the smallest
elements of their arrays that have not been copied back into A.

We must show that this loop invariant holds prior to the first iteration of the for
loop of lines 12–17, that each iteration of the loop maintains the invariant, and
that the invariant provides a useful property to show correctness when the loop
terminates.

Initialization: Prior to the first iteration of the loop, we have k D p, so that the
subarray AŒp : : k � 1� is empty. This empty subarray contains the k � p D 0

smallest elements of L and R, and since i D j D 1, both LŒi� and RŒj � are the
smallest elements of their arrays that have not been copied back into A.

2.3 Designing algorithms 33

A

L R
1 2 3 4 1 2 3 4

i j

k

(e)

2 4 5 7

1

2 3 61

1 2 3 62 2 3 A

L R
1 2 3 4 1 2 3 4

i j

k

(f)

2 4 5 7

1

2 3 61

2 3 62 2 3 4

A

L R
1 2 3 4 1 2 3 4

i j

k

(g)

2 4 5 7

1

2 3 61

3 62 2 3 4 5 A

L R
1 2 3 4 1 2 3 4

i j

k

(h)

2 4 5 7

1

2 3 61

62 2 3 4 5

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

6

A

L R
1 2 3 4 1 2 3 4

i j

k

(i)

2 4 5 7

1

2 3 61

72 2 3 4 5

5
∞

5
∞

6

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

Figure 2.3, continued (i) The arrays and indices at termination. At this point, the subarray in
AŒ9 : : 16� is sorted, and the two sentinels in L and R are the only two elements in these arrays that
have not been copied into A.

Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that LŒi� � RŒj �. Then LŒi� is the smallest element not yet copied
back into A. Because AŒp : : k � 1� contains the k � p smallest elements, after
line 14 copies LŒi� into AŒk�, the subarray AŒp : : k� will contain the k � p C 1

smallest elements. Incrementing k (in the for loop update) and i (in line 15)
reestablishes the loop invariant for the next iteration. If instead LŒi� > RŒj �,
then lines 16–17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, k D r C 1. By the loop invariant, the subarray
AŒp : : k � 1�, which is AŒp : : r�, contains the k � p D r � p C 1 smallest
elements of LŒ1 : : n1 C 1� and RŒ1 : : n2 C 1�, in sorted order. The arrays L

and R together contain n1 C n2 C 2 D r � p C 3 elements. All but the two
largest have been copied back into A, and these two largest elements are the
sentinels.

34 Chapter 2 Getting Started

To see that the MERGE procedure runs in ‚.n/ time, where n D r � p C 1,
observe that each of lines 1–3 and 8–11 takes constant time, the for loops of
lines 4–7 take ‚.n1 C n2/ D ‚.n/ time,7 and there are n iterations of the for
loop of lines 12–17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT.A; p; r/ sorts the elements in the subar-
ray AŒp : : r�. If p � r , the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index q that par-
titions AŒp : : r� into two subarrays: AŒp : : q�, containing dn=2e elements, and
AŒq C 1 : : r�, containing bn=2c elements.8

MERGE-SORT.A; p; r/

1 if p < r

2 q D b.p C r/=2c
3 MERGE-SORT.A; p; q/

4 MERGE-SORT.A; q C 1; r/

5 MERGE.A; p; q; r/

To sort the entire sequence A D hAŒ1�; AŒ2�; : : : ; AŒn�i, we make the initial call
MERGE-SORT.A; 1; A: length/, where once again A: length D n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when n is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length n=2 are merged to form the final
sorted sequence of length n.

2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, we can often describe its
running time by a recurrence equation or recurrence, which describes the overall
running time on a problem of size n in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

7We shall see in Chapter 3 how to formally interpret equations containing ‚-notation.

8The expression dxe denotes the least integer greater than or equal to x, and bxc denotes the greatest
integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify
that setting q to b.p C r/=2c yields subarrays AŒp : : q� and AŒq C 1 : : r� of sizes dn=2e and bn=2c,
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.

2.3 Designing algorithms 35

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

2 4 5 7 1 2 3 6

1 2 2 3 4 5 6 7

merge

merge

merge

sorted sequence

initial sequence

mergemergemergemerge

Figure 2.4 The operation of merge sort on the array A D h5; 2; 4; 7; 1; 3; 2; 6i. The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

A recurrence for the running time of a divide-and-conquer algorithm falls out
from the three steps of the basic paradigm. As before, we let T .n/ be the running
time on a problem of size n. If the problem size is small enough, say n � c

for some constant c, the straightforward solution takes constant time, which we
write as ‚.1/. Suppose that our division of the problem yields a subproblems,
each of which is 1=b the size of the original. (For merge sort, both a and b are 2,
but we shall see many divide-and-conquer algorithms in which a ¤ b.) It takes
time T .n=b/ to solve one subproblem of size n=b, and so it takes time aT .n=b/

to solve a of them. If we take D.n/ time to divide the problem into subproblems
and C.n/ time to combine the solutions to the subproblems into the solution to the
original problem, we get the recurrence

T .n/ D
(

‚.1/ if n � c ;

aT .n=b/CD.n/C C.n/ otherwise :

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the number of
elements is not even, our recurrence-based analysis is simplified if we assume that

36 Chapter 2 Getting Started

the original problem size is a power of 2. Each divide step then yields two subse-
quences of size exactly n=2. In Chapter 4, we shall see that this assumption does
not affect the order of growth of the solution to the recurrence.

We reason as follows to set up the recurrence for T .n/, the worst-case running
time of merge sort on n numbers. Merge sort on just one element takes constant
time. When we have n > 1 elements, we break down the running time as follows.

Divide: The divide step just computes the middle of the subarray, which takes
constant time. Thus, D.n/ D ‚.1/.

Conquer: We recursively solve two subproblems, each of size n=2, which con-
tributes 2T .n=2/ to the running time.

Combine: We have already noted that the MERGE procedure on an n-element
subarray takes time ‚.n/, and so C.n/ D ‚.n/.

When we add the functions D.n/ and C.n/ for the merge sort analysis, we are
adding a function that is ‚.n/ and a function that is ‚.1/. This sum is a linear
function of n, that is, ‚.n/. Adding it to the 2T .n=2/ term from the “conquer”
step gives the recurrence for the worst-case running time T .n/ of merge sort:

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 :
(2.1)

In Chapter 4, we shall see the “master theorem,” which we can use to show
that T .n/ is ‚.n lg n/, where lg n stands for log2 n. Because the logarithm func-
tion grows more slowly than any linear function, for large enough inputs, merge
sort, with its ‚.n lg n/ running time, outperforms insertion sort, whose running
time is ‚.n2/, in the worst case.

We do not need the master theorem to intuitively understand why the solution to
the recurrence (2.1) is T .n/ D ‚.n lg n/. Let us rewrite recurrence (2.1) as

T .n/ D
(

c if n D 1 ;

2T .n=2/C cn if n > 1 ;
(2.2)

where the constant c represents the time required to solve problems of size 1 as
well as the time per array element of the divide and combine steps.9

9It is unlikely that the same constant exactly represents both the time to solve problems of size 1

and the time per array element of the divide and combine steps. We can get around this problem by
letting c be the larger of these times and understanding that our recurrence gives an upper bound on
the running time, or by letting c be the lesser of these times and understanding that our recurrence
gives a lower bound on the running time. Both bounds are on the order of n lg n and, taken together,
give a ‚.n lg n/ running time.

2.3 Designing algorithms 37

Figure 2.5 shows how we can solve recurrence (2.2). For convenience, we as-
sume that n is an exact power of 2. Part (a) of the figure shows T .n/, which we
expand in part (b) into an equivalent tree representing the recurrence. The cn term
is the root (the cost incurred at the top level of recursion), and the two subtrees of
the root are the two smaller recurrences T .n=2/. Part (c) shows this process carried
one step further by expanding T .n=2/. The cost incurred at each of the two sub-
nodes at the second level of recursion is cn=2. We continue expanding each node
in the tree by breaking it into its constituent parts as determined by the recurrence,
until the problem sizes get down to 1, each with a cost of c. Part (d) shows the
resulting recursion tree.

Next, we add the costs across each level of the tree. The top level has total
cost cn, the next level down has total cost c.n=2/ C c.n=2/ D cn, the level after
that has total cost c.n=4/Cc.n=4/Cc.n=4/Cc.n=4/ D cn, and so on. In general,
the level i below the top has 2i nodes, each contributing a cost of c.n=2i/, so that
the i th level below the top has total cost 2i c.n=2i/ D cn. The bottom level has n

nodes, each contributing a cost of c, for a total cost of cn.
The total number of levels of the recursion tree in Figure 2.5 is lg nC 1, where

n is the number of leaves, corresponding to the input size. An informal inductive
argument justifies this claim. The base case occurs when n D 1, in which case the
tree has only one level. Since lg 1 D 0, we have that lg n C 1 gives the correct
number of levels. Now assume as an inductive hypothesis that the number of levels
of a recursion tree with 2i leaves is lg 2i C 1 D i C 1 (since for any value of i ,
we have that lg 2i D i). Because we are assuming that the input size is a power
of 2, the next input size to consider is 2iC1. A tree with n D 2iC1 leaves has
one more level than a tree with 2i leaves, and so the total number of levels is
.i C 1/C 1 D lg 2iC1 C 1.

To compute the total cost represented by the recurrence (2.2), we simply add up
the costs of all the levels. The recursion tree has lg nC 1 levels, each costing cn,
for a total cost of cn.lg n C 1/ D cn lg n C cn. Ignoring the low-order term and
the constant c gives the desired result of ‚.n lg n/.

Exercises

2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on the array
A D h3; 41; 52; 26; 38; 57; 9; 49i.
2.3-2
Rewrite the MERGE procedure so that it does not use sentinels, instead stopping
once either array L or R has had all its elements copied back to A and then copying
the remainder of the other array back into A.

38 Chapter 2 Getting Started

cn

cn

…

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

…

(d)

(c)

cn

T(n/2) T(n/2)

(b)

T(n)

(a)

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

Figure 2.5 How to construct a recursion tree for the recurrence T .n/ D 2T .n=2/ C cn.
Part (a) shows T .n/, which progressively expands in (b)–(d) to form the recursion tree. The fully
expanded tree in part (d) has lg n C 1 levels (i.e., it has height lg n, as indicated), and each level
contributes a total cost of cn. The total cost, therefore, is cn lg nC cn, which is ‚.n lg n/.

Problems for Chapter 2 39

2.3-3
Use mathematical induction to show that when n is an exact power of 2, the solu-
tion of the recurrence

T .n/ D
(

2 if n D 2 ;

2T .n=2/C n if n D 2k , for k > 1

is T .n/ D n lg n.

2.3-4
We can express insertion sort as a recursive procedure as follows. In order to sort
AŒ1 : : n�, we recursively sort AŒ1 : : n�1� and then insert AŒn� into the sorted array
AŒ1 : : n � 1�. Write a recurrence for the running time of this recursive version of
insertion sort.

2.3-5
Referring back to the searching problem (see Exercise 2.1-3), observe that if the
sequence A is sorted, we can check the midpoint of the sequence against � and
eliminate half of the sequence from further consideration. The binary search al-
gorithm repeats this procedure, halving the size of the remaining portion of the
sequence each time. Write pseudocode, either iterative or recursive, for binary
search. Argue that the worst-case running time of binary search is ‚.lg n/.

2.3-6
Observe that the while loop of lines 5–7 of the INSERTION-SORT procedure in
Section 2.1 uses a linear search to scan (backward) through the sorted subarray
AŒ1 : : j � 1�. Can we use a binary search (see Exercise 2.3-5) instead to improve
the overall worst-case running time of insertion sort to ‚.n lg n/?

2.3-7 ?

Describe a ‚.n lg n/-time algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is
exactly x.

Problems

2-1 Insertion sort on small arrays in merge sort
Although merge sort runs in ‚.n lg n/ worst-case time and insertion sort runs
in ‚.n2/ worst-case time, the constant factors in insertion sort can make it faster
in practice for small problem sizes on many machines. Thus, it makes sense to
coarsen the leaves of the recursion by using insertion sort within merge sort when

40 Chapter 2 Getting Started

subproblems become sufficiently small. Consider a modification to merge sort in
which n=k sublists of length k are sorted using insertion sort and then merged
using the standard merging mechanism, where k is a value to be determined.

a. Show that insertion sort can sort the n=k sublists, each of length k, in ‚.nk/

worst-case time.

b. Show how to merge the sublists in ‚.n lg.n=k// worst-case time.

c. Given that the modified algorithm runs in ‚.nkC n lg.n=k// worst-case time,
what is the largest value of k as a function of n for which the modified algorithm
has the same running time as standard merge sort, in terms of ‚-notation?

d. How should we choose k in practice?

2-2 Correctness of bubblesort
Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly
swapping adjacent elements that are out of order.

BUBBLESORT.A/

1 for i D 1 to A: length � 1

2 for j D A: length downto i C 1

3 if AŒj � < AŒj � 1�

4 exchange AŒj � with AŒj � 1�

a. Let A0 denote the output of BUBBLESORT.A/. To prove that BUBBLESORT is
correct, we need to prove that it terminates and that

A0Œ1� � A0Œ2� � � � � � A0Œn� ; (2.3)

where n D A: length. In order to show that BUBBLESORT actually sorts, what
else do we need to prove?

The next two parts will prove inequality (2.3).

b. State precisely a loop invariant for the for loop in lines 2–4, and prove that this
loop invariant holds. Your proof should use the structure of the loop invariant
proof presented in this chapter.

c. Using the termination condition of the loop invariant proved in part (b), state
a loop invariant for the for loop in lines 1–4 that will allow you to prove in-
equality (2.3). Your proof should use the structure of the loop invariant proof
presented in this chapter.

Problems for Chapter 2 41

d. What is the worst-case running time of bubblesort? How does it compare to the
running time of insertion sort?

2-3 Correctness of Horner’s rule
The following code fragment implements Horner’s rule for evaluating a polynomial

P.x/ D
nX

kD0

akxk

D a0 C x.a1 C x.a2 C � � � C x.an�1 C xan/ � � �// ;

given the coefficients a0; a1; : : : ; an and a value for x:

1 y D 0

2 for i D n downto 0

3 y D ai C x � y

a. In terms of ‚-notation, what is the running time of this code fragment for
Horner’s rule?

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that
computes each term of the polynomial from scratch. What is the running time
of this algorithm? How does it compare to Horner’s rule?

c. Consider the following loop invariant:

At the start of each iteration of the for loop of lines 2–3,

y D
n�.iC1/X

kD0

akCiC1xk :

Interpret a summation with no terms as equaling 0. Following the structure of
the loop invariant proof presented in this chapter, use this loop invariant to show
that, at termination, y DPn

kD0 akxk.

d. Conclude by arguing that the given code fragment correctly evaluates a poly-
nomial characterized by the coefficients a0; a1; : : : ; an.

2-4 Inversions
Let AŒ1 : : n� be an array of n distinct numbers. If i < j and AŒi� > AŒj �, then the
pair .i; j / is called an inversion of A.

a. List the five inversions of the array h2; 3; 8; 6; 1i.

42 Chapter 2 Getting Started

b. What array with elements from the set f1; 2; : : : ; ng has the most inversions?
How many does it have?

c. What is the relationship between the running time of insertion sort and the
number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any permutation
on n elements in ‚.n lg n/ worst-case time. (Hint: Modify merge sort.)

Chapter notes

In 1968, Knuth published the first of three volumes with the general title The Art of
Computer Programming [209, 210, 211]. The first volume ushered in the modern
study of computer algorithms with a focus on the analysis of running time, and the
full series remains an engaging and worthwhile reference for many of the topics
presented here. According to Knuth, the word “algorithm” is derived from the
name “al-Khowârizmı̂,” a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algo-
rithms—using notations that Chapter 3 introduces, including ‚-notation—as a
means of comparing relative performance. They also popularized the use of re-
currence relations to describe the running times of recursive algorithms.

Knuth [211] provides an encyclopedic treatment of many sorting algorithms. His
comparison of sorting algorithms (page 381) includes exact step-counting analyses,
like the one we performed here for insertion sort. Knuth’s discussion of insertion
sort encompasses several variations of the algorithm. The most important of these
is Shell’s sort, introduced by D. L. Shell, which uses insertion sort on periodic
subsequences of the input to produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical colla-
tor capable of merging two decks of punched cards in a single pass was invented
in 1938. J. von Neumann, one of the pioneers of computer science, apparently
wrote a program for merge sort on the EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [153], who
credits P. Naur with the first article in this field. Gries attributes loop invariants to
R. W. Floyd. The textbook by Mitchell [256] describes more recent progress in
proving programs correct.

3 Growth of Functions

The order of growth of the running time of an algorithm, defined in Chapter 2,
gives a simple characterization of the algorithm’s efficiency and also allows us to
compare the relative performance of alternative algorithms. Once the input size n

becomes large enough, merge sort, with its ‚.n lg n/ worst-case running time,
beats insertion sort, whose worst-case running time is ‚.n2/. Although we can
sometimes determine the exact running time of an algorithm, as we did for insertion
sort in Chapter 2, the extra precision is not usually worth the effort of computing
it. For large enough inputs, the multiplicative constants and lower-order terms of
an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of
the running time relevant, we are studying the asymptotic efficiency of algorithms.
That is, we are concerned with how the running time of an algorithm increases with
the size of the input in the limit, as the size of the input increases without bound.
Usually, an algorithm that is asymptotically more efficient will be the best choice
for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic anal-
ysis of algorithms. The next section begins by defining several types of “asymp-
totic notation,” of which we have already seen an example in ‚-notation. We then
present several notational conventions used throughout this book, and finally we
review the behavior of functions that commonly arise in the analysis of algorithms.

3.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an algorithm
are defined in terms of functions whose domains are the set of natural numbers
N D f0; 1; 2; : : :g. Such notations are convenient for describing the worst-case
running-time function T .n/, which usually is defined only on integer input sizes.
We sometimes find it convenient, however, to abuse asymptotic notation in a va-

44 Chapter 3 Growth of Functions

riety of ways. For example, we might extend the notation to the domain of real
numbers or, alternatively, restrict it to a subset of the natural numbers. We should
make sure, however, to understand the precise meaning of the notation so that when
we abuse, we do not misuse it. This section defines the basic asymptotic notations
and also introduces some common abuses.

Asymptotic notation, functions, and running times

We will use asymptotic notation primarily to describe the running times of algo-
rithms, as when we wrote that insertion sort’s worst-case running time is ‚.n2/.
Asymptotic notation actually applies to functions, however. Recall that we charac-
terized insertion sort’s worst-case running time as an2CbnCc, for some constants
a, b, and c. By writing that insertion sort’s running time is ‚.n2/, we abstracted
away some details of this function. Because asymptotic notation applies to func-
tions, what we were writing as ‚.n2/ was the function an2 C bn C c, which in
that case happened to characterize the worst-case running time of insertion sort.

In this book, the functions to which we apply asymptotic notation will usually
characterize the running times of algorithms. But asymptotic notation can apply to
functions that characterize some other aspect of algorithms (the amount of space
they use, for example), or even to functions that have nothing whatsoever to do
with algorithms.

Even when we use asymptotic notation to apply to the running time of an al-
gorithm, we need to understand which running time we mean. Sometimes we are
interested in the worst-case running time. Often, however, we wish to characterize
the running time no matter what the input. In other words, we often wish to make
a blanket statement that covers all inputs, not just the worst case. We shall see
asymptotic notations that are well suited to characterizing running times no matter
what the input.

‚-notation

In Chapter 2, we found that the worst-case running time of insertion sort is
T .n/ D ‚.n2/. Let us define what this notation means. For a given function g.n/,
we denote by ‚.g.n// the set of functions

‚.g.n// D ff .n/ W there exist positive constants c1, c2, and n0 such that
0 � c1g.n/ � f .n/ � c2g.n/ for all n � n0g :1

1Within set notation, a colon means “such that.”

3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D �.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and � notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/

inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) �-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D �.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/

lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n � n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

46 Chapter 3 Growth of Functions

In Chapter 2, we introduced an informal notion of ‚-notation that amounted
to throwing away lower-order terms and ignoring the leading coefficient of the
highest-order term. Let us briefly justify this intuition by using the formal defi-
nition to show that 1

2
n2 � 3n D ‚.n2/. To do so, we must determine positive

constants c1, c2, and n0 such that

c1n2 � 1

2
n2 � 3n � c2n2

for all n � n0. Dividing by n2 yields

c1 �
1

2
� 3

n
� c2 :

We can make the right-hand inequality hold for any value of n � 1 by choosing any
constant c2 � 1=2. Likewise, we can make the left-hand inequality hold for any
value of n � 7 by choosing any constant c1 � 1=14. Thus, by choosing c1 D 1=14,
c2 D 1=2, and n0 D 7, we can verify that 1

2
n2 � 3n D ‚.n2/. Certainly, other

choices for the constants exist, but the important thing is that some choice exists.
Note that these constants depend on the function 1

2
n2 � 3n; a different function

belonging to ‚.n2/ would usually require different constants.
We can also use the formal definition to verify that 6n3 ¤ ‚.n2/. Suppose

for the purpose of contradiction that c2 and n0 exist such that 6n3 � c2n2 for
all n � n0. But then dividing by n2 yields n � c2=6, which cannot possibly hold
for arbitrarily large n, since c2 is constant.

Intuitively, the lower-order terms of an asymptotically positive function can be
ignored in determining asymptotically tight bounds because they are insignificant
for large n. When n is large, even a tiny fraction of the highest-order term suf-
fices to dominate the lower-order terms. Thus, setting c1 to a value that is slightly
smaller than the coefficient of the highest-order term and setting c2 to a value that
is slightly larger permits the inequalities in the definition of ‚-notation to be sat-
isfied. The coefficient of the highest-order term can likewise be ignored, since it
only changes c1 and c2 by a constant factor equal to the coefficient.

As an example, consider any quadratic function f .n/ D an2 C bnC c, where
a, b, and c are constants and a > 0. Throwing away the lower-order terms and
ignoring the constant yields f .n/ D ‚.n2/. Formally, to show the same thing, we
take the constants c1 D a=4, c2 D 7a=4, and n0 D 2 � max.jbj =a;

p
jcj =a/. You

may verify that 0 � c1n2 � an2 C bn C c � c2n2 for all n � n0. In general,
for any polynomial p.n/ DPd

iD0 ain
i , where the ai are constants and ad > 0, we

have p.n/ D ‚.nd / (see Problem 3-1).
Since any constant is a degree-0 polynomial, we can express any constant func-

tion as ‚.n0/, or ‚.1/. This latter notation is a minor abuse, however, because the

3.1 Asymptotic notation 47

expression does not indicate what variable is tending to infinity.2 We shall often
use the notation ‚.1/ to mean either a constant or a constant function with respect
to some variable.

O-notation

The ‚-notation asymptotically bounds a function from above and below. When
we have only an asymptotic upper bound, we use O-notation. For a given func-
tion g.n/, we denote by O.g.n// (pronounced “big-oh of g of n” or sometimes
just “oh of g of n”) the set of functions

O.g.n// D ff .n/ W there exist positive constants c and n0 such that
0 � f .n/ � cg.n/ for all n � n0g :

We use O-notation to give an upper bound on a function, to within a constant
factor. Figure 3.1(b) shows the intuition behind O-notation. For all values n at and
to the right of n0, the value of the function f .n/ is on or below cg.n/.

We write f .n/ D O.g.n// to indicate that a function f .n/ is a member of the
set O.g.n//. Note that f .n/ D ‚.g.n// implies f .n/ D O.g.n//, since ‚-
notation is a stronger notion than O-notation. Written set-theoretically, we have
‚.g.n// � O.g.n//. Thus, our proof that any quadratic function an2 C bnC c,
where a > 0, is in ‚.n2/ also shows that any such quadratic function is in O.n2/.
What may be more surprising is that when a > 0, any linear function an C b is
in O.n2/, which is easily verified by taking c D aC jbj and n0 D max.1;�b=a/.

If you have seen O-notation before, you might find it strange that we should
write, for example, n D O.n2/. In the literature, we sometimes find O-notation
informally describing asymptotically tight bounds, that is, what we have defined
using ‚-notation. In this book, however, when we write f .n/ D O.g.n//, we
are merely claiming that some constant multiple of g.n/ is an asymptotic upper
bound on f .n/, with no claim about how tight an upper bound it is. Distinguish-
ing asymptotic upper bounds from asymptotically tight bounds is standard in the
algorithms literature.

Using O-notation, we can often describe the running time of an algorithm
merely by inspecting the algorithm’s overall structure. For example, the doubly
nested loop structure of the insertion sort algorithm from Chapter 2 immediately
yields an O.n2/ upper bound on the worst-case running time: the cost of each it-
eration of the inner loop is bounded from above by O.1/ (constant), the indices i

2The real problem is that our ordinary notation for functions does not distinguish functions from
values. In �-calculus, the parameters to a function are clearly specified: the function n2 could be
written as �n:n2, or even �r:r2. Adopting a more rigorous notation, however, would complicate
algebraic manipulations, and so we choose to tolerate the abuse.

48 Chapter 3 Growth of Functions

and j are both at most n, and the inner loop is executed at most once for each of
the n2 pairs of values for i and j .

Since O-notation describes an upper bound, when we use it to bound the worst-
case running time of an algorithm, we have a bound on the running time of the algo-
rithm on every input—the blanket statement we discussed earlier. Thus, the O.n2/

bound on worst-case running time of insertion sort also applies to its running time
on every input. The ‚.n2/ bound on the worst-case running time of insertion sort,
however, does not imply a ‚.n2/ bound on the running time of insertion sort on
every input. For example, we saw in Chapter 2 that when the input is already
sorted, insertion sort runs in ‚.n/ time.

Technically, it is an abuse to say that the running time of insertion sort is O.n2/,
since for a given n, the actual running time varies, depending on the particular
input of size n. When we say “the running time is O.n2/,” we mean that there is a
function f .n/ that is O.n2/ such that for any value of n, no matter what particular
input of size n is chosen, the running time on that input is bounded from above by
the value f .n/. Equivalently, we mean that the worst-case running time is O.n2/.

�-notation

Just as O-notation provides an asymptotic upper bound on a function, �-notation
provides an asymptotic lower bound. For a given function g.n/, we denote
by �.g.n// (pronounced “big-omega of g of n” or sometimes just “omega of g

of n”) the set of functions

�.g.n// D ff .n/ W there exist positive constants c and n0 such that
0 � cg.n/ � f .n/ for all n � n0g :

Figure 3.1(c) shows the intuition behind �-notation. For all values n at or to the
right of n0, the value of f .n/ is on or above cg.n/.

From the definitions of the asymptotic notations we have seen thus far, it is easy
to prove the following important theorem (see Exercise 3.1-5).

Theorem 3.1
For any two functions f .n/ and g.n/, we have f .n/ D ‚.g.n// if and only if
f .n/ D O.g.n// and f .n/ D �.g.n//.

As an example of the application of this theorem, our proof that an2 C bnC cD
‚.n2/ for any constants a, b, and c, where a > 0, immediately implies that
an2 C bnC c D �.n2/ and an2CbnCc D O.n2/. In practice, rather than using
Theorem 3.1 to obtain asymptotic upper and lower bounds from asymptotically
tight bounds, as we did for this example, we usually use it to prove asymptotically
tight bounds from asymptotic upper and lower bounds.

3.1 Asymptotic notation 49

When we say that the running time (no modifier) of an algorithm is �.g.n//,
we mean that no matter what particular input of size n is chosen for each value
of n, the running time on that input is at least a constant times g.n/, for sufficiently
large n. Equivalently, we are giving a lower bound on the best-case running time
of an algorithm. For example, the best-case running time of insertion sort is �.n/,
which implies that the running time of insertion sort is �.n/.

The running time of insertion sort therefore belongs to both �.n/ and O.n2/,
since it falls anywhere between a linear function of n and a quadratic function of n.
Moreover, these bounds are asymptotically as tight as possible: for instance, the
running time of insertion sort is not �.n2/, since there exists an input for which
insertion sort runs in ‚.n/ time (e.g., when the input is already sorted). It is not
contradictory, however, to say that the worst-case running time of insertion sort
is �.n2/, since there exists an input that causes the algorithm to take �.n2/ time.

Asymptotic notation in equations and inequalities

We have already seen how asymptotic notation can be used within mathematical
formulas. For example, in introducing O-notation, we wrote “n D O.n2/.” We
might also write 2n2C3nC1 D 2n2C‚.n/. How do we interpret such formulas?

When the asymptotic notation stands alone (that is, not within a larger formula)
on the right-hand side of an equation (or inequality), as in n D O.n2/, we have
already defined the equal sign to mean set membership: n 2 O.n2/. In general,
however, when asymptotic notation appears in a formula, we interpret it as stand-
ing for some anonymous function that we do not care to name. For example, the
formula 2n2 C 3nC 1 D 2n2 C ‚.n/ means that 2n2 C 3n C 1 D 2n2 C f .n/,
where f .n/ is some function in the set ‚.n/. In this case, we let f .n/ D 3nC 1,
which indeed is in ‚.n/.

Using asymptotic notation in this manner can help eliminate inessential detail
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case
running time of merge sort as the recurrence

T .n/ D 2T .n=2/C‚.n/ :

If we are interested only in the asymptotic behavior of T .n/, there is no point in
specifying all the lower-order terms exactly; they are all understood to be included
in the anonymous function denoted by the term ‚.n/.

The number of anonymous functions in an expression is understood to be equal
to the number of times the asymptotic notation appears. For example, in the ex-
pression

nX
iD1

O.i/ ;

50 Chapter 3 Growth of Functions

there is only a single anonymous function (a function of i). This expression is thus
not the same as O.1/ C O.2/ C � � � C O.n/, which doesn’t really have a clean
interpretation.

In some cases, asymptotic notation appears on the left-hand side of an equation,
as in

2n2 C‚.n/ D ‚.n2/ :

We interpret such equations using the following rule: No matter how the anony-
mous functions are chosen on the left of the equal sign, there is a way to choose
the anonymous functions on the right of the equal sign to make the equation valid.
Thus, our example means that for any function f .n/ 2 ‚.n/, there is some func-
tion g.n/ 2 ‚.n2/ such that 2n2 C f .n/ D g.n/ for all n. In other words, the
right-hand side of an equation provides a coarser level of detail than the left-hand
side.

We can chain together a number of such relationships, as in

2n2 C 3nC 1 D 2n2 C‚.n/

D ‚.n2/ :

We can interpret each equation separately by the rules above. The first equa-
tion says that there is some function f .n/ 2 ‚.n/ such that 2n2 C 3n C 1 D
2n2 C f .n/ for all n. The second equation says that for any function g.n/ 2 ‚.n/

(such as the f .n/ just mentioned), there is some function h.n/ 2 ‚.n2/ such
that 2n2 C g.n/ D h.n/ for all n. Note that this interpretation implies that
2n2 C 3nC 1 D ‚.n2/, which is what the chaining of equations intuitively gives
us.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 2n2 D O.n2/ is asymptotically tight, but the bound
2n D O.n2/ is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally define o.g.n// (“little-oh of g of n”) as the set

o.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant
n0 > 0 such that 0 � f .n/ < cg.n/ for all n � n0g :

For example, 2n D o.n2/, but 2n2 ¤ o.n2/.
The definitions of O-notation and o-notation are similar. The main difference

is that in f .n/ D O.g.n//, the bound 0 � f .n/ � cg.n/ holds for some con-
stant c > 0, but in f .n/ D o.g.n//, the bound 0 � f .n/ < cg.n/ holds for all
constants c > 0. Intuitively, in o-notation, the function f .n/ becomes insignificant
relative to g.n/ as n approaches infinity; that is,

3.1 Asymptotic notation 51

lim
n!1

f .n/

g.n/
D 0 : (3.1)

Some authors use this limit as a definition of the o-notation; the definition in this
book also restricts the anonymous functions to be asymptotically nonnegative.

!-notation

By analogy, !-notation is to �-notation as o-notation is to O-notation. We use
!-notation to denote a lower bound that is not asymptotically tight. One way to
define it is by

f .n/ 2 !.g.n// if and only if g.n/ 2 o.f .n// :

Formally, however, we define !.g.n// (“little-omega of g of n”) as the set

!.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant
n0 > 0 such that 0 � cg.n/ < f .n/ for all n � n0g :

For example, n2=2 D !.n/, but n2=2 ¤ !.n2/. The relation f .n/ D !.g.n//

implies that

lim
n!1

f .n/

g.n/
D1 ;

if the limit exists. That is, f .n/ becomes arbitrarily large relative to g.n/ as n

approaches infinity.

Comparing functions

Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f .n/ and g.n/ are asymptotically positive.

Transitivity:

f .n/ D ‚.g.n// and g.n/ D ‚.h.n// imply f .n/ D ‚.h.n// ;

f .n/ D O.g.n// and g.n/ D O.h.n// imply f .n/ D O.h.n// ;

f .n/ D �.g.n// and g.n/ D �.h.n// imply f .n/ D �.h.n// ;

f .n/ D o.g.n// and g.n/ D o.h.n// imply f .n/ D o.h.n// ;

f .n/ D !.g.n// and g.n/ D !.h.n// imply f .n/ D !.h.n// :

Reflexivity:

f .n/ D ‚.f .n// ;

f .n/ D O.f .n// ;

f .n/ D �.f .n// :

52 Chapter 3 Growth of Functions

Symmetry:

f .n/ D ‚.g.n// if and only if g.n/ D ‚.f .n// :

Transpose symmetry:

f .n/ D O.g.n// if and only if g.n/ D �.f .n// ;

f .n/ D o.g.n// if and only if g.n/ D !.f .n// :

Because these properties hold for asymptotic notations, we can draw an analogy
between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:

f .n/ D O.g.n// is like a � b ;

f .n/ D �.g.n// is like a � b ;

f .n/ D ‚.g.n// is like a D b ;

f .n/ D o.g.n// is like a < b ;

f .n/ D !.g.n// is like a > b :

We say that f .n/ is asymptotically smaller than g.n/ if f .n/ D o.g.n//, and f .n/

is asymptotically larger than g.n/ if f .n/ D !.g.n//.
One property of real numbers, however, does not carry over to asymptotic nota-

tion:

Trichotomy: For any two real numbers a and b, exactly one of the following must
hold: a < b, a D b, or a > b.

Although any two real numbers can be compared, not all functions are asymptot-
ically comparable. That is, for two functions f .n/ and g.n/, it may be the case
that neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds. For example, we cannot
compare the functions n and n1Csin n using asymptotic notation, since the value of
the exponent in n1Csin n oscillates between 0 and 2, taking on all values in between.

Exercises

3.1-1
Let f .n/ and g.n/ be asymptotically nonnegative functions. Using the basic defi-
nition of ‚-notation, prove that max.f .n/; g.n// D ‚.f .n/C g.n//.

3.1-2
Show that for any real constants a and b, where b > 0,

.nC a/b D ‚.nb/ : (3.2)

3.2 Standard notations and common functions 53

3.1-3
Explain why the statement, “The running time of algorithm A is at least O.n2/,” is
meaningless.

3.1-4
Is 2nC1 D O.2n/? Is 22n D O.2n/?

3.1-5
Prove Theorem 3.1.

3.1-6
Prove that the running time of an algorithm is ‚.g.n// if and only if its worst-case
running time is O.g.n// and its best-case running time is �.g.n//.

3.1-7
Prove that o.g.n//\ !.g.n// is the empty set.

3.1-8
We can extend our notation to the case of two parameters n and m that can go to
infinity independently at different rates. For a given function g.n; m/, we denote
by O.g.n; m// the set of functions

O.g.n; m// D ff .n; m/ W there exist positive constants c, n0, and m0

such that 0 � f .n; m/ � cg.n; m/

for all n � n0 or m � m0g :

Give corresponding definitions for �.g.n; m// and ‚.g.n; m//.

3.2 Standard notations and common functions

This section reviews some standard mathematical functions and notations and ex-
plores the relationships among them. It also illustrates the use of the asymptotic
notations.

Monotonicity

A function f .n/ is monotonically increasing if m � n implies f .m/ � f .n/.
Similarly, it is monotonically decreasing if m � n implies f .m/ � f .n/. A
function f .n/ is strictly increasing if m < n implies f .m/ < f .n/ and strictly
decreasing if m < n implies f .m/ > f .n/.

54 Chapter 3 Growth of Functions

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to x by bxc
(read “the floor of x”) and the least integer greater than or equal to x by dxe (read
“the ceiling of x”). For all real x,

x � 1 < bxc � x � dxe < x C 1 : (3.3)

For any integer n,

dn=2e C bn=2c D n ;

and for any real number x � 0 and integers a; b > 0,�dx=ae
b

�
D

l x

ab

m
; (3.4)�bx=ac

b

	
D

j x

ab

k
; (3.5)la

b

m
� aC .b � 1/

b
; (3.6)ja

b

k
� a � .b � 1/

b
: (3.7)

The floor function f .x/ D bxc is monotonically increasing, as is the ceiling func-
tion f .x/ D dxe.

Modular arithmetic

For any integer a and any positive integer n, the value a mod n is the remainder
(or residue) of the quotient a=n:

a mod n D a � n ba=nc : (3.8)

It follows that

0 � a mod n < n : (3.9)

Given a well-defined notion of the remainder of one integer when divided by an-
other, it is convenient to provide special notation to indicate equality of remainders.
If .a mod n/ D .b mod n/, we write a � b .mod n/ and say that a is equivalent
to b, modulo n. In other words, a � b .mod n/ if a and b have the same remain-
der when divided by n. Equivalently, a � b .mod n/ if and only if n is a divisor
of b � a. We write a 6� b .mod n/ if a is not equivalent to b, modulo n.

3.2 Standard notations and common functions 55

Polynomials

Given a nonnegative integer d , a polynomial in n of degree d is a function p.n/

of the form

p.n/ D
dX

iD0

ain
i ;

where the constants a0; a1; : : : ; ad are the coefficients of the polynomial and
ad ¤ 0. A polynomial is asymptotically positive if and only if ad > 0. For an
asymptotically positive polynomial p.n/ of degree d , we have p.n/ D ‚.nd /. For
any real constant a � 0, the function na is monotonically increasing, and for any
real constant a � 0, the function na is monotonically decreasing. We say that a
function f .n/ is polynomially bounded if f .n/ D O.nk/ for some constant k.

Exponentials

For all real a > 0, m, and n, we have the following identities:

a0 D 1 ;

a1 D a ;

a�1 D 1=a ;

.am/n D amn ;

.am/n D .an/m ;

aman D amCn :

For all n and a � 1, the function an is monotonically increasing in n. When
convenient, we shall assume 00 D 1.

We can relate the rates of growth of polynomials and exponentials by the fol-
lowing fact. For all real constants a and b such that a > 1,

lim
n!1

nb

an
D 0 ; (3.10)

from which we can conclude that

nb D o.an/ :

Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

Using e to denote 2:71828 : : :, the base of the natural logarithm function, we
have for all real x,

ex D 1C x C x2

2Š
C x3

3Š
C � � � D

1X
iD0

xi

i Š
; (3.11)

56 Chapter 3 Growth of Functions

where “Š” denotes the factorial function defined later in this section. For all real x,
we have the inequality

ex � 1C x ; (3.12)

where equality holds only when x D 0. When jxj � 1, we have the approximation

1C x � ex � 1C x C x2 : (3.13)

When x ! 0, the approximation of ex by 1C x is quite good:

ex D 1C x C‚.x2/ :

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x ! 0 rather than as x !1.) We have for all x,

lim
n!1

�
1C x

n

�n

D ex : (3.14)

Logarithms

We shall use the following notations:

lg n D log2 n (binary logarithm) ,

ln n D loge n (natural logarithm) ,

lgk n D .lg n/k (exponentiation) ,

lg lg n D lg.lg n/ (composition) .

An important notational convention we shall adopt is that logarithm functions will
apply only to the next term in the formula, so that lg n C k will mean .lg n/ C k

and not lg.nC k/. If we hold b > 1 constant, then for n > 0, the function logb n

is strictly increasing.
For all real a > 0, b > 0, c > 0, and n,

a D blogb a ;

logc.ab/ D logc aC logc b ;

logb an D n logb a ;

logb a D logc a

logc b
; (3.15)

logb.1=a/ D � logb a ;

logb a D 1

loga b
;

alogb c D c logb a ; (3.16)

where, in each equation above, logarithm bases are not 1.

3.2 Standard notations and common functions 57

By equation (3.15), changing the base of a logarithm from one constant to an-
other changes the value of the logarithm by only a constant factor, and so we shall
often use the notation “lg n” when we don’t care about constant factors, such as in
O-notation. Computer scientists find 2 to be the most natural base for logarithms
because so many algorithms and data structures involve splitting a problem into
two parts.

There is a simple series expansion for ln.1C x/ when jxj < 1:

ln.1C x/ D x � x2

2
C x3

3
� x4

4
C x5

5
� � � � :

We also have the following inequalities for x > �1:

x

1C x
� ln.1C x/ � x ; (3.17)

where equality holds only for x D 0.
We say that a function f .n/ is polylogarithmically bounded if f .n/ D O.lgk n/

for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting lg n for n and 2a for a in equation (3.10), yielding

lim
n!1

lgb n

.2a/lg n
D lim

n!1
lgb n

na
D 0 :

From this limit, we can conclude that

lgb n D o.na/

for any constant a > 0. Thus, any positive polynomial function grows faster than
any polylogarithmic function.

Factorials

The notation nŠ (read “n factorial”) is defined for integers n � 0 as

nŠ D
(

1 if n D 0 ;

n � .n � 1/Š if n > 0 :

Thus, nŠ D 1 � 2 � 3 � � � n.
A weak upper bound on the factorial function is nŠ � nn, since each of the n

terms in the factorial product is at most n. Stirling’s approximation,

nŠ D
p

2�n
�n

e

�n
�

1C‚

�
1

n

��
; (3.18)

58 Chapter 3 Growth of Functions

where e is the base of the natural logarithm, gives us a tighter upper bound, and a
lower bound as well. As Exercise 3.2-3 asks you to prove,

nŠ D o.nn/ ;

nŠ D !.2n/ ;

lg.nŠ/ D ‚.n lg n/ ; (3.19)

where Stirling’s approximation is helpful in proving equation (3.19). The following
equation also holds for all n � 1:

nŠ D
p

2�n
�n

e

�n

e˛n (3.20)

where
1

12nC 1
< ˛n <

1

12n
: (3.21)

Functional iteration

We use the notation f .i/.n/ to denote the function f .n/ iteratively applied i times
to an initial value of n. Formally, let f .n/ be a function over the reals. For non-
negative integers i , we recursively define

f .i/.n/ D
(

n if i D 0 ;

f .f .i�1/.n// if i > 0 :

For example, if f .n/ D 2n, then f .i/.n/ D 2in.

The iterated logarithm function

We use the notation lg� n (read “log star of n”) to denote the iterated logarithm, de-
fined as follows. Let lg.i/ n be as defined above, with f .n/ D lg n. Because the log-
arithm of a nonpositive number is undefined, lg.i/ n is defined only if lg.i�1/ n > 0.
Be sure to distinguish lg.i/ n (the logarithm function applied i times in succession,
starting with argument n) from lgi n (the logarithm of n raised to the i th power).
Then we define the iterated logarithm function as

lg� n D min
˚
i � 0 W lg.i/ n � 1

:

The iterated logarithm is a very slowly growing function:

lg� 2 D 1 ;

lg� 4 D 2 ;

lg� 16 D 3 ;

lg� 65536 D 4 ;

lg�.265536/ D 5 :

3.2 Standard notations and common functions 59

Since the number of atoms in the observable universe is estimated to be about 1080,
which is much less than 265536, we rarely encounter an input size n such that
lg� n > 5.

Fibonacci numbers

We define the Fibonacci numbers by the following recurrence:

F0 D 0 ;

F1 D 1 ; (3.22)

Fi D Fi�1 C Fi�2 for i � 2 :

Thus, each Fibonacci number is the sum of the two previous ones, yielding the
sequence

0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : : :

Fibonacci numbers are related to the golden ratio � and to its conjugate y�, which
are the two roots of the equation

x2 D x C 1 (3.23)

and are given by the following formulas (see Exercise 3.2-6):

� D 1Cp5

2
(3.24)

D 1:61803 : : : ;

y� D 1�p5

2
D �:61803 : : : :

Specifically, we have

Fi D �i � y�i

p
5

;

which we can prove by induction (Exercise 3.2-7). Since
ˇ̌y� ˇ̌ < 1, we haveˇ̌y�i

ˇ̌
p

5
<

1p
5

<
1

2
;

which implies that

60 Chapter 3 Growth of Functions

Fi D
�

�i

p
5
C 1

2

	
; (3.25)

which is to say that the i th Fibonacci number Fi is equal to �i =
p

5 rounded to the
nearest integer. Thus, Fibonacci numbers grow exponentially.

Exercises

3.2-1
Show that if f .n/ and g.n/ are monotonically increasing functions, then so are
the functions f .n/ C g.n/ and f .g.n//, and if f .n/ and g.n/ are in addition
nonnegative, then f .n/ � g.n/ is monotonically increasing.

3.2-2
Prove equation (3.16).

3.2-3
Prove equation (3.19). Also prove that nŠ D !.2n/ and nŠ D o.nn/.

3.2-4 ?

Is the function dlg neŠ polynomially bounded? Is the function dlg lg neŠ polynomi-
ally bounded?

3.2-5 ?

Which is asymptotically larger: lg.lg� n/ or lg�.lg n/?

3.2-6
Show that the golden ratio � and its conjugate y� both satisfy the equation
x2 D x C 1.

3.2-7
Prove by induction that the i th Fibonacci number satisfies the equality

Fi D �i � y�i

p
5

;

where � is the golden ratio and y� is its conjugate.

3.2-8
Show that k ln k D ‚.n/ implies k D ‚.n= ln n/.

Problems for Chapter 3 61

Problems

3-1 Asymptotic behavior of polynomials
Let

p.n/ D
dX

iD0

ain
i ;

where ad > 0, be a degree-d polynomial in n, and let k be a constant. Use the
definitions of the asymptotic notations to prove the following properties.

a. If k � d , then p.n/ D O.nk/.

b. If k � d , then p.n/ D �.nk/.

c. If k D d , then p.n/ D ‚.nk/.

d. If k > d , then p.n/ D o.nk/.

e. If k < d , then p.n/ D !.nk/.

3-2 Relative asymptotic growths
Indicate, for each pair of expressions .A; B/ in the table below, whether A is O, o,
�, !, or ‚ of B . Assume that k � 1, � > 0, and c > 1 are constants. Your answer
should be in the form of the table with “yes” or “no” written in each box.

A B O o � ! ‚

a. lgk n n�

b. nk cn

c.
p

n nsin n

d. 2n 2n=2

e. nlg c c lg n

f. lg.nŠ/ lg.nn/

3-3 Ordering by asymptotic growth rates
a. Rank the following functions by order of growth; that is, find an arrangement

g1; g2; : : : ; g30 of the functions satisfying g1 D �.g2/, g2 D �.g3/, . . . ,
g29 D �.g30/. Partition your list into equivalence classes such that functions
f .n/ and g.n/ are in the same class if and only if f .n/ D ‚.g.n//.

62 Chapter 3 Growth of Functions

lg.lg� n/ 2lg� n .
p

2/lg n n2 nŠ .lg n/Š

.3
2
/n n3 lg2 n lg.nŠ/ 22n

n1= lg n

ln ln n lg� n n � 2n nlg lg n ln n 1

2lg n .lg n/lg n en 4lg n .nC 1/Š
p

lg n

lg�.lg n/ 2
p

2 lg n n 2n n lg n 22nC1

b. Give an example of a single nonnegative function f .n/ such that for all func-
tions gi .n/ in part (a), f .n/ is neither O.gi .n// nor �.gi.n//.

3-4 Asymptotic notation properties
Let f .n/ and g.n/ be asymptotically positive functions. Prove or disprove each of
the following conjectures.

a. f .n/ D O.g.n// implies g.n/ D O.f .n//.

b. f .n/C g.n/ D ‚.min.f .n/; g.n///.

c. f .n/ D O.g.n// implies lg.f .n// D O.lg.g.n///, where lg.g.n// � 1 and
f .n/ � 1 for all sufficiently large n.

d. f .n/ D O.g.n// implies 2f .n/ D O
�
2g.n/

�
.

e. f .n/ D O ..f .n//2/.

f. f .n/ D O.g.n// implies g.n/ D �.f .n//.

g. f .n/ D ‚.f .n=2//.

h. f .n/C o.f .n// D ‚.f .n//.

3-5 Variations on O and˝

Some authors define � in a slightly different way than we do; let’s use
1
� (read

“omega infinity”) for this alternative definition. We say that f .n/ D 1
�.g.n// if

there exists a positive constant c such that f .n/ � cg.n/ � 0 for infinitely many
integers n.

a. Show that for any two functions f .n/ and g.n/ that are asymptotically nonneg-
ative, either f .n/ D O.g.n// or f .n/ D 1

�.g.n// or both, whereas this is not
true if we use � in place of

1
�.

Problems for Chapter 3 63

b. Describe the potential advantages and disadvantages of using
1
� instead of � to

characterize the running times of programs.

Some authors also define O in a slightly different manner; let’s use O 0 for the
alternative definition. We say that f .n/ D O 0.g.n// if and only if jf .n/j D
O.g.n//.

c. What happens to each direction of the “if and only if” in Theorem 3.1 if we
substitute O 0 for O but still use �?

Some authors define eO (read “soft-oh”) to mean O with logarithmic factors ig-
nored:eO.g.n// D ff .n/ W there exist positive constants c, k, and n0 such that

0 � f .n/ � cg.n/ lgk.n/ for all n � n0g :

d. Define e� and e‚ in a similar manner. Prove the corresponding analog to Theo-
rem 3.1.

3-6 Iterated functions
We can apply the iteration operator � used in the lg� function to any monotonically
increasing function f .n/ over the reals. For a given constant c 2 R, we define the
iterated function f �

c by

f �
c .n/ D min

˚
i � 0 W f .i/.n/ � c

;

which need not be well defined in all cases. In other words, the quantity f �
c .n/ is

the number of iterated applications of the function f required to reduce its argu-
ment down to c or less.

For each of the following functions f .n/ and constants c, give as tight a bound
as possible on f �

c .n/.

f .n/ c f �
c .n/

a. n � 1 0

b. lg n 1

c. n=2 1

d. n=2 2

e.
p

n 2

f.
p

n 1

g. n1=3 2

h. n= lg n 2

64 Chapter 3 Growth of Functions

Chapter notes

Knuth [209] traces the origin of the O-notation to a number-theory text by P. Bach-
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion
of the distribution of prime numbers. The � and ‚ notations were advocated by
Knuth [213] to correct the popular, but technically sloppy, practice in the literature
of using O-notation for both upper and lower bounds. Many people continue to
use the O-notation where the ‚-notation is more technically precise. Further dis-
cussion of the history and development of asymptotic notations appears in works
by Knuth [209, 213] and Brassard and Bratley [54].

Not all authors define the asymptotic notations in the same way, although the
various definitions agree in most common situations. Some of the alternative def-
initions encompass functions that are not asymptotically nonnegative, as long as
their absolute values are appropriately bounded.

Equation (3.20) is due to Robbins [297]. Other properties of elementary math-
ematical functions can be found in any good mathematical reference, such as
Abramowitz and Stegun [1] or Zwillinger [362], or in a calculus book, such as
Apostol [18] or Thomas et al. [334]. Knuth [209] and Graham, Knuth, and Patash-
nik [152] contain a wealth of material on discrete mathematics as used in computer
science.

4 Divide-and-Conquer

In Section 2.3.1, we saw how merge sort serves as an example of the divide-and-
conquer paradigm. Recall that in divide-and-conquer, we solve a problem recur-
sively, applying three steps at each level of the recursion:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

When the subproblems are large enough to solve recursively, we call that the recur-
sive case. Once the subproblems become small enough that we no longer recurse,
we say that the recursion “bottoms out” and that we have gotten down to the base
case. Sometimes, in addition to subproblems that are smaller instances of the same
problem, we have to solve subproblems that are not quite the same as the original
problem. We consider solving such subproblems as part of the combine step.

In this chapter, we shall see more algorithms based on divide-and-conquer. The
first one solves the maximum-subarray problem: it takes as input an array of num-
bers, and it determines the contiguous subarray whose values have the greatest sum.
Then we shall see two divide-and-conquer algorithms for multiplying n	 n matri-
ces. One runs in ‚.n3/ time, which is no better than the straightforward method of
multiplying square matrices. But the other, Strassen’s algorithm, runs in O.n2:81/

time, which beats the straightforward method asymptotically.

Recurrences

Recurrences go hand in hand with the divide-and-conquer paradigm, because they
give us a natural way to characterize the running times of divide-and-conquer algo-
rithms. A recurrence is an equation or inequality that describes a function in terms

66 Chapter 4 Divide-and-Conquer

of its value on smaller inputs. For example, in Section 2.3.2 we described the
worst-case running time T .n/ of the MERGE-SORT procedure by the recurrence

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 ;
(4.1)

whose solution we claimed to be T .n/ D ‚.n lg n/.
Recurrences can take many forms. For example, a recursive algorithm might

divide subproblems into unequal sizes, such as a 2=3-to-1=3 split. If the divide and
combine steps take linear time, such an algorithm would give rise to the recurrence
T .n/ D T .2n=3/C T .n=3/C‚.n/.

Subproblems are not necessarily constrained to being a constant fraction of
the original problem size. For example, a recursive version of linear search
(see Exercise 2.1-3) would create just one subproblem containing only one el-
ement fewer than the original problem. Each recursive call would take con-
stant time plus the time for the recursive calls it makes, yielding the recurrence
T .n/ D T .n � 1/C‚.1/.

This chapter offers three methods for solving recurrences—that is, for obtaining
asymptotic “‚” or “O” bounds on the solution:

� In the substitution method, we guess a bound and then use mathematical in-
duction to prove our guess correct.

� The recursion-tree method converts the recurrence into a tree whose nodes
represent the costs incurred at various levels of the recursion. We use techniques
for bounding summations to solve the recurrence.

� The master method provides bounds for recurrences of the form

T .n/ D aT .n=b/C f .n/ ; (4.2)

where a � 1, b > 1, and f .n/ is a given function. Such recurrences arise
frequently. A recurrence of the form in equation (4.2) characterizes a divide-
and-conquer algorithm that creates a subproblems, each of which is 1=b the
size of the original problem, and in which the divide and combine steps together
take f .n/ time.

To use the master method, you will need to memorize three cases, but once
you do that, you will easily be able to determine asymptotic bounds for many
simple recurrences. We will use the master method to determine the running
times of the divide-and-conquer algorithms for the maximum-subarray problem
and for matrix multiplication, as well as for other algorithms based on divide-
and-conquer elsewhere in this book.

Chapter 4 Divide-and-Conquer 67

Occasionally, we shall see recurrences that are not equalities but rather inequal-
ities, such as T .n/ � 2T .n=2/ C ‚.n/. Because such a recurrence states only
an upper bound on T .n/, we will couch its solution using O-notation rather than
‚-notation. Similarly, if the inequality were reversed to T .n/ � 2T .n=2/C‚.n/,
then because the recurrence gives only a lower bound on T .n/, we would use
�-notation in its solution.

Technicalities in recurrences

In practice, we neglect certain technical details when we state and solve recur-
rences. For example, if we call MERGE-SORT on n elements when n is odd, we
end up with subproblems of size bn=2c and dn=2e. Neither size is actually n=2,
because n=2 is not an integer when n is odd. Technically, the recurrence describing
the worst-case running time of MERGE-SORT is really

T .n/ D
(

‚.1/ if n D 1 ;

T .dn=2e/C T .bn=2c/C‚.n/ if n > 1 :
(4.3)

Boundary conditions represent another class of details that we typically ignore.
Since the running time of an algorithm on a constant-sized input is a constant,
the recurrences that arise from the running times of algorithms generally have
T .n/ D ‚.1/ for sufficiently small n. Consequently, for convenience, we shall
generally omit statements of the boundary conditions of recurrences and assume
that T .n/ is constant for small n. For example, we normally state recurrence (4.1)
as

T .n/ D 2T .n=2/C‚.n/ ; (4.4)

without explicitly giving values for small n. The reason is that although changing
the value of T .1/ changes the exact solution to the recurrence, the solution typi-
cally doesn’t change by more than a constant factor, and so the order of growth is
unchanged.

When we state and solve recurrences, we often omit floors, ceilings, and bound-
ary conditions. We forge ahead without these details and later determine whether
or not they matter. They usually do not, but you should know when they do. Ex-
perience helps, and so do some theorems stating that these details do not affect the
asymptotic bounds of many recurrences characterizing divide-and-conquer algo-
rithms (see Theorem 4.1). In this chapter, however, we shall address some of these
details and illustrate the fine points of recurrence solution methods.

68 Chapter 4 Divide-and-Conquer

4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical
Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

120

110

100

90

80

70

60

Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Change 13 �3 �25 20 �3 �16 �23 18 20 �7 12 �5 �22 15 �4 7

Figure 4.1 Information about the price of stock in the Volatile Chemical Corporation after the close
of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical
axis shows the price. The bottom row of the table gives the change in price from the previous day.

4.1 The maximum-subarray problem 69

0 1 2 3 4

11

10

9

8

7

6

Day 0 1 2 3 4

Price 10 11 7 10 6

Change 1 �4 3 �4

Figure 4.2 An example showing that the maximum profit does not always start at the lowest price
or end at the highest price. Again, the horizontal axis indicates the day, and the vertical axis shows
the price. Here, the maximum profit of $3 per share would be earned by buying after day 2 and
selling after day 3. The price of $7 after day 2 is not the lowest price overall, and the price of $10
after day 3 is not the highest price overall.

demonstrating that the maximum profit sometimes comes neither by buying at the
lowest price nor by selling at the highest price.

A brute-force solution

We can easily devise a brute-force solution to this problem: just try every possible
pair of buy and sell dates in which the buy date precedes the sell date. A period of n

days has
�

n

2

�
such pairs of dates. Since

�
n

2

�
is ‚.n2/, and the best we can hope for

is to evaluate each pair of dates in constant time, this approach would take �.n2/

time. Can we do better?

A transformation

In order to design an algorithm with an o.n2/ running time, we will look at the
input in a slightly different way. We want to find a sequence of days over which
the net change from the first day to the last is maximum. Instead of looking at the
daily prices, let us instead consider the daily change in price, where the change on
day i is the difference between the prices after day i � 1 and after day i . The table
in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as
an array A, shown in Figure 4.3, we now want to find the nonempty, contiguous
subarray of A whose values have the largest sum. We call this contiguous subarray
the maximum subarray. For example, in the array of Figure 4.3, the maximum
subarray of AŒ1 : : 16� is AŒ8 : : 11�, with the sum 43. Thus, you would want to buy
the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a
profit of $43 per share.

At first glance, this transformation does not help. We still need to check�
n�1

2

� D ‚.n2/ subarrays for a period of n days. Exercise 4.1-2 asks you to show

70 Chapter 4 Divide-and-Conquer

13
1

–3
2

–25
3

20
4

–3
5

–16
6

–23
7 8 9 10

maximum subarray

11

18
12

20
13

–7
14

12
15

7
16

–5 –22 15 –4A

Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subar-
ray AŒ8 : : 11�, with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ‚.n2/ subarray sums, we can orga-
nize the computation so that each subarray sum takes O.1/ time, given the values
of previously computed subarray sums, so that the brute-force solution takes ‚.n2/

time.
So let us seek a more efficient solution to the maximum-subarray problem.

When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the
maximum sum.

The maximum-subarray problem is interesting only when the array contains
some negative numbers. If all the array entries were nonnegative, then the
maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer

Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray AŒlow : : high�. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays AŒlow : : mid�

and AŒmidC 1 : : high�. As Figure 4.4(a) shows, any contiguous subarray AŒi : : j �

of AŒlow : : high� must lie in exactly one of the following places:

� entirely in the subarray AŒlow : : mid�, so that low � i � j � mid,
� entirely in the subarray AŒmidC 1 : : high�, so that mid < i � j � high, or
� crossing the midpoint, so that low � i � mid < j � high.

Therefore, a maximum subarray of AŒlow : : high� must lie in exactly one of these
places. In fact, a maximum subarray of AŒlow : : high� must have the greatest
sum over all subarrays entirely in AŒlow : : mid�, entirely in AŒmid C 1 : : high�,
or crossing the midpoint. We can find maximum subarrays of AŒlow : : mid� and
AŒmidC1 : : high� recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a

4.1 The maximum-subarray problem 71

(a) (b)

lowlow midmid highhigh

crosses the midpoint

midC 1midC 1

entirely in AŒlow : : mid� entirely in AŒmidC 1 : : high�

i

j

AŒi : : mid�

AŒmidC 1 : : j �

Figure 4.4 (a) Possible locations of subarrays of AŒlow : : high�: entirely in AŒlow : : mid�, entirely
in AŒmid C 1 : : high�, or crossing the midpoint mid. (b) Any subarray of AŒlow : : high� crossing
the midpoint comprises two subarrays AŒi : : mid� and AŒmid C 1 : : j �, where low � i � mid and
mid < j � high.

maximum subarray that crosses the midpoint, and take a subarray with the largest
sum of the three.

We can easily find a maximum subarray crossing the midpoint in time linear
in the size of the subarray AŒlow : : high�. This problem is not a smaller instance
of our original problem, because it has the added restriction that the subarray it
chooses must cross the midpoint. As Figure 4.4(b) shows, any subarray crossing
the midpoint is itself made of two subarrays AŒi : : mid� and AŒmidC 1 : : j �, where
low � i � mid and mid < j � high. Therefore, we just need to find maximum
subarrays of the form AŒi : : mid� and AŒmidC 1 : : j � and then combine them. The
procedure FIND-MAX-CROSSING-SUBARRAY takes as input the array A and the
indices low, mid, and high, and it returns a tuple containing the indices demarcating
a maximum subarray that crosses the midpoint, along with the sum of the values in
a maximum subarray.

FIND-MAX-CROSSING-SUBARRAY.A; low; mid; high/

1 left-sum D �1
2 sum D 0

3 for i D mid downto low
4 sum D sumC AŒi�

5 if sum > left-sum
6 left-sum D sum
7 max-left D i

8 right-sum D �1
9 sum D 0

10 for j D midC 1 to high
11 sum D sumC AŒj �

12 if sum > right-sum
13 right-sum D sum
14 max-right D j

15 return .max-left; max-right; left-sum C right-sum/

72 Chapter 4 Divide-and-Conquer

This procedure works as follows. Lines 1–7 find a maximum subarray of the
left half, AŒlow : : mid�. Since this subarray must contain AŒmid�, the for loop of
lines 3–7 starts the index i at mid and works down to low, so that every subarray
it considers is of the form AŒi : : mid�. Lines 1–2 initialize the variables left-sum,
which holds the greatest sum found so far, and sum, holding the sum of the entries
in AŒi : : mid�. Whenever we find, in line 5, a subarray AŒi : : mid� with a sum of
values greater than left-sum, we update left-sum to this subarray’s sum in line 6, and
in line 7 we update the variable max-left to record this index i . Lines 8–14 work
analogously for the right half, AŒmidC1 : : high�. Here, the for loop of lines 10–14
starts the index j at midC1 and works up to high, so that every subarray it considers
is of the form AŒmid C 1 : : j �. Finally, line 15 returns the indices max-left and
max-right that demarcate a maximum subarray crossing the midpoint, along with
the sum left-sumCright-sum of the values in the subarray AŒmax-left : : max-right�.

If the subarray AŒlow : : high� contains n entries (so that n D high � lowC 1),
we claim that the call FIND-MAX-CROSSING-SUBARRAY.A; low; mid; high/

takes ‚.n/ time. Since each iteration of each of the two for loops takes ‚.1/

time, we just need to count up how many iterations there are altogether. The for
loop of lines 3–7 makes mid � lowC 1 iterations, and the for loop of lines 10–14
makes high � mid iterations, and so the total number of iterations is

.mid � lowC 1/C .high � mid/ D high � lowC 1

D n :

With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in hand, we
can write pseudocode for a divide-and-conquer algorithm to solve the maximum-
subarray problem:

FIND-MAXIMUM-SUBARRAY.A; low; high/

1 if high == low
2 return .low; high; AŒlow�/ // base case: only one element
3 else mid D b.lowC high/=2c
4 .left-low; left-high; left-sum/ D

FIND-MAXIMUM-SUBARRAY.A; low; mid/

5 .right-low; right-high; right-sum/ D
FIND-MAXIMUM-SUBARRAY.A; midC 1; high/

6 .cross-low; cross-high; cross-sum/ D
FIND-MAX-CROSSING-SUBARRAY.A; low; mid; high/

7 if left-sum � right-sum and left-sum � cross-sum
8 return .left-low; left-high; left-sum/

9 elseif right-sum � left-sum and right-sum � cross-sum
10 return .right-low; right-high; right-sum/

11 else return .cross-low; cross-high; cross-sum/

4.1 The maximum-subarray problem 73

The initial call FIND-MAXIMUM-SUBARRAY.A; 1; A: length/ will find a maxi-
mum subarray of AŒ1 : : n�.

Similar to FIND-MAX-CROSSING-SUBARRAY, the recursive procedure FIND-
MAXIMUM-SUBARRAY returns a tuple containing the indices that demarcate a
maximum subarray, along with the sum of the values in a maximum subarray.
Line 1 tests for the base case, where the subarray has just one element. A subar-
ray with just one element has only one subarray—itself—and so line 2 returns a
tuple with the starting and ending indices of just the one element, along with its
value. Lines 3–11 handle the recursive case. Line 3 does the divide part, comput-
ing the index mid of the midpoint. Let’s refer to the subarray AŒlow : : mid� as the
left subarray and to AŒmid C 1 : : high� as the right subarray. Because we know
that the subarray AŒlow : : high� contains at least two elements, each of the left and
right subarrays must have at least one element. Lines 4 and 5 conquer by recur-
sively finding maximum subarrays within the left and right subarrays, respectively.
Lines 6–11 form the combine part. Line 6 finds a maximum subarray that crosses
the midpoint. (Recall that because line 6 solves a subproblem that is not a smaller
instance of the original problem, we consider it to be in the combine part.) Line 7
tests whether the left subarray contains a subarray with the maximum sum, and
line 8 returns that maximum subarray. Otherwise, line 9 tests whether the right
subarray contains a subarray with the maximum sum, and line 10 returns that max-
imum subarray. If neither the left nor right subarrays contain a subarray achieving
the maximum sum, then a maximum subarray must cross the midpoint, and line 11
returns it.

Analyzing the divide-and-conquer algorithm

Next we set up a recurrence that describes the running time of the recursive FIND-
MAXIMUM-SUBARRAY procedure. As we did when we analyzed merge sort in
Section 2.3.2, we make the simplifying assumption that the original problem size
is a power of 2, so that all subproblem sizes are integers. We denote by T .n/ the
running time of FIND-MAXIMUM-SUBARRAY on a subarray of n elements. For
starters, line 1 takes constant time. The base case, when n D 1, is easy: line 2
takes constant time, and so

T .1/ D ‚.1/ : (4.5)

The recursive case occurs when n > 1. Lines 1 and 3 take constant time. Each
of the subproblems solved in lines 4 and 5 is on a subarray of n=2 elements (our
assumption that the original problem size is a power of 2 ensures that n=2 is an
integer), and so we spend T .n=2/ time solving each of them. Because we have
to solve two subproblems—for the left subarray and for the right subarray—the
contribution to the running time from lines 4 and 5 comes to 2T .n=2/. As we have

74 Chapter 4 Divide-and-Conquer

already seen, the call to FIND-MAX-CROSSING-SUBARRAY in line 6 takes ‚.n/

time. Lines 7–11 take only ‚.1/ time. For the recursive case, therefore, we have

T .n/ D ‚.1/C 2T .n=2/C‚.n/C‚.1/

D 2T .n=2/C‚.n/ : (4.6)

Combining equations (4.5) and (4.6) gives us a recurrence for the running
time T .n/ of FIND-MAXIMUM-SUBARRAY:

T .n/ D
(

‚.1/ if n D 1 ;

2T .n=2/C‚.n/ if n > 1 :
(4.7)

This recurrence is the same as recurrence (4.1) for merge sort. As we shall
see from the master method in Section 4.5, this recurrence has the solution
T .n/ D ‚.n lg n/. You might also revisit the recursion tree in Figure 2.5 to un-
derstand why the solution should be T .n/ D ‚.n lg n/.

Thus, we see that the divide-and-conquer method yields an algorithm that is
asymptotically faster than the brute-force method. With merge sort and now the
maximum-subarray problem, we begin to get an idea of how powerful the divide-
and-conquer method can be. Sometimes it will yield the asymptotically fastest
algorithm for a problem, and other times we can do even better. As Exercise 4.1-5
shows, there is in fact a linear-time algorithm for the maximum-subarray problem,
and it does not use divide-and-conquer.

Exercises

4.1-1
What does FIND-MAXIMUM-SUBARRAY return when all elements of A are nega-
tive?

4.1-2
Write pseudocode for the brute-force method of solving the maximum-subarray
problem. Your procedure should run in ‚.n2/ time.

4.1-3
Implement both the brute-force and recursive algorithms for the maximum-
subarray problem on your own computer. What problem size n0 gives the crossover
point at which the recursive algorithm beats the brute-force algorithm? Then,
change the base case of the recursive algorithm to use the brute-force algorithm
whenever the problem size is less than n0. Does that change the crossover point?

4.1-4
Suppose we change the definition of the maximum-subarray problem to allow the
result to be an empty subarray, where the sum of the values of an empty subar-

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?

4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j �, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1�

is either a maximum subarray of AŒ1 : : j � or a subarray AŒi : : j C 1�, for some
1 � i � j C 1. Determine a maximum subarray of the form AŒi : : j C 1� in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n	 n matrices, then in the product C D A �B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik � bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n	 n matrices A and B and multiplies them, returning their n	 n

product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.

SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n 	 n matrix
3 for i D 1 to n

4 for j D 1 to n

5 cij D 0

6 for k D 1 to n

7 cij D cij C aik � bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , the

76 Chapter 4 Divide-and-Conquer

for loop of lines 4–7 computes each of the entries cij , for each column j . Line 5
initializes cij to 0 as we start computing the sum given in equation (4.8), and each
iteration of the for loop of lines 6–7 adds in one more term of equation (4.8).

Because each of the triply-nested for loops runs exactly n iterations, and each
execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY proce-
dure takes ‚.n3/ time.

You might at first think that any matrix multiplication algorithm must take �.n3/

time, since the natural definition of matrix multiplication requires that many mul-
tiplications. You would be incorrect, however: we have a way to multiply matrices
in o.n3/ time. In this section, we shall see Strassen’s remarkable recursive algo-
rithm for multiplying n 	 n matrices. It runs in ‚.nlg 7/ time, which we shall show
in Section 4.5. Since lg 7 lies between 2:80 and 2:81, Strassen’s algorithm runs in
O.n2:81/ time, which is asymptotically better than the simple SQUARE-MATRIX-
MULTIPLY procedure.

A simple divide-and-conquer algorithm

To keep things simple, when we use a divide-and-conquer algorithm to compute
the matrix product C D A � B , we assume that n is an exact power of 2 in each of
the n 	 n matrices. We make this assumption because in each divide step, we will
divide n 	 n matrices into four n=2 	 n=2 matrices, and by assuming that n is an
exact power of 2, we are guaranteed that as long as n � 2, the dimension n=2 is an
integer.

Suppose that we partition each of A, B , and C into four n=2 	 n=2 matrices

A D
�

A11 A12

A21 A22

�
; B D

�
B11 B12

B21 B22

�
; C D

�
C11 C12

C21 C22

�
; (4.9)

so that we rewrite the equation C D A � B as�
C11 C12

C21 C22

�
D
�

A11 A12

A21 A22

�
�
�

B11 B12

B21 B22

�
: (4.10)

Equation (4.10) corresponds to the four equations

C11 D A11 � B11 C A12 � B21 ; (4.11)

C12 D A11 � B12 C A12 � B22 ; (4.12)

C21 D A21 � B11 C A22 � B21 ; (4.13)

C22 D A21 � B12 C A22 � B22 : (4.14)

Each of these four equations specifies two multiplications of n=2 	 n=2 matrices
and the addition of their n=2	 n=2 products. We can use these equations to create
a straightforward, recursive, divide-and-conquer algorithm:

4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n 	 n matrix
3 if n == 1

4 c11 D a11 � b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/

7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/

8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/

9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/

10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2	n=2

matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n 	 n

matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so

T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 	 n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

78 Chapter 4 Divide-and-Conquer

trices in lines 6–9 is ‚.n2/. (Again, we use index calculations to place the results
of the matrix additions into the correct positions of matrix C , with an overhead
of ‚.1/ time per entry.) The total time for the recursive case, therefore, is the sum
of the partitioning time, the time for all the recursive calls, and the time to add the
matrices resulting from the recursive calls:

T .n/ D ‚.1/C 8T .n=2/C‚.n2/

D 8T .n=2/C‚.n2/ : (4.16)

Notice that if we implemented partitioning by copying matrices, which would cost
‚.n2/ time, the recurrence would not change, and hence the overall running time
would increase by only a constant factor.

Combining equations (4.15) and (4.16) gives us the recurrence for the running
time of SQUARE-MATRIX-MULTIPLY-RECURSIVE:

T .n/ D
(

‚.1/ if n D 1 ;

8T .n=2/C‚.n2/ if n > 1 :
(4.17)

As we shall see from the master method in Section 4.5, recurrence (4.17) has the
solution T .n/ D ‚.n3/. Thus, this simple divide-and-conquer approach is no
faster than the straightforward SQUARE-MATRIX-MULTIPLY procedure.

Before we continue on to examining Strassen’s algorithm, let us review where
the components of equation (4.16) came from. Partitioning each n 	 n matrix by
index calculation takes ‚.1/ time, but we have two matrices to partition. Although
you could say that partitioning the two matrices takes ‚.2/ time, the constant of 2

is subsumed by the ‚-notation. Adding two matrices, each with, say, k entries,
takes ‚.k/ time. Since the matrices we add each have n2=4 entries, you could
say that adding each pair takes ‚.n2=4/ time. Again, however, the ‚-notation
subsumes the constant factor of 1=4, and we say that adding two n2=4 	 n2=4

matrices takes ‚.n2/ time. We have four such matrix additions, and once again,
instead of saying that they take ‚.4n2/ time, we say that they take ‚.n2/ time.
(Of course, you might observe that we could say that the four matrix additions
take ‚.4n2=4/ time, and that 4n2=4 D n2, but the point here is that ‚-notation
subsumes constant factors, whatever they are.) Thus, we end up with two terms
of ‚.n2/, which we can combine into one.

When we account for the eight recursive calls, however, we cannot just sub-
sume the constant factor of 8. In other words, we must say that together they take
8T .n=2/ time, rather than just T .n=2/ time. You can get a feel for why by looking
back at the recursion tree in Figure 2.5, for recurrence (2.1) (which is identical to
recurrence (4.7)), with the recursive case T .n/ D 2T .n=2/C‚.n/. The factor of 2

determined how many children each tree node had, which in turn determined how
many terms contributed to the sum at each level of the tree. If we were to ignore

4.2 Strassen’s algorithm for matrix multiplication 79

the factor of 8 in equation (4.16) or the factor of 2 in recurrence (4.1), the recursion
tree would just be linear, rather than “bushy,” and each level would contribute only
one term to the sum.

Bear in mind, therefore, that although asymptotic notation subsumes constant
multiplicative factors, recursive notation such as T .n=2/ does not.

Strassen’s method

The key to Strassen’s method is to make the recursion tree slightly less bushy. That
is, instead of performing eight recursive multiplications of n=2 	 n=2 matrices,
it performs only seven. The cost of eliminating one matrix multiplication will be
several new additions of n=2 	 n=2 matrices, but still only a constant number of
additions. As before, the constant number of matrix additions will be subsumed
by ‚-notation when we set up the recurrence equation to characterize the running
time.

Strassen’s method is not at all obvious. (This might be the biggest understate-
ment in this book.) It has four steps:

1. Divide the input matrices A and B and output matrix C into n=2	n=2 subma-
trices, as in equation (4.9). This step takes ‚.1/ time by index calculation, just
as in SQUARE-MATRIX-MULTIPLY-RECURSIVE.

2. Create 10 matrices S1; S2; : : : ; S10, each of which is n=2 	 n=2 and is the sum
or difference of two matrices created in step 1. We can create all 10 matrices in
‚.n2/ time.

3. Using the submatrices created in step 1 and the 10 matrices created in step 2,
recursively compute seven matrix products P1; P2; : : : ; P7. Each matrix Pi is
n=2 	 n=2.

4. Compute the desired submatrices C11; C12; C21; C22 of the result matrix C by
adding and subtracting various combinations of the Pi matrices. We can com-
pute all four submatrices in ‚.n2/ time.

We shall see the details of steps 2–4 in a moment, but we already have enough
information to set up a recurrence for the running time of Strassen’s method. Let us
assume that once the matrix size n gets down to 1, we perform a simple scalar mul-
tiplication, just as in line 4 of SQUARE-MATRIX-MULTIPLY-RECURSIVE. When
n > 1, steps 1, 2, and 4 take a total of ‚.n2/ time, and step 3 requires us to per-
form seven multiplications of n=2	 n=2 matrices. Hence, we obtain the following
recurrence for the running time T .n/ of Strassen’s algorithm:

T .n/ D
(

‚.1/ if n D 1 ;

7T .n=2/C‚.n2/ if n > 1 :
(4.18)

80 Chapter 4 Divide-and-Conquer

We have traded off one matrix multiplication for a constant number of matrix ad-
ditions. Once we understand recurrences and their solutions, we shall see that this
tradeoff actually leads to a lower asymptotic running time. By the master method
in Section 4.5, recurrence (4.18) has the solution T .n/ D ‚.nlg 7/.

We now proceed to describe the details. In step 2, we create the following 10

matrices:

S1 D B12 � B22 ;

S2 D A11 C A12 ;

S3 D A21 C A22 ;

S4 D B21 � B11 ;

S5 D A11 C A22 ;

S6 D B11 C B22 ;

S7 D A12 � A22 ;

S8 D B21 C B22 ;

S9 D A11 � A21 ;

S10 D B11 C B12 :

Since we must add or subtract n=2 	 n=2 matrices 10 times, this step does indeed
take ‚.n2/ time.

In step 3, we recursively multiply n=2	n=2 matrices seven times to compute the
following n=2 	 n=2 matrices, each of which is the sum or difference of products
of A and B submatrices:

P1 D A11 � S1 D A11 � B12 � A11 � B22 ;

P2 D S2 � B22 D A11 � B22 C A12 � B22 ;

P3 D S3 � B11 D A21 � B11 C A22 � B11 ;

P4 D A22 � S4 D A22 � B21 � A22 � B11 ;

P5 D S5 � S6 D A11 � B11 C A11 � B22 C A22 � B11 C A22 � B22 ;

P6 D S7 � S8 D A12 � B21 C A12 � B22 � A22 � B21 � A22 � B22 ;

P7 D S9 � S10 D A11 � B11 C A11 � B12 � A21 � B11 � A21 � B12 :

Note that the only multiplications we need to perform are those in the middle col-
umn of the above equations. The right-hand column just shows what these products
equal in terms of the original submatrices created in step 1.

Step 4 adds and subtracts the Pi matrices created in step 3 to construct the four
n=2 	 n=2 submatrices of the product C . We start with

C11 D P5 C P4 � P2 C P6 :

4.2 Strassen’s algorithm for matrix multiplication 81

Expanding out the right-hand side, with the expansion of each Pi on its own line
and vertically aligning terms that cancel out, we see that C11 equals

A11 �B11CA11 �B22CA22 �B11CA22 �B22

� A22 �B11 CA22 �B21

� A11 �B22 � A12 �B22

� A22 �B22� A22 �B21CA12 �B22CA12 �B21

A11 �B11 CA12 �B21 ;

which corresponds to equation (4.11).

Similarly, we set

C12 D P1 C P2 ;

and so C12 equals

A11 �B12 � A11 �B22

CA11 �B22CA12 �B22

A11 �B12 CA12 �B22 ;

corresponding to equation (4.12).

Setting

C21 D P3 C P4

makes C21 equal

A21 �B11CA22 �B11

� A22 �B11CA22 �B21

A21 �B11 CA22 �B21 ;

corresponding to equation (4.13).

Finally, we set

C22 D P5 C P1 � P3 � P7 ;

so that C22 equals

A11 �B11CA11 �B22CA22 �B11CA22 �B22

� A11 �B22 CA11 �B12

� A22 �B11 � A21 �B11

�A11 �B11 � A11 �B12CA21 �B11CA21 �B12

A22 �B22 CA21 �B12 ;

82 Chapter 4 Divide-and-Conquer

which corresponds to equation (4.14). Altogether, we add or subtract n=2 	 n=2

matrices eight times in step 4, and so this step indeed takes ‚.n2/ time.
Thus, we see that Strassen’s algorithm, comprising steps 1–4, produces the cor-

rect matrix product and that recurrence (4.18) characterizes its running time. Since
we shall see in Section 4.5 that this recurrence has the solution T .n/ D ‚.nlg 7/,
Strassen’s method is asymptotically faster than the straightforward SQUARE-
MATRIX-MULTIPLY procedure. The notes at the end of this chapter discuss some
of the practical aspects of Strassen’s algorithm.

Exercises

Note: Although Exercises 4.2-3, 4.2-4, and 4.2-5 are about variants on Strassen’s
algorithm, you should read Section 4.5 before trying to solve them.

4.2-1
Use Strassen’s algorithm to compute the matrix product�

1 3

7 5

��
6 8

4 2

�
:

Show your work.

4.2-2
Write pseudocode for Strassen’s algorithm.

4.2-3
How would you modify Strassen’s algorithm to multiply n	n matrices in which n

is not an exact power of 2? Show that the resulting algorithm runs in time ‚.nlg 7/.

4.2-4
What is the largest k such that if you can multiply 3 	 3 matrices using k multi-
plications (not assuming commutativity of multiplication), then you can multiply
n	n matrices in time o.nlg 7/? What would the running time of this algorithm be?

4.2-5
V. Pan has discovered a way of multiplying 68 	 68 matrices using 132,464 mul-
tiplications, a way of multiplying 70 	 70 matrices using 143,640 multiplications,
and a way of multiplying 72 	 72 matrices using 155,424 multiplications. Which
method yields the best asymptotic running time when used in a divide-and-conquer
matrix-multiplication algorithm? How does it compare to Strassen’s algorithm?

4.3 The substitution method for solving recurrences 83

4.2-6
How quickly can you multiply a kn	n matrix by an n	kn matrix, using Strassen’s
algorithm as a subroutine? Answer the same question with the order of the input
matrices reversed.

4.2-7
Show how to multiply the complex numbers a C bi and c C di using only three
multiplications of real numbers. The algorithm should take a, b, c, and d as input
and produce the real component ac � bd and the imaginary component ad C bc

separately.

4.3 The substitution method for solving recurrences

Now that we have seen how recurrences characterize the running times of divide-
and-conquer algorithms, we will learn how to solve recurrences. We start in this
section with the “substitution” method.

The substitution method for solving recurrences comprises two steps:

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution
works.

We substitute the guessed solution for the function when applying the inductive
hypothesis to smaller values; hence the name “substitution method.” This method
is powerful, but we must be able to guess the form of the answer in order to apply it.

We can use the substitution method to establish either upper or lower bounds on
a recurrence. As an example, let us determine an upper bound on the recurrence

T .n/ D 2T .bn=2c/C n ; (4.19)

which is similar to recurrences (4.3) and (4.4). We guess that the solution is
T .n/ D O.n lg n/. The substitution method requires us to prove that T .n/ �
cn lg n for an appropriate choice of the constant c > 0. We start by assuming
that this bound holds for all positive m < n, in particular for m D bn=2c, yielding
T .bn=2c/ � c bn=2c lg.bn=2c/. Substituting into the recurrence yields

T .n/ � 2.c bn=2c lg.bn=2c//C n

� cn lg.n=2/C n

D cn lg n � cn lg 2C n

D cn lg n � cnC n

� cn lg n ;

84 Chapter 4 Divide-and-Conquer

where the last step holds as long as c � 1.
Mathematical induction now requires us to show that our solution holds for the

boundary conditions. Typically, we do so by showing that the boundary condi-
tions are suitable as base cases for the inductive proof. For the recurrence (4.19),
we must show that we can choose the constant c large enough so that the bound
T .n/ � cn lg n works for the boundary conditions as well. This requirement
can sometimes lead to problems. Let us assume, for the sake of argument, that
T .1/ D 1 is the sole boundary condition of the recurrence. Then for n D 1, the
bound T .n/ � cn lg n yields T .1/ � c1 lg 1 D 0, which is at odds with T .1/ D 1.
Consequently, the base case of our inductive proof fails to hold.

We can overcome this obstacle in proving an inductive hypothesis for a spe-
cific boundary condition with only a little more effort. In the recurrence (4.19),
for example, we take advantage of asymptotic notation requiring us only to prove
T .n/ � cn lg n for n � n0, where n0 is a constant that we get to choose. We
keep the troublesome boundary condition T .1/ D 1, but remove it from consid-
eration in the inductive proof. We do so by first observing that for n > 3, the
recurrence does not depend directly on T .1/. Thus, we can replace T .1/ by T .2/

and T .3/ as the base cases in the inductive proof, letting n0 D 2. Note that we
make a distinction between the base case of the recurrence (n D 1) and the base
cases of the inductive proof (n D 2 and n D 3). With T .1/ D 1, we derive from
the recurrence that T .2/ D 4 and T .3/ D 5. Now we can complete the inductive
proof that T .n/ � cn lg n for some constant c � 1 by choosing c large enough
so that T .2/ � c2 lg 2 and T .3/ � c3 lg 3. As it turns out, any choice of c � 2

suffices for the base cases of n D 2 and n D 3 to hold. For most of the recurrences
we shall examine, it is straightforward to extend boundary conditions to make the
inductive assumption work for small n, and we shall not always explicitly work out
the details.

Making a good guess

Unfortunately, there is no general way to guess the correct solutions to recurrences.
Guessing a solution takes experience and, occasionally, creativity. Fortunately,
though, you can use some heuristics to help you become a good guesser. You
can also use recursion trees, which we shall see in Section 4.4, to generate good
guesses.

If a recurrence is similar to one you have seen before, then guessing a similar
solution is reasonable. As an example, consider the recurrence

T .n/ D 2T .bn=2c C 17/C n ;

which looks difficult because of the added “17” in the argument to T on the right-
hand side. Intuitively, however, this additional term cannot substantially affect the

4.3 The substitution method for solving recurrences 85

solution to the recurrence. When n is large, the difference between bn=2c and
bn=2c C 17 is not that large: both cut n nearly evenly in half. Consequently, we
make the guess that T .n/ D O.n lg n/, which you can verify as correct by using
the substitution method (see Exercise 4.3-6).

Another way to make a good guess is to prove loose upper and lower bounds on
the recurrence and then reduce the range of uncertainty. For example, we might
start with a lower bound of T .n/ D �.n/ for the recurrence (4.19), since we
have the term n in the recurrence, and we can prove an initial upper bound of
T .n/ D O.n2/. Then, we can gradually lower the upper bound and raise the
lower bound until we converge on the correct, asymptotically tight solution of
T .n/ D ‚.n lg n/.

Subtleties

Sometimes you might correctly guess an asymptotic bound on the solution of a
recurrence, but somehow the math fails to work out in the induction. The problem
frequently turns out to be that the inductive assumption is not strong enough to
prove the detailed bound. If you revise the guess by subtracting a lower-order term
when you hit such a snag, the math often goes through.

Consider the recurrence

T .n/ D T .bn=2c/C T .dn=2e/C 1 :

We guess that the solution is T .n/ D O.n/, and we try to show that T .n/ � cn for
an appropriate choice of the constant c. Substituting our guess in the recurrence,
we obtain

T .n/ � c bn=2c C c dn=2e C 1

D cnC 1 ;

which does not imply T .n/ � cn for any choice of c. We might be tempted to try
a larger guess, say T .n/ D O.n2/. Although we can make this larger guess work,
our original guess of T .n/ D O.n/ is correct. In order to show that it is correct,
however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we are off only by the constant 1, a
lower-order term. Nevertheless, mathematical induction does not work unless we
prove the exact form of the inductive hypothesis. We overcome our difficulty
by subtracting a lower-order term from our previous guess. Our new guess is
T .n/ � cn � d , where d � 0 is a constant. We now have

T .n/ � .c bn=2c � d/C .c dn=2e � d/C 1

D cn� 2d C 1

� cn� d ;

86 Chapter 4 Divide-and-Conquer

as long as d � 1. As before, we must choose the constant c large enough to handle
the boundary conditions.

You might find the idea of subtracting a lower-order term counterintuitive. Af-
ter all, if the math does not work out, we should increase our guess, right?
Not necessarily! When proving an upper bound by induction, it may actually be
more difficult to prove that a weaker upper bound holds, because in order to prove
the weaker bound, we must use the same weaker bound inductively in the proof.
In our current example, when the recurrence has more than one recursive term, we
get to subtract out the lower-order term of the proposed bound once per recursive
term. In the above example, we subtracted out the constant d twice, once for the
T .bn=2c/ term and once for the T .dn=2e/ term. We ended up with the inequality
T .n/ � cn� 2d C 1, and it was easy to find values of d to make cn� 2d C 1 be
less than or equal to cn � d .

Avoiding pitfalls

It is easy to err in the use of asymptotic notation. For example, in the recur-
rence (4.19) we can falsely “prove” T .n/ D O.n/ by guessing T .n/ � cn and
then arguing

T .n/ � 2.c bn=2c/C n

� cnC n

D O.n/ ;
 wrong!!

since c is a constant. The error is that we have not proved the exact form of the
inductive hypothesis, that is, that T .n/ � cn. We therefore will explicitly prove
that T .n/ � cn when we want to show that T .n/ D O.n/.

Changing variables

Sometimes, a little algebraic manipulation can make an unknown recurrence simi-
lar to one you have seen before. As an example, consider the recurrence

T .n/ D 2T
�
p

n
˘�C lg n ;

which looks difficult. We can simplify this recurrence, though, with a change of
variables. For convenience, we shall not worry about rounding off values, such
as
p

n, to be integers. Renaming m D lg n yields

T .2m/ D 2T .2m=2/Cm :

We can now rename S.m/ D T .2m/ to produce the new recurrence

S.m/ D 2S.m=2/Cm ;

4.3 The substitution method for solving recurrences 87

which is very much like recurrence (4.19). Indeed, this new recurrence has the
same solution: S.m/ D O.m lg m/. Changing back from S.m/ to T .n/, we obtain

T .n/ D T .2m/ D S.m/ D O.m lg m/ D O.lg n lg lg n/ :

Exercises

4.3-1
Show that the solution of T .n/ D T .n � 1/C n is O.n2/.

4.3-2
Show that the solution of T .n/ D T .dn=2e/C 1 is O.lg n/.

4.3-3
We saw that the solution of T .n/ D 2T .bn=2c/Cn is O.n lg n/. Show that the so-
lution of this recurrence is also �.n lg n/. Conclude that the solution is ‚.n lg n/.

4.3-4
Show that by making a different inductive hypothesis, we can overcome the diffi-
culty with the boundary condition T .1/ D 1 for recurrence (4.19) without adjusting
the boundary conditions for the inductive proof.

4.3-5
Show that ‚.n lg n/ is the solution to the “exact” recurrence (4.3) for merge sort.

4.3-6
Show that the solution to T .n/ D 2T .bn=2c C 17/C n is O.n lg n/.

4.3-7
Using the master method in Section 4.5, you can show that the solution to the
recurrence T .n/ D 4T .n=3/ C n is T .n/ D ‚.nlog3 4/. Show that a substitution
proof with the assumption T .n/ � cnlog3 4 fails. Then show how to subtract off a
lower-order term to make a substitution proof work.

4.3-8
Using the master method in Section 4.5, you can show that the solution to the
recurrence T .n/ D 4T .n=2/ C n2 is T .n/ D ‚.n2/. Show that a substitution
proof with the assumption T .n/ � cn2 fails. Then show how to subtract off a
lower-order term to make a substitution proof work.

88 Chapter 4 Divide-and-Conquer

4.3-9
Solve the recurrence T .n/ D 3T .

p
n/ C log n by making a change of variables.

Your solution should be asymptotically tight. Do not worry about whether values
are integral.

4.4 The recursion-tree method for solving recurrences

Although you can use the substitution method to provide a succinct proof that
a solution to a recurrence is correct, you might have trouble coming up with a
good guess. Drawing out a recursion tree, as we did in our analysis of the merge
sort recurrence in Section 2.3.2, serves as a straightforward way to devise a good
guess. In a recursion tree, each node represents the cost of a single subproblem
somewhere in the set of recursive function invocations. We sum the costs within
each level of the tree to obtain a set of per-level costs, and then we sum all the
per-level costs to determine the total cost of all levels of the recursion.

A recursion tree is best used to generate a good guess, which you can then verify
by the substitution method. When using a recursion tree to generate a good guess,
you can often tolerate a small amount of “sloppiness,” since you will be verifying
your guess later on. If you are very careful when drawing out a recursion tree and
summing the costs, however, you can use a recursion tree as a direct proof of a
solution to a recurrence. In this section, we will use recursion trees to generate
good guesses, and in Section 4.6, we will use recursion trees directly to prove the
theorem that forms the basis of the master method.

For example, let us see how a recursion tree would provide a good guess for
the recurrence T .n/ D 3T .bn=4c/ C ‚.n2/. We start by focusing on finding an
upper bound for the solution. Because we know that floors and ceilings usually do
not matter when solving recurrences (here’s an example of sloppiness that we can
tolerate), we create a recursion tree for the recurrence T .n/ D 3T .n=4/ C cn2,
having written out the implied constant coefficient c > 0.

Figure 4.5 shows how we derive the recursion tree for T .n/ D 3T .n=4/C cn2.
For convenience, we assume that n is an exact power of 4 (another example of
tolerable sloppiness) so that all subproblem sizes are integers. Part (a) of the figure
shows T .n/, which we expand in part (b) into an equivalent tree representing the
recurrence. The cn2 term at the root represents the cost at the top level of recursion,
and the three subtrees of the root represent the costs incurred by the subproblems
of size n=4. Part (c) shows this process carried one step further by expanding each
node with cost T .n=4/ from part (b). The cost for each of the three children of the
root is c.n=4/2. We continue expanding each node in the tree by breaking it into
its constituent parts as determined by the recurrence.

4.4 The recursion-tree method for solving recurrences 89

…

…

(d)

(c)(b)(a)

T .n/ cn2 cn2

cn2

T
�

n
4

�
T
�

n
4

�
T
�

n
4

�

T
�

n
16

�
T
�

n
16

�
T
�

n
16

�
T
�

n
16

�
T
�

n
16

�
T
�

n
16

�
T
�

n
16

�
T
�

n
16

�
T
�

n
16

�

cn2

c
�

n
4

�2
c
�

n
4

�2
c
�

n
4

�2

c
�

n
4

�2
c
�

n
4

�2
c
�

n
4

�2

c
�

n
16

�2
c
�

n
16

�2
c
�

n
16

�2
c
�

n
16

�2
c
�

n
16

�2
c
�

n
16

�2
c
�

n
16

�2
c
�

n
16

�2
c
�

n
16

�2

3
16

cn2

�
3

16

�2
cn2

log4 n

nlog4 3

T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/T .1/ ‚.nlog4 3/

Total: O.n2/

Figure 4.5 Constructing a recursion tree for the recurrence T .n/ D 3T .n=4/ C cn2. Part (a)
shows T .n/, which progressively expands in (b)–(d) to form the recursion tree. The fully expanded
tree in part (d) has height log4 n (it has log4 nC 1 levels).

90 Chapter 4 Divide-and-Conquer

Because subproblem sizes decrease by a factor of 4 each time we go down one
level, we eventually must reach a boundary condition. How far from the root do
we reach one? The subproblem size for a node at depth i is n=4i . Thus, the
subproblem size hits n D 1 when n=4i D 1 or, equivalently, when i D log4 n.
Thus, the tree has log4 nC 1 levels (at depths 0; 1; 2; : : : ; log4 n).

Next we determine the cost at each level of the tree. Each level has three times
more nodes than the level above, and so the number of nodes at depth i is 3i .
Because subproblem sizes reduce by a factor of 4 for each level we go down
from the root, each node at depth i , for i D 0; 1; 2; : : : ; log4 n � 1, has a cost
of c.n=4i /2. Multiplying, we see that the total cost over all nodes at depth i , for
i D 0; 1; 2; : : : ; log4 n � 1, is 3ic.n=4i /2 D .3=16/i cn2. The bottom level, at
depth log4 n, has 3log4 n D nlog4 3 nodes, each contributing cost T .1/, for a total
cost of nlog4 3T .1/, which is ‚.nlog4 3/, since we assume that T .1/ is a constant.

Now we add up the costs over all levels to determine the cost for the entire tree:

T .n/ D cn2 C 3

16
cn2 C

�
3

16

�2

cn2 C � � � C
�

3

16

�log4 n�1

cn2 C‚.nlog4 3/

D
log4 n�1X

iD0

�
3

16

�i

cn2 C‚.nlog4 3/

D .3=16/log4 n � 1

.3=16/ � 1
cn2 C‚.nlog4 3/ (by equation (A.5)) :

This last formula looks somewhat messy until we realize that we can again take
advantage of small amounts of sloppiness and use an infinite decreasing geometric
series as an upper bound. Backing up one step and applying equation (A.6), we
have

T .n/ D
log4 n�1X

iD0

�
3

16

�i

cn2 C‚.nlog4 3/

<

1X
iD0

�
3

16

�i

cn2 C‚.nlog4 3/

D 1

1 � .3=16/
cn2 C‚.nlog4 3/

D 16

13
cn2 C‚.nlog4 3/

D O.n2/ :

Thus, we have derived a guess of T .n/ D O.n2/ for our original recurrence
T .n/ D 3T .bn=4c/ C ‚.n2/. In this example, the coefficients of cn2 form a
decreasing geometric series and, by equation (A.6), the sum of these coefficients

4.4 The recursion-tree method for solving recurrences 91

… …

cn

cn

cn

cn

c
�

n
3

�
c
�

2n
3

�

c
�

n
9

�
c
�

2n
9

�
c
�

2n
9

�
c
�

4n
9

�log3=2 n

Total: O.n lg n/

Figure 4.6 A recursion tree for the recurrence T .n/ D T .n=3/C T .2n=3/C cn.

is bounded from above by the constant 16=13. Since the root’s contribution to the
total cost is cn2, the root contributes a constant fraction of the total cost. In other
words, the cost of the root dominates the total cost of the tree.

In fact, if O.n2/ is indeed an upper bound for the recurrence (as we shall verify in
a moment), then it must be a tight bound. Why? The first recursive call contributes
a cost of ‚.n2/, and so �.n2/ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was cor-
rect, that is, T .n/ D O.n2/ is an upper bound for the recurrence T .n/ D
3T .bn=4c/C‚.n2/. We want to show that T .n/ � dn2 for some constant d > 0.
Using the same constant c > 0 as before, we have

T .n/ � 3T .bn=4c/C cn2

� 3d bn=4c2 C cn2

� 3d.n=4/2 C cn2

D 3

16
dn2 C cn2

� dn2 ;

where the last step holds as long as d � .16=13/c.
In another, more intricate, example, Figure 4.6 shows the recursion tree for

T .n/ D T .n=3/C T .2n=3/CO.n/ :

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c

represent the constant factor in the O.n/ term. When we add the values across the
levels of the recursion tree shown in the figure, we get a value of cn for every level.

92 Chapter 4 Divide-and-Conquer

The longest simple path from the root to a leaf is n ! .2=3/n ! .2=3/2n !
� � � ! 1. Since .2=3/kn D 1 when k D log3=2 n, the height of the tree is log3=2 n.

Intuitively, we expect the solution to the recurrence to be at most the number
of levels times the cost of each level, or O.cn log3=2 n/ D O.n lg n/. Figure 4.6
shows only the top levels of the recursion tree, however, and not every level in the
tree contributes a cost of cn. Consider the cost of the leaves. If this recursion tree
were a complete binary tree of height log3=2 n, there would be 2log3=2 n D nlog3=2 2

leaves. Since the cost of each leaf is a constant, the total cost of all leaves would
then be ‚.nlog3=2 2/ which, since log3=2 2 is a constant strictly greater than 1,
is !.n lg n/. This recursion tree is not a complete binary tree, however, and so
it has fewer than nlog3=2 2 leaves. Moreover, as we go down from the root, more
and more internal nodes are absent. Consequently, levels toward the bottom of the
recursion tree contribute less than cn to the total cost. We could work out an accu-
rate accounting of all costs, but remember that we are just trying to come up with a
guess to use in the substitution method. Let us tolerate the sloppiness and attempt
to show that a guess of O.n lg n/ for the upper bound is correct.

Indeed, we can use the substitution method to verify that O.n lg n/ is an upper
bound for the solution to the recurrence. We show that T .n/ � dn lg n, where d is
a suitable positive constant. We have

T .n/ � T .n=3/C T .2n=3/C cn

� d.n=3/ lg.n=3/C d.2n=3/ lg.2n=3/C cn

D .d.n=3/ lg n � d.n=3/ lg 3/

C .d.2n=3/ lg n � d.2n=3/ lg.3=2//C cn

D dn lg n � d..n=3/ lg 3C .2n=3/ lg.3=2//C cn

D dn lg n � d..n=3/ lg 3C .2n=3/ lg 3 � .2n=3/ lg 2/C cn

D dn lg n � dn.lg 3 � 2=3/C cn

� dn lg n ;

as long as d � c=.lg 3� .2=3//. Thus, we did not need to perform a more accurate
accounting of costs in the recursion tree.

Exercises

4.4-1
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 3T .bn=2c/C n. Use the substitution method to verify your answer.

4.4-2
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D T .n=2/C n2. Use the substitution method to verify your answer.

4.5 The master method for solving recurrences 93

4.4-3
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 4T .n=2C 2/C n. Use the substitution method to verify your answer.

4.4-4
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D 2T .n � 1/C 1. Use the substitution method to verify your answer.

4.4-5
Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T .n/ D T .n�1/CT .n=2/Cn. Use the substitution method to verify your answer.

4.4-6
Argue that the solution to the recurrence T .n/ D T .n=3/CT .2n=3/Ccn, where c

is a constant, is �.n lg n/ by appealing to a recursion tree.

4.4-7
Draw the recursion tree for T .n/ D 4T .bn=2c/ C cn, where c is a constant, and
provide a tight asymptotic bound on its solution. Verify your bound by the substi-
tution method.

4.4-8
Use a recursion tree to give an asymptotically tight solution to the recurrence
T .n/ D T .n � a/C T .a/C cn, where a � 1 and c > 0 are constants.

4.4-9
Use a recursion tree to give an asymptotically tight solution to the recurrence
T .n/ D T .˛n/C T ..1� ˛/n/C cn, where ˛ is a constant in the range 0 < ˛ < 1

and c > 0 is also a constant.

4.5 The master method for solving recurrences

The master method provides a “cookbook” method for solving recurrences of the
form

T .n/ D aT .n=b/C f .n/ ; (4.20)

where a � 1 and b > 1 are constants and f .n/ is an asymptotically positive
function. To use the master method, you will need to memorize three cases, but
then you will be able to solve many recurrences quite easily, often without pencil
and paper.

94 Chapter 4 Divide-and-Conquer

The recurrence (4.20) describes the running time of an algorithm that divides a
problem of size n into a subproblems, each of size n=b, where a and b are positive
constants. The a subproblems are solved recursively, each in time T .n=b/. The
function f .n/ encompasses the cost of dividing the problem and combining the
results of the subproblems. For example, the recurrence arising from Strassen’s
algorithm has a D 7, b D 2, and f .n/ D ‚.n2/.

As a matter of technical correctness, the recurrence is not actually well defined,
because n=b might not be an integer. Replacing each of the a terms T .n=b/ with
either T .bn=bc/ or T .dn=be/ will not affect the asymptotic behavior of the recur-
rence, however. (We will prove this assertion in the next section.) We normally
find it convenient, therefore, to omit the floor and ceiling functions when writing
divide-and-conquer recurrences of this form.

The master theorem

The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Let a � 1 and b > 1 be constants, let f .n/ be a function, and let T .n/ be defined
on the nonnegative integers by the recurrence

T .n/ D aT .n=b/C f .n/ ;

where we interpret n=b to mean either bn=bc or dn=be. Then T .n/ has the follow-
ing asymptotic bounds:

1. If f .n/ D O.nlogb a��/ for some constant � > 0, then T .n/ D ‚.nlogb a/.

2. If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lg n/.

3. If f .n/ D �.nlogb aC�/ for some constant � > 0, and if af .n=b/ � cf .n/ for
some constant c < 1 and all sufficiently large n, then T .n/ D ‚.f .n//.

Before applying the master theorem to some examples, let’s spend a moment
trying to understand what it says. In each of the three cases, we compare the
function f .n/ with the function nlogb a. Intuitively, the larger of the two functions
determines the solution to the recurrence. If, as in case 1, the function nlogb a is the
larger, then the solution is T .n/ D ‚.nlogb a/. If, as in case 3, the function f .n/

is the larger, then the solution is T .n/ D ‚.f .n//. If, as in case 2, the two func-
tions are the same size, we multiply by a logarithmic factor, and the solution is
T .n/ D ‚.nlogb a lg n/ D ‚.f .n/ lg n/.

Beyond this intuition, you need to be aware of some technicalities. In the first
case, not only must f .n/ be smaller than nlogb a, it must be polynomially smaller.

4.5 The master method for solving recurrences 95

That is, f .n/ must be asymptotically smaller than nlogb a by a factor of n� for some
constant � > 0. In the third case, not only must f .n/ be larger than nlogb a, it also
must be polynomially larger and in addition satisfy the “regularity” condition that
af .n=b/ � cf .n/. This condition is satisfied by most of the polynomially bounded
functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f .n/. There is
a gap between cases 1 and 2 when f .n/ is smaller than nlogb a but not polynomi-
ally smaller. Similarly, there is a gap between cases 2 and 3 when f .n/ is larger
than nlogb a but not polynomially larger. If the function f .n/ falls into one of these
gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master
method to solve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of the master
theorem applies and write down the answer.

As a first example, consider

T .n/ D 9T .n=3/C n :

For this recurrence, we have a D 9, b D 3, f .n/ D n, and thus we have that
nlogb a D nlog3 9 D ‚.n2). Since f .n/ D O.nlog3 9��/, where � D 1, we can apply
case 1 of the master theorem and conclude that the solution is T .n/ D ‚.n2/.

Now consider

T .n/ D T .2n=3/C 1;

in which a D 1, b D 3=2, f .n/ D 1, and nlogb a D nlog3=2 1 D n0 D 1. Case 2
applies, since f .n/ D ‚.nlogb a/ D ‚.1/, and thus the solution to the recurrence
is T .n/ D ‚.lg n/.

For the recurrence

T .n/ D 3T .n=4/C n lg n ;

we have a D 3, b D 4, f .n/ D n lg n, and nlogb a D nlog4 3 D O.n0:793/.
Since f .n/ D �.nlog4 3C�/, where � � 0:2, case 3 applies if we can show that
the regularity condition holds for f .n/. For sufficiently large n, we have that
af .n=b/ D 3.n=4/ lg.n=4/ � .3=4/n lg n D cf .n/ for c D 3=4. Consequently,
by case 3, the solution to the recurrence is T .n/ D ‚.n lg n/.

The master method does not apply to the recurrence

T .n/ D 2T .n=2/C n lg n ;

even though it appears to have the proper form: a D 2, b D 2, f .n/ D n lg n,
and nlogb a D n. You might mistakenly think that case 3 should apply, since

96 Chapter 4 Divide-and-Conquer

f .n/ D n lg n is asymptotically larger than nlogb a D n. The problem is that it
is not polynomially larger. The ratio f .n/=nlogb a D .n lg n/=n D lg n is asymp-
totically less than n� for any positive constant �. Consequently, the recurrence falls
into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let’s use the master method to solve the recurrences we saw in Sections 4.1
and 4.2. Recurrence (4.7),

T .n/ D 2T .n=2/C‚.n/ ;

characterizes the running times of the divide-and-conquer algorithm for both the
maximum-subarray problem and merge sort. (As is our practice, we omit stating
the base case in the recurrence.) Here, we have a D 2, b D 2, f .n/ D ‚.n/, and
thus we have that nlogb a D nlog2 2 D n. Case 2 applies, since f .n/ D ‚.n/, and so
we have the solution T .n/ D ‚.n lg n/.

Recurrence (4.17),

T .n/ D 8T .n=2/C‚.n2/ ;

describes the running time of the first divide-and-conquer algorithm that we saw
for matrix multiplication. Now we have a D 8, b D 2, and f .n/ D ‚.n2/,
and so nlogb a D nlog2 8 D n3. Since n3 is polynomially larger than f .n/ (that is,
f .n/ D O.n3��/ for � D 1), case 1 applies, and T .n/ D ‚.n3/.

Finally, consider recurrence (4.18),

T .n/ D 7T .n=2/C‚.n2/ ;

which describes the running time of Strassen’s algorithm. Here, we have a D 7,
b D 2, f .n/ D ‚.n2/, and thus nlogb a D nlog2 7. Rewriting log2 7 as lg 7 and
recalling that 2:80 < lg 7 < 2:81, we see that f .n/ D O.nlg 7��/ for � D 0:8.
Again, case 1 applies, and we have the solution T .n/ D ‚.nlg 7/.

Exercises

4.5-1
Use the master method to give tight asymptotic bounds for the following recur-
rences.

a. T .n/ D 2T .n=4/C 1.

b. T .n/ D 2T .n=4/Cpn.

c. T .n/ D 2T .n=4/C n.

d. T .n/ D 2T .n=4/C n2.

4.6 Proof of the master theorem 97

4.5-2
Professor Caesar wishes to develop a matrix-multiplication algorithm that is
asymptotically faster than Strassen’s algorithm. His algorithm will use the divide-
and-conquer method, dividing each matrix into pieces of size n=4 	 n=4, and the
divide and combine steps together will take ‚.n2/ time. He needs to determine
how many subproblems his algorithm has to create in order to beat Strassen’s algo-
rithm. If his algorithm creates a subproblems, then the recurrence for the running
time T .n/ becomes T .n/ D aT .n=4/ C ‚.n2/. What is the largest integer value
of a for which Professor Caesar’s algorithm would be asymptotically faster than
Strassen’s algorithm?

4.5-3
Use the master method to show that the solution to the binary-search recurrence
T .n/ D T .n=2/C‚.1/ is T .n/ D ‚.lg n/. (See Exercise 2.3-5 for a description
of binary search.)

4.5-4
Can the master method be applied to the recurrence T .n/ D 4T .n=2/ C n2 lg n?
Why or why not? Give an asymptotic upper bound for this recurrence.

4.5-5 ?

Consider the regularity condition af .n=b/ � cf .n/ for some constant c < 1,
which is part of case 3 of the master theorem. Give an example of constants a � 1

and b > 1 and a function f .n/ that satisfies all the conditions in case 3 of the
master theorem except the regularity condition.

? 4.6 Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1). You do not
need to understand the proof in order to apply the master theorem.

The proof appears in two parts. The first part analyzes the master recur-
rence (4.20), under the simplifying assumption that T .n/ is defined only on ex-
act powers of b > 1, that is, for n D 1; b; b2; : : :. This part gives all the intuition
needed to understand why the master theorem is true. The second part shows how
to extend the analysis to all positive integers n; it applies mathematical technique
to the problem of handling floors and ceilings.

In this section, we shall sometimes abuse our asymptotic notation slightly by
using it to describe the behavior of functions that are defined only over exact
powers of b. Recall that the definitions of asymptotic notations require that

98 Chapter 4 Divide-and-Conquer

bounds be proved for all sufficiently large numbers, not just those that are pow-
ers of b. Since we could make new asymptotic notations that apply only to the set
fbi W i D 0; 1; 2; : : :g, instead of to the nonnegative numbers, this abuse is minor.

Nevertheless, we must always be on guard when we use asymptotic notation over
a limited domain lest we draw improper conclusions. For example, proving that
T .n/ D O.n/ when n is an exact power of 2 does not guarantee that T .n/ D O.n/.
The function T .n/ could be defined as

T .n/ D
(

n if n D 1; 2; 4; 8; : : : ;

n2 otherwise ;

in which case the best upper bound that applies to all values of n is T .n/ D O.n2/.
Because of this sort of drastic consequence, we shall never use asymptotic notation
over a limited domain without making it absolutely clear from the context that we
are doing so.

4.6.1 The proof for exact powers

The first part of the proof of the master theorem analyzes the recurrence (4.20)

T .n/ D aT .n=b/C f .n/ ;

for the master method, under the assumption that n is an exact power of b > 1,
where b need not be an integer. We break the analysis into three lemmas. The first
reduces the problem of solving the master recurrence to the problem of evaluating
an expression that contains a summation. The second determines bounds on this
summation. The third lemma puts the first two together to prove a version of the
master theorem for the case in which n is an exact power of b.

Lemma 4.2
Let a � 1 and b > 1 be constants, and let f .n/ be a nonnegative function defined
on exact powers of b. Define T .n/ on exact powers of b by the recurrence

T .n/ D
(

‚.1/ if n D 1 ;

aT .n=b/C f .n/ if n D bi ;

where i is a positive integer. Then

T .n/ D ‚.nlogb a/C
logb n�1X

j D0

aj f .n=bj / : (4.21)

Proof We use the recursion tree in Figure 4.7. The root of the tree has cost f .n/,
and it has a children, each with cost f .n=b/. (It is convenient to think of a as being

4.6 Proof of the master theorem 99

…

…

…

… … …

…

… … …

…

… … …

…

f .n/ f .n/

aaa

a

aaa

a

aaa

a

a

f .n=b/f .n=b/f .n=b/

f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/f .n=b2/

af .n=b/

a2f .n=b2/

logb n

nlogb a

‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/ ‚.nlogb a/

Total: ‚.nlogb a/C
logb n�1X

j D0

aj f .n=bj /

Figure 4.7 The recursion tree generated by T .n/ D aT .n=b/Cf .n/. The tree is a complete a-ary
tree with nlogb a leaves and height logb n. The cost of the nodes at each depth is shown at the right,
and their sum is given in equation (4.21).

an integer, especially when visualizing the recursion tree, but the mathematics does
not require it.) Each of these children has a children, making a2 nodes at depth 2,
and each of the a children has cost f .n=b2/. In general, there are aj nodes at
depth j , and each has cost f .n=bj /. The cost of each leaf is T .1/ D ‚.1/, and
each leaf is at depth logb n, since n=blogb n D 1. There are alogb n D nlogb a leaves
in the tree.

We can obtain equation (4.21) by summing the costs of the nodes at each depth
in the tree, as shown in the figure. The cost for all internal nodes at depth j is
aj f .n=bj /, and so the total cost of all internal nodes is

logb n�1X
j D0

aj f .n=bj / :

In the underlying divide-and-conquer algorithm, this sum represents the costs of
dividing problems into subproblems and then recombining the subproblems. The

100 Chapter 4 Divide-and-Conquer

cost of all the leaves, which is the cost of doing all nlogb a subproblems of size 1,
is ‚.nlogb a/.

In terms of the recursion tree, the three cases of the master theorem correspond
to cases in which the total cost of the tree is (1) dominated by the costs in the
leaves, (2) evenly distributed among the levels of the tree, or (3) dominated by the
cost of the root.

The summation in equation (4.21) describes the cost of the dividing and com-
bining steps in the underlying divide-and-conquer algorithm. The next lemma pro-
vides asymptotic bounds on the summation’s growth.

Lemma 4.3
Let a � 1 and b > 1 be constants, and let f .n/ be a nonnegative function defined
on exact powers of b. A function g.n/ defined over exact powers of b by

g.n/ D
logb n�1X

j D0

aj f .n=bj / (4.22)

has the following asymptotic bounds for exact powers of b:

1. If f .n/ D O.nlogb a��/ for some constant � > 0, then g.n/ D O.nlogb a/.

2. If f .n/ D ‚.nlogb a/, then g.n/ D ‚.nlogb a lg n/.

3. If af .n=b/ � cf .n/ for some constant c < 1 and for all sufficiently large n,
then g.n/ D ‚.f .n//.

Proof For case 1, we have f .n/ D O.nlogb a��/, which implies that f .n=bj / D
O..n=bj /logb a��/. Substituting into equation (4.22) yields

g.n/ D O

logb n�1X

j D0

aj
� n

bj

�logb a��

!
: (4.23)

We bound the summation within the O-notation by factoring out terms and simpli-
fying, which leaves an increasing geometric series:

logb n�1X
j D0

aj
� n

bj

�logb a��

D nlogb a��

logb n�1X
j D0

�
ab�

blogb a

�j

D nlogb a��

logb n�1X
j D0

.b�/
j

D nlogb a��

�
b� logb n � 1

b� � 1

�

4.6 Proof of the master theorem 101

D nlogb a��

�
n� � 1

b� � 1

�
:

Since b and � are constants, we can rewrite the last expression as nlogb a��O.n�/ D
O.nlogb a/. Substituting this expression for the summation in equation (4.23) yields

g.n/ D O.nlogb a/ ;

thereby proving case 1.
Because case 2 assumes that f .n/ D ‚.nlogb a/, we have that f .n=bj / D

‚..n=bj /logb a/. Substituting into equation (4.22) yields

g.n/ D ‚

logb n�1X

j D0

aj
� n

bj

�logb a

!
: (4.24)

We bound the summation within the ‚-notation as in case 1, but this time we do not
obtain a geometric series. Instead, we discover that every term of the summation
is the same:
logb n�1X

j D0

aj
� n

bj

�logb a

D nlogb a

logb n�1X
j D0

� a

blogb a

�j

D nlogb a

logb n�1X
j D0

1

D nlogb a logb n :

Substituting this expression for the summation in equation (4.24) yields

g.n/ D ‚.nlogb a logb n/

D ‚.nlogb a lg n/ ;

proving case 2.
We prove case 3 similarly. Since f .n/ appears in the definition (4.22) of g.n/

and all terms of g.n/ are nonnegative, we can conclude that g.n/ D �.f .n// for
exact powers of b. We assume in the statement of the lemma that af .n=b/ � cf .n/

for some constant c < 1 and all sufficiently large n. We rewrite this assumption
as f .n=b/ � .c=a/f .n/ and iterate j times, yielding f .n=bj / � .c=a/j f .n/ or,
equivalently, aj f .n=bj / � cj f .n/, where we assume that the values we iterate
on are sufficiently large. Since the last, and smallest, such value is n=bj �1, it is
enough to assume that n=bj �1 is sufficiently large.

Substituting into equation (4.22) and simplifying yields a geometric series, but
unlike the series in case 1, this one has decreasing terms. We use an O.1/ term to

102 Chapter 4 Divide-and-Conquer

capture the terms that are not covered by our assumption that n is sufficiently large:

g.n/ D
logb n�1X

j D0

aj f .n=bj /

�
logb n�1X

j D0

cj f .n/CO.1/

� f .n/

1X
j D0

cj CO.1/

D f .n/

�
1

1 � c

�
CO.1/

D O.f .n// ;

since c is a constant. Thus, we can conclude that g.n/ D ‚.f .n// for exact powers
of b. With case 3 proved, the proof of the lemma is complete.

We can now prove a version of the master theorem for the case in which n is an
exact power of b.

Lemma 4.4
Let a � 1 and b > 1 be constants, and let f .n/ be a nonnegative function defined
on exact powers of b. Define T .n/ on exact powers of b by the recurrence

T .n/ D
(

‚.1/ if n D 1 ;

aT .n=b/C f .n/ if n D bi ;

where i is a positive integer. Then T .n/ has the following asymptotic bounds for
exact powers of b:

1. If f .n/ D O.nlogb a��/ for some constant � > 0, then T .n/ D ‚.nlogb a/.

2. If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lg n/.

3. If f .n/ D �.nlogb aC�/ for some constant � > 0, and if af .n=b/ � cf .n/ for
some constant c < 1 and all sufficiently large n, then T .n/ D ‚.f .n//.

Proof We use the bounds in Lemma 4.3 to evaluate the summation (4.21) from
Lemma 4.2. For case 1, we have

T .n/ D ‚.nlogb a/CO.nlogb a/

D ‚.nlogb a/ ;

4.6 Proof of the master theorem 103

and for case 2,

T .n/ D ‚.nlogb a/C‚.nlogb a lg n/

D ‚.nlogb a lg n/ :

For case 3,

T .n/ D ‚.nlogb a/C‚.f .n//

D ‚.f .n// ;

because f .n/ D �.nlogb aC�/.

4.6.2 Floors and ceilings

To complete the proof of the master theorem, we must now extend our analysis to
the situation in which floors and ceilings appear in the master recurrence, so that
the recurrence is defined for all integers, not for just exact powers of b. Obtaining
a lower bound on

T .n/ D aT .dn=be/C f .n/ (4.25)

and an upper bound on

T .n/ D aT .bn=bc/C f .n/ (4.26)

is routine, since we can push through the bound dn=be � n=b in the first case to
yield the desired result, and we can push through the bound bn=bc � n=b in the
second case. We use much the same technique to lower-bound the recurrence (4.26)
as to upper-bound the recurrence (4.25), and so we shall present only this latter
bound.

We modify the recursion tree of Figure 4.7 to produce the recursion tree in Fig-
ure 4.8. As we go down in the recursion tree, we obtain a sequence of recursive
invocations on the arguments

n ;

dn=be ;

ddn=be =be ;

dddn=be =be =be ;

:::

Let us denote the j th element in the sequence by nj , where

nj D
(

n if j D 0 ;

dnj �1=be if j > 0 :
(4.27)

104 Chapter 4 Divide-and-Conquer

…

…

…

… … …

…

… … …

…

… … …

…

f .n/ f .n/

aaa

a

aaa

a

aaa

a

a

f .n1/f .n1/f .n1/

f .n2/f .n2/f .n2/f .n2/f .n2/f .n2/f .n2/f .n2/f .n2/

af .n1/

a2f .n2/

blogb nc

‚.nlogb a/

‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/‚.1/ ‚.nlogb a/

Total: ‚.nlogb a/C
blogb nc�1X

j D0

aj f .nj /

Figure 4.8 The recursion tree generated by T .n/ D aT .dn=be/Cf .n/. The recursive argument nj

is given by equation (4.27).

Our first goal is to determine the depth k such that nk is a constant. Using the
inequality dxe � x C 1, we obtain

n0 � n ;

n1 � n

b
C 1 ;

n2 � n

b2
C 1

b
C 1 ;

n3 �
n

b3
C 1

b2
C 1

b
C 1 ;

:::

In general, we have

4.6 Proof of the master theorem 105

nj � n

bj
C

j �1X
iD0

1

bi

<
n

bj
C

1X
iD0

1

bi

D n

bj
C b

b � 1
:

Letting j D blogb nc, we obtain

nblogb nc <
n

bblogb nc C
b

b � 1

<
n

blogb n�1
C b

b � 1

D n

n=b
C b

b � 1

D b C b

b � 1
D O.1/ ;

and thus we see that at depth blogb nc, the problem size is at most a constant.
From Figure 4.8, we see that

T .n/ D ‚.nlogb a/C
blogb nc�1X

j D0

aj f .nj / ; (4.28)

which is much the same as equation (4.21), except that n is an arbitrary integer and
not restricted to be an exact power of b.

We can now evaluate the summation

g.n/ D
blogb nc�1X

j D0

aj f .nj / (4.29)

from equation (4.28) in a manner analogous to the proof of Lemma 4.3. Beginning
with case 3, if af .dn=be/ � cf .n/ for n > bCb=.b�1/, where c < 1 is a constant,
then it follows that aj f .nj / � cj f .n/. Therefore, we can evaluate the sum in
equation (4.29) just as in Lemma 4.3. For case 2, we have f .n/ D ‚.nlogb a/. If we
can show that f .nj / D O.nlogb a=aj / D O..n=bj /logb a/, then the proof for case 2
of Lemma 4.3 will go through. Observe that j � blogb nc implies bj =n � 1. The
bound f .n/ D O.nlogb a/ implies that there exists a constant c > 0 such that for all
sufficiently large nj ,

106 Chapter 4 Divide-and-Conquer

f .nj / � c

�
n

bj
C b

b � 1

�logb a

D c

�
n

bj

�
1C bj

n
� b

b � 1

��logb a

D c

�
nlogb a

aj

��
1C

�
bj

n
� b

b � 1

��logb a

� c

�
nlogb a

aj

��
1C b

b � 1

�logb a

D O

�
nlogb a

aj

�
;

since c.1C b=.b � 1//logb a is a constant. Thus, we have proved case 2. The proof
of case 1 is almost identical. The key is to prove the bound f .nj / D O.nlogb a��/,
which is similar to the corresponding proof of case 2, though the algebra is more
intricate.

We have now proved the upper bounds in the master theorem for all integers n.
The proof of the lower bounds is similar.

Exercises

4.6-1 ?

Give a simple and exact expression for nj in equation (4.27) for the case in which b

is a positive integer instead of an arbitrary real number.

4.6-2 ?

Show that if f .n/ D ‚.nlogb a lgk n/, where k � 0, then the master recurrence has
solution T .n/ D ‚.nlogb a lgkC1 n/. For simplicity, confine your analysis to exact
powers of b.

4.6-3 ?

Show that case 3 of the master theorem is overstated, in the sense that the regularity
condition af .n=b/ � cf .n/ for some constant c < 1 implies that there exists a
constant � > 0 such that f .n/ D �.nlogb aC�/.

Problems for Chapter 4 107

Problems

4-1 Recurrence examples
Give asymptotic upper and lower bounds for T .n/ in each of the following recur-
rences. Assume that T .n/ is constant for n � 2. Make your bounds as tight as
possible, and justify your answers.

a. T .n/ D 2T .n=2/C n4.

b. T .n/ D T .7n=10/C n.

c. T .n/ D 16T .n=4/C n2.

d. T .n/ D 7T .n=3/C n2.

e. T .n/ D 7T .n=2/C n2.

f. T .n/ D 2T .n=4/Cpn.

g. T .n/ D T .n � 2/C n2.

4-2 Parameter-passing costs
Throughout this book, we assume that parameter passing during procedure calls
takes constant time, even if an N -element array is being passed. This assumption
is valid in most systems because a pointer to the array is passed, not the array itself.
This problem examines the implications of three parameter-passing strategies:

1. An array is passed by pointer. Time D ‚.1/.

2. An array is passed by copying. Time D ‚.N /, where N is the size of the array.

3. An array is passed by copying only the subrange that might be accessed by the
called procedure. Time D ‚.q � p C 1/ if the subarray AŒp : : q� is passed.

a. Consider the recursive binary search algorithm for finding a number in a sorted
array (see Exercise 2.3-5). Give recurrences for the worst-case running times
of binary search when arrays are passed using each of the three methods above,
and give good upper bounds on the solutions of the recurrences. Let N be the
size of the original problem and n be the size of a subproblem.

b. Redo part (a) for the MERGE-SORT algorithm from Section 2.3.1.

108 Chapter 4 Divide-and-Conquer

4-3 More recurrence examples
Give asymptotic upper and lower bounds for T .n/ in each of the following recur-
rences. Assume that T .n/ is constant for sufficiently small n. Make your bounds
as tight as possible, and justify your answers.

a. T .n/ D 4T .n=3/C n lg n.

b. T .n/ D 3T .n=3/C n= lg n.

c. T .n/ D 4T .n=2/C n2
p

n.

d. T .n/ D 3T .n=3 � 2/C n=2.

e. T .n/ D 2T .n=2/C n= lg n.

f. T .n/ D T .n=2/C T .n=4/C T .n=8/C n.

g. T .n/ D T .n � 1/C 1=n.

h. T .n/ D T .n � 1/C lg n.

i. T .n/ D T .n � 2/C 1= lg n.

j. T .n/ D pnT .
p

n/C n.

4-4 Fibonacci numbers
This problem develops properties of the Fibonacci numbers, which are defined
by recurrence (3.22). We shall use the technique of generating functions to solve
the Fibonacci recurrence. Define the generating function (or formal power se-
ries) F as

F .´/ D
1X

iD0

Fi´
i

D 0C ´C ´2 C 2´3 C 3´4 C 5´5 C 8´6 C 13´7 C 21´8 C � � � ;

where Fi is the i th Fibonacci number.

a. Show that F .´/ D ´C ´F .´/C ´2
F .´/.

Problems for Chapter 4 109

b. Show that

F .´/ D ´

1� ´ � ´2

D ´

.1� �´/.1 � y�´/

D 1p
5

�
1

1� �´
� 1

1� y�´

�
;

where

� D 1Cp5

2
D 1:61803 : : :

and

y� D 1�p5

2
D �0:61803 : : : :

c. Show that

F .´/ D
1X

iD0

1p
5

.�i � y�i /´i :

d. Use part (c) to prove that Fi D �i =
p

5 for i > 0, rounded to the nearest integer.
(Hint: Observe that

ˇ̌y� ˇ̌ < 1.)

4-5 Chip testing
Professor Diogenes has n supposedly identical integrated-circuit chips that in prin-
ciple are capable of testing each other. The professor’s test jig accommodates two
chips at a time. When the jig is loaded, each chip tests the other and reports whether
it is good or bad. A good chip always reports accurately whether the other chip is
good or bad, but the professor cannot trust the answer of a bad chip. Thus, the four
possible outcomes of a test are as follows:

Chip A says Chip B says Conclusion
B is good A is good both are good, or both are bad
B is good A is bad at least one is bad
B is bad A is good at least one is bad
B is bad A is bad at least one is bad

a. Show that if more than n=2 chips are bad, the professor cannot necessarily de-
termine which chips are good using any strategy based on this kind of pairwise
test. Assume that the bad chips can conspire to fool the professor.

110 Chapter 4 Divide-and-Conquer

b. Consider the problem of finding a single good chip from among n chips, as-
suming that more than n=2 of the chips are good. Show that bn=2c pairwise
tests are sufficient to reduce the problem to one of nearly half the size.

c. Show that the good chips can be identified with ‚.n/ pairwise tests, assuming
that more than n=2 of the chips are good. Give and solve the recurrence that
describes the number of tests.

4-6 Monge arrays
An m 	 n array A of real numbers is a Monge array if for all i , j , k, and l such
that 1 � i < k � m and 1 � j < l � n, we have

AŒi; j �C AŒk; l� � AŒi; l�C AŒk; j � :

In other words, whenever we pick two rows and two columns of a Monge array and
consider the four elements at the intersections of the rows and the columns, the sum
of the upper-left and lower-right elements is less than or equal to the sum of the
lower-left and upper-right elements. For example, the following array is Monge:

10 17 13 28 23

17 22 16 29 23

24 28 22 34 24

11 13 6 17 7

45 44 32 37 23

36 33 19 21 6

75 66 51 53 34

a. Prove that an array is Monge if and only if for all i D 1; 2; :::; m � 1 and
j D 1; 2; :::; n � 1, we have

AŒi; j �C AŒi C 1; j C 1� � AŒi; j C 1�C AŒi C 1; j � :

(Hint: For the “if” part, use induction separately on rows and columns.)

b. The following array is not Monge. Change one element in order to make it
Monge. (Hint: Use part (a).)

37 23 22 32

21 6 7 10

53 34 30 31

32 13 9 6

43 21 15 8

Notes for Chapter 4 111

c. Let f .i/ be the index of the column containing the leftmost minimum element
of row i . Prove that f .1/ � f .2/ � � � � � f .m/ for any m 	 n Monge array.

d. Here is a description of a divide-and-conquer algorithm that computes the left-
most minimum element in each row of an m 	 n Monge array A:

Construct a submatrix A0 of A consisting of the even-numbered rows of A.
Recursively determine the leftmost minimum for each row of A0. Then
compute the leftmost minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A

(given that the leftmost minimum of the even-numbered rows is known) in
O.mC n/ time.

e. Write the recurrence describing the running time of the algorithm described in
part (d). Show that its solution is O.mC n log m/.

Chapter notes

Divide-and-conquer as a technique for designing algorithms dates back to at least
1962 in an article by Karatsuba and Ofman [194]. It might have been used well be-
fore then, however; according to Heideman, Johnson, and Burrus [163], C. F. Gauss
devised the first fast Fourier transform algorithm in 1805, and Gauss’s formulation
breaks the problem into smaller subproblems whose solutions are combined.

The maximum-subarray problem in Section 4.1 is a minor variation on a problem
studied by Bentley [43, Chapter 7].

Strassen’s algorithm [325] caused much excitement when it was published
in 1969. Before then, few imagined the possibility of an algorithm asymptotically
faster than the basic SQUARE-MATRIX-MULTIPLY procedure. The asymptotic
upper bound for matrix multiplication has been improved since then. The most
asymptotically efficient algorithm for multiplying n 	 n matrices to date, due to
Coppersmith and Winograd [78], has a running time of O.n2:376/. The best lower
bound known is just the obvious �.n2/ bound (obvious because we must fill in n2

elements of the product matrix).
From a practical point of view, Strassen’s algorithm is often not the method of

choice for matrix multiplication, for four reasons:

1. The constant factor hidden in the ‚.nlg 7/ running time of Strassen’s algo-
rithm is larger than the constant factor in the ‚.n3/-time SQUARE-MATRIX-
MULTIPLY procedure.

2. When the matrices are sparse, methods tailored for sparse matrices are faster.

112 Chapter 4 Divide-and-Conquer

3. Strassen’s algorithm is not quite as numerically stable as SQUARE-MATRIX-
MULTIPLY. In other words, because of the limited precision of computer arith-
metic on noninteger values, larger errors accumulate in Strassen’s algorithm
than in SQUARE-MATRIX-MULTIPLY.

4. The submatrices formed at the levels of recursion consume space.

The latter two reasons were mitigated around 1990. Higham [167] demonstrated
that the difference in numerical stability had been overemphasized; although
Strassen’s algorithm is too numerically unstable for some applications, it is within
acceptable limits for others. Bailey, Lee, and Simon [32] discuss techniques for
reducing the memory requirements for Strassen’s algorithm.

In practice, fast matrix-multiplication implementations for dense matrices use
Strassen’s algorithm for matrix sizes above a “crossover point,” and they switch
to a simpler method once the subproblem size reduces to below the crossover
point. The exact value of the crossover point is highly system dependent. Analyses
that count operations but ignore effects from caches and pipelining have produced
crossover points as low as n D 8 (by Higham [167]) or n D 12 (by Huss-Lederman
et al. [186]). D’Alberto and Nicolau [81] developed an adaptive scheme, which
determines the crossover point by benchmarking when their software package is
installed. They found crossover points on various systems ranging from n D 400

to n D 2150, and they could not find a crossover point on a couple of systems.
Recurrences were studied as early as 1202 by L. Fibonacci, for whom the Fi-

bonacci numbers are named. A. De Moivre introduced the method of generating
functions (see Problem 4-4) for solving recurrences. The master method is adapted
from Bentley, Haken, and Saxe [44], which provides the extended method justified
by Exercise 4.6-2. Knuth [209] and Liu [237] show how to solve linear recurrences
using the method of generating functions. Purdom and Brown [287] and Graham,
Knuth, and Patashnik [152] contain extended discussions of recurrence solving.

Several researchers, including Akra and Bazzi [13], Roura [299], Verma [346],
and Yap [360], have given methods for solving more general divide-and-conquer
recurrences than are solved by the master method. We describe the result of Akra
and Bazzi here, as modified by Leighton [228]. The Akra-Bazzi method works for
recurrences of the form

T .x/ D
(

‚.1/ if 1 � x � x0 ;Pk

iD1 aiT .bix/C f .x/ if x > x0 ;
(4.30)

where

� x � 1 is a real number,
� x0 is a constant such that x0 � 1=bi and x0 � 1=.1 � bi / for i D 1; 2; : : : ; k,
� ai is a positive constant for i D 1; 2; : : : ; k,

Notes for Chapter 4 113

� bi is a constant in the range 0 < bi < 1 for i D 1; 2; : : : ; k,

� k � 1 is an integer constant, and

� f .x/ is a nonnegative function that satisfies the polynomial-growth condi-
tion: there exist positive constants c1 and c2 such that for all x � 1, for
i D 1; 2; : : : ; k, and for all u such that bix � u � x, we have c1f .x/ �
f .u/ � c2f .x/. (If jf 0.x/j is upper-bounded by some polynomial in x, then
f .x/ satisfies the polynomial-growth condition. For example, f .x/ D x˛ lgˇ x

satisfies this condition for any real constants ˛ and ˇ.)

Although the master method does not apply to a recurrence such as T .n/ D
T .bn=3c/ C T .b2n=3c/ C O.n/, the Akra-Bazzi method does. To solve the re-
currence (4.30), we first find the unique real number p such that

Pk

iD1 aib
p
i D 1.

(Such a p always exists.) The solution to the recurrence is then

T .n/ D ‚

�
xp

�
1C

Z x

1

f .u/

upC1
du

��
:

The Akra-Bazzi method can be somewhat difficult to use, but it serves in solving
recurrences that model division of the problem into substantially unequally sized
subproblems. The master method is simpler to use, but it applies only when sub-
problem sizes are equal.

5 Probabilistic Analysis and Randomized
Algorithms

This chapter introduces probabilistic analysis and randomized algorithms. If you
are unfamiliar with the basics of probability theory, you should read Appendix C,
which reviews this material. We shall revisit probabilistic analysis and randomized
algorithms several times throughout this book.

5.1 The hiring problem

Suppose that you need to hire a new office assistant. Your previous attempts at
hiring have been unsuccessful, and you decide to use an employment agency. The
employment agency sends you one candidate each day. You interview that person
and then decide either to hire that person or not. You must pay the employment
agency a small fee to interview an applicant. To actually hire an applicant is more
costly, however, since you must fire your current office assistant and pay a substan-
tial hiring fee to the employment agency. You are committed to having, at all times,
the best possible person for the job. Therefore, you decide that, after interviewing
each applicant, if that applicant is better qualified than the current office assistant,
you will fire the current office assistant and hire the new applicant. You are willing
to pay the resulting price of this strategy, but you wish to estimate what that price
will be.

The procedure HIRE-ASSISTANT, given below, expresses this strategy for hiring
in pseudocode. It assumes that the candidates for the office assistant job are num-
bered 1 through n. The procedure assumes that you are able to, after interviewing
candidate i , determine whether candidate i is the best candidate you have seen so
far. To initialize, the procedure creates a dummy candidate, numbered 0, who is
less qualified than each of the other candidates.

5.1 The hiring problem 115

HIRE-ASSISTANT.n/

1 best D 0 // candidate 0 is a least-qualified dummy candidate
2 for i D 1 to n

3 interview candidate i

4 if candidate i is better than candidate best
5 best D i

6 hire candidate i

The cost model for this problem differs from the model described in Chapter 2.
We focus not on the running time of HIRE-ASSISTANT, but instead on the costs
incurred by interviewing and hiring. On the surface, analyzing the cost of this algo-
rithm may seem very different from analyzing the running time of, say, merge sort.
The analytical techniques used, however, are identical whether we are analyzing
cost or running time. In either case, we are counting the number of times certain
basic operations are executed.

Interviewing has a low cost, say ci , whereas hiring is expensive, costing ch. Let-
ting m be the number of people hired, the total cost associated with this algorithm
is O.cin C chm/. No matter how many people we hire, we always interview n

candidates and thus always incur the cost cin associated with interviewing. We
therefore concentrate on analyzing chm, the hiring cost. This quantity varies with
each run of the algorithm.

This scenario serves as a model for a common computational paradigm. We of-
ten need to find the maximum or minimum value in a sequence by examining each
element of the sequence and maintaining a current “winner.” The hiring problem
models how often we update our notion of which element is currently winning.

Worst-case analysis

In the worst case, we actually hire every candidate that we interview. This situation
occurs if the candidates come in strictly increasing order of quality, in which case
we hire n times, for a total hiring cost of O.chn/.

Of course, the candidates do not always come in increasing order of quality. In
fact, we have no idea about the order in which they arrive, nor do we have any
control over this order. Therefore, it is natural to ask what we expect to happen in
a typical or average case.

Probabilistic analysis

Probabilistic analysis is the use of probability in the analysis of problems. Most
commonly, we use probabilistic analysis to analyze the running time of an algo-
rithm. Sometimes we use it to analyze other quantities, such as the hiring cost

116 Chapter 5 Probabilistic Analysis and Randomized Algorithms

in procedure HIRE-ASSISTANT. In order to perform a probabilistic analysis, we
must use knowledge of, or make assumptions about, the distribution of the inputs.
Then we analyze our algorithm, computing an average-case running time, where
we take the average over the distribution of the possible inputs. Thus we are, in
effect, averaging the running time over all possible inputs. When reporting such a
running time, we will refer to it as the average-case running time.

We must be very careful in deciding on the distribution of inputs. For some
problems, we may reasonably assume something about the set of all possible in-
puts, and then we can use probabilistic analysis as a technique for designing an
efficient algorithm and as a means for gaining insight into a problem. For other
problems, we cannot describe a reasonable input distribution, and in these cases
we cannot use probabilistic analysis.

For the hiring problem, we can assume that the applicants come in a random
order. What does that mean for this problem? We assume that we can compare
any two candidates and decide which one is better qualified; that is, there is a
total order on the candidates. (See Appendix B for the definition of a total or-
der.) Thus, we can rank each candidate with a unique number from 1 through n,
using rank.i/ to denote the rank of applicant i , and adopt the convention that a
higher rank corresponds to a better qualified applicant. The ordered list hrank.1/;

rank.2/; : : : ; rank.n/i is a permutation of the list h1; 2; : : : ; ni. Saying that the
applicants come in a random order is equivalent to saying that this list of ranks is
equally likely to be any one of the nŠ permutations of the numbers 1 through n.
Alternatively, we say that the ranks form a uniform random permutation; that is,
each of the possible nŠ permutations appears with equal probability.

Section 5.2 contains a probabilistic analysis of the hiring problem.

Randomized algorithms

In order to use probabilistic analysis, we need to know something about the distri-
bution of the inputs. In many cases, we know very little about the input distribution.
Even if we do know something about the distribution, we may not be able to model
this knowledge computationally. Yet we often can use probability and randomness
as a tool for algorithm design and analysis, by making the behavior of part of the
algorithm random.

In the hiring problem, it may seem as if the candidates are being presented to us
in a random order, but we have no way of knowing whether or not they really are.
Thus, in order to develop a randomized algorithm for the hiring problem, we must
have greater control over the order in which we interview the candidates. We will,
therefore, change the model slightly. We say that the employment agency has n

candidates, and they send us a list of the candidates in advance. On each day, we
choose, randomly, which candidate to interview. Although we know nothing about

5.1 The hiring problem 117

the candidates (besides their names), we have made a significant change. Instead
of relying on a guess that the candidates come to us in a random order, we have
instead gained control of the process and enforced a random order.

More generally, we call an algorithm randomized if its behavior is determined
not only by its input but also by values produced by a random-number gener-
ator. We shall assume that we have at our disposal a random-number generator
RANDOM. A call to RANDOM.a; b/ returns an integer between a and b, inclu-
sive, with each such integer being equally likely. For example, RANDOM.0; 1/

produces 0 with probability 1=2, and it produces 1 with probability 1=2. A call to
RANDOM.3; 7/ returns either 3, 4, 5, 6, or 7, each with probability 1=5. Each inte-
ger returned by RANDOM is independent of the integers returned on previous calls.
You may imagine RANDOM as rolling a .b � a C 1/-sided die to obtain its out-
put. (In practice, most programming environments offer a pseudorandom-number
generator: a deterministic algorithm returning numbers that “look” statistically
random.)

When analyzing the running time of a randomized algorithm, we take the expec-
tation of the running time over the distribution of values returned by the random
number generator. We distinguish these algorithms from those in which the input
is random by referring to the running time of a randomized algorithm as an ex-
pected running time. In general, we discuss the average-case running time when
the probability distribution is over the inputs to the algorithm, and we discuss the
expected running time when the algorithm itself makes random choices.

Exercises

5.1-1
Show that the assumption that we are always able to determine which candidate is
best, in line 4 of procedure HIRE-ASSISTANT, implies that we know a total order
on the ranks of the candidates.

5.1-2 ?

Describe an implementation of the procedure RANDOM.a; b/ that only makes calls
to RANDOM.0; 1/. What is the expected running time of your procedure, as a
function of a and b?

5.1-3 ?

Suppose that you want to output 0 with probability 1=2 and 1 with probability 1=2.
At your disposal is a procedure BIASED-RANDOM, that outputs either 0 or 1. It
outputs 1 with some probability p and 0 with probability 1� p, where 0 < p < 1,
but you do not know what p is. Give an algorithm that uses BIASED-RANDOM

as a subroutine, and returns an unbiased answer, returning 0 with probability 1=2

118 Chapter 5 Probabilistic Analysis and Randomized Algorithms

and 1 with probability 1=2. What is the expected running time of your algorithm
as a function of p?

5.2 Indicator random variables

In order to analyze many algorithms, including the hiring problem, we use indicator
random variables. Indicator random variables provide a convenient method for
converting between probabilities and expectations. Suppose we are given a sample
space S and an event A. Then the indicator random variable I fAg associated with
event A is defined as

I fAg D
(

1 if A occurs ;

0 if A does not occur :
(5.1)

As a simple example, let us determine the expected number of heads that we
obtain when flipping a fair coin. Our sample space is S D fH; T g, with Pr fH g D
Pr fT g D 1=2. We can then define an indicator random variable XH , associated
with the coin coming up heads, which is the event H . This variable counts the
number of heads obtained in this flip, and it is 1 if the coin comes up heads and 0

otherwise. We write

XH D I fH g

D
(

1 if H occurs ;

0 if T occurs :

The expected number of heads obtained in one flip of the coin is simply the ex-
pected value of our indicator variable XH :

E ŒXH � D E ŒI fH g�
D 1 � Pr fH g C 0 � Pr fT g
D 1 � .1=2/C 0 � .1=2/

D 1=2 :

Thus the expected number of heads obtained by one flip of a fair coin is 1=2. As
the following lemma shows, the expected value of an indicator random variable
associated with an event A is equal to the probability that A occurs.

Lemma 5.1
Given a sample space S and an event A in the sample space S , let XA D I fAg.
Then E ŒXA� D Pr fAg.

5.2 Indicator random variables 119

Proof By the definition of an indicator random variable from equation (5.1) and
the definition of expected value, we have

E ŒXA� D E ŒI fAg�
D 1 � Pr fAg C 0 � Pr

˚
A

D Pr fAg ;

where A denotes S � A, the complement of A.

Although indicator random variables may seem cumbersome for an application
such as counting the expected number of heads on a flip of a single coin, they are
useful for analyzing situations in which we perform repeated random trials. For
example, indicator random variables give us a simple way to arrive at the result
of equation (C.37). In this equation, we compute the number of heads in n coin
flips by considering separately the probability of obtaining 0 heads, 1 head, 2 heads,
etc. The simpler method proposed in equation (C.38) instead uses indicator random
variables implicitly. Making this argument more explicit, we let Xi be the indicator
random variable associated with the event in which the i th flip comes up heads:
Xi D I fthe i th flip results in the event H g. Let X be the random variable denoting
the total number of heads in the n coin flips, so that

X D
nX

iD1

Xi :

We wish to compute the expected number of heads, and so we take the expectation
of both sides of the above equation to obtain

E ŒX� D E

"
nX

iD1

Xi

#
:

The above equation gives the expectation of the sum of n indicator random vari-
ables. By Lemma 5.1, we can easily compute the expectation of each of the random
variables. By equation (C.21)—linearity of expectation—it is easy to compute the
expectation of the sum: it equals the sum of the expectations of the n random
variables. Linearity of expectation makes the use of indicator random variables a
powerful analytical technique; it applies even when there is dependence among the
random variables. We now can easily compute the expected number of heads:

120 Chapter 5 Probabilistic Analysis and Randomized Algorithms

E ŒX� D E

"
nX

iD1

Xi

#

D
nX

iD1

E ŒXi �

D
nX

iD1

1=2

D n=2 :

Thus, compared to the method used in equation (C.37), indicator random variables
greatly simplify the calculation. We shall use indicator random variables through-
out this book.

Analysis of the hiring problem using indicator random variables

Returning to the hiring problem, we now wish to compute the expected number of
times that we hire a new office assistant. In order to use a probabilistic analysis, we
assume that the candidates arrive in a random order, as discussed in the previous
section. (We shall see in Section 5.3 how to remove this assumption.) Let X be the
random variable whose value equals the number of times we hire a new office as-
sistant. We could then apply the definition of expected value from equation (C.20)
to obtain

E ŒX� D
nX

xD1

x Pr fX D xg ;

but this calculation would be cumbersome. We shall instead use indicator random
variables to greatly simplify the calculation.

To use indicator random variables, instead of computing E ŒX� by defining one
variable associated with the number of times we hire a new office assistant, we
define n variables related to whether or not each particular candidate is hired. In
particular, we let Xi be the indicator random variable associated with the event in
which the i th candidate is hired. Thus,

Xi D I fcandidate i is hiredg

D
(

1 if candidate i is hired ;

0 if candidate i is not hired ;

and

X D X1 C X2 C � � � C Xn : (5.2)

5.2 Indicator random variables 121

By Lemma 5.1, we have that

E ŒXi � D Pr fcandidate i is hiredg ;

and we must therefore compute the probability that lines 5–6 of HIRE-ASSISTANT

are executed.
Candidate i is hired, in line 6, exactly when candidate i is better than each of

candidates 1 through i � 1. Because we have assumed that the candidates arrive in
a random order, the first i candidates have appeared in a random order. Any one of
these first i candidates is equally likely to be the best-qualified so far. Candidate i

has a probability of 1=i of being better qualified than candidates 1 through i � 1

and thus a probability of 1=i of being hired. By Lemma 5.1, we conclude that

E ŒXi � D 1=i : (5.3)

Now we can compute E ŒX�:

E ŒX� D E

"
nX

iD1

Xi

#
(by equation (5.2)) (5.4)

D
nX

iD1

E ŒXi � (by linearity of expectation)

D
nX

iD1

1=i (by equation (5.3))

D ln nCO.1/ (by equation (A.7)) . (5.5)

Even though we interview n people, we actually hire only approximately ln n of
them, on average. We summarize this result in the following lemma.

Lemma 5.2
Assuming that the candidates are presented in a random order, algorithm HIRE-
ASSISTANT has an average-case total hiring cost of O.ch ln n/.

Proof The bound follows immediately from our definition of the hiring cost
and equation (5.5), which shows that the expected number of hires is approxi-
mately ln n.

The average-case hiring cost is a significant improvement over the worst-case
hiring cost of O.chn/.

122 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Exercises

5.2-1
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you hire exactly one time? What is the probability
that you hire exactly n times?

5.2-2
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you hire exactly twice?

5.2-3
Use indicator random variables to compute the expected value of the sum of n dice.

5.2-4
Use indicator random variables to solve the following problem, which is known as
the hat-check problem. Each of n customers gives a hat to a hat-check person at a
restaurant. The hat-check person gives the hats back to the customers in a random
order. What is the expected number of customers who get back their own hat?

5.2-5
Let AŒ1 : : n� be an array of n distinct numbers. If i < j and AŒi� > AŒj �, then
the pair .i; j / is called an inversion of A. (See Problem 2-4 for more on inver-
sions.) Suppose that the elements of A form a uniform random permutation of
h1; 2; : : : ; ni. Use indicator random variables to compute the expected number of
inversions.

5.3 Randomized algorithms

In the previous section, we showed how knowing a distribution on the inputs can
help us to analyze the average-case behavior of an algorithm. Many times, we do
not have such knowledge, thus precluding an average-case analysis. As mentioned
in Section 5.1, we may be able to use a randomized algorithm.

For a problem such as the hiring problem, in which it is helpful to assume that
all permutations of the input are equally likely, a probabilistic analysis can guide
the development of a randomized algorithm. Instead of assuming a distribution
of inputs, we impose a distribution. In particular, before running the algorithm,
we randomly permute the candidates in order to enforce the property that every
permutation is equally likely. Although we have modified the algorithm, we still
expect to hire a new office assistant approximately ln n times. But now we expect

5.3 Randomized algorithms 123

this to be the case for any input, rather than for inputs drawn from a particular
distribution.

Let us further explore the distinction between probabilistic analysis and random-
ized algorithms. In Section 5.2, we claimed that, assuming that the candidates ar-
rive in a random order, the expected number of times we hire a new office assistant
is about ln n. Note that the algorithm here is deterministic; for any particular input,
the number of times a new office assistant is hired is always the same. Furthermore,
the number of times we hire a new office assistant differs for different inputs, and it
depends on the ranks of the various candidates. Since this number depends only on
the ranks of the candidates, we can represent a particular input by listing, in order,
the ranks of the candidates, i.e., hrank.1/; rank.2/; : : : ; rank.n/i. Given the rank
list A1 D h1;2;3;4;5;6; 7; 8; 9; 10i, a new office assistant is always hired 10 times,
since each successive candidate is better than the previous one, and lines 5–6 are
executed in each iteration. Given the list of ranks A2 D h10; 9; 8; 7; 6; 5; 4; 3; 2; 1i,
a new office assistant is hired only once, in the first iteration. Given a list of ranks
A3 D h5; 2; 1; 8; 4; 7; 10; 9; 3; 6i, a new office assistant is hired three times,
upon interviewing the candidates with ranks 5, 8, and 10. Recalling that the cost
of our algorithm depends on how many times we hire a new office assistant, we
see that there are expensive inputs such as A1, inexpensive inputs such as A2, and
moderately expensive inputs such as A3.

Consider, on the other hand, the randomized algorithm that first permutes the
candidates and then determines the best candidate. In this case, we randomize in
the algorithm, not in the input distribution. Given a particular input, say A3 above,
we cannot say how many times the maximum is updated, because this quantity
differs with each run of the algorithm. The first time we run the algorithm on A3,
it may produce the permutation A1 and perform 10 updates; but the second time
we run the algorithm, we may produce the permutation A2 and perform only one
update. The third time we run it, we may perform some other number of updates.
Each time we run the algorithm, the execution depends on the random choices
made and is likely to differ from the previous execution of the algorithm. For this
algorithm and many other randomized algorithms, no particular input elicits its
worst-case behavior. Even your worst enemy cannot produce a bad input array,
since the random permutation makes the input order irrelevant. The randomized
algorithm performs badly only if the random-number generator produces an “un-
lucky” permutation.

For the hiring problem, the only change needed in the code is to randomly per-
mute the array.

124 Chapter 5 Probabilistic Analysis and Randomized Algorithms

RANDOMIZED-HIRE-ASSISTANT.n/

1 randomly permute the list of candidates
2 best D 0 // candidate 0 is a least-qualified dummy candidate
3 for i D 1 to n

4 interview candidate i

5 if candidate i is better than candidate best
6 best D i

7 hire candidate i

With this simple change, we have created a randomized algorithm whose perfor-
mance matches that obtained by assuming that the candidates were presented in a
random order.

Lemma 5.3
The expected hiring cost of the procedure RANDOMIZED-HIRE-ASSISTANT is
O.ch ln n/.

Proof After permuting the input array, we have achieved a situation identical to
that of the probabilistic analysis of HIRE-ASSISTANT.

Comparing Lemmas 5.2 and 5.3 highlights the difference between probabilistic
analysis and randomized algorithms. In Lemma 5.2, we make an assumption about
the input. In Lemma 5.3, we make no such assumption, although randomizing the
input takes some additional time. To remain consistent with our terminology, we
couched Lemma 5.2 in terms of the average-case hiring cost and Lemma 5.3 in
terms of the expected hiring cost. In the remainder of this section, we discuss some
issues involved in randomly permuting inputs.

Randomly permuting arrays

Many randomized algorithms randomize the input by permuting the given input
array. (There are other ways to use randomization.) Here, we shall discuss two
methods for doing so. We assume that we are given an array A which, without loss
of generality, contains the elements 1 through n. Our goal is to produce a random
permutation of the array.

One common method is to assign each element AŒi� of the array a random pri-
ority P Œi�, and then sort the elements of A according to these priorities. For ex-
ample, if our initial array is A D h1; 2; 3; 4i and we choose random priorities
P D h36; 3; 62; 19i, we would produce an array B D h2; 4; 1; 3i, since the second
priority is the smallest, followed by the fourth, then the first, and finally the third.
We call this procedure PERMUTE-BY-SORTING:

5.3 Randomized algorithms 125

PERMUTE-BY-SORTING.A/

1 n D A: length
2 let P Œ1 : : n� be a new array
3 for i D 1 to n

4 P Œi� D RANDOM.1; n3/

5 sort A, using P as sort keys

Line 4 chooses a random number between 1 and n3. We use a range of 1 to n3

to make it likely that all the priorities in P are unique. (Exercise 5.3-5 asks you
to prove that the probability that all entries are unique is at least 1 � 1=n, and
Exercise 5.3-6 asks how to implement the algorithm even if two or more priorities
are identical.) Let us assume that all the priorities are unique.

The time-consuming step in this procedure is the sorting in line 5. As we shall
see in Chapter 8, if we use a comparison sort, sorting takes �.n lg n/ time. We
can achieve this lower bound, since we have seen that merge sort takes ‚.n lg n/

time. (We shall see other comparison sorts that take ‚.n lg n/ time in Part II.
Exercise 8.3-4 asks you to solve the very similar problem of sorting numbers in the
range 0 to n3 � 1 in O.n/ time.) After sorting, if P Œi� is the j th smallest priority,
then AŒi� lies in position j of the output. In this manner we obtain a permutation. It
remains to prove that the procedure produces a uniform random permutation, that
is, that the procedure is equally likely to produce every permutation of the numbers
1 through n.

Lemma 5.4
Procedure PERMUTE-BY-SORTING produces a uniform random permutation of the
input, assuming that all priorities are distinct.

Proof We start by considering the particular permutation in which each ele-
ment AŒi� receives the i th smallest priority. We shall show that this permutation
occurs with probability exactly 1=nŠ. For i D 1; 2; : : : ; n, let Ei be the event
that element AŒi� receives the i th smallest priority. Then we wish to compute the
probability that for all i , event Ei occurs, which is

Pr fE1 \E2 \E3 \ � � � \En�1 \Eng :

Using Exercise C.2-5, this probability is equal to

Pr fE1g � Pr fE2 j E1g � Pr fE3 j E2 \E1g � Pr fE4 j E3 \E2 \E1g
� � � Pr fEi j Ei�1 \Ei�2 \ � � � \E1g � � � Pr fEn j En�1 \ � � � \E1g :

We have that Pr fE1g D 1=n because it is the probability that one priority
chosen randomly out of a set of n is the smallest priority. Next, we observe

126 Chapter 5 Probabilistic Analysis and Randomized Algorithms

that Pr fE2 j E1g D 1=.n � 1/ because given that element AŒ1� has the small-
est priority, each of the remaining n � 1 elements has an equal chance of hav-
ing the second smallest priority. In general, for i D 2; 3; : : : ; n, we have that
Pr fEi j Ei�1 \Ei�2 \ � � � \E1g D 1=.n� i C1/, since, given that elements AŒ1�

through AŒi � 1� have the i � 1 smallest priorities (in order), each of the remaining
n� .i � 1/ elements has an equal chance of having the i th smallest priority. Thus,
we have

Pr fE1 \E2 \E3 \ � � � \En�1 \Eng D
�

1

n

��
1

n � 1

�
� � �
�

1

2

��
1

1

�
D 1

nŠ
;

and we have shown that the probability of obtaining the identity permutation
is 1=nŠ.

We can extend this proof to work for any permutation of priorities. Consider
any fixed permutation 	 D h	.1/; 	.2/; : : : ; 	.n/i of the set f1; 2; : : : ; ng. Let us
denote by ri the rank of the priority assigned to element AŒi�, where the element
with the j th smallest priority has rank j . If we define Ei as the event in which
element AŒi� receives the 	.i/th smallest priority, or ri D 	.i/, the same proof
still applies. Therefore, if we calculate the probability of obtaining any particular
permutation, the calculation is identical to the one above, so that the probability of
obtaining this permutation is also 1=nŠ.

You might think that to prove that a permutation is a uniform random permuta-
tion, it suffices to show that, for each element AŒi�, the probability that the element
winds up in position j is 1=n. Exercise 5.3-4 shows that this weaker condition is,
in fact, insufficient.

A better method for generating a random permutation is to permute the given
array in place. The procedure RANDOMIZE-IN-PLACE does so in O.n/ time. In
its i th iteration, it chooses the element AŒi� randomly from among elements AŒi�

through AŒn�. Subsequent to the i th iteration, AŒi� is never altered.

RANDOMIZE-IN-PLACE.A/

1 n D A: length
2 for i D 1 to n

3 swap AŒi� with AŒRANDOM.i; n/�

We shall use a loop invariant to show that procedure RANDOMIZE-IN-PLACE

produces a uniform random permutation. A k-permutation on a set of n ele-
ments is a sequence containing k of the n elements, with no repetitions. (See
Appendix C.) There are nŠ=.n � k/Š such possible k-permutations.

5.3 Randomized algorithms 127

Lemma 5.5
Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof We use the following loop invariant:

Just prior to the i th iteration of the for loop of lines 2–3, for each possible
.i � 1/-permutation of the n elements, the subarray AŒ1 : : i � 1� contains
this .i � 1/-permutation with probability .n � i C 1/Š=nŠ.

We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.

Initialization: Consider the situation just before the first loop iteration, so that
i D 1. The loop invariant says that for each possible 0-permutation, the sub-
array AŒ1 : : 0� contains this 0-permutation with probability .n � i C 1/Š=nŠ D
nŠ=nŠ D 1. The subarray AŒ1 : : 0� is an empty subarray, and a 0-permutation
has no elements. Thus, AŒ1 : : 0� contains any 0-permutation with probability 1,
and the loop invariant holds prior to the first iteration.

Maintenance: We assume that just before the i th iteration, each possible
.i � 1/-permutation appears in the subarray AŒ1 : : i � 1� with probability
.n � i C 1/Š=nŠ, and we shall show that after the i th iteration, each possible
i-permutation appears in the subarray AŒ1 : : i � with probability .n � i/Š=nŠ.
Incrementing i for the next iteration then maintains the loop invariant.

Let us examine the i th iteration. Consider a particular i-permutation, and de-
note the elements in it by hx1; x2; : : : ; xii. This permutation consists of an
.i � 1/-permutation hx1; : : : ; xi�1i followed by the value xi that the algorithm
places in AŒi�. Let E1 denote the event in which the first i � 1 iterations have
created the particular .i �1/-permutation hx1; : : : ; xi�1i in AŒ1 : : i �1�. By the
loop invariant, Pr fE1g D .n� i C 1/Š=nŠ. Let E2 be the event that i th iteration
puts xi in position AŒi�. The i-permutation hx1; : : : ; xi i appears in AŒ1 : : i � pre-
cisely when both E1 and E2 occur, and so we wish to compute Pr fE2 \E1g.
Using equation (C.14), we have

Pr fE2 \E1g D Pr fE2 j E1g Pr fE1g :

The probability Pr fE2 j E1g equals 1=.n�iC1/ because in line 3 the algorithm
chooses xi randomly from the n� i C 1 values in positions AŒi : : n�. Thus, we
have

128 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Pr fE2 \E1g D Pr fE2 j E1g Pr fE1g
D 1

n � i C 1
� .n � i C 1/Š

nŠ

D .n � i/Š

nŠ
:

Termination: At termination, i D nC 1, and we have that the subarray AŒ1 : : n�

is a given n-permutation with probability .n�.nC1/C1/=nŠ D 0Š=nŠ D 1=nŠ.

Thus, RANDOMIZE-IN-PLACE produces a uniform random permutation.

A randomized algorithm is often the simplest and most efficient way to solve a
problem. We shall use randomized algorithms occasionally throughout this book.

Exercises

5.3-1
Professor Marceau objects to the loop invariant used in the proof of Lemma 5.5. He
questions whether it is true prior to the first iteration. He reasons that we could just
as easily declare that an empty subarray contains no 0-permutations. Therefore,
the probability that an empty subarray contains a 0-permutation should be 0, thus
invalidating the loop invariant prior to the first iteration. Rewrite the procedure
RANDOMIZE-IN-PLACE so that its associated loop invariant applies to a nonempty
subarray prior to the first iteration, and modify the proof of Lemma 5.5 for your
procedure.

5.3-2
Professor Kelp decides to write a procedure that produces at random any permuta-
tion besides the identity permutation. He proposes the following procedure:

PERMUTE-WITHOUT-IDENTITY.A/

1 n D A: length
2 for i D 1 to n � 1

3 swap AŒi� with AŒRANDOM.i C 1; n/�

Does this code do what Professor Kelp intends?

5.3-3
Suppose that instead of swapping element AŒi� with a random element from the
subarray AŒi : : n�, we swapped it with a random element from anywhere in the
array:

5.3 Randomized algorithms 129

PERMUTE-WITH-ALL.A/

1 n D A: length
2 for i D 1 to n

3 swap AŒi� with AŒRANDOM.1; n/�

Does this code produce a uniform random permutation? Why or why not?

5.3-4
Professor Armstrong suggests the following procedure for generating a uniform
random permutation:

PERMUTE-BY-CYCLIC.A/

1 n D A: length
2 let BŒ1 : : n� be a new array
3 offset D RANDOM.1; n/

4 for i D 1 to n

5 dest D i C offset
6 if dest > n

7 dest D dest � n

8 BŒdest� D AŒi�

9 return B

Show that each element AŒi� has a 1=n probability of winding up in any particular
position in B . Then show that Professor Armstrong is mistaken by showing that
the resulting permutation is not uniformly random.

5.3-5 ?

Prove that in the array P in procedure PERMUTE-BY-SORTING, the probability
that all elements are unique is at least 1 � 1=n.

5.3-6
Explain how to implement the algorithm PERMUTE-BY-SORTING to handle the
case in which two or more priorities are identical. That is, your algorithm should
produce a uniform random permutation, even if two or more priorities are identical.

5.3-7
Suppose we want to create a random sample of the set f1; 2; 3; : : : ; ng, that is,
an m-element subset S , where 0 � m � n, such that each m-subset is equally
likely to be created. One way would be to set AŒi� D i for i D 1; 2; 3; : : : ; n,
call RANDOMIZE-IN-PLACE.A/, and then take just the first m array elements.
This method would make n calls to the RANDOM procedure. If n is much larger
than m, we can create a random sample with fewer calls to RANDOM. Show that

130 Chapter 5 Probabilistic Analysis and Randomized Algorithms

the following recursive procedure returns a random m-subset S of f1; 2; 3; : : : ; ng,
in which each m-subset is equally likely, while making only m calls to RANDOM:

RANDOM-SAMPLE.m; n/

1 if m == 0

2 return ;
3 else S D RANDOM-SAMPLE.m � 1; n � 1/

4 i D RANDOM.1; n/

5 if i 2 S

6 S D S [fng
7 else S D S [fig
8 return S

? 5.4 Probabilistic analysis and further uses of indicator random variables

This advanced section further illustrates probabilistic analysis by way of four ex-
amples. The first determines the probability that in a room of k people, two of
them share the same birthday. The second example examines what happens when
we randomly toss balls into bins. The third investigates “streaks” of consecutive
heads when we flip coins. The final example analyzes a variant of the hiring prob-
lem in which you have to make decisions without actually interviewing all the
candidates.

5.4.1 The birthday paradox

Our first example is the birthday paradox. How many people must there be in a
room before there is a 50% chance that two of them were born on the same day of
the year? The answer is surprisingly few. The paradox is that it is in fact far fewer
than the number of days in a year, or even half the number of days in a year, as we
shall see.

To answer this question, we index the people in the room with the integers
1; 2; : : : ; k, where k is the number of people in the room. We ignore the issue
of leap years and assume that all years have n D 365 days. For i D 1; 2; : : : ; k,
let bi be the day of the year on which person i’s birthday falls, where 1 � bi � n.
We also assume that birthdays are uniformly distributed across the n days of the
year, so that Pr fbi D rg D 1=n for i D 1; 2; : : : ; k and r D 1; 2; : : : ; n.

The probability that two given people, say i and j , have matching birthdays
depends on whether the random selection of birthdays is independent. We assume
from now on that birthdays are independent, so that the probability that i’s birthday

5.4 Probabilistic analysis and further uses of indicator random variables 131

and j ’s birthday both fall on day r is

Pr fbi D r and bj D rg D Pr fbi D rg Pr fbj D rg
D 1=n2 :

Thus, the probability that they both fall on the same day is

Pr fbi D bj g D
nX

rD1

Pr fbi D r and bj D rg

D
nX

rD1

.1=n2/

D 1=n : (5.6)

More intuitively, once bi is chosen, the probability that bj is chosen to be the same
day is 1=n. Thus, the probability that i and j have the same birthday is the same
as the probability that the birthday of one of them falls on a given day. Notice,
however, that this coincidence depends on the assumption that the birthdays are
independent.

We can analyze the probability of at least 2 out of k people having matching
birthdays by looking at the complementary event. The probability that at least two
of the birthdays match is 1 minus the probability that all the birthdays are different.
The event that k people have distinct birthdays is

Bk D
k\

iD1

Ai ;

where Ai is the event that person i’s birthday is different from person j ’s for
all j < i . Since we can write Bk D Ak \ Bk�1, we obtain from equation (C.16)
the recurrence

Pr fBkg D Pr fBk�1g Pr fAk j Bk�1g ; (5.7)

where we take Pr fB1g D Pr fA1g D 1 as an initial condition. In other words,
the probability that b1; b2; : : : ; bk are distinct birthdays is the probability that
b1; b2; : : : ; bk�1 are distinct birthdays times the probability that bk ¤ bi for
i D 1; 2; : : : ; k � 1, given that b1; b2; : : : ; bk�1 are distinct.

If b1; b2; : : : ; bk�1 are distinct, the conditional probability that bk ¤ bi for
i D 1; 2; : : : ; k � 1 is Pr fAk j Bk�1g D .n � k C 1/=n, since out of the n days,
n� .k � 1/ days are not taken. We iteratively apply the recurrence (5.7) to obtain

132 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Pr fBkg D Pr fBk�1g Pr fAk j Bk�1g
D Pr fBk�2g Pr fAk�1 j Bk�2g Pr fAk j Bk�1g
:::

D Pr fB1g Pr fA2 j B1g Pr fA3 j B2g � � � Pr fAk j Bk�1g
D 1 �

�
n � 1

n

��
n � 2

n

�
� � �
�

n � k C 1

n

�
D 1 �

�
1� 1

n

��
1 � 2

n

�
� � �
�

1 � k � 1

n

�
:

Inequality (3.12), 1C x � ex , gives us

Pr fBkg � e�1=ne�2=n � � � e�.k�1/=n

D e�Pk�1
iD1 i=n

D e�k.k�1/=2n

� 1=2

when �k.k � 1/=2n � ln.1=2/. The probability that all k birthdays are distinct
is at most 1=2 when k.k � 1/ � 2n ln 2 or, solving the quadratic equation, when
k � .1 C

p
1C .8 ln 2/n/=2. For n D 365, we must have k � 23. Thus, if at

least 23 people are in a room, the probability is at least 1=2 that at least two people
have the same birthday. On Mars, a year is 669 Martian days long; it therefore
takes 31 Martians to get the same effect.

An analysis using indicator random variables

We can use indicator random variables to provide a simpler but approximate anal-
ysis of the birthday paradox. For each pair .i; j / of the k people in the room, we
define the indicator random variable Xij , for 1 � i < j � k, by

Xij D I fperson i and person j have the same birthdayg

D
(

1 if person i and person j have the same birthday ;

0 otherwise :

By equation (5.6), the probability that two people have matching birthdays is 1=n,
and thus by Lemma 5.1, we have

E ŒXij � D Pr fperson i and person j have the same birthdayg
D 1=n :

Letting X be the random variable that counts the number of pairs of individuals
having the same birthday, we have

5.4 Probabilistic analysis and further uses of indicator random variables 133

X D
kX

iD1

kX
j DiC1

Xij :

Taking expectations of both sides and applying linearity of expectation, we obtain

E ŒX� D E

"
kX

iD1

kX
j DiC1

Xij

#

D
kX

iD1

kX
j DiC1

E ŒXij �

D

k

2

!
1

n

D k.k � 1/

2n
:

When k.k � 1/ � 2n, therefore, the expected number of pairs of people with the
same birthday is at least 1. Thus, if we have at least

p
2nC1 individuals in a room,

we can expect at least two to have the same birthday. For n D 365, if k D 28, the
expected number of pairs with the same birthday is .28 � 27/=.2 � 365/ � 1:0356.
Thus, with at least 28 people, we expect to find at least one matching pair of birth-
days. On Mars, where a year is 669 Martian days long, we need at least 38 Mar-
tians.

The first analysis, which used only probabilities, determined the number of peo-
ple required for the probability to exceed 1=2 that a matching pair of birthdays
exists, and the second analysis, which used indicator random variables, determined
the number such that the expected number of matching birthdays is 1. Although
the exact numbers of people differ for the two situations, they are the same asymp-
totically: ‚.

p
n/.

5.4.2 Balls and bins

Consider a process in which we randomly toss identical balls into b bins, numbered
1; 2; : : : ; b. The tosses are independent, and on each toss the ball is equally likely
to end up in any bin. The probability that a tossed ball lands in any given bin is 1=b.
Thus, the ball-tossing process is a sequence of Bernoulli trials (see Appendix C.4)
with a probability 1=b of success, where success means that the ball falls in the
given bin. This model is particularly useful for analyzing hashing (see Chapter 11),
and we can answer a variety of interesting questions about the ball-tossing process.
(Problem C-1 asks additional questions about balls and bins.)

134 Chapter 5 Probabilistic Analysis and Randomized Algorithms

How many balls fall in a given bin? The number of balls that fall in a given bin
follows the binomial distribution b.kIn; 1=b/. If we toss n balls, equation (C.37)
tells us that the expected number of balls that fall in the given bin is n=b.

How many balls must we toss, on the average, until a given bin contains a ball?
The number of tosses until the given bin receives a ball follows the geometric
distribution with probability 1=b and, by equation (C.32), the expected number of
tosses until success is 1=.1=b/ D b.

How many balls must we toss until every bin contains at least one ball? Let us
call a toss in which a ball falls into an empty bin a “hit.” We want to know the
expected number n of tosses required to get b hits.

Using the hits, we can partition the n tosses into stages. The i th stage consists of
the tosses after the .i � 1/st hit until the i th hit. The first stage consists of the first
toss, since we are guaranteed to have a hit when all bins are empty. For each toss
during the i th stage, i � 1 bins contain balls and b � i C 1 bins are empty. Thus,
for each toss in the i th stage, the probability of obtaining a hit is .b � i C 1/=b.

Let ni denote the number of tosses in the i th stage. Thus, the number of tosses
required to get b hits is n D Pb

iD1 ni . Each random variable ni has a geometric
distribution with probability of success .b� iC1/=b and thus, by equation (C.32),
we have

E Œni � D
b

b � i C 1
:

By linearity of expectation, we have

E Œn� D E

"
bX

iD1

ni

#

D
bX

iD1

E Œni �

D
bX

iD1

b

b � i C 1

D b

bX
iD1

1

i

D b.ln b CO.1// (by equation (A.7)) .

It therefore takes approximately b ln b tosses before we can expect that every bin
has a ball. This problem is also known as the coupon collector’s problem, which
says that a person trying to collect each of b different coupons expects to acquire
approximately b ln b randomly obtained coupons in order to succeed.

5.4 Probabilistic analysis and further uses of indicator random variables 135

5.4.3 Streaks

Suppose you flip a fair coin n times. What is the longest streak of consecutive
heads that you expect to see? The answer is ‚.lg n/, as the following analysis
shows.

We first prove that the expected length of the longest streak of heads is O.lg n/.
The probability that each coin flip is a head is 1=2. Let Aik be the event that a
streak of heads of length at least k begins with the i th coin flip or, more precisely,
the event that the k consecutive coin flips i; i C 1; : : : ; i C k � 1 yield only heads,
where 1 � k � n and 1 � i � n�kC1. Since coin flips are mutually independent,
for any given event Aik, the probability that all k flips are heads is

Pr fAikg D 1=2k : (5.8)

For k D 2 dlg ne,
Pr fAi;2dlg neg D 1=22dlg ne

� 1=22 lg n

D 1=n2 ;

and thus the probability that a streak of heads of length at least 2 dlg ne begins in
position i is quite small. There are at most n � 2 dlg ne C 1 positions where such
a streak can begin. The probability that a streak of heads of length at least 2 dlg ne
begins anywhere is therefore

Pr

(
n�2dlg neC1[

iD1

Ai;2dlg ne

)
�

n�2dlg neC1X
iD1

1=n2

<

nX
iD1

1=n2

D 1=n ; (5.9)

since by Boole’s inequality (C.19), the probability of a union of events is at most
the sum of the probabilities of the individual events. (Note that Boole’s inequality
holds even for events such as these that are not independent.)

We now use inequality (5.9) to bound the length of the longest streak. For
j D 0; 1; 2; : : : ; n, let Lj be the event that the longest streak of heads has length ex-
actly j , and let L be the length of the longest streak. By the definition of expected
value, we have

E ŒL� D
nX

j D0

j Pr fLj g : (5.10)

136 Chapter 5 Probabilistic Analysis and Randomized Algorithms

We could try to evaluate this sum using upper bounds on each Pr fLj g similar to
those computed in inequality (5.9). Unfortunately, this method would yield weak
bounds. We can use some intuition gained by the above analysis to obtain a good
bound, however. Informally, we observe that for no individual term in the sum-
mation in equation (5.10) are both the factors j and Pr fLj g large. Why? When
j � 2 dlg ne, then Pr fLj g is very small, and when j < 2 dlg ne, then j is fairly
small. More formally, we note that the events Lj for j D 0; 1; : : : ; n are disjoint,
and so the probability that a streak of heads of length at least 2 dlg ne begins any-
where is

Pn

j D2dlg ne Pr fLj g. By inequality (5.9), we have
Pn

j D2dlg ne Pr fLj g < 1=n.

Also, noting that
Pn

j D0 Pr fLj g D 1, we have that
P2dlg ne�1

j D0 Pr fLj g � 1. Thus,
we obtain

E ŒL� D
nX

j D0

j Pr fLj g

D
2dlg ne�1X

j D0

j Pr fLj g C
nX

j D2dlg ne
j Pr fLj g

<

2dlg ne�1X
j D0

.2 dlg ne/ Pr fLj g C
nX

j D2dlg ne
n Pr fLj g

D 2 dlg ne
2dlg ne�1X

j D0

Pr fLj g C n

nX
j D2dlg ne

Pr fLj g

< 2 dlg ne � 1C n � .1=n/

D O.lg n/ :

The probability that a streak of heads exceeds r dlg ne flips diminishes quickly
with r . For r � 1, the probability that a streak of at least r dlg ne heads starts in
position i is

Pr fAi;rdlg neg D 1=2rdlg ne

� 1=nr :

Thus, the probability is at most n=nr D 1=nr�1 that the longest streak is at
least r dlg ne, or equivalently, the probability is at least 1� 1=nr�1 that the longest
streak has length less than r dlg ne.

As an example, for n D 1000 coin flips, the probability of having a streak of at
least 2 dlg ne D 20 heads is at most 1=n D 1=1000. The chance of having a streak
longer than 3 dlg ne D 30 heads is at most 1=n2 D 1=1,000,000.

We now prove a complementary lower bound: the expected length of the longest
streak of heads in n coin flips is �.lg n/. To prove this bound, we look for streaks

5.4 Probabilistic analysis and further uses of indicator random variables 137

of length s by partitioning the n flips into approximately n=s groups of s flips
each. If we choose s D b.lg n/=2c, we can show that it is likely that at least one
of these groups comes up all heads, and hence it is likely that the longest streak
has length at least s D �.lg n/. We then show that the longest streak has expected
length �.lg n/.

We partition the n coin flips into at least bn= b.lg n/=2cc groups of b.lg n/=2c
consecutive flips, and we bound the probability that no group comes up all heads.
By equation (5.8), the probability that the group starting in position i comes up all
heads is

Pr fAi;b.lg n/=2cg D 1=2b.lg n/=2c

� 1=
p

n :

The probability that a streak of heads of length at least b.lg n/=2c does not begin
in position i is therefore at most 1 � 1=

p
n. Since the bn= b.lg n/=2cc groups are

formed from mutually exclusive, independent coin flips, the probability that every
one of these groups fails to be a streak of length b.lg n/=2c is at most�
1 � 1=

p
n
�bn=b.lg n/=2cc � �

1 � 1=
p

n
�n=b.lg n/=2c�1

� �
1 � 1=

p
n
�2n= lg n�1

� e�.2n= lg n�1/=
p

n

D O.e� lg n/

D O.1=n/ :

For this argument, we used inequality (3.12), 1C x � ex , and the fact, which you
might want to verify, that .2n= lg n � 1/=

p
n � lg n for sufficiently large n.

Thus, the probability that the longest streak exceeds b.lg n/=2c is

nX
j Db.lg n/=2cC1

Pr fLj g � 1 �O.1=n/ : (5.11)

We can now calculate a lower bound on the expected length of the longest streak,
beginning with equation (5.10) and proceeding in a manner similar to our analysis
of the upper bound:

138 Chapter 5 Probabilistic Analysis and Randomized Algorithms

E ŒL� D
nX

j D0

j Pr fLj g

D
b.lg n/=2cX

j D0

j Pr fLj g C
nX

j Db.lg n/=2cC1

j Pr fLj g

�
b.lg n/=2cX

j D0

0 � Pr fLj g C
nX

j Db.lg n/=2cC1

b.lg n/=2c Pr fLj g

D 0 �
b.lg n/=2cX

j D0

Pr fLj g C b.lg n/=2c
nX

j Db.lg n/=2cC1

Pr fLj g

� 0C b.lg n/=2c .1�O.1=n// (by inequality (5.11))

D �.lg n/ :

As with the birthday paradox, we can obtain a simpler but approximate analysis
using indicator random variables. We let Xik D I fAikg be the indicator random
variable associated with a streak of heads of length at least k beginning with the
i th coin flip. To count the total number of such streaks, we define

X D
n�kC1X

iD1

Xik :

Taking expectations and using linearity of expectation, we have

E ŒX� D E

"
n�kC1X

iD1

Xik

#

D
n�kC1X

iD1

E ŒXik�

D
n�kC1X

iD1

Pr fAikg

D
n�kC1X

iD1

1=2k

D n � k C 1

2k
:

By plugging in various values for k, we can calculate the expected number of
streaks of length k. If this number is large (much greater than 1), then we expect
many streaks of length k to occur and the probability that one occurs is high. If

5.4 Probabilistic analysis and further uses of indicator random variables 139

this number is small (much less than 1), then we expect few streaks of length k to
occur and the probability that one occurs is low. If k D c lg n, for some positive
constant c, we obtain

E ŒX� D n � c lg nC 1

2c lg n

D n � c lg nC 1

nc

D 1

nc�1
� .c lg n � 1/=n

nc�1

D ‚.1=nc�1/ :

If c is large, the expected number of streaks of length c lg n is small, and we con-
clude that they are unlikely to occur. On the other hand, if c D 1=2, then we obtain
E ŒX� D ‚.1=n1=2�1/ D ‚.n1=2/, and we expect that there are a large number
of streaks of length .1=2/ lg n. Therefore, one streak of such a length is likely to
occur. From these rough estimates alone, we can conclude that the expected length
of the longest streak is ‚.lg n/.

5.4.4 The on-line hiring problem

As a final example, we consider a variant of the hiring problem. Suppose now that
we do not wish to interview all the candidates in order to find the best one. We
also do not wish to hire and fire as we find better and better applicants. Instead, we
are willing to settle for a candidate who is close to the best, in exchange for hiring
exactly once. We must obey one company requirement: after each interview we
must either immediately offer the position to the applicant or immediately reject the
applicant. What is the trade-off between minimizing the amount of interviewing
and maximizing the quality of the candidate hired?

We can model this problem in the following way. After meeting an applicant,
we are able to give each one a score; let score.i/ denote the score we give to the i th
applicant, and assume that no two applicants receive the same score. After we have
seen j applicants, we know which of the j has the highest score, but we do not
know whether any of the remaining n�j applicants will receive a higher score. We
decide to adopt the strategy of selecting a positive integer k < n, interviewing and
then rejecting the first k applicants, and hiring the first applicant thereafter who has
a higher score than all preceding applicants. If it turns out that the best-qualified
applicant was among the first k interviewed, then we hire the nth applicant. We
formalize this strategy in the procedure ON-LINE-MAXIMUM.k; n/, which returns
the index of the candidate we wish to hire.

140 Chapter 5 Probabilistic Analysis and Randomized Algorithms

ON-LINE-MAXIMUM.k; n/

1 bestscore D �1
2 for i D 1 to k

3 if score.i/ > bestscore
4 bestscore D score.i/

5 for i D k C 1 to n

6 if score.i/ > bestscore
7 return i

8 return n

We wish to determine, for each possible value of k, the probability that we
hire the most qualified applicant. We then choose the best possible k, and
implement the strategy with that value. For the moment, assume that k is
fixed. Let M.j / D max1�i�j fscore.i/g denote the maximum score among ap-
plicants 1 through j . Let S be the event that we succeed in choosing the best-
qualified applicant, and let Si be the event that we succeed when the best-qualified
applicant is the i th one interviewed. Since the various Si are disjoint, we have
that Pr fSg DPn

iD1 Pr fSig. Noting that we never succeed when the best-qualified
applicant is one of the first k, we have that Pr fSig D 0 for i D 1; 2; : : : ; k. Thus,
we obtain

Pr fSg D
nX

iDkC1

Pr fSig : (5.12)

We now compute Pr fSig. In order to succeed when the best-qualified applicant
is the i th one, two things must happen. First, the best-qualified applicant must be
in position i , an event which we denote by Bi . Second, the algorithm must not
select any of the applicants in positions kC1 through i �1, which happens only if,
for each j such that kC1 � j � i�1, we find that score.j / < bestscore in line 6.
(Because scores are unique, we can ignore the possibility of score.j / D bestscore.)
In other words, all of the values score.k C 1/ through score.i � 1/ must be less
than M.k/; if any are greater than M.k/, we instead return the index of the first
one that is greater. We use Oi to denote the event that none of the applicants in
position k C 1 through i � 1 are chosen. Fortunately, the two events Bi and Oi

are independent. The event Oi depends only on the relative ordering of the values
in positions 1 through i � 1, whereas Bi depends only on whether the value in
position i is greater than the values in all other positions. The ordering of the
values in positions 1 through i � 1 does not affect whether the value in position i

is greater than all of them, and the value in position i does not affect the ordering
of the values in positions 1 through i � 1. Thus we can apply equation (C.15) to
obtain

5.4 Probabilistic analysis and further uses of indicator random variables 141

Pr fSig D Pr fBi \Oig D Pr fBig Pr fOig :

The probability Pr fBig is clearly 1=n, since the maximum is equally likely to
be in any one of the n positions. For event Oi to occur, the maximum value in
positions 1 through i�1, which is equally likely to be in any of these i�1 positions,
must be in one of the first k positions. Consequently, Pr fOig D k=.i � 1/ and
Pr fSig D k=.n.i � 1//. Using equation (5.12), we have

Pr fSg D
nX

iDkC1

Pr fSig

D
nX

iDkC1

k

n.i � 1/

D k

n

nX
iDkC1

1

i � 1

D k

n

n�1X
iDk

1

i
:

We approximate by integrals to bound this summation from above and below. By
the inequalities (A.12), we haveZ n

k

1

x
dx �

n�1X
iDk

1

i
�
Z n�1

k�1

1

x
dx :

Evaluating these definite integrals gives us the bounds

k

n
.ln n � ln k/ � Pr fSg � k

n
.ln.n � 1/ � ln.k � 1// ;

which provide a rather tight bound for Pr fSg. Because we wish to maximize our
probability of success, let us focus on choosing the value of k that maximizes the
lower bound on Pr fSg. (Besides, the lower-bound expression is easier to maximize
than the upper-bound expression.) Differentiating the expression .k=n/.ln n�ln k/

with respect to k, we obtain

1

n
.ln n � ln k � 1/ :

Setting this derivative equal to 0, we see that we maximize the lower bound on the
probability when ln k D ln n�1 D ln.n=e/ or, equivalently, when k D n=e. Thus,
if we implement our strategy with k D n=e, we succeed in hiring our best-qualified
applicant with probability at least 1=e.

142 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Exercises

5.4-1
How many people must there be in a room before the probability that someone
has the same birthday as you do is at least 1=2? How many people must there be
before the probability that at least two people have a birthday on July 4 is greater
than 1=2?

5.4-2
Suppose that we toss balls into b bins until some bin contains two balls. Each toss
is independent, and each ball is equally likely to end up in any bin. What is the
expected number of ball tosses?

5.4-3 ?

For the analysis of the birthday paradox, is it important that the birthdays be mutu-
ally independent, or is pairwise independence sufficient? Justify your answer.

5.4-4 ?

How many people should be invited to a party in order to make it likely that there
are three people with the same birthday?

5.4-5 ?

What is the probability that a k-string over a set of size n forms a k-permutation?
How does this question relate to the birthday paradox?

5.4-6 ?

Suppose that n balls are tossed into n bins, where each toss is independent and the
ball is equally likely to end up in any bin. What is the expected number of empty
bins? What is the expected number of bins with exactly one ball?

5.4-7 ?

Sharpen the lower bound on streak length by showing that in n flips of a fair coin,
the probability is less than 1=n that no streak longer than lg n�2 lg lg n consecutive
heads occurs.

Problems for Chapter 5 143

Problems

5-1 Probabilistic counting
With a b-bit counter, we can ordinarily only count up to 2b � 1. With R. Morris’s
probabilistic counting, we can count up to a much larger value at the expense of
some loss of precision.

We let a counter value of i represent a count of ni for i D 0; 1; : : : ; 2b�1, where
the ni form an increasing sequence of nonnegative values. We assume that the ini-
tial value of the counter is 0, representing a count of n0 D 0. The INCREMENT

operation works on a counter containing the value i in a probabilistic manner. If
i D 2b � 1, then the operation reports an overflow error. Otherwise, the INCRE-
MENT operation increases the counter by 1 with probability 1=.niC1 � ni/, and it
leaves the counter unchanged with probability 1 � 1=.niC1 � ni /.

If we select ni D i for all i � 0, then the counter is an ordinary one. More
interesting situations arise if we select, say, ni D 2i�1 for i > 0 or ni D Fi (the
i th Fibonacci number—see Section 3.2).

For this problem, assume that n2b�1 is large enough that the probability of an
overflow error is negligible.

a. Show that the expected value represented by the counter after n INCREMENT

operations have been performed is exactly n.

b. The analysis of the variance of the count represented by the counter depends
on the sequence of the ni . Let us consider a simple case: ni D 100i for
all i � 0. Estimate the variance in the value represented by the register after n

INCREMENT operations have been performed.

5-2 Searching an unsorted array
This problem examines three algorithms for searching for a value x in an unsorted
array A consisting of n elements.

Consider the following randomized strategy: pick a random index i into A. If
AŒi� D x, then we terminate; otherwise, we continue the search by picking a new
random index into A. We continue picking random indices into A until we find an
index j such that AŒj � D x or until we have checked every element of A. Note
that we pick from the whole set of indices each time, so that we may examine a
given element more than once.

a. Write pseudocode for a procedure RANDOM-SEARCH to implement the strat-
egy above. Be sure that your algorithm terminates when all indices into A have
been picked.

144 Chapter 5 Probabilistic Analysis and Randomized Algorithms

b. Suppose that there is exactly one index i such that AŒi� D x. What is the
expected number of indices into A that we must pick before we find x and
RANDOM-SEARCH terminates?

c. Generalizing your solution to part (b), suppose that there are k � 1 indices i

such that AŒi� D x. What is the expected number of indices into A that we
must pick before we find x and RANDOM-SEARCH terminates? Your answer
should be a function of n and k.

d. Suppose that there are no indices i such that AŒi� D x. What is the expected
number of indices into A that we must pick before we have checked all elements
of A and RANDOM-SEARCH terminates?

Now consider a deterministic linear search algorithm, which we refer to as
DETERMINISTIC-SEARCH. Specifically, the algorithm searches A for x in order,
considering AŒ1�; AŒ2�; AŒ3�; : : : ; AŒn� until either it finds AŒi� D x or it reaches
the end of the array. Assume that all possible permutations of the input array are
equally likely.

e. Suppose that there is exactly one index i such that AŒi� D x. What is the
average-case running time of DETERMINISTIC-SEARCH? What is the worst-
case running time of DETERMINISTIC-SEARCH?

f. Generalizing your solution to part (e), suppose that there are k � 1 indices i

such that AŒi� D x. What is the average-case running time of DETERMINISTIC-
SEARCH? What is the worst-case running time of DETERMINISTIC-SEARCH?
Your answer should be a function of n and k.

g. Suppose that there are no indices i such that AŒi� D x. What is the average-case
running time of DETERMINISTIC-SEARCH? What is the worst-case running
time of DETERMINISTIC-SEARCH?

Finally, consider a randomized algorithm SCRAMBLE-SEARCH that works by
first randomly permuting the input array and then running the deterministic lin-
ear search given above on the resulting permuted array.

h. Letting k be the number of indices i such that AŒi� D x, give the worst-case and
expected running times of SCRAMBLE-SEARCH for the cases in which k D 0

and k D 1. Generalize your solution to handle the case in which k � 1.

i. Which of the three searching algorithms would you use? Explain your answer.

Notes for Chapter 5 145

Chapter notes

Bollobás [53], Hofri [174], and Spencer [321] contain a wealth of advanced prob-
abilistic techniques. The advantages of randomized algorithms are discussed and
surveyed by Karp [200] and Rabin [288]. The textbook by Motwani and Raghavan
[262] gives an extensive treatment of randomized algorithms.

Several variants of the hiring problem have been widely studied. These problems
are more commonly referred to as “secretary problems.” An example of work in
this area is the paper by Ajtai, Meggido, and Waarts [11].

II Sorting and Order Statistics

Introduction

This part presents several algorithms that solve the following sorting problem:

Input: A sequence of n numbers ha1; a2; : : : ; ani.
Output: A permutation (reordering) ha0

1; a0
2; : : : ; a0

ni of the input sequence such
that a0

1 � a0
2 � � � � � a0

n.

The input sequence is usually an n-element array, although it may be represented
in some other fashion, such as a linked list.

The structure of the data

In practice, the numbers to be sorted are rarely isolated values. Each is usually part
of a collection of data called a record. Each record contains a key, which is the
value to be sorted. The remainder of the record consists of satellite data, which are
usually carried around with the key. In practice, when a sorting algorithm permutes
the keys, it must permute the satellite data as well. If each record includes a large
amount of satellite data, we often permute an array of pointers to the records rather
than the records themselves in order to minimize data movement.

In a sense, it is these implementation details that distinguish an algorithm from
a full-blown program. A sorting algorithm describes the method by which we
determine the sorted order, regardless of whether we are sorting individual numbers
or large records containing many bytes of satellite data. Thus, when focusing on the
problem of sorting, we typically assume that the input consists only of numbers.
Translating an algorithm for sorting numbers into a program for sorting records

148 Part II Sorting and Order Statistics

is conceptually straightforward, although in a given engineering situation other
subtleties may make the actual programming task a challenge.

Why sorting?

Many computer scientists consider sorting to be the most fundamental problem in
the study of algorithms. There are several reasons:

� Sometimes an application inherently needs to sort information. For example,
in order to prepare customer statements, banks need to sort checks by check
number.

� Algorithms often use sorting as a key subroutine. For example, a program that
renders graphical objects which are layered on top of each other might have
to sort the objects according to an “above” relation so that it can draw these
objects from bottom to top. We shall see numerous algorithms in this text that
use sorting as a subroutine.

� We can draw from among a wide variety of sorting algorithms, and they em-
ploy a rich set of techniques. In fact, many important techniques used through-
out algorithm design appear in the body of sorting algorithms that have been
developed over the years. In this way, sorting is also a problem of historical
interest.

� We can prove a nontrivial lower bound for sorting (as we shall do in Chapter 8).
Our best upper bounds match the lower bound asymptotically, and so we know
that our sorting algorithms are asymptotically optimal. Moreover, we can use
the lower bound for sorting to prove lower bounds for certain other problems.

� Many engineering issues come to the fore when implementing sorting algo-
rithms. The fastest sorting program for a particular situation may depend on
many factors, such as prior knowledge about the keys and satellite data, the
memory hierarchy (caches and virtual memory) of the host computer, and the
software environment. Many of these issues are best dealt with at the algorith-
mic level, rather than by “tweaking” the code.

Sorting algorithms

We introduced two algorithms that sort n real numbers in Chapter 2. Insertion sort
takes ‚.n2/ time in the worst case. Because its inner loops are tight, however,
it is a fast in-place sorting algorithm for small input sizes. (Recall that a sorting
algorithm sorts in place if only a constant number of elements of the input ar-
ray are ever stored outside the array.) Merge sort has a better asymptotic running
time, ‚.n lg n/, but the MERGE procedure it uses does not operate in place.

Part II Sorting and Order Statistics 149

In this part, we shall introduce two more algorithms that sort arbitrary real num-
bers. Heapsort, presented in Chapter 6, sorts n numbers in place in O.n lg n/ time.
It uses an important data structure, called a heap, with which we can also imple-
ment a priority queue.

Quicksort, in Chapter 7, also sorts n numbers in place, but its worst-case running
time is ‚.n2/. Its expected running time is ‚.n lg n/, however, and it generally
outperforms heapsort in practice. Like insertion sort, quicksort has tight code, and
so the hidden constant factor in its running time is small. It is a popular algorithm
for sorting large input arrays.

Insertion sort, merge sort, heapsort, and quicksort are all comparison sorts: they
determine the sorted order of an input array by comparing elements. Chapter 8 be-
gins by introducing the decision-tree model in order to study the performance limi-
tations of comparison sorts. Using this model, we prove a lower bound of �.n lg n/

on the worst-case running time of any comparison sort on n inputs, thus showing
that heapsort and merge sort are asymptotically optimal comparison sorts.

Chapter 8 then goes on to show that we can beat this lower bound of �.n lg n/

if we can gather information about the sorted order of the input by means other
than comparing elements. The counting sort algorithm, for example, assumes that
the input numbers are in the set f0; 1; : : : ; kg. By using array indexing as a tool
for determining relative order, counting sort can sort n numbers in ‚.k C n/ time.
Thus, when k D O.n/, counting sort runs in time that is linear in the size of the
input array. A related algorithm, radix sort, can be used to extend the range of
counting sort. If there are n integers to sort, each integer has d digits, and each
digit can take on up to k possible values, then radix sort can sort the numbers
in ‚.d.nC k// time. When d is a constant and k is O.n/, radix sort runs in
linear time. A third algorithm, bucket sort, requires knowledge of the probabilistic
distribution of numbers in the input array. It can sort n real numbers uniformly
distributed in the half-open interval Œ0; 1/ in average-case O.n/ time.

The following table summarizes the running times of the sorting algorithms from
Chapters 2 and 6–8. As usual, n denotes the number of items to sort. For counting
sort, the items to sort are integers in the set f0; 1; : : : ; kg. For radix sort, each item
is a d -digit number, where each digit takes on k possible values. For bucket sort,
we assume that the keys are real numbers uniformly distributed in the half-open
interval Œ0; 1/. The rightmost column gives the average-case or expected running
time, indicating which it gives when it differs from the worst-case running time.
We omit the average-case running time of heapsort because we do not analyze it in
this book.

150 Part II Sorting and Order Statistics

Worst-case Average-case/expected
Algorithm running time running time

Insertion sort ‚.n2/ ‚.n2/

Merge sort ‚.n lg n/ ‚.n lg n/

Heapsort O.n lg n/ —
Quicksort ‚.n2/ ‚.n lg n/ (expected)
Counting sort ‚.k C n/ ‚.k C n/

Radix sort ‚.d.nC k// ‚.d.nC k//

Bucket sort ‚.n2/ ‚.n/ (average-case)

Order statistics

The i th order statistic of a set of n numbers is the i th smallest number in the set.
We can, of course, select the i th order statistic by sorting the input and indexing
the i th element of the output. With no assumptions about the input distribution,
this method runs in �.n lg n/ time, as the lower bound proved in Chapter 8 shows.

In Chapter 9, we show that we can find the i th smallest element in O.n/ time,
even when the elements are arbitrary real numbers. We present a randomized algo-
rithm with tight pseudocode that runs in ‚.n2/ time in the worst case, but whose
expected running time is O.n/. We also give a more complicated algorithm that
runs in O.n/ worst-case time.

Background

Although most of this part does not rely on difficult mathematics, some sections
do require mathematical sophistication. In particular, analyses of quicksort, bucket
sort, and the order-statistic algorithm use probability, which is reviewed in Ap-
pendix C, and the material on probabilistic analysis and randomized algorithms in
Chapter 5. The analysis of the worst-case linear-time algorithm for order statis-
tics involves somewhat more sophisticated mathematics than the other worst-case
analyses in this part.

6 Heapsort

In this chapter, we introduce another sorting algorithm: heapsort. Like merge sort,
but unlike insertion sort, heapsort’s running time is O.n lg n/. Like insertion sort,
but unlike merge sort, heapsort sorts in place: only a constant number of array
elements are stored outside the input array at any time. Thus, heapsort combines
the better attributes of the two sorting algorithms we have already discussed.

Heapsort also introduces another algorithm design technique: using a data struc-
ture, in this case one we call a “heap,” to manage information. Not only is the heap
data structure useful for heapsort, but it also makes an efficient priority queue. The
heap data structure will reappear in algorithms in later chapters.

The term “heap” was originally coined in the context of heapsort, but it has since
come to refer to “garbage-collected storage,” such as the programming languages
Java and Lisp provide. Our heap data structure is not garbage-collected storage,
and whenever we refer to heaps in this book, we shall mean a data structure rather
than an aspect of garbage collection.

6.1 Heaps

The (binary) heap data structure is an array object that we can view as a
nearly complete binary tree (see Section B.5.3), as shown in Figure 6.1. Each
node of the tree corresponds to an element of the array. The tree is com-
pletely filled on all levels except possibly the lowest, which is filled from the
left up to a point. An array A that represents a heap is an object with two at-
tributes: A: length, which (as usual) gives the number of elements in the array, and
A:heap-size, which represents how many elements in the heap are stored within
array A. That is, although AŒ1 : : A: length� may contain numbers, only the ele-
ments in AŒ1 : : A:heap-size�, where 0 � A:heap-size � A: length, are valid ele-
ments of the heap. The root of the tree is AŒ1�, and given the index i of a node, we
can easily compute the indices of its parent, left child, and right child:

152 Chapter 6 Heapsort

(a)

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

(b)

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle
at each node in the tree is the value stored at that node. The number above a node is the corresponding
index in the array. Above and below the array are lines showing parent-child relationships; parents
are always to the left of their children. The tree has height three; the node at index 4 (with value 8)
has height one.

PARENT.i/

1 return bi=2c

LEFT.i/

1 return 2i

RIGHT.i/

1 return 2i C 1

On most computers, the LEFT procedure can compute 2i in one instruction by
simply shifting the binary representation of i left by one bit position. Similarly, the
RIGHT procedure can quickly compute 2iC1 by shifting the binary representation
of i left by one bit position and then adding in a 1 as the low-order bit. The
PARENT procedure can compute bi=2c by shifting i right one bit position. Good
implementations of heapsort often implement these procedures as “macros” or “in-
line” procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds,
the values in the nodes satisfy a heap property, the specifics of which depend on
the kind of heap. In a max-heap, the max-heap property is that for every node i

other than the root,

AŒPARENT.i/� � AŒi� ;

that is, the value of a node is at most the value of its parent. Thus, the largest
element in a max-heap is stored at the root, and the subtree rooted at a node contains

6.1 Heaps 153

values no larger than that contained at the node itself. A min-heap is organized in
the opposite way; the min-heap property is that for every node i other than the
root,

AŒPARENT.i/� � AŒi� :

The smallest element in a min-heap is at the root.
For the heapsort algorithm, we use max-heaps. Min-heaps commonly imple-

ment priority queues, which we discuss in Section 6.5. We shall be precise in
specifying whether we need a max-heap or a min-heap for any particular applica-
tion, and when properties apply to either max-heaps or min-heaps, we just use the
term “heap.”

Viewing a heap as a tree, we define the height of a node in a heap to be the
number of edges on the longest simple downward path from the node to a leaf, and
we define the height of the heap to be the height of its root. Since a heap of n ele-
ments is based on a complete binary tree, its height is ‚.lg n/ (see Exercise 6.1-2).
We shall see that the basic operations on heaps run in time at most proportional
to the height of the tree and thus take O.lg n/ time. The remainder of this chapter
presents some basic procedures and shows how they are used in a sorting algorithm
and a priority-queue data structure.

� The MAX-HEAPIFY procedure, which runs in O.lg n/ time, is the key to main-
taining the max-heap property.

� The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-
heap from an unordered input array.

� The HEAPSORT procedure, which runs in O.n lg n/ time, sorts an array in
place.

� The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY,
and HEAP-MAXIMUM procedures, which run in O.lg n/ time, allow the heap
data structure to implement a priority queue.

Exercises

6.1-1
What are the minimum and maximum numbers of elements in a heap of height h?

6.1-2
Show that an n-element heap has height blg nc.
6.1-3
Show that in any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree.

154 Chapter 6 Heapsort

6.1-4
Where in a max-heap might the smallest element reside, assuming that all elements
are distinct?

6.1-5
Is an array that is in sorted order a min-heap?

6.1-6
Is the array with values h23; 17; 14; 6; 13; 10; 1; 5; 7; 12i a max-heap?

6.1-7
Show that, with the array representation for storing an n-element heap, the leaves
are the nodes indexed by bn=2c C 1; bn=2c C 2; : : : ; n.

6.2 Maintaining the heap property

In order to maintain the max-heap property, we call the procedure MAX-HEAPIFY.
Its inputs are an array A and an index i into the array. When it is called, MAX-
HEAPIFY assumes that the binary trees rooted at LEFT.i/ and RIGHT.i/ are max-
heaps, but that AŒi� might be smaller than its children, thus violating the max-heap
property. MAX-HEAPIFY lets the value at AŒi� “float down” in the max-heap so
that the subtree rooted at index i obeys the max-heap property.

MAX-HEAPIFY.A; i/

1 l D LEFT.i/

2 r D RIGHT.i/

3 if l � A:heap-size and AŒl� > AŒi�

4 largest D l

5 else largest D i

6 if r � A:heap-size and AŒr� > AŒlargest�
7 largest D r

8 if largest ¤ i

9 exchange AŒi� with AŒlargest�
10 MAX-HEAPIFY.A; largest/

Figure 6.2 illustrates the action of MAX-HEAPIFY. At each step, the largest of
the elements AŒi�, AŒLEFT.i/�, and AŒRIGHT.i/� is determined, and its index is
stored in largest. If AŒi� is largest, then the subtree rooted at node i is already a
max-heap and the procedure terminates. Otherwise, one of the two children has the
largest element, and AŒi� is swapped with AŒlargest�, which causes node i and its

6.2 Maintaining the heap property 155

16

4 10

14 7 9

2 8 1

(a)

16

14 10

4 7 9 3

2 8 1

(b)

16

14 10

8 7 9 3

2 4 1

(c)

3

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

i

i

i

Figure 6.2 The action of MAX-HEAPIFY.A; 2/, where A:heap-size D 10. (a) The initial con-
figuration, with AŒ2� at node i D 2 violating the max-heap property since it is not larger than
both children. The max-heap property is restored for node 2 in (b) by exchanging AŒ2� with AŒ4�,
which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY.A; 4/ now
has i D 4. After swapping AŒ4� with AŒ9�, as shown in (c), node 4 is fixed up, and the recursive call
MAX-HEAPIFY.A; 9/ yields no further change to the data structure.

children to satisfy the max-heap property. The node indexed by largest, however,
now has the original value AŒi�, and thus the subtree rooted at largest might violate
the max-heap property. Consequently, we call MAX-HEAPIFY recursively on that
subtree.

The running time of MAX-HEAPIFY on a subtree of size n rooted at a given
node i is the ‚.1/ time to fix up the relationships among the elements AŒi�,
AŒLEFT.i/�, and AŒRIGHT.i/�, plus the time to run MAX-HEAPIFY on a subtree
rooted at one of the children of node i (assuming that the recursive call occurs).
The children’s subtrees each have size at most 2n=3—the worst case occurs when
the bottom level of the tree is exactly half full—and therefore we can describe the
running time of MAX-HEAPIFY by the recurrence

T .n/ � T .2n=3/C‚.1/ :

156 Chapter 6 Heapsort

The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1),
is T .n/ D O.lg n/. Alternatively, we can characterize the running time of MAX-
HEAPIFY on a node of height h as O.h/.

Exercises

6.2-1
Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY.A; 3/ on
the array A D h27; 17; 3; 16; 13; 10; 1; 5; 7; 12; 4; 8; 9; 0i.
6.2-2
Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure
MIN-HEAPIFY.A; i/, which performs the corresponding manipulation on a min-
heap. How does the running time of MIN-HEAPIFY compare to that of MAX-
HEAPIFY?

6.2-3
What is the effect of calling MAX-HEAPIFY.A; i/ when the element AŒi� is larger
than its children?

6.2-4
What is the effect of calling MAX-HEAPIFY.A; i/ for i > A:heap-size=2?

6.2-5
The code for MAX-HEAPIFY is quite efficient in terms of constant factors, except
possibly for the recursive call in line 10, which might cause some compilers to
produce inefficient code. Write an efficient MAX-HEAPIFY that uses an iterative
control construct (a loop) instead of recursion.

6.2-6
Show that the worst-case running time of MAX-HEAPIFY on a heap of size n

is �.lg n/. (Hint: For a heap with n nodes, give node values that cause MAX-
HEAPIFY to be called recursively at every node on a simple path from the root
down to a leaf.)

6.3 Building a heap

We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an
array AŒ1 : : n�, where n D A: length, into a max-heap. By Exercise 6.1-7, the
elements in the subarray AŒ.bn=2cC1/ : : n� are all leaves of the tree, and so each is

6.3 Building a heap 157

a 1-element heap to begin with. The procedure BUILD-MAX-HEAP goes through
the remaining nodes of the tree and runs MAX-HEAPIFY on each one.

BUILD-MAX-HEAP.A/

1 A:heap-size D A: length
2 for i D bA: length=2c downto 1

3 MAX-HEAPIFY.A; i/

Figure 6.3 shows an example of the action of BUILD-MAX-HEAP.
To show why BUILD-MAX-HEAP works correctly, we use the following loop

invariant:

At the start of each iteration of the for loop of lines 2–3, each node i C 1;

i C 2; : : : ; n is the root of a max-heap.

We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.

Initialization: Prior to the first iteration of the loop, i D bn=2c. Each node
bn=2cC 1; bn=2cC 2; : : : ; n is a leaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, observe that
the children of node i are numbered higher than i . By the loop invariant, there-
fore, they are both roots of max-heaps. This is precisely the condition required
for the call MAX-HEAPIFY.A; i/ to make node i a max-heap root. Moreover,
the MAX-HEAPIFY call preserves the property that nodes i C 1; i C 2; : : : ; n

are all roots of max-heaps. Decrementing i in the for loop update reestablishes
the loop invariant for the next iteration.

Termination: At termination, i D 0. By the loop invariant, each node 1; 2; : : : ; n

is the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of BUILD-MAX-
HEAP as follows. Each call to MAX-HEAPIFY costs O.lg n/ time, and BUILD-
MAX-HEAP makes O.n/ such calls. Thus, the running time is O.n lg n/. This
upper bound, though correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to
run at a node varies with the height of the node in the tree, and the heights of most
nodes are small. Our tighter analysis relies on the properties that an n-element heap
has height blg nc (see Exercise 6.1-2) and at most

˙
n=2hC1

�
nodes of any height h

(see Exercise 6.3-3).
The time required by MAX-HEAPIFY when called on a node of height h is O.h/,

and so we can express the total cost of BUILD-MAX-HEAP as being bounded from
above by

158 Chapter 6 Heapsort

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7

(a)

16

4 1 23 16 9 10 14 8 7

4

1 3

2 9 10

14 8 7

(b)

16

4

1 3

14 9 10

2 8 7

(c)

16

4

1 10

14 9 3

2 8 7

(d)

16

4

16 10

14 9 3

2 8 1

(e)

7

16

14 10

8 9 3

2 4 1

(f)

7

A

i i

ii

i

Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to
MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the bi-
nary tree it represents. The figure shows that the loop index i refers to node 5 before the call
MAX-HEAPIFY.A; i/. (b) The data structure that results. The loop index i for the next iteration
refers to node 4. (c)–(e) Subsequent iterations of the for loop in BUILD-MAX-HEAP. Observe that
whenever MAX-HEAPIFY is called on a node, the two subtrees of that node are both max-heaps.
(f) The max-heap after BUILD-MAX-HEAP finishes.

6.4 The heapsort algorithm 159

blg ncX
hD0

l n

2hC1

m
O.h/ D O

n

blg ncX
hD0

h

2h

!
:

We evalaute the last summation by substituting x D 1=2 in the formula (A.8),
yielding
1X

hD0

h

2h
D 1=2

.1� 1=2/2

D 2 :

Thus, we can bound the running time of BUILD-MAX-HEAP as

O

n

blg ncX
hD0

h

2h

!
D O

n

1X
hD0

h

2h

!
D O.n/ :

Hence, we can build a max-heap from an unordered array in linear time.
We can build a min-heap by the procedure BUILD-MIN-HEAP, which is the

same as BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced
by a call to MIN-HEAPIFY (see Exercise 6.2-2). BUILD-MIN-HEAP produces a
min-heap from an unordered linear array in linear time.

Exercises

6.3-1
Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the
array A D h5; 3; 17; 10; 84; 19; 6; 22; 9i.
6.3-2
Why do we want the loop index i in line 2 of BUILD-MAX-HEAP to decrease from
bA: length=2c to 1 rather than increase from 1 to bA: length=2c?
6.3-3
Show that there are at most

˙
n=2hC1

�
nodes of height h in any n-element heap.

6.4 The heapsort algorithm

The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap
on the input array AŒ1 : : n�, where n D A: length. Since the maximum element
of the array is stored at the root AŒ1�, we can put it into its correct final position

160 Chapter 6 Heapsort

by exchanging it with AŒn�. If we now discard node n from the heap—and we
can do so by simply decrementing A:heap-size—we observe that the children of
the root remain max-heaps, but the new root element might violate the max-heap
property. All we need to do to restore the max-heap property, however, is call
MAX-HEAPIFY.A; 1/, which leaves a max-heap in AŒ1 : : n � 1�. The heapsort
algorithm then repeats this process for the max-heap of size n � 1 down to a heap
of size 2. (See Exercise 6.4-2 for a precise loop invariant.)

HEAPSORT.A/

1 BUILD-MAX-HEAP.A/

2 for i D A: length downto 2
3 exchange AŒ1� with AŒi�

4 A:heap-size D A:heap-size � 1

5 MAX-HEAPIFY.A; 1/

Figure 6.4 shows an example of the operation of HEAPSORT after line 1 has built
the initial max-heap. The figure shows the max-heap before the first iteration of
the for loop of lines 2–5 and after each iteration.

The HEAPSORT procedure takes time O.n lg n/, since the call to BUILD-MAX-
HEAP takes time O.n/ and each of the n � 1 calls to MAX-HEAPIFY takes
time O.lg n/.

Exercises

6.4-1
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array
A D h5; 13; 2; 25; 7; 17; 20; 8; 4i.
6.4-2
Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 2–5, the subarray
AŒ1 : : i � is a max-heap containing the i smallest elements of AŒ1 : : n�, and
the subarray AŒi C 1 : : n� contains the n � i largest elements of AŒ1 : : n�,
sorted.

6.4-3
What is the running time of HEAPSORT on an array A of length n that is already
sorted in increasing order? What about decreasing order?

6.4-4
Show that the worst-case running time of HEAPSORT is �.n lg n/.

6.4 The heapsort algorithm 161

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

1 2 3 4 7 8 9 10 14 16

10

2

1 3

4 7 8 9

1614

1

2 3

4 7 8 9

161410

3

2 1

9874

10 14 16

4

2 3

9871

10 14 16

8

37

4 2 1 9

161410

7

4 3

9821

10 14 16

9

8 3

2174

161410

10

8 9

3174

16142

14

8 10

3974

1612

16

14 10

3978

142

A

i
i

i

i i

i i

i

i

Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-MAX-
HEAP has built it in line 1. (b)–(j) The max-heap just after each call of MAX-HEAPIFY in line 5,
showing the value of i at that time. Only lightly shaded nodes remain in the heap. (k) The resulting
sorted array A.

162 Chapter 6 Heapsort

6.4-5 ?

Show that when all elements are distinct, the best-case running time of HEAPSORT

is �.n lg n/.

6.5 Priority queues

Heapsort is an excellent algorithm, but a good implementation of quicksort, pre-
sented in Chapter 7, usually beats it in practice. Nevertheless, the heap data struc-
ture itself has many uses. In this section, we present one of the most popular ap-
plications of a heap: as an efficient priority queue. As with heaps, priority queues
come in two forms: max-priority queues and min-priority queues. We will focus
here on how to implement max-priority queues, which are in turn based on max-
heaps; Exercise 6.5-3 asks you to write the procedures for min-priority queues.

A priority queue is a data structure for maintaining a set S of elements, each
with an associated value called a key. Amax-priority queue supports the following
operations:

INSERT.S; x/ inserts the element x into the set S , which is equivalent to the oper-
ation S D S [fxg.

MAXIMUM.S/ returns the element of S with the largest key.

EXTRACT-MAX.S/ removes and returns the element of S with the largest key.

INCREASE-KEY.S; x; k/ increases the value of element x’s key to the new value k,
which is assumed to be at least as large as x’s current key value.

Among their other applications, we can use max-priority queues to schedule
jobs on a shared computer. The max-priority queue keeps track of the jobs to
be performed and their relative priorities. When a job is finished or interrupted,
the scheduler selects the highest-priority job from among those pending by calling
EXTRACT-MAX. The scheduler can add a new job to the queue at any time by
calling INSERT.

Alternatively, amin-priority queue supports the operations INSERT, MINIMUM,
EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an
event-driven simulator. The items in the queue are events to be simulated, each
with an associated time of occurrence that serves as its key. The events must be
simulated in order of their time of occurrence, because the simulation of an event
can cause other events to be simulated in the future. The simulation program calls
EXTRACT-MIN at each step to choose the next event to simulate. As new events are
produced, the simulator inserts them into the min-priority queue by calling INSERT.

6.5 Priority queues 163

We shall see other uses for min-priority queues, highlighting the DECREASE-KEY

operation, in Chapters 23 and 24.
Not surprisingly, we can use a heap to implement a priority queue. In a given ap-

plication, such as job scheduling or event-driven simulation, elements of a priority
queue correspond to objects in the application. We often need to determine which
application object corresponds to a given priority-queue element, and vice versa.
When we use a heap to implement a priority queue, therefore, we often need to
store a handle to the corresponding application object in each heap element. The
exact makeup of the handle (such as a pointer or an integer) depends on the ap-
plication. Similarly, we need to store a handle to the corresponding heap element
in each application object. Here, the handle would typically be an array index.
Because heap elements change locations within the array during heap operations,
an actual implementation, upon relocating a heap element, would also have to up-
date the array index in the corresponding application object. Because the details
of accessing application objects depend heavily on the application and its imple-
mentation, we shall not pursue them here, other than noting that in practice, these
handles do need to be correctly maintained.

Now we discuss how to implement the operations of a max-priority queue. The
procedure HEAP-MAXIMUM implements the MAXIMUM operation in ‚.1/ time.

HEAP-MAXIMUM.A/

1 return AŒ1�

The procedure HEAP-EXTRACT-MAX implements the EXTRACT-MAX opera-
tion. It is similar to the for loop body (lines 3–5) of the HEAPSORT procedure.

HEAP-EXTRACT-MAX.A/

1 if A:heap-size < 1

2 error “heap underflow”
3 max D AŒ1�

4 AŒ1� D AŒA:heap-size�

5 A:heap-size D A:heap-size � 1

6 MAX-HEAPIFY.A; 1/

7 return max

The running time of HEAP-EXTRACT-MAX is O.lg n/, since it performs only a
constant amount of work on top of the O.lg n/ time for MAX-HEAPIFY.

The procedure HEAP-INCREASE-KEY implements the INCREASE-KEY opera-
tion. An index i into the array identifies the priority-queue element whose key we
wish to increase. The procedure first updates the key of element AŒi� to its new
value. Because increasing the key of AŒi� might violate the max-heap property,

164 Chapter 6 Heapsort

the procedure then, in a manner reminiscent of the insertion loop (lines 5–7) of
INSERTION-SORT from Section 2.1, traverses a simple path from this node toward
the root to find a proper place for the newly increased key. As HEAP-INCREASE-
KEY traverses this path, it repeatedly compares an element to its parent, exchang-
ing their keys and continuing if the element’s key is larger, and terminating if the el-
ement’s key is smaller, since the max-heap property now holds. (See Exercise 6.5-5
for a precise loop invariant.)

HEAP-INCREASE-KEY.A; i; key/

1 if key < AŒi�

2 error “new key is smaller than current key”
3 AŒi� D key
4 while i > 1 and AŒPARENT.i/� < AŒi�

5 exchange AŒi� with AŒPARENT.i/�

6 i D PARENT.i/

Figure 6.5 shows an example of a HEAP-INCREASE-KEY operation. The running
time of HEAP-INCREASE-KEY on an n-element heap is O.lg n/, since the path
traced from the node updated in line 3 to the root has length O.lg n/.

The procedure MAX-HEAP-INSERT implements the INSERT operation. It takes
as an input the key of the new element to be inserted into max-heap A. The proce-
dure first expands the max-heap by adding to the tree a new leaf whose key is �1.
Then it calls HEAP-INCREASE-KEY to set the key of this new node to its correct
value and maintain the max-heap property.

MAX-HEAP-INSERT.A; key/

1 A:heap-size D A:heap-sizeC 1

2 AŒA:heap-size� D �1
3 HEAP-INCREASE-KEY.A; A:heap-size; key/

The running time of MAX-HEAP-INSERT on an n-element heap is O.lg n/.
In summary, a heap can support any priority-queue operation on a set of size n

in O.lg n/ time.

Exercises

6.5-1
Illustrate the operation of HEAP-EXTRACT-MAX on the heap A D h15; 13; 9; 5;

12; 8; 7; 4; 0; 6; 2; 1i.

6.5 Priority queues 165

16

14 10

8 7 9 3

2 4 1

(a)

i

16

14 10

8 7 9 3

2 15 1

(b)

16

14 10

8

7 9 3

2

15

1

(c)

i

i

16

14

10

8

7 9 3

2

15

1

(d)

i

Figure 6.5 The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a) with a
node whose index is i heavily shaded. (b) This node has its key increased to 15. (c) After one
iteration of the while loop of lines 4–6, the node and its parent have exchanged keys, and the index i

moves up to the parent. (d) The max-heap after one more iteration of the while loop. At this point,
AŒPARENT.i/� � AŒi�. The max-heap property now holds and the procedure terminates.

6.5-2
Illustrate the operation of MAX-HEAP-INSERT.A; 10/ on the heap A D h15; 13; 9;

5; 12; 8; 7; 4; 0; 6; 2; 1i.
6.5-3
Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN,
HEAP-DECREASE-KEY, and MIN-HEAP-INSERT that implement a min-priority
queue with a min-heap.

6.5-4
Why do we bother setting the key of the inserted node to �1 in line 2 of MAX-
HEAP-INSERT when the next thing we do is increase its key to the desired value?

166 Chapter 6 Heapsort

6.5-5
Argue the correctness of HEAP-INCREASE-KEY using the following loop invari-
ant:

At the start of each iteration of the while loop of lines 4–6, the subarray
AŒ1 : : A:heap-size� satisfies the max-heap property, except that there may
be one violation: AŒi� may be larger than AŒPARENT.i/�.

You may assume that the subarray AŒ1 : : A:heap-size� satisfies the max-heap prop-
erty at the time HEAP-INCREASE-KEY is called.

6.5-6
Each exchange operation on line 5 of HEAP-INCREASE-KEY typically requires
three assignments. Show how to use the idea of the inner loop of INSERTION-
SORT to reduce the three assignments down to just one assignment.

6.5-7
Show how to implement a first-in, first-out queue with a priority queue. Show
how to implement a stack with a priority queue. (Queues and stacks are defined in
Section 10.1.)

6.5-8
The operation HEAP-DELETE.A; i/ deletes the item in node i from heap A. Give
an implementation of HEAP-DELETE that runs in O.lg n/ time for an n-element
max-heap.

6.5-9
Give an O.n lg k/-time algorithm to merge k sorted lists into one sorted list,
where n is the total number of elements in all the input lists. (Hint: Use a min-
heap for k-way merging.)

Problems

6-1 Building a heap using insertion
We can build a heap by repeatedly calling MAX-HEAP-INSERT to insert the ele-
ments into the heap. Consider the following variation on the BUILD-MAX-HEAP

procedure:

Problems for Chapter 6 167

BUILD-MAX-HEAP0.A/

1 A:heap-size D 1

2 for i D 2 to A: length
3 MAX-HEAP-INSERT.A; AŒi �/

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP 0 always create
the same heap when run on the same input array? Prove that they do, or provide
a counterexample.

b. Show that in the worst case, BUILD-MAX-HEAP 0 requires ‚.n lg n/ time to
build an n-element heap.

6-2 Analysis of d -ary heaps
A d -ary heap is like a binary heap, but (with one possible exception) non-leaf
nodes have d children instead of 2 children.

a. How would you represent a d -ary heap in an array?

b. What is the height of a d -ary heap of n elements in terms of n and d?

c. Give an efficient implementation of EXTRACT-MAX in a d -ary max-heap. An-
alyze its running time in terms of d and n.

d. Give an efficient implementation of INSERT in a d -ary max-heap. Analyze its
running time in terms of d and n.

e. Give an efficient implementation of INCREASE-KEY.A; i; k/, which flags an
error if k < AŒi�, but otherwise sets AŒi� D k and then updates the d -ary max-
heap structure appropriately. Analyze its running time in terms of d and n.

6-3 Young tableaus
An m 	 n Young tableau is an m 	 n matrix such that the entries of each row are
in sorted order from left to right and the entries of each column are in sorted order
from top to bottom. Some of the entries of a Young tableau may be1, which we
treat as nonexistent elements. Thus, a Young tableau can be used to hold r � mn

finite numbers.

a. Draw a 4	4 Young tableau containing the elements f9; 16; 3; 2; 4; 8; 5; 14; 12g.

b. Argue that an m 	 n Young tableau Y is empty if Y Œ1; 1� D 1. Argue that Y

is full (contains mn elements) if Y Œm; n� <1.

168 Chapter 6 Heapsort

c. Give an algorithm to implement EXTRACT-MIN on a nonempty m 	 n Young
tableau that runs in O.m C n/ time. Your algorithm should use a recur-
sive subroutine that solves an m 	 n problem by recursively solving either
an .m � 1/ 	 n or an m 	 .n � 1/ subproblem. (Hint: Think about MAX-
HEAPIFY.) Define T .p/, where p D mC n, to be the maximum running time
of EXTRACT-MIN on any m 	 n Young tableau. Give and solve a recurrence
for T .p/ that yields the O.mC n/ time bound.

d. Show how to insert a new element into a nonfull m 	 n Young tableau in
O.mC n/ time.

e. Using no other sorting method as a subroutine, show how to use an n	n Young
tableau to sort n2 numbers in O.n3/ time.

f. Give an O.m C n/-time algorithm to determine whether a given number is
stored in a given m 	 n Young tableau.

Chapter notes

The heapsort algorithm was invented by Williams [357], who also described how
to implement a priority queue with a heap. The BUILD-MAX-HEAP procedure
was suggested by Floyd [106].

We use min-heaps to implement min-priority queues in Chapters 16, 23, and 24.
We also give an implementation with improved time bounds for certain operations
in Chapter 19 and, assuming that the keys are drawn from a bounded set of non-
negative integers, Chapter 20.

If the data are b-bit integers, and the computer memory consists of addressable
b-bit words, Fredman and Willard [115] showed how to implement MINIMUM in
O.1/ time and INSERT and EXTRACT-MIN in O.

p
lg n/ time. Thorup [337] has

improved the O.
p

lg n/ bound to O.lg lg n/ time. This bound uses an amount of
space unbounded in n, but it can be implemented in linear space by using random-
ized hashing.

An important special case of priority queues occurs when the sequence of
EXTRACT-MIN operations is monotone, that is, the values returned by succes-
sive EXTRACT-MIN operations are monotonically increasing over time. This case
arises in several important applications, such as Dijkstra’s single-source shortest-
paths algorithm, which we discuss in Chapter 24, and in discrete-event simula-
tion. For Dijkstra’s algorithm it is particularly important that the DECREASE-KEY

operation be implemented efficiently. For the monotone case, if the data are in-
tegers in the range 1; 2; : : : ; C , Ahuja, Mehlhorn, Orlin, and Tarjan [8] describe

Notes for Chapter 6 169

how to implement EXTRACT-MIN and INSERT in O.lg C / amortized time (see
Chapter 17 for more on amortized analysis) and DECREASE-KEY in O.1/ time,
using a data structure called a radix heap. The O.lg C / bound can be improved
to O.

p
lg C / using Fibonacci heaps (see Chapter 19) in conjunction with radix

heaps. Cherkassky, Goldberg, and Silverstein [65] further improved the bound to
O.lg1=3C� C / expected time by combining the multilevel bucketing structure of
Denardo and Fox [85] with the heap of Thorup mentioned earlier. Raman [291]
further improved these results to obtain a bound of O.min.lg1=4C� C; lg1=3C� n//,
for any fixed � > 0.

7 Quicksort

The quicksort algorithm has a worst-case running time of ‚.n2/ on an input array
of n numbers. Despite this slow worst-case running time, quicksort is often the best
practical choice for sorting because it is remarkably efficient on the average: its
expected running time is ‚.n lg n/, and the constant factors hidden in the ‚.n lg n/

notation are quite small. It also has the advantage of sorting in place (see page 17),
and it works well even in virtual-memory environments.

Section 7.1 describes the algorithm and an important subroutine used by quick-
sort for partitioning. Because the behavior of quicksort is complex, we start with
an intuitive discussion of its performance in Section 7.2 and postpone its precise
analysis to the end of the chapter. Section 7.3 presents a version of quicksort that
uses random sampling. This algorithm has a good expected running time, and no
particular input elicits its worst-case behavior. Section 7.4 analyzes the random-
ized algorithm, showing that it runs in ‚.n2/ time in the worst case and, assuming
distinct elements, in expected O.n lg n/ time.

7.1 Description of quicksort

Quicksort, like merge sort, applies the divide-and-conquer paradigm introduced
in Section 2.3.1. Here is the three-step divide-and-conquer process for sorting a
typical subarray AŒp : : r�:

Divide: Partition (rearrange) the array AŒp : : r� into two (possibly empty) subar-
rays AŒp : : q � 1� and AŒq C 1 : : r� such that each element of AŒp : : q � 1� is
less than or equal to AŒq�, which is, in turn, less than or equal to each element
of AŒq C 1 : : r�. Compute the index q as part of this partitioning procedure.

Conquer: Sort the two subarrays AŒp : : q�1� and AŒqC1 : : r� by recursive calls
to quicksort.

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r� is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r

2 q D PARTITION.A; p; r/

3 QUICKSORT.A; p; q � 1/

4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r� in place.

PARTITION.A; p; r/

1 x D AŒr�

2 i D p � 1

3 for j D p to r � 1

4 if AŒj � � x

5 i D i C 1

6 exchange AŒi� with AŒj �

7 exchange AŒi C 1� with AŒr�

8 return i C 1

Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION

always selects an element x D AŒr� as a pivot element around which to partition the
subarray AŒp : : r�. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,

1. If p � k � i , then AŒk� � x.

2. If i C 1 � k � j � 1, then AŒk� > x.

3. If k D r , then AŒk� D x.

172 Chapter 7 Quicksort

2 8 7 1 3 5 6 4

p,j ri

(a)

2 8 7 1 3 5 6 4

p,i rj

(b)

2 8 7 1 3 5 6 4

p,i rj

(c)

2 8 7 1 3 5 6 4

p,i rj

(d)

2 871 3 5 6 4

p rj

(e)

i

2 8 71 3 5 6 4

p rj

(f)

i

2 8 71 3 5 6 4

p rj

(g)

i

2 8 71 3 5 6 4

p r

(h)

i

2 871 3 5 64

p r

(i)

i

Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr� becomes the pivot
element x. Lightly shaded array elements are all in the first partition with values no greater than x.
Heavily shaded elements are in the second partition with values greater than x. The unshaded el-
ements have not yet been put in one of the first two partitions, and the final white element is the
pivot x. (a) The initial array and variable settings. None of the elements have been placed in either
of the first two partitions. (b) The value 2 is “swapped with itself” and put in the partition of smaller
values. (c)–(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8

are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller
partition grows. (g)–(h) The larger partition grows to include 5 and 6, and the loop terminates. (i) In
lines 7–8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r � 1 are not covered by any of the three cases, and the
values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

7.1 Description of quicksort 173

≤ x > x unrestricted

x

p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray AŒp : : r�. The
values in AŒp : : i � are all less than or equal to x, the values in AŒi C 1 : : j � 1� are all greater than x,
and AŒr� D x. The subarray AŒj : : r � 1� can take on any values.

Initialization: Prior to the first iteration of the loop, i D p � 1 and j D p. Be-
cause no values lie between p and i and no values lie between i C 1 and j � 1,
the first two conditions of the loop invariant are trivially satisfied. The assign-
ment in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the
outcome of the test in line 4. Figure 7.3(a) shows what happens when AŒj � > x;
the only action in the loop is to increment j . After j is incremented, condition 2
holds for AŒj � 1� and all other entries remain unchanged. Figure 7.3(b) shows
what happens when AŒj � � x; the loop increments i , swaps AŒi� and AŒj �,
and then increments j . Because of the swap, we now have that AŒi� � x, and
condition 1 is satisfied. Similarly, we also have that AŒj � 1� > x, since the
item that was swapped into AŒj � 1� is, by the loop invariant, greater than x.

Termination: At termination, j D r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x, those greater than x,
and a singleton set containing x.

The final two lines of PARTITION finish up by swapping the pivot element with
the leftmost element greater than x, thereby moving the pivot into its correct place
in the partitioned array, and then returning the pivot’s new index. The output of
PARTITION now satisfies the specifications given for the divide step. In fact, it
satisfies a slightly stronger condition: after line 2 of QUICKSORT, AŒq� is strictly
less than every element of AŒq C 1 : : r�.

The running time of PARTITION on the subarray AŒp : : r� is ‚.n/, where
n D r � p C 1 (see Exercise 7.1-3).

Exercises

7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A D h13; 19; 9; 5; 12; 8; 7; 4; 21; 2; 6; 11i.

174 Chapter 7 Quicksort

≤ x > x

x

p i j r

>x(a)

≤ x > x

x

p i j r

≤ x > x

x

p i j r

≤ x(b)

≤ x > x

x

p i j r

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If AŒj � > x, the only
action is to increment j , which maintains the loop invariant. (b) If AŒj � � x, index i is incremented,
AŒi� and AŒj � are swapped, and then j is incremented. Again, the loop invariant is maintained.

7.1-2
What value of q does PARTITION return when all elements in the array AŒp : : r�

have the same value? Modify PARTITION so that q D b.p C r/=2c when all
elements in the array AŒp : : r� have the same value.

7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n

is ‚.n/.

7.1-4
How would you modify QUICKSORT to sort into nonincreasing order?

7.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is balanced or
unbalanced, which in turn depends on which elements are used for partitioning.
If the partitioning is balanced, the algorithm runs asymptotically as fast as merge

7.2 Performance of quicksort 175

sort. If the partitioning is unbalanced, however, it can run asymptotically as slowly
as insertion sort. In this section, we shall informally investigate how quicksort
performs under the assumptions of balanced versus unbalanced partitioning.

Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning routine pro-
duces one subproblem with n � 1 elements and one with 0 elements. (We prove
this claim in Section 7.4.1.) Let us assume that this unbalanced partitioning arises
in each recursive call. The partitioning costs ‚.n/ time. Since the recursive call
on an array of size 0 just returns, T .0/ D ‚.1/, and the recurrence for the running
time is

T .n/ D T .n � 1/C T .0/C‚.n/

D T .n � 1/C‚.n/ :

Intuitively, if we sum the costs incurred at each level of the recursion, we get
an arithmetic series (equation (A.2)), which evaluates to ‚.n2/. Indeed, it is
straightforward to use the substitution method to prove that the recurrence T .n/ D
T .n � 1/C‚.n/ has the solution T .n/ D ‚.n2/. (See Exercise 7.2-1.)

Thus, if the partitioning is maximally unbalanced at every recursive level of the
algorithm, the running time is ‚.n2/. Therefore the worst-case running time of
quicksort is no better than that of insertion sort. Moreover, the ‚.n2/ running time
occurs when the input array is already completely sorted—a common situation in
which insertion sort runs in O.n/ time.

Best-case partitioning

In the most even possible split, PARTITION produces two subproblems, each of
size no more than n=2, since one is of size bn=2c and one of size dn=2e�1. In this
case, quicksort runs much faster. The recurrence for the running time is then

T .n/ D 2T .n=2/C‚.n/ ;

where we tolerate the sloppiness from ignoring the floor and ceiling and from sub-
tracting 1. By case 2 of the master theorem (Theorem 4.1), this recurrence has the
solution T .n/ D ‚.n lg n/. By equally balancing the two sides of the partition at
every level of the recursion, we get an asymptotically faster algorithm.

Balanced partitioning

The average-case running time of quicksort is much closer to the best case than to
the worst case, as the analyses in Section 7.4 will show. The key to understand-

176 Chapter 7 Quicksort

n

cn

cn

cn

cn

� cn

� cn

1

1

O.n lg n/

log10 n

log10=9 n

1
10

n 9
10

n

1
100

n 9
100

n9
100

n 81
100

n

81
1000

n 729
1000

n

Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split,
yielding a running time of O.n lg n/. Nodes show subproblem sizes, with per-level costs on the right.
The per-level costs include the constant c implicit in the ‚.n/ term.

ing why is to understand how the balance of the partitioning is reflected in the
recurrence that describes the running time.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1
proportional split, which at first blush seems quite unbalanced. We then obtain the
recurrence

T .n/ D T .9n=10/C T .n=10/C cn ;

on the running time of quicksort, where we have explicitly included the constant c

hidden in the ‚.n/ term. Figure 7.4 shows the recursion tree for this recurrence.
Notice that every level of the tree has cost cn, until the recursion reaches a bound-
ary condition at depth log10 n D ‚.lg n/, and then the levels have cost at most cn.
The recursion terminates at depth log10=9 n D ‚.lg n/. The total cost of quick-
sort is therefore O.n lg n/. Thus, with a 9-to-1 proportional split at every level of
recursion, which intuitively seems quite unbalanced, quicksort runs in O.n lg n/

time—asymptotically the same as if the split were right down the middle. Indeed,
even a 99-to-1 split yields an O.n lg n/ running time. In fact, any split of constant
proportionality yields a recursion tree of depth ‚.lg n/, where the cost at each level
is O.n/. The running time is therefore O.n lg n/ whenever the split has constant
proportionality.

7.2 Performance of quicksort 177

n

0 n–1

(n–1)/2 – 1 (n–1)/2

n

(n–1)/2

(a) (b)

(n–1)/2

Θ(n) Θ(n)

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n

and produces a “bad” split: two subarrays of sizes 0 and n � 1. The partitioning of the subarray of
size n � 1 costs n � 1 and produces a “good” split: subarrays of size .n � 1/=2 � 1 and .n � 1/=2.
(b)A single level of a recursion tree that is very well balanced. In both parts, the partitioning cost for
the subproblems shown with elliptical shading is ‚.n/. Yet the subproblems remaining to be solved
in (a), shown with square shading, are no larger than the corresponding subproblems remaining to be
solved in (b).

Intuition for the average case

To develop a clear notion of the randomized behavior of quicksort, we must make
an assumption about how frequently we expect to encounter the various inputs.
The behavior of quicksort depends on the relative ordering of the values in the
array elements given as the input, and not by the particular values in the array. As
in our probabilistic analysis of the hiring problem in Section 5.2, we will assume
for now that all permutations of the input numbers are equally likely.

When we run quicksort on a random input array, the partitioning is highly un-
likely to happen in the same way at every level, as our informal analysis has as-
sumed. We expect that some of the splits will be reasonably well balanced and
that some will be fairly unbalanced. For example, Exercise 7.2-6 asks you to show
that about 80 percent of the time PARTITION produces a split that is more balanced
than 9 to 1, and about 20 percent of the time it produces a split that is less balanced
than 9 to 1.

In the average case, PARTITION produces a mix of “good” and “bad” splits. In a
recursion tree for an average-case execution of PARTITION, the good and bad splits
are distributed randomly throughout the tree. Suppose, for the sake of intuition,
that the good and bad splits alternate levels in the tree, and that the good splits
are best-case splits and the bad splits are worst-case splits. Figure 7.5(a) shows
the splits at two consecutive levels in the recursion tree. At the root of the tree,
the cost is n for partitioning, and the subarrays produced have sizes n � 1 and 0:
the worst case. At the next level, the subarray of size n � 1 undergoes best-case
partitioning into subarrays of size .n � 1/=2 � 1 and .n � 1/=2. Let’s assume that
the boundary-condition cost is 1 for the subarray of size 0.

178 Chapter 7 Quicksort

The combination of the bad split followed by the good split produces three sub-
arrays of sizes 0, .n � 1/=2 � 1, and .n � 1/=2 at a combined partitioning cost
of ‚.n/ C ‚.n � 1/ D ‚.n/. Certainly, this situation is no worse than that in
Figure 7.5(b), namely a single level of partitioning that produces two subarrays of
size .n � 1/=2, at a cost of ‚.n/. Yet this latter situation is balanced! Intuitively,
the ‚.n � 1/ cost of the bad split can be absorbed into the ‚.n/ cost of the good
split, and the resulting split is good. Thus, the running time of quicksort, when lev-
els alternate between good and bad splits, is like the running time for good splits
alone: still O.n lg n/, but with a slightly larger constant hidden by the O-notation.
We shall give a rigorous analysis of the expected running time of a randomized
version of quicksort in Section 7.4.2.

Exercises

7.2-1
Use the substitution method to prove that the recurrence T .n/ D T .n� 1/C‚.n/

has the solution T .n/ D ‚.n2/, as claimed at the beginning of Section 7.2.

7.2-2
What is the running time of QUICKSORT when all elements of array A have the
same value?

7.2-3
Show that the running time of QUICKSORT is ‚.n2/ when the array A contains
distinct elements and is sorted in decreasing order.

7.2-4
Banks often record transactions on an account in order of the times of the transac-
tions, but many people like to receive their bank statements with checks listed in
order by check number. People usually write checks in order by check number, and
merchants usually cash them with reasonable dispatch. The problem of converting
time-of-transaction ordering to check-number ordering is therefore the problem of
sorting almost-sorted input. Argue that the procedure INSERTION-SORT would
tend to beat the procedure QUICKSORT on this problem.

7.2-5
Suppose that the splits at every level of quicksort are in the proportion 1 � ˛ to ˛,
where 0 < ˛ � 1=2 is a constant. Show that the minimum depth of a leaf in the re-
cursion tree is approximately � lg n= lg ˛ and the maximum depth is approximately
� lg n= lg.1 � ˛/. (Don’t worry about integer round-off.)

7.3 A randomized version of quicksort 179

7.2-6 ?

Argue that for any constant 0 < ˛ � 1=2, the probability is approximately 1 � 2˛

that on a random input array, PARTITION produces a split more balanced than 1�˛

to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr�

as the pivot, we will select a randomly chosen element from the subarray AŒp : : r�.
We do so by first exchanging element AŒr� with an element chosen at random
from AŒp : : r�. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr� is equally likely to be any of the r � p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:

RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/

2 exchange AŒr� with AŒi�

3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:

RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r

2 q D RANDOMIZED-PARTITION.A; p; r/

3 RANDOMIZED-QUICKSORT.A; p; q � 1/

4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.

180 Chapter 7 Quicksort

Exercises

7.3-1
Why do we analyze the expected running time of a randomized algorithm and not
its worst-case running time?

7.3-2
When RANDOMIZED-QUICKSORT runs, how many calls are made to the random-
number generator RANDOM in the worst case? How about in the best case? Give
your answer in terms of ‚-notation.

7.4 Analysis of quicksort

Section 7.2 gave some intuition for the worst-case behavior of quicksort and for
why we expect it to run quickly. In this section, we analyze the behavior of quick-
sort more rigorously. We begin with a worst-case analysis, which applies to either
QUICKSORT or RANDOMIZED-QUICKSORT, and conclude with an analysis of the
expected running time of RANDOMIZED-QUICKSORT.

7.4.1 Worst-case analysis

We saw in Section 7.2 that a worst-case split at every level of recursion in quicksort
produces a ‚.n2/ running time, which, intuitively, is the worst-case running time
of the algorithm. We now prove this assertion.

Using the substitution method (see Section 4.3), we can show that the running
time of quicksort is O.n2/. Let T .n/ be the worst-case time for the procedure
QUICKSORT on an input of size n. We have the recurrence

T .n/ D max
0�q�n�1

.T .q/C T .n � q � 1//C‚.n/ ; (7.1)

where the parameter q ranges from 0 to n � 1 because the procedure PARTITION

produces two subproblems with total size n � 1. We guess that T .n/ � cn2 for
some constant c. Substituting this guess into recurrence (7.1), we obtain

T .n/ � max
0�q�n�1

.cq2 C c.n� q � 1/2/C‚.n/

D c � max
0�q�n�1

.q2 C .n � q � 1/2/C‚.n/ :

The expression q2 C .n � q � 1/2 achieves a maximum over the parameter’s
range 0 � q � n � 1 at either endpoint. To verify this claim, note that the second
derivative of the expression with respect to q is positive (see Exercise 7.4-3). This

7.4 Analysis of quicksort 181

observation gives us the bound max0�q�n�1.q2 C .n � q � 1/2/ � .n � 1/2 D
n2 � 2nC 1. Continuing with our bounding of T .n/, we obtain

T .n/ � cn2 � c.2n � 1/C‚.n/

� cn2 ;

since we can pick the constant c large enough so that the c.2n � 1/ term dom-
inates the ‚.n/ term. Thus, T .n/ D O.n2/. We saw in Section 7.2 a specific
case in which quicksort takes �.n2/ time: when partitioning is unbalanced. Al-
ternatively, Exercise 7.4-1 asks you to show that recurrence (7.1) has a solution of
T .n/ D �.n2/. Thus, the (worst-case) running time of quicksort is ‚.n2/.

7.4.2 Expected running time

We have already seen the intuition behind why the expected running time of
RANDOMIZED-QUICKSORT is O.n lg n/: if, in each level of recursion, the split
induced by RANDOMIZED-PARTITION puts any constant fraction of the elements
on one side of the partition, then the recursion tree has depth ‚.lg n/, and O.n/

work is performed at each level. Even if we add a few new levels with the most un-
balanced split possible between these levels, the total time remains O.n lg n/. We
can analyze the expected running time of RANDOMIZED-QUICKSORT precisely
by first understanding how the partitioning procedure operates and then using this
understanding to derive an O.n lg n/ bound on the expected running time. This
upper bound on the expected running time, combined with the ‚.n lg n/ best-case
bound we saw in Section 7.2, yields a ‚.n lg n/ expected running time. We assume
throughout that the values of the elements being sorted are distinct.

Running time and comparisons

The QUICKSORT and RANDOMIZED-QUICKSORT procedures differ only in how
they select pivot elements; they are the same in all other respects. We can therefore
couch our analysis of RANDOMIZED-QUICKSORT by discussing the QUICKSORT

and PARTITION procedures, but with the assumption that pivot elements are se-
lected randomly from the subarray passed to RANDOMIZED-PARTITION.

The running time of QUICKSORT is dominated by the time spent in the PARTI-
TION procedure. Each time the PARTITION procedure is called, it selects a pivot
element, and this element is never included in any future recursive calls to QUICK-
SORT and PARTITION. Thus, there can be at most n calls to PARTITION over the
entire execution of the quicksort algorithm. One call to PARTITION takes O.1/

time plus an amount of time that is proportional to the number of iterations of the
for loop in lines 3–6. Each iteration of this for loop performs a comparison in
line 4, comparing the pivot element to another element of the array A. Therefore,

182 Chapter 7 Quicksort

if we can count the total number of times that line 4 is executed, we can bound the
total time spent in the for loop during the entire execution of QUICKSORT.

Lemma 7.1
Let X be the number of comparisons performed in line 4 of PARTITION over the
entire execution of QUICKSORT on an n-element array. Then the running time of
QUICKSORT is O.nCX/.

Proof By the discussion above, the algorithm makes at most n calls to PARTI-
TION, each of which does a constant amount of work and then executes the for
loop some number of times. Each iteration of the for loop executes line 4.

Our goal, therefore, is to compute X , the total number of comparisons performed
in all calls to PARTITION. We will not attempt to analyze how many comparisons
are made in each call to PARTITION. Rather, we will derive an overall bound on the
total number of comparisons. To do so, we must understand when the algorithm
compares two elements of the array and when it does not. For ease of analysis, we
rename the elements of the array A as ´1; ´2; : : : ; ´n, with ´i being the i th smallest
element. We also define the set Zij D f´i ; ´iC1; : : : ; j́ g to be the set of elements
between ´i and j́ , inclusive.

When does the algorithm compare ´i and j́ ? To answer this question, we first
observe that each pair of elements is compared at most once. Why? Elements
are compared only to the pivot element and, after a particular call of PARTITION

finishes, the pivot element used in that call is never again compared to any other
elements.

Our analysis uses indicator random variables (see Section 5.2). We define

Xij D I f´i is compared to j́ g ;

where we are considering whether the comparison takes place at any time during
the execution of the algorithm, not just during one iteration or one call of PARTI-
TION. Since each pair is compared at most once, we can easily characterize the
total number of comparisons performed by the algorithm:

X D
n�1X
iD1

nX
j DiC1

Xij :

Taking expectations of both sides, and then using linearity of expectation and
Lemma 5.1, we obtain

E ŒX� D E

"
n�1X
iD1

nX
j DiC1

Xij

#

7.4 Analysis of quicksort 183

D
n�1X
iD1

nX
j DiC1

E ŒXij �

D
n�1X
iD1

nX
j DiC1

Pr f´i is compared to j́ g : (7.2)

It remains to compute Pr f´i is compared to j́ g. Our analysis assumes that the
RANDOMIZED-PARTITION procedure chooses each pivot randomly and indepen-
dently.

Let us think about when two items are not compared. Consider an input to
quicksort of the numbers 1 through 10 (in any order), and suppose that the first
pivot element is 7. Then the first call to PARTITION separates the numbers into two
sets: f1; 2; 3; 4; 5; 6g and f8; 9; 10g. In doing so, the pivot element 7 is compared
to all other elements, but no number from the first set (e.g., 2) is or ever will be
compared to any number from the second set (e.g., 9).

In general, because we assume that element values are distinct, once a pivot x

is chosen with ´i < x < j́ , we know that ´i and j́ cannot be compared at any
subsequent time. If, on the other hand, ´i is chosen as a pivot before any other item
in Zij , then ´i will be compared to each item in Zij , except for itself. Similarly,
if j́ is chosen as a pivot before any other item in Zij , then j́ will be compared to
each item in Zij , except for itself. In our example, the values 7 and 9 are compared
because 7 is the first item from Z7;9 to be chosen as a pivot. In contrast, 2 and 9 will
never be compared because the first pivot element chosen from Z2;9 is 7. Thus, ´i

and j́ are compared if and only if the first element to be chosen as a pivot from Zij

is either ´i or j́ .
We now compute the probability that this event occurs. Prior to the point at

which an element from Zij has been chosen as a pivot, the whole set Zij is together
in the same partition. Therefore, any element of Zij is equally likely to be the first
one chosen as a pivot. Because the set Zij has j�iC1 elements, and because pivots
are chosen randomly and independently, the probability that any given element is
the first one chosen as a pivot is 1=.j � i C 1/. Thus, we have

Pr f´i is compared to j́ g D Pr f´i or j́ is first pivot chosen from Zij g
D Pr f´i is first pivot chosen from Zij g

C Pr f j́ is first pivot chosen from Zij g
D 1

j � i C 1
C 1

j � i C 1

D 2

j � i C 1
: (7.3)

184 Chapter 7 Quicksort

The second line follows because the two events are mutually exclusive. Combining
equations (7.2) and (7.3), we get that

E ŒX� D
n�1X
iD1

nX
j DiC1

2

j � i C 1
:

We can evaluate this sum using a change of variables (k D j � i) and the bound
on the harmonic series in equation (A.7):

E ŒX� D
n�1X
iD1

nX
j DiC1

2

j � i C 1

D
n�1X
iD1

n�iX
kD1

2

k C 1

<

n�1X
iD1

nX
kD1

2

k

D
n�1X
iD1

O.lg n/

D O.n lg n/ : (7.4)

Thus we conclude that, using RANDOMIZED-PARTITION, the expected running
time of quicksort is O.n lg n/ when element values are distinct.

Exercises

7.4-1
Show that in the recurrence

T .n/ D max
0�q�n�1

.T .q/C T .n � q � 1//C‚.n/ ;

T .n/ D �.n2/.

7.4-2
Show that quicksort’s best-case running time is �.n lg n/.

7.4-3
Show that the expression q2 C .n � q � 1/2 achieves a maximum over q D
0; 1; : : : ; n � 1 when q D 0 or q D n � 1.

7.4-4
Show that RANDOMIZED-QUICKSORT’s expected running time is �.n lg n/.

Problems for Chapter 7 185

7.4-5
We can improve the running time of quicksort in practice by taking advantage of the
fast running time of insertion sort when its input is “nearly” sorted. Upon calling
quicksort on a subarray with fewer than k elements, let it simply return without
sorting the subarray. After the top-level call to quicksort returns, run insertion sort
on the entire array to finish the sorting process. Argue that this sorting algorithm
runs in O.nk C n lg.n=k// expected time. How should we pick k, both in theory
and in practice?

7.4-6 ?

Consider modifying the PARTITION procedure by randomly picking three elements
from array A and partitioning about their median (the middle value of the three
elements). Approximate the probability of getting at worst an ˛-to-.1�˛/ split, as
a function of ˛ in the range 0 < ˛ < 1.

Problems

7-1 Hoare partition correctness
The version of PARTITION given in this chapter is not the original partitioning
algorithm. Here is the original partition algorithm, which is due to C. A. R. Hoare:

HOARE-PARTITION.A; p; r/

1 x D AŒp�

2 i D p � 1

3 j D r C 1

4 while TRUE

5 repeat
6 j D j � 1

7 until AŒj � � x

8 repeat
9 i D i C 1

10 until AŒi� � x

11 if i < j

12 exchange AŒi� with AŒj �

13 else return j

a. Demonstrate the operation of HOARE-PARTITION on the array A D h13; 19; 9;

5; 12; 8; 7; 4; 11; 2; 6; 21i, showing the values of the array and auxiliary values
after each iteration of the while loop in lines 4–13.

186 Chapter 7 Quicksort

The next three questions ask you to give a careful argument that the procedure
HOARE-PARTITION is correct. Assuming that the subarray AŒp : : r� contains at
least two elements, prove the following:

b. The indices i and j are such that we never access an element of A outside the
subarray AŒp : : r�.

c. When HOARE-PARTITION terminates, it returns a value j such that p � j < r .

d. Every element of AŒp : : j � is less than or equal to every element of AŒjC1 : : r�

when HOARE-PARTITION terminates.

The PARTITION procedure in Section 7.1 separates the pivot value (originally
in AŒr�) from the two partitions it forms. The HOARE-PARTITION procedure, on
the other hand, always places the pivot value (originally in AŒp�) into one of the
two partitions AŒp : : j � and AŒj C 1 : : r�. Since p � j < r , this split is always
nontrivial.

e. Rewrite the QUICKSORT procedure to use HOARE-PARTITION.

7-2 Quicksort with equal element values
The analysis of the expected running time of randomized quicksort in Section 7.4.2
assumes that all element values are distinct. In this problem, we examine what
happens when they are not.

a. Suppose that all element values are equal. What would be randomized quick-
sort’s running time in this case?

b. The PARTITION procedure returns an index q such that each element of
AŒp : : q � 1� is less than or equal to AŒq� and each element of AŒq C 1 : : r�

is greater than AŒq�. Modify the PARTITION procedure to produce a procedure
PARTITION0.A; p; r/, which permutes the elements of AŒp : : r� and returns two
indices q and t , where p � q � t � r , such that

� all elements of AŒq : : t � are equal,
� each element of AŒp : : q � 1� is less than AŒq�, and
� each element of AŒt C 1 : : r� is greater than AŒq�.

Like PARTITION, your PARTITION0 procedure should take ‚.r � p/ time.

c. Modify the RANDOMIZED-QUICKSORT procedure to call PARTITION 0, and
name the new procedure RANDOMIZED-QUICKSORT 0. Then modify the
QUICKSORT procedure to produce a procedure QUICKSORT0.p; r/ that calls

Problems for Chapter 7 187

RANDOMIZED-PARTITION 0 and recurses only on partitions of elements not
known to be equal to each other.

d. Using QUICKSORT0, how would you adjust the analysis in Section 7.4.2 to
avoid the assumption that all elements are distinct?

7-3 Alternative quicksort analysis
An alternative analysis of the running time of randomized quicksort focuses on
the expected running time of each individual recursive call to RANDOMIZED-
QUICKSORT, rather than on the number of comparisons performed.

a. Argue that, given an array of size n, the probability that any particular element
is chosen as the pivot is 1=n. Use this to define indicator random variables
Xi D I fi th smallest element is chosen as the pivotg. What is E ŒXi �?

b. Let T .n/ be a random variable denoting the running time of quicksort on an
array of size n. Argue that

E ŒT .n/� D E

"
nX

qD1

Xq .T .q � 1/C T .n � q/C‚.n//

#
: (7.5)

c. Show that we can rewrite equation (7.5) as

E ŒT .n/� D 2

n

n�1X
qD2

E ŒT .q/�C‚.n/ : (7.6)

d. Show that

n�1X
kD2

k lg k � 1

2
n2 lg n � 1

8
n2 : (7.7)

(Hint: Split the summation into two parts, one for k D 2; 3; : : : ; dn=2e � 1 and
one for k D dn=2e ; : : : ; n � 1.)

e. Using the bound from equation (7.7), show that the recurrence in equation (7.6)
has the solution E ŒT .n/� D ‚.n lg n/. (Hint: Show, by substitution, that
E ŒT .n/� � an lg n for sufficiently large n and for some positive constant a.)

188 Chapter 7 Quicksort

7-4 Stack depth for quicksort
The QUICKSORT algorithm of Section 7.1 contains two recursive calls to itself.
After QUICKSORT calls PARTITION, it recursively sorts the left subarray and then
it recursively sorts the right subarray. The second recursive call in QUICKSORT

is not really necessary; we can avoid it by using an iterative control structure.
This technique, called tail recursion, is provided automatically by good compilers.
Consider the following version of quicksort, which simulates tail recursion:

TAIL-RECURSIVE-QUICKSORT.A; p; r/

1 while p < r

2 // Partition and sort left subarray.
3 q D PARTITION.A; p; r/

4 TAIL-RECURSIVE-QUICKSORT.A; p; q � 1/

5 p D q C 1

a. Argue that TAIL-RECURSIVE-QUICKSORT.A; 1; A: length/ correctly sorts the
array A.

Compilers usually execute recursive procedures by using a stack that contains per-
tinent information, including the parameter values, for each recursive call. The
information for the most recent call is at the top of the stack, and the information
for the initial call is at the bottom. Upon calling a procedure, its information is
pushed onto the stack; when it terminates, its information is popped. Since we
assume that array parameters are represented by pointers, the information for each
procedure call on the stack requires O.1/ stack space. The stack depth is the max-
imum amount of stack space used at any time during a computation.

b. Describe a scenario in which TAIL-RECURSIVE-QUICKSORT’s stack depth is
‚.n/ on an n-element input array.

c. Modify the code for TAIL-RECURSIVE-QUICKSORT so that the worst-case
stack depth is ‚.lg n/. Maintain the O.n lg n/ expected running time of the
algorithm.

7-5 Median-of-3 partition
One way to improve the RANDOMIZED-QUICKSORT procedure is to partition
around a pivot that is chosen more carefully than by picking a random element
from the subarray. One common approach is the median-of-3 method: choose
the pivot as the median (middle element) of a set of 3 elements randomly selected
from the subarray. (See Exercise 7.4-6.) For this problem, let us assume that the
elements in the input array AŒ1 : : n� are distinct and that n � 3. We denote the

Problems for Chapter 7 189

sorted output array by A0Œ1 : : n�. Using the median-of-3 method to choose the
pivot element x, define pi D Pr fx D A0Œi �g.
a. Give an exact formula for pi as a function of n and i for i D 2; 3; : : : ; n � 1.

(Note that p1 D pn D 0.)

b. By what amount have we increased the likelihood of choosing the pivot as
x D A0Œb.nC 1/=2c�, the median of AŒ1 : : n�, compared with the ordinary
implementation? Assume that n ! 1, and give the limiting ratio of these
probabilities.

c. If we define a “good” split to mean choosing the pivot as x D A0Œi �, where
n=3 � i � 2n=3, by what amount have we increased the likelihood of getting
a good split compared with the ordinary implementation? (Hint: Approximate
the sum by an integral.)

d. Argue that in the �.n lg n/ running time of quicksort, the median-of-3 method
affects only the constant factor.

7-6 Fuzzy sorting of intervals
Consider a sorting problem in which we do not know the numbers exactly. In-
stead, for each number, we know an interval on the real line to which it belongs.
That is, we are given n closed intervals of the form Œai ; bi �, where ai � bi . We
wish to fuzzy-sort these intervals, i.e., to produce a permutation hi1; i2; : : : ; ini of
the intervals such that for j D 1; 2; : : : ; n, there exist cj 2 Œaij ; bij � satisfying
c1 � c2 � � � � � cn.

a. Design a randomized algorithm for fuzzy-sorting n intervals. Your algorithm
should have the general structure of an algorithm that quicksorts the left end-
points (the ai values), but it should take advantage of overlapping intervals to
improve the running time. (As the intervals overlap more and more, the prob-
lem of fuzzy-sorting the intervals becomes progressively easier. Your algorithm
should take advantage of such overlapping, to the extent that it exists.)

b. Argue that your algorithm runs in expected time ‚.n lg n/ in general, but runs
in expected time ‚.n/ when all of the intervals overlap (i.e., when there exists a
value x such that x 2 Œai ; bi � for all i). Your algorithm should not be checking
for this case explicitly; rather, its performance should naturally improve as the
amount of overlap increases.

190 Chapter 7 Quicksort

Chapter notes

The quicksort procedure was invented by Hoare [170]; Hoare’s version appears in
Problem 7-1. The PARTITION procedure given in Section 7.1 is due to N. Lomuto.
The analysis in Section 7.4 is due to Avrim Blum. Sedgewick [305] and Bent-
ley [43] provide a good reference on the details of implementation and how they
matter.

McIlroy [248] showed how to engineer a “killer adversary” that produces an
array on which virtually any implementation of quicksort takes ‚.n2/ time. If the
implementation is randomized, the adversary produces the array after seeing the
random choices of the quicksort algorithm.

8 Sorting in Linear Time

We have now introduced several algorithms that can sort n numbers in O.n lg n/

time. Merge sort and heapsort achieve this upper bound in the worst case; quicksort
achieves it on average. Moreover, for each of these algorithms, we can produce a
sequence of n input numbers that causes the algorithm to run in �.n lg n/ time.

These algorithms share an interesting property: the sorted order they determine
is based only on comparisons between the input elements. We call such sorting
algorithms comparison sorts. All the sorting algorithms introduced thus far are
comparison sorts.

In Section 8.1, we shall prove that any comparison sort must make �.n lg n/

comparisons in the worst case to sort n elements. Thus, merge sort and heapsort
are asymptotically optimal, and no comparison sort exists that is faster by more
than a constant factor.

Sections 8.2, 8.3, and 8.4 examine three sorting algorithms—counting sort, radix
sort, and bucket sort—that run in linear time. Of course, these algorithms use
operations other than comparisons to determine the sorted order. Consequently,
the �.n lg n/ lower bound does not apply to them.

8.1 Lower bounds for sorting

In a comparison sort, we use only comparisons between elements to gain order
information about an input sequence ha1; a2; : : : ; ani. That is, given two elements
ai and aj , we perform one of the tests ai < aj , ai � aj , ai D aj , ai � aj , or
ai > aj to determine their relative order. We may not inspect the values of the
elements or gain order information about them in any other way.

In this section, we assume without loss of generality that all the input elements
are distinct. Given this assumption, comparisons of the form ai D aj are useless,
so we can assume that no comparisons of this form are made. We also note that
the comparisons ai � aj , ai � aj , ai > aj , and ai < aj are all equivalent in that

192 Chapter 8 Sorting in Linear Time

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >

〈2,3,1〉

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node an-
notated by i :j indicates a comparison between ai and aj . A leaf annotated by the permutation
h�.1/; �.2/; : : : ; �.n/i indicates the ordering a�.1/ � a�.2/ � � � � � a�.n/. The shaded path
indicates the decisions made when sorting the input sequence ha1 D 6; a2 D 8; a3 D 5i; the
permutation h3; 1; 2i at the leaf indicates that the sorted ordering is a3 D 5 � a1 D 6 � a2 D 8.
There are 3Š D 6 possible permutations of the input elements, and so the decision tree must have at
least 6 leaves.

they yield identical information about the relative order of ai and aj . We therefore
assume that all comparisons have the form ai � aj .

The decision-tree model

We can view comparison sorts abstractly in terms of decision trees. A decision
tree is a full binary tree that represents the comparisons between elements that
are performed by a particular sorting algorithm operating on an input of a given
size. Control, data movement, and all other aspects of the algorithm are ignored.
Figure 8.1 shows the decision tree corresponding to the insertion sort algorithm
from Section 2.1 operating on an input sequence of three elements.

In a decision tree, we annotate each internal node by i :j for some i and j in the
range 1 � i; j � n, where n is the number of elements in the input sequence. We
also annotate each leaf by a permutation h�.1/; �.2/; : : : ; �.n/i. (See Section C.1
for background on permutations.) The execution of the sorting algorithm corre-
sponds to tracing a simple path from the root of the decision tree down to a leaf.
Each internal node indicates a comparison ai � aj . The left subtree then dictates
subsequent comparisons once we know that ai � aj , and the right subtree dictates
subsequent comparisons knowing that ai > aj . When we come to a leaf, the sort-
ing algorithm has established the ordering a�.1/ � a�.2/ � � � � � a�.n/. Because
any correct sorting algorithm must be able to produce each permutation of its input,
each of the nŠ permutations on n elements must appear as one of the leaves of the
decision tree for a comparison sort to be correct. Furthermore, each of these leaves
must be reachable from the root by a downward path corresponding to an actual

8.1 Lower bounds for sorting 193

execution of the comparison sort. (We shall refer to such leaves as “reachable.”)
Thus, we shall consider only decision trees in which each permutation appears as
a reachable leaf.

A lower bound for the worst case

The length of the longest simple path from the root of a decision tree to any of
its reachable leaves represents the worst-case number of comparisons that the cor-
responding sorting algorithm performs. Consequently, the worst-case number of
comparisons for a given comparison sort algorithm equals the height of its decision
tree. A lower bound on the heights of all decision trees in which each permutation
appears as a reachable leaf is therefore a lower bound on the running time of any
comparison sort algorithm. The following theorem establishes such a lower bound.

Theorem 8.1
Any comparison sort algorithm requires �.n lg n/ comparisons in the worst case.

Proof From the preceding discussion, it suffices to determine the height of a
decision tree in which each permutation appears as a reachable leaf. Consider a
decision tree of height h with l reachable leaves corresponding to a comparison
sort on n elements. Because each of the nŠ permutations of the input appears as
some leaf, we have nŠ � l . Since a binary tree of height h has no more than 2h

leaves, we have

nŠ � l � 2h ;

which, by taking logarithms, implies

h � lg.nŠ/ (since the lg function is monotonically increasing)

D �.n lg n/ (by equation (3.19)) .

Corollary 8.2
Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof The O.n lg n/ upper bounds on the running times for heapsort and merge
sort match the �.n lg n/ worst-case lower bound from Theorem 8.1.

Exercises

8.1-1
What is the smallest possible depth of a leaf in a decision tree for a comparison
sort?

194 Chapter 8 Sorting in Linear Time

8.1-2
Obtain asymptotically tight bounds on lg.nŠ/ without using Stirling’s approxi-
mation. Instead, evaluate the summation

Pn

kD1 lg k using techniques from Sec-
tion A.2.

8.1-3
Show that there is no comparison sort whose running time is linear for at least half
of the nŠ inputs of length n. What about a fraction of 1=n of the inputs of length n?
What about a fraction 1=2n?

8.1-4
Suppose that you are given a sequence of n elements to sort. The input sequence
consists of n=k subsequences, each containing k elements. The elements in a given
subsequence are all smaller than the elements in the succeeding subsequence and
larger than the elements in the preceding subsequence. Thus, all that is needed to
sort the whole sequence of length n is to sort the k elements in each of the n=k

subsequences. Show an �.n lg k/ lower bound on the number of comparisons
needed to solve this variant of the sorting problem. (Hint: It is not rigorous to
simply combine the lower bounds for the individual subsequences.)

8.2 Counting sort

Counting sort assumes that each of the n input elements is an integer in the range
0 to k, for some integer k. When k D O.n/, the sort runs in ‚.n/ time.

Counting sort determines, for each input element x, the number of elements less
than x. It uses this information to place element x directly into its position in the
output array. For example, if 17 elements are less than x, then x belongs in output
position 18. We must modify this scheme slightly to handle the situation in which
several elements have the same value, since we do not want to put them all in the
same position.

In the code for counting sort, we assume that the input is an array AŒ1 : : n�, and
thus A: length D n. We require two other arrays: the array BŒ1 : : n� holds the
sorted output, and the array C Œ0 : : k� provides temporary working storage.

8.2 Counting sort 195

2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

2 0 2 3 0 1

1 2 3 4 5

A

C

(a)

2 2 4 7 7 8C

(b)

3

1 2 3 4 5 6 7 8

2 2 4 6 7 8

B

C

(c)

3

1 2 3 4 5 6 7 8

1 2 4 6 7 8

B

C

(d)

0 3

1 2 3 4 5 6 7 8

1 2 4 5 7 8

B

C

(e)

0 3

3

1 2 3 4 5 6 7 8

B

(f)

0 30 2 2 3 5

0

1 2 3 4 50

1 2 3 4 50 1 2 3 4 50

1 2 3 4 50

Figure 8.2 The operation of COUNTING-SORT on an input array AŒ1 : : 8�, where each element
of A is a nonnegative integer no larger than k D 5. (a) The array A and the auxiliary array C after
line 5. (b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 10–12, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B .

COUNTING-SORT.A; B; k/

1 let C Œ0 : : k� be a new array
2 for i D 0 to k

3 C Œi� D 0

4 for j D 1 to A: length
5 C ŒAŒj �� D C ŒAŒj ��C 1

6 // C Œi� now contains the number of elements equal to i .
7 for i D 1 to k

8 C Œi� D C Œi�C C Œi � 1�

9 // C Œi� now contains the number of elements less than or equal to i .
10 for j D A: length downto 1
11 BŒC ŒAŒj ��� D AŒj �

12 C ŒAŒj �� D C ŒAŒj ��� 1

Figure 8.2 illustrates counting sort. After the for loop of lines 2–3 initializes the
array C to all zeros, the for loop of lines 4–5 inspects each input element. If the
value of an input element is i , we increment C Œi�. Thus, after line 5, C Œi� holds
the number of input elements equal to i for each integer i D 0; 1; : : : ; k. Lines 7–8
determine for each i D 0; 1; : : : ; k how many input elements are less than or equal
to i by keeping a running sum of the array C .

196 Chapter 8 Sorting in Linear Time

Finally, the for loop of lines 10–12 places each element AŒj � into its correct
sorted position in the output array B . If all n elements are distinct, then when we
first enter line 10, for each AŒj �, the value C ŒAŒj �� is the correct final position
of AŒj � in the output array, since there are C ŒAŒj �� elements less than or equal
to AŒj �. Because the elements might not be distinct, we decrement C ŒAŒj �� each
time we place a value AŒj � into the B array. Decrementing C ŒAŒj �� causes the
next input element with a value equal to AŒj �, if one exists, to go to the position
immediately before AŒj � in the output array.

How much time does counting sort require? The for loop of lines 2–3 takes
time ‚.k/, the for loop of lines 4–5 takes time ‚.n/, the for loop of lines 7–8 takes
time ‚.k/, and the for loop of lines 10–12 takes time ‚.n/. Thus, the overall time
is ‚.kCn/. In practice, we usually use counting sort when we have k D O.n/, in
which case the running time is ‚.n/.

Counting sort beats the lower bound of �.n lg n/ proved in Section 8.1 because
it is not a comparison sort. In fact, no comparisons between input elements occur
anywhere in the code. Instead, counting sort uses the actual values of the elements
to index into an array. The �.n lg n/ lower bound for sorting does not apply when
we depart from the comparison sort model.

An important property of counting sort is that it is stable: numbers with the same
value appear in the output array in the same order as they do in the input array. That
is, it breaks ties between two numbers by the rule that whichever number appears
first in the input array appears first in the output array. Normally, the property of
stability is important only when satellite data are carried around with the element
being sorted. Counting sort’s stability is important for another reason: counting
sort is often used as a subroutine in radix sort. As we shall see in the next section,
in order for radix sort to work correctly, counting sort must be stable.

Exercises

8.2-1
Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the
array A D h6; 0; 2; 0; 1; 3; 4; 6; 1; 3; 2i.
8.2-2
Prove that COUNTING-SORT is stable.

8.2-3
Suppose that we were to rewrite the for loop header in line 10 of the COUNTING-
SORT as

10 for j D 1 to A: length

Show that the algorithm still works properly. Is the modified algorithm stable?

8.3 Radix sort 197

8.2-4
Describe an algorithm that, given n integers in the range 0 to k, preprocesses its
input and then answers any query about how many of the n integers fall into a
range Œa : : b� in O.1/ time. Your algorithm should use ‚.n C k/ preprocessing
time.

8.3 Radix sort

Radix sort is the algorithm used by the card-sorting machines you now find only in
computer museums. The cards have 80 columns, and in each column a machine can
punch a hole in one of 12 places. The sorter can be mechanically “programmed”
to examine a given column of each card in a deck and distribute the card into one
of 12 bins depending on which place has been punched. An operator can then
gather the cards bin by bin, so that cards with the first place punched are on top of
cards with the second place punched, and so on.

For decimal digits, each column uses only 10 places. (The other two places
are reserved for encoding nonnumeric characters.) A d -digit number would then
occupy a field of d columns. Since the card sorter can look at only one column
at a time, the problem of sorting n cards on a d -digit number requires a sorting
algorithm.

Intuitively, you might sort numbers on their most significant digit, sort each of
the resulting bins recursively, and then combine the decks in order. Unfortunately,
since the cards in 9 of the 10 bins must be put aside to sort each of the bins, this
procedure generates many intermediate piles of cards that you would have to keep
track of. (See Exercise 8.3-5.)

Radix sort solves the problem of card sorting—counterintuitively—by sorting on
the least significant digit first. The algorithm then combines the cards into a single
deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the
cards in the 2 bin, and so on. Then it sorts the entire deck again on the second-least
significant digit and recombines the deck in a like manner. The process continues
until the cards have been sorted on all d digits. Remarkably, at that point the cards
are fully sorted on the d -digit number. Thus, only d passes through the deck are
required to sort. Figure 8.3 shows how radix sort operates on a “deck” of seven
3-digit numbers.

In order for radix sort to work correctly, the digit sorts must be stable. The sort
performed by a card sorter is stable, but the operator has to be wary about not
changing the order of the cards as they come out of a bin, even though all the cards
in a bin have the same digit in the chosen column.

198 Chapter 8 Sorting in Linear Time

329
457
657
839
436
720
355

329

457
657

839

436

720
355 329

457
657

839
436

720

355

329

457
657

839

436

720

355

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is
the input. The remaining columns show the list after successive sorts on increasingly significant digit
positions. Shading indicates the digit position sorted on to produce each list from the previous one.

In a typical computer, which is a sequential random-access machine, we some-
times use radix sort to sort records of information that are keyed by multiple fields.
For example, we might wish to sort dates by three keys: year, month, and day. We
could run a sorting algorithm with a comparison function that, given two dates,
compares years, and if there is a tie, compares months, and if another tie occurs,
compares days. Alternatively, we could sort the information three times with a
stable sort: first on day, next on month, and finally on year.

The code for radix sort is straightforward. The following procedure assumes that
each element in the n-element array A has d digits, where digit 1 is the lowest-order
digit and digit d is the highest-order digit.

RADIX-SORT.A; d/

1 for i D 1 to d

2 use a stable sort to sort array A on digit i

Lemma 8.3
Given n d -digit numbers in which each digit can take on up to k possible values,
RADIX-SORT correctly sorts these numbers in ‚.d.nC k// time if the stable sort
it uses takes ‚.nC k/ time.

Proof The correctness of radix sort follows by induction on the column being
sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable
sort used as the intermediate sorting algorithm. When each digit is in the range 0

to k�1 (so that it can take on k possible values), and k is not too large, counting sort
is the obvious choice. Each pass over n d -digit numbers then takes time ‚.nCk/.
There are d passes, and so the total time for radix sort is ‚.d.nC k//.

When d is constant and k D O.n/, we can make radix sort run in linear time.
More generally, we have some flexibility in how to break each key into digits.

8.3 Radix sort 199

Lemma 8.4
Given n b-bit numbers and any positive integer r � b, RADIX-SORT correctly sorts
these numbers in ‚..b=r/.nC 2r// time if the stable sort it uses takes ‚.nC k/

time for inputs in the range 0 to k.

Proof For a value r � b, we view each key as having d D db=re digits of r bits
each. Each digit is an integer in the range 0 to 2r � 1, so that we can use counting
sort with k D 2r �1. (For example, we can view a 32-bit word as having four 8-bit
digits, so that b D 32, r D 8, k D 2r � 1 D 255, and d D b=r D 4.) Each pass of
counting sort takes time ‚.nC k/ D ‚.nC 2r/ and there are d passes, for a total
running time of ‚.d.nC 2r// D ‚..b=r/.nC 2r//.

For given values of n and b, we wish to choose the value of r , with r � b,
that minimizes the expression .b=r/.n C 2r/. If b < blg nc, then for any value
of r � b, we have that .nC 2r/ D ‚.n/. Thus, choosing r D b yields a running
time of .b=b/.n C 2b/ D ‚.n/, which is asymptotically optimal. If b � blg nc,
then choosing r D blg nc gives the best time to within a constant factor, which
we can see as follows. Choosing r D blg nc yields a running time of ‚.bn= lg n/.
As we increase r above blg nc, the 2r term in the numerator increases faster than
the r term in the denominator, and so increasing r above blg nc yields a running
time of �.bn= lg n/. If instead we were to decrease r below blg nc, then the b=r

term increases and the nC 2r term remains at ‚.n/.
Is radix sort preferable to a comparison-based sorting algorithm, such as quick-

sort? If b D O.lg n/, as is often the case, and we choose r � lg n, then radix sort’s
running time is ‚.n/, which appears to be better than quicksort’s expected running
time of ‚.n lg n/. The constant factors hidden in the ‚-notation differ, however.
Although radix sort may make fewer passes than quicksort over the n keys, each
pass of radix sort may take significantly longer. Which sorting algorithm we prefer
depends on the characteristics of the implementations, of the underlying machine
(e.g., quicksort often uses hardware caches more effectively than radix sort), and
of the input data. Moreover, the version of radix sort that uses counting sort as the
intermediate stable sort does not sort in place, which many of the ‚.n lg n/-time
comparison sorts do. Thus, when primary memory storage is at a premium, we
might prefer an in-place algorithm such as quicksort.

Exercises

8.3-1
Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the fol-
lowing list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB,
BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

200 Chapter 8 Sorting in Linear Time

8.3-2
Which of the following sorting algorithms are stable: insertion sort, merge sort,
heapsort, and quicksort? Give a simple scheme that makes any sorting algorithm
stable. How much additional time and space does your scheme entail?

8.3-3
Use induction to prove that radix sort works. Where does your proof need the
assumption that the intermediate sort is stable?

8.3-4
Show how to sort n integers in the range 0 to n3 � 1 in O.n/ time.

8.3-5 ?

In the first card-sorting algorithm in this section, exactly how many sorting passes
are needed to sort d -digit decimal numbers in the worst case? How many piles of
cards would an operator need to keep track of in the worst case?

8.4 Bucket sort

Bucket sort assumes that the input is drawn from a uniform distribution and has an
average-case running time of O.n/. Like counting sort, bucket sort is fast because
it assumes something about the input. Whereas counting sort assumes that the input
consists of integers in a small range, bucket sort assumes that the input is generated
by a random process that distributes elements uniformly and independently over
the interval Œ0; 1/. (See Section C.2 for a definition of uniform distribution.)

Bucket sort divides the interval Œ0; 1/ into n equal-sized subintervals, or buckets,
and then distributes the n input numbers into the buckets. Since the inputs are uni-
formly and independently distributed over Œ0; 1/, we do not expect many numbers
to fall into each bucket. To produce the output, we simply sort the numbers in each
bucket and then go through the buckets in order, listing the elements in each.

Our code for bucket sort assumes that the input is an n-element array A and
that each element AŒi� in the array satisfies 0 � AŒi� < 1. The code requires an
auxiliary array BŒ0 : : n � 1� of linked lists (buckets) and assumes that there is a
mechanism for maintaining such lists. (Section 10.2 describes how to implement
basic operations on linked lists.)

8.4 Bucket sort 201

1

2

3

4

5

6

7

8

9

10

.78

.17

.39

.72

.94

.21

.12

.23

.68

A

(a)

1

2

3

4

5

6

7

8

9

B

(b)

0

.12 .17

.21 .23

.26

.26

.39

.68

.72 .78

.94

Figure 8.4 The operation of BUCKET-SORT for n D 10. (a) The input array AŒ1 : : 10�. (b) The
array BŒ0 : : 9� of sorted lists (buckets) after line 8 of the algorithm. Bucket i holds values in the
half-open interval Œi=10; .i C 1/=10/. The sorted output consists of a concatenation in order of the
lists BŒ0�; BŒ1�; : : : ; BŒ9�.

BUCKET-SORT.A/

1 let BŒ0 : : n � 1� be a new array
2 n D A: length
3 for i D 0 to n � 1

4 make BŒi� an empty list
5 for i D 1 to n

6 insert AŒi� into list BŒbnAŒi�c�
7 for i D 0 to n � 1

8 sort list BŒi� with insertion sort
9 concatenate the lists BŒ0�; BŒ1�; : : : ; BŒn � 1� together in order

Figure 8.4 shows the operation of bucket sort on an input array of 10 numbers.
To see that this algorithm works, consider two elements AŒi� and AŒj �. Assume

without loss of generality that AŒi� � AŒj �. Since bnAŒi�c � bnAŒj �c, either
element AŒi� goes into the same bucket as AŒj � or it goes into a bucket with a lower
index. If AŒi� and AŒj � go into the same bucket, then the for loop of lines 7–8 puts
them into the proper order. If AŒi� and AŒj � go into different buckets, then line 9
puts them into the proper order. Therefore, bucket sort works correctly.

To analyze the running time, observe that all lines except line 8 take O.n/ time
in the worst case. We need to analyze the total time taken by the n calls to insertion
sort in line 8.

202 Chapter 8 Sorting in Linear Time

To analyze the cost of the calls to insertion sort, let ni be the random variable
denoting the number of elements placed in bucket BŒi�. Since insertion sort runs
in quadratic time (see Section 2.2), the running time of bucket sort is

T .n/ D ‚.n/C
n�1X
iD0

O.n2
i / :

We now analyze the average-case running time of bucket sort, by computing the
expected value of the running time, where we take the expectation over the input
distribution. Taking expectations of both sides and using linearity of expectation,
we have

E ŒT .n/� D E

"
‚.n/C

n�1X
iD0

O.n2
i /

#

D ‚.n/C
n�1X
iD0

E
�
O.n2

i /
�

(by linearity of expectation)

D ‚.n/C
n�1X
iD0

O
�
E
�
n2

i

��
(by equation (C.22)) . (8.1)

We claim that

E
�
n2

i

� D 2 � 1=n (8.2)

for i D 0; 1; : : : ; n � 1. It is no surprise that each bucket i has the same value of
E Œn2

i �, since each value in the input array A is equally likely to fall in any bucket.
To prove equation (8.2), we define indicator random variables

Xij D I fAŒj � falls in bucket ig
for i D 0; 1; : : : ; n � 1 and j D 1; 2; : : : ; n. Thus,

ni D
nX

j D1

Xij :

To compute E Œn2
i �, we expand the square and regroup terms:

8.4 Bucket sort 203

E
�
n2

i

� D E

"
nX

j D1

Xij

!2#

D E

"
nX

j D1

nX
kD1

Xij Xik

#

D E

24 nX
j D1

X2
ij C

X
1�j �n

X
1�k�n

k¤j

Xij Xik

35
D

nX
j D1

E
�
X2

ij

�C X
1�j �n

X
1�k�n

k¤j

E ŒXij Xik� ; (8.3)

where the last line follows by linearity of expectation. We evaluate the two sum-
mations separately. Indicator random variable Xij is 1 with probability 1=n and 0

otherwise, and therefore

E
�
X2

ij

� D 12 � 1
n
C 02 �

�
1 � 1

n

�
D 1

n
:

When k ¤ j , the variables Xij and Xik are independent, and hence

E ŒXij Xik� D E ŒXij � E ŒXik�

D 1

n
� 1

n

D 1

n2
:

Substituting these two expected values in equation (8.3), we obtain

E
�
n2

i

� D nX
j D1

1

n
C

X
1�j �n

X
1�k�n

k¤j

1

n2

D n � 1
n
C n.n � 1/ � 1

n2

D 1C n � 1

n

D 2 � 1

n
;

which proves equation (8.2).

204 Chapter 8 Sorting in Linear Time

Using this expected value in equation (8.1), we conclude that the average-case
running time for bucket sort is ‚.n/C n �O.2 � 1=n/ D ‚.n/.

Even if the input is not drawn from a uniform distribution, bucket sort may still
run in linear time. As long as the input has the property that the sum of the squares
of the bucket sizes is linear in the total number of elements, equation (8.1) tells us
that bucket sort will run in linear time.

Exercises

8.4-1
Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array
A D h:79; :13; :16; :64; :39; :20; :89; :53; :71; :42i.
8.4-2
Explain why the worst-case running time for bucket sort is ‚.n2/. What simple
change to the algorithm preserves its linear average-case running time and makes
its worst-case running time O.n lg n/?

8.4-3
Let X be a random variable that is equal to the number of heads in two flips of a
fair coin. What is E ŒX2�? What is E2 ŒX�?

8.4-4 ?

We are given n points in the unit circle, pi D .xi ; yi /, such that 0 < x2
i C y2

i � 1

for i D 1; 2; : : : ; n. Suppose that the points are uniformly distributed; that is, the
probability of finding a point in any region of the circle is proportional to the area
of that region. Design an algorithm with an average-case running time of ‚.n/ to
sort the n points by their distances di D

p
x2

i C y2
i from the origin. (Hint: Design

the bucket sizes in BUCKET-SORT to reflect the uniform distribution of the points
in the unit circle.)

8.4-5 ?

A probability distribution function P.x/ for a random variable X is defined
by P.x/ D Pr fX � xg. Suppose that we draw a list of n random variables
X1; X2; : : : ; Xn from a continuous probability distribution function P that is com-
putable in O.1/ time. Give an algorithm that sorts these numbers in linear average-
case time.

Problems for Chapter 8 205

Problems

8-1 Probabilistic lower bounds on comparison sorting
In this problem, we prove a probabilistic �.n lg n/ lower bound on the running time
of any deterministic or randomized comparison sort on n distinct input elements.
We begin by examining a deterministic comparison sort A with decision tree TA.
We assume that every permutation of A’s inputs is equally likely.

a. Suppose that each leaf of TA is labeled with the probability that it is reached
given a random input. Prove that exactly nŠ leaves are labeled 1=nŠ and that the
rest are labeled 0.

b. Let D.T / denote the external path length of a decision tree T ; that is, D.T /

is the sum of the depths of all the leaves of T . Let T be a decision tree with
k > 1 leaves, and let LT and RT be the left and right subtrees of T . Show that
D.T / D D.LT/CD.RT/C k.

c. Let d.k/ be the minimum value of D.T / over all decision trees T with k > 1

leaves. Show that d.k/ D min1�i�k�1 fd.i/C d.k � i/C kg. (Hint: Consider
a decision tree T with k leaves that achieves the minimum. Let i0 be the number
of leaves in LT and k � i0 the number of leaves in RT.)

d. Prove that for a given value of k > 1 and i in the range 1 � i � k � 1, the
function i lg i C .k � i/ lg.k � i/ is minimized at i D k=2. Conclude that
d.k/ D �.k lg k/.

e. Prove that D.TA/ D �.nŠ lg.nŠ//, and conclude that the average-case time to
sort n elements is �.n lg n/.

Now, consider a randomized comparison sort B . We can extend the decision-
tree model to handle randomization by incorporating two kinds of nodes: ordinary
comparison nodes and “randomization” nodes. A randomization node models a
random choice of the form RANDOM.1; r/ made by algorithm B; the node has r

children, each of which is equally likely to be chosen during an execution of the
algorithm.

f. Show that for any randomized comparison sort B , there exists a deterministic
comparison sort A whose expected number of comparisons is no more than
those made by B .

206 Chapter 8 Sorting in Linear Time

8-2 Sorting in place in linear time
Suppose that we have an array of n data records to sort and that the key of each
record has the value 0 or 1. An algorithm for sorting such a set of records might
possess some subset of the following three desirable characteristics:

1. The algorithm runs in O.n/ time.

2. The algorithm is stable.

3. The algorithm sorts in place, using no more than a constant amount of storage
space in addition to the original array.

a. Give an algorithm that satisfies criteria 1 and 2 above.

b. Give an algorithm that satisfies criteria 1 and 3 above.

c. Give an algorithm that satisfies criteria 2 and 3 above.

d. Can you use any of your sorting algorithms from parts (a)–(c) as the sorting
method used in line 2 of RADIX-SORT, so that RADIX-SORT sorts n records
with b-bit keys in O.bn/ time? Explain how or why not.

e. Suppose that the n records have keys in the range from 1 to k. Show how to
modify counting sort so that it sorts the records in place in O.nC k/ time. You
may use O.k/ storage outside the input array. Is your algorithm stable? (Hint:
How would you do it for k D 3?)

8-3 Sorting variable-length items
a. You are given an array of integers, where different integers may have different

numbers of digits, but the total number of digits over all the integers in the array
is n. Show how to sort the array in O.n/ time.

b. You are given an array of strings, where different strings may have different
numbers of characters, but the total number of characters over all the strings
is n. Show how to sort the strings in O.n/ time.

(Note that the desired order here is the standard alphabetical order; for example,
a < ab < b.)

8-4 Water jugs
Suppose that you are given n red and n blue water jugs, all of different shapes and
sizes. All red jugs hold different amounts of water, as do the blue ones. Moreover,
for every red jug, there is a blue jug that holds the same amount of water, and vice
versa.

Problems for Chapter 8 207

Your task is to find a grouping of the jugs into pairs of red and blue jugs that hold
the same amount of water. To do so, you may perform the following operation: pick
a pair of jugs in which one is red and one is blue, fill the red jug with water, and
then pour the water into the blue jug. This operation will tell you whether the red
or the blue jug can hold more water, or that they have the same volume. Assume
that such a comparison takes one time unit. Your goal is to find an algorithm that
makes a minimum number of comparisons to determine the grouping. Remember
that you may not directly compare two red jugs or two blue jugs.

a. Describe a deterministic algorithm that uses ‚.n2/ comparisons to group the
jugs into pairs.

b. Prove a lower bound of �.n lg n/ for the number of comparisons that an algo-
rithm solving this problem must make.

c. Give a randomized algorithm whose expected number of comparisons is
O.n lg n/, and prove that this bound is correct. What is the worst-case num-
ber of comparisons for your algorithm?

8-5 Average sorting
Suppose that, instead of sorting an array, we just require that the elements increase
on average. More precisely, we call an n-element array A k-sorted if, for all
i D 1; 2; : : : ; n � k, the following holds:PiCk�1

j Di AŒj �

k
�
PiCk

j DiC1 AŒj �

k
:

a. What does it mean for an array to be 1-sorted?

b. Give a permutation of the numbers 1; 2; : : : ; 10 that is 2-sorted, but not sorted.

c. Prove that an n-element array is k-sorted if and only if AŒi� � AŒi C k� for all
i D 1; 2; : : : ; n � k.

d. Give an algorithm that k-sorts an n-element array in O.n lg.n=k// time.

We can also show a lower bound on the time to produce a k-sorted array, when k

is a constant.

e. Show that we can sort a k-sorted array of length n in O.n lg k/ time. (Hint:
Use the solution to Exercise 6.5-9.)

f. Show that when k is a constant, k-sorting an n-element array requires �.n lg n/

time. (Hint: Use the solution to the previous part along with the lower bound
on comparison sorts.)

208 Chapter 8 Sorting in Linear Time

8-6 Lower bound on merging sorted lists
The problem of merging two sorted lists arises frequently. We have seen a pro-
cedure for it as the subroutine MERGE in Section 2.3.1. In this problem, we will
prove a lower bound of 2n � 1 on the worst-case number of comparisons required
to merge two sorted lists, each containing n items.

First we will show a lower bound of 2n� o.n/ comparisons by using a decision
tree.

a. Given 2n numbers, compute the number of possible ways to divide them into
two sorted lists, each with n numbers.

b. Using a decision tree and your answer to part (a), show that any algorithm that
correctly merges two sorted lists must perform at least 2n� o.n/ comparisons.

Now we will show a slightly tighter 2n � 1 bound.

c. Show that if two elements are consecutive in the sorted order and from different
lists, then they must be compared.

d. Use your answer to the previous part to show a lower bound of 2n� 1 compar-
isons for merging two sorted lists.

8-7 The 0-1 sorting lemma and columnsort
A compare-exchange operation on two array elements AŒi� and AŒj �, where i < j ,
has the form

COMPARE-EXCHANGE.A; i; j /

1 if AŒi� > AŒj �

2 exchange AŒi� with AŒj �

After the compare-exchange operation, we know that AŒi� � AŒj �.
An oblivious compare-exchange algorithm operates solely by a sequence of

prespecified compare-exchange operations. The indices of the positions compared
in the sequence must be determined in advance, and although they can depend
on the number of elements being sorted, they cannot depend on the values being
sorted, nor can they depend on the result of any prior compare-exchange operation.
For example, here is insertion sort expressed as an oblivious compare-exchange
algorithm:

INSERTION-SORT.A/

1 for j D 2 to A: length
2 for i D j � 1 downto 1

3 COMPARE-EXCHANGE.A; i; i C 1/

Problems for Chapter 8 209

The 0-1 sorting lemma provides a powerful way to prove that an oblivious
compare-exchange algorithm produces a sorted result. It states that if an oblivi-
ous compare-exchange algorithm correctly sorts all input sequences consisting of
only 0s and 1s, then it correctly sorts all inputs containing arbitrary values.

You will prove the 0-1 sorting lemma by proving its contrapositive: if an oblivi-
ous compare-exchange algorithm fails to sort an input containing arbitrary values,
then it fails to sort some 0-1 input. Assume that an oblivious compare-exchange al-
gorithm X fails to correctly sort the array AŒ1 : : n�. Let AŒp� be the smallest value
in A that algorithm X puts into the wrong location, and let AŒq� be the value that
algorithm X moves to the location into which AŒp� should have gone. Define an
array BŒ1 : : n� of 0s and 1s as follows:

BŒi� D
(

0 if AŒi� � AŒp� ;

1 if AŒi� > AŒp� :

a. Argue that AŒq� > AŒp�, so that BŒp� D 0 and BŒq� D 1.

b. To complete the proof of the 0-1 sorting lemma, prove that algorithm X fails to
sort array B correctly.

Now you will use the 0-1 sorting lemma to prove that a particular sorting algo-
rithm works correctly. The algorithm, columnsort, works on a rectangular array
of n elements. The array has r rows and s columns (so that n D rs), subject to
three restrictions:

� r must be even,

� s must be a divisor of r , and

� r � 2s2.

When columnsort completes, the array is sorted in column-major order: reading
down the columns, from left to right, the elements monotonically increase.

Columnsort operates in eight steps, regardless of the value of n. The odd steps
are all the same: sort each column individually. Each even step is a fixed permuta-
tion. Here are the steps:

1. Sort each column.

2. Transpose the array, but reshape it back to r rows and s columns. In other
words, turn the leftmost column into the top r=s rows, in order; turn the next
column into the next r=s rows, in order; and so on.

3. Sort each column.

4. Perform the inverse of the permutation performed in step 2.

210 Chapter 8 Sorting in Linear Time

10 14 5

8 7 17

12 1 6

16 9 11

4 15 2

18 3 13

(a)

4 1 2

8 3 5

10 7 6

12 9 11

16 14 13

18 15 17

(b)

4 8 10

12 16 18

1 3 7

9 14 15

2 5 6

11 13 17

(c)

1 3 6

2 5 7

4 8 10

9 13 15

11 14 17

12 16 18

(d)

1 4 11

3 8 14

6 10 17

2 9 12

5 13 16

7 15 18

(e)

1 4 11

2 8 12

3 9 14

5 10 16

6 13 17

7 15 18

(f)

5 10 16

6 13 17

7 15 18

1 4 11

2 8 12

3 9 14

(g)

4 10 16

5 11 17

6 12 18

1 7 13

2 8 14

3 9 15

(h)

1 7 13

2 8 14

3 9 15

4 10 16

5 11 17

6 12 18

(i)

Figure 8.5 The steps of columnsort. (a) The input array with 6 rows and 3 columns. (b) After
sorting each column in step 1. (c) After transposing and reshaping in step 2. (d) After sorting each
column in step 3. (e) After performing step 4, which inverts the permutation from step 2. (f) After
sorting each column in step 5. (g) After shifting by half a column in step 6. (h) After sorting each
column in step 7. (i) After performing step 8, which inverts the permutation from step 6. The array
is now sorted in column-major order.

5. Sort each column.

6. Shift the top half of each column into the bottom half of the same column, and
shift the bottom half of each column into the top half of the next column to the
right. Leave the top half of the leftmost column empty. Shift the bottom half
of the last column into the top half of a new rightmost column, and leave the
bottom half of this new column empty.

7. Sort each column.

8. Perform the inverse of the permutation performed in step 6.

Figure 8.5 shows an example of the steps of columnsort with r D 6 and s D 3.
(Even though this example violates the requirement that r � 2s2, it happens to
work.)

c. Argue that we can treat columnsort as an oblivious compare-exchange algo-
rithm, even if we do not know what sorting method the odd steps use.

Although it might seem hard to believe that columnsort actually sorts, you will
use the 0-1 sorting lemma to prove that it does. The 0-1 sorting lemma applies
because we can treat columnsort as an oblivious compare-exchange algorithm. A

Notes for Chapter 8 211

couple of definitions will help you apply the 0-1 sorting lemma. We say that an area
of an array is clean if we know that it contains either all 0s or all 1s. Otherwise,
the area might contain mixed 0s and 1s, and it is dirty. From here on, assume that
the input array contains only 0s and 1s, and that we can treat it as an array with r

rows and s columns.

d. Prove that after steps 1–3, the array consists of some clean rows of 0s at the top,
some clean rows of 1s at the bottom, and at most s dirty rows between them.

e. Prove that after step 4, the array, read in column-major order, starts with a clean
area of 0s, ends with a clean area of 1s, and has a dirty area of at most s2

elements in the middle.

f. Prove that steps 5–8 produce a fully sorted 0-1 output. Conclude that column-
sort correctly sorts all inputs containing arbitrary values.

g. Now suppose that s does not divide r . Prove that after steps 1–3, the array
consists of some clean rows of 0s at the top, some clean rows of 1s at the
bottom, and at most 2s � 1 dirty rows between them. How large must r be,
compared with s, for columnsort to correctly sort when s does not divide r?

h. Suggest a simple change to step 1 that allows us to maintain the requirement
that r � 2s2 even when s does not divide r , and prove that with your change,
columnsort correctly sorts.

Chapter notes

The decision-tree model for studying comparison sorts was introduced by Ford
and Johnson [110]. Knuth’s comprehensive treatise on sorting [211] covers many
variations on the sorting problem, including the information-theoretic lower bound
on the complexity of sorting given here. Ben-Or [39] studied lower bounds for
sorting using generalizations of the decision-tree model.

Knuth credits H. H. Seward with inventing counting sort in 1954, as well as with
the idea of combining counting sort with radix sort. Radix sorting starting with the
least significant digit appears to be a folk algorithm widely used by operators of
mechanical card-sorting machines. According to Knuth, the first published refer-
ence to the method is a 1929 document by L. J. Comrie describing punched-card
equipment. Bucket sorting has been in use since 1956, when the basic idea was
proposed by E. J. Isaac and R. C. Singleton [188].

Munro and Raman [263] give a stable sorting algorithm that performs O.n1C�/

comparisons in the worst case, where 0 < � � 1 is any fixed constant. Although

212 Chapter 8 Sorting in Linear Time

any of the O.n lg n/-time algorithms make fewer comparisons, the algorithm by
Munro and Raman moves data only O.n/ times and operates in place.

The case of sorting n b-bit integers in o.n lg n/ time has been considered by
many researchers. Several positive results have been obtained, each under slightly
different assumptions about the model of computation and the restrictions placed
on the algorithm. All the results assume that the computer memory is divided into
addressable b-bit words. Fredman and Willard [115] introduced the fusion tree data
structure and used it to sort n integers in O.n lg n= lg lg n/ time. This bound was
later improved to O.n

p
lg n/ time by Andersson [16]. These algorithms require

the use of multiplication and several precomputed constants. Andersson, Hagerup,
Nilsson, and Raman [17] have shown how to sort n integers in O.n lg lg n/ time
without using multiplication, but their method requires storage that can be un-
bounded in terms of n. Using multiplicative hashing, we can reduce the storage
needed to O.n/, but then the O.n lg lg n/ worst-case bound on the running time
becomes an expected-time bound. Generalizing the exponential search trees of
Andersson [16], Thorup [335] gave an O.n.lg lg n/2/-time sorting algorithm that
does not use multiplication or randomization, and it uses linear space. Combining
these techniques with some new ideas, Han [158] improved the bound for sorting
to O.n lg lg n lg lg lg n/ time. Although these algorithms are important theoretical
breakthroughs, they are all fairly complicated and at the present time seem unlikely
to compete with existing sorting algorithms in practice.

The columnsort algorithm in Problem 8-7 is by Leighton [227].

9 Medians and Order Statistics

The i th order statistic of a set of n elements is the i th smallest element. For
example, the minimum of a set of elements is the first order statistic (i D 1),
and the maximum is the nth order statistic (i D n). A median, informally, is
the “halfway point” of the set. When n is odd, the median is unique, occurring at
i D .nC 1/=2. When n is even, there are two medians, occurring at i D n=2 and
i D n=2C1. Thus, regardless of the parity of n, medians occur at i D b.nC 1/=2c
(the lower median) and i D d.nC 1/=2e (the upper median). For simplicity in
this text, however, we consistently use the phrase “the median” to refer to the lower
median.

This chapter addresses the problem of selecting the i th order statistic from a
set of n distinct numbers. We assume for convenience that the set contains dis-
tinct numbers, although virtually everything that we do extends to the situation in
which a set contains repeated values. We formally specify the selection problem
as follows:

Input: A set A of n (distinct) numbers and an integer i , with 1 � i � n.

Output: The element x 2 A that is larger than exactly i � 1 other elements of A.

We can solve the selection problem in O.n lg n/ time, since we can sort the num-
bers using heapsort or merge sort and then simply index the i th element in the
output array. This chapter presents faster algorithms.

In Section 9.1, we examine the problem of selecting the minimum and maxi-
mum of a set of elements. More interesting is the general selection problem, which
we investigate in the subsequent two sections. Section 9.2 analyzes a practical
randomized algorithm that achieves an O.n/ expected running time, assuming dis-
tinct elements. Section 9.3 contains an algorithm of more theoretical interest that
achieves the O.n/ running time in the worst case.

214 Chapter 9 Medians and Order Statistics

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n

elements? We can easily obtain an upper bound of n � 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1�

2 for i D 2 to A: length
3 if min > AŒi�

4 min D AŒi�

5 return min

We can, of course, find the maximum with n � 1 comparisons as well.
Is this the best we can do? Yes, since we can obtain a lower bound of n � 1

comparisons for the problem of determining the minimum. Think of any algorithm
that determines the minimum as a tournament among the elements. Each compar-
ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n� 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum

In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/

data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n � 1 comparisons
for each, for a total of 2n � 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,

9.2 Selection in expected linear time 215

we process elements in pairs. We compare pairs of elements from the input first
with each other, and then we compare the smaller with the current minimum and
the larger to the current maximum, at a cost of 3 comparisons for every 2 elements.

How we set up initial values for the current minimum and maximum depends
on whether n is odd or even. If n is odd, we set both the minimum and maximum
to the value of the first element, and then we process the rest of the elements in
pairs. If n is even, we perform 1 comparison on the first 2 elements to determine
the initial values of the minimum and maximum, and then process the rest of the
elements in pairs as in the case for odd n.

Let us analyze the total number of comparisons. If n is odd, then we perform
3 bn=2c comparisons. If n is even, we perform 1 initial comparison followed by
3.n � 2/=2 comparisons, for a total of 3n=2 � 2. Thus, in either case, the total
number of comparisons is at most 3 bn=2c.

Exercises

9.1-1
Show that the second smallest of n elements can be found with n C dlg ne � 2

comparisons in the worst case. (Hint: Also find the smallest element.)

9.1-2 ?

Prove the lower bound of d3n=2e � 2 comparisons in the worst case to find both
the maximum and minimum of n numbers. (Hint: Consider how many numbers
are potentially either the maximum or minimum, and investigate how a comparison
affects these counts.)

9.2 Selection in expected linear time

The general selection problem appears more difficult than the simple problem of
finding a minimum. Yet, surprisingly, the asymptotic running time for both prob-
lems is the same: ‚.n/. In this section, we present a divide-and-conquer algorithm
for the selection problem. The algorithm RANDOMIZED-SELECT is modeled after
the quicksort algorithm of Chapter 7. As in quicksort, we partition the input array
recursively. But unlike quicksort, which recursively processes both sides of the
partition, RANDOMIZED-SELECT works on only one side of the partition. This
difference shows up in the analysis: whereas quicksort has an expected running
time of ‚.n lg n/, the expected running time of RANDOMIZED-SELECT is ‚.n/,
assuming that the elements are distinct.

216 Chapter 9 Medians and Order Statistics

RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION intro-
duced in Section 7.3. Thus, like RANDOMIZED-QUICKSORT, it is a randomized al-
gorithm, since its behavior is determined in part by the output of a random-number
generator. The following code for RANDOMIZED-SELECT returns the i th smallest
element of the array AŒp : : r�.

RANDOMIZED-SELECT.A; p; r; i/

1 if p == r

2 return AŒp�

3 q D RANDOMIZED-PARTITION.A; p; r/

4 k D q � p C 1

5 if i == k // the pivot value is the answer
6 return AŒq�

7 elseif i < k

8 return RANDOMIZED-SELECT.A; p; q � 1; i/

9 else return RANDOMIZED-SELECT.A; q C 1; r; i � k/

The RANDOMIZED-SELECT procedure works as follows. Line 1 checks for the
base case of the recursion, in which the subarray AŒp : : r� consists of just one
element. In this case, i must equal 1, and we simply return AŒp� in line 2 as the
i th smallest element. Otherwise, the call to RANDOMIZED-PARTITION in line 3
partitions the array AŒp : : r� into two (possibly empty) subarrays AŒp : : q � 1�

and AŒq C 1 : : r� such that each element of AŒp : : q � 1� is less than or equal
to AŒq�, which in turn is less than each element of AŒq C 1 : : r�. As in quicksort,
we will refer to AŒq� as the pivot element. Line 4 computes the number k of
elements in the subarray AŒp : : q�, that is, the number of elements in the low side
of the partition, plus one for the pivot element. Line 5 then checks whether AŒq� is
the i th smallest element. If it is, then line 6 returns AŒq�. Otherwise, the algorithm
determines in which of the two subarrays AŒp : : q � 1� and AŒq C 1 : : r� the i th
smallest element lies. If i < k, then the desired element lies on the low side of
the partition, and line 8 recursively selects it from the subarray. If i > k, however,
then the desired element lies on the high side of the partition. Since we already
know k values that are smaller than the i th smallest element of AŒp : : r�—namely,
the elements of AŒp : : q�—the desired element is the .i � k/th smallest element
of AŒqC1 : : r�, which line 9 finds recursively. The code appears to allow recursive
calls to subarrays with 0 elements, but Exercise 9.2-1 asks you to show that this
situation cannot happen.

The worst-case running time for RANDOMIZED-SELECT is ‚.n2/, even to find
the minimum, because we could be extremely unlucky and always partition around
the largest remaining element, and partitioning takes ‚.n/ time. We will see that

9.2 Selection in expected linear time 217

the algorithm has a linear expected running time, though, and because it is random-
ized, no particular input elicits the worst-case behavior.

To analyze the expected running time of RANDOMIZED-SELECT, we let the run-
ning time on an input array AŒp : : r� of n elements be a random variable that we
denote by T .n/, and we obtain an upper bound on E ŒT .n/� as follows. The pro-
cedure RANDOMIZED-PARTITION is equally likely to return any element as the
pivot. Therefore, for each k such that 1 � k � n, the subarray AŒp : : q� has k ele-
ments (all less than or equal to the pivot) with probability 1=n. For k D 1; 2; : : : ; n,
we define indicator random variables Xk where

Xk D I fthe subarray AŒp : : q� has exactly k elementsg ;

and so, assuming that the elements are distinct, we have

E ŒXk� D 1=n : (9.1)

When we call RANDOMIZED-SELECT and choose AŒq� as the pivot element, we
do not know, a priori, if we will terminate immediately with the correct answer,
recurse on the subarray AŒp : : q � 1�, or recurse on the subarray AŒq C 1 : : r�.
This decision depends on where the i th smallest element falls relative to AŒq�.
Assuming that T .n/ is monotonically increasing, we can upper-bound the time
needed for the recursive call by the time needed for the recursive call on the largest
possible input. In other words, to obtain an upper bound, we assume that the i th
element is always on the side of the partition with the greater number of elements.
For a given call of RANDOMIZED-SELECT, the indicator random variable Xk has
the value 1 for exactly one value of k, and it is 0 for all other k. When Xk D 1, the
two subarrays on which we might recurse have sizes k � 1 and n � k. Hence, we
have the recurrence

T .n/ �
nX

kD1

Xk � .T .max.k � 1; n � k//CO.n//

D
nX

kD1

Xk � T .max.k � 1; n � k//CO.n/ :

218 Chapter 9 Medians and Order Statistics

Taking expected values, we have

E ŒT .n/�

� E

"
nX

kD1

Xk � T .max.k � 1; n � k//CO.n/

#

D
nX

kD1

E ŒXk � T .max.k � 1; n � k//�CO.n/ (by linearity of expectation)

D
nX

kD1

E ŒXk� � E ŒT .max.k � 1; n � k//�CO.n/ (by equation (C.24))

D
nX

kD1

1

n
� E ŒT .max.k � 1; n � k//�CO.n/ (by equation (9.1)) .

In order to apply equation (C.24), we rely on Xk and T .max.k � 1; n � k// being
independent random variables. Exercise 9.2-2 asks you to justify this assertion.

Let us consider the expression max.k � 1; n � k/. We have

max.k � 1; n � k/ D
(

k � 1 if k > dn=2e ;

n � k if k � dn=2e :

If n is even, each term from T .dn=2e/ up to T .n � 1/ appears exactly twice in
the summation, and if n is odd, all these terms appear twice and T .bn=2c/ appears
once. Thus, we have

E ŒT .n/� � 2

n

n�1X
kDbn=2c

E ŒT .k/�CO.n/ :

We show that E ŒT .n/� D O.n/ by substitution. Assume that E ŒT .n/� � cn for
some constant c that satisfies the initial conditions of the recurrence. We assume
that T .n/ D O.1/ for n less than some constant; we shall pick this constant later.
We also pick a constant a such that the function described by the O.n/ term above
(which describes the non-recursive component of the running time of the algo-
rithm) is bounded from above by an for all n > 0. Using this inductive hypothesis,
we have

E ŒT .n/� � 2

n

n�1X
kDbn=2c

ck C an

D 2c

n

n�1X
kD1

k �
bn=2c�1X

kD1

k

!
C an

9.2 Selection in expected linear time 219

D 2c

n

�
.n � 1/n

2
� .bn=2c � 1/ bn=2c

2

�
C an

� 2c

n

�
.n � 1/n

2
� .n=2 � 2/.n=2 � 1/

2

�
C an

D 2c

n

�
n2 � n

2
� n2=4 � 3n=2C 2

2

�
C an

D c

n

�
3n2

4
C n

2
� 2

�
C an

D c

�
3n

4
C 1

2
� 2

n

�
C an

� 3cn

4
C c

2
C an

D cn �
�cn

4
� c

2
� an

�
:

In order to complete the proof, we need to show that for sufficiently large n, this
last expression is at most cn or, equivalently, that cn=4 � c=2 � an � 0. If we
add c=2 to both sides and factor out n, we get n.c=4 � a/ � c=2. As long as we
choose the constant c so that c=4 � a > 0, i.e., c > 4a, we can divide both sides
by c=4 � a, giving

n � c=2

c=4� a
D 2c

c � 4a
:

Thus, if we assume that T .n/ D O.1/ for n < 2c=.c�4a/, then E ŒT .n/� D O.n/.
We conclude that we can find any order statistic, and in particular the median, in
expected linear time, assuming that the elements are distinct.

Exercises

9.2-1
Show that RANDOMIZED-SELECT never makes a recursive call to a 0-length array.

9.2-2
Argue that the indicator random variable Xk and the value T .max.k � 1; n � k//

are independent.

9.2-3
Write an iterative version of RANDOMIZED-SELECT.

220 Chapter 9 Medians and Order Statistics

9.2-4
Suppose we use RANDOMIZED-SELECT to select the minimum element of the
array A D h3; 2; 9; 0; 7; 5; 4; 8; 6; 1i. Describe a sequence of partitions that results
in a worst-case performance of RANDOMIZED-SELECT.

9.3 Selection in worst-case linear time

We now examine a selection algorithm whose running time is O.n/ in the worst
case. Like RANDOMIZED-SELECT, the algorithm SELECT finds the desired ele-
ment by recursively partitioning the input array. Here, however, we guarantee a
good split upon partitioning the array. SELECT uses the deterministic partitioning
algorithm PARTITION from quicksort (see Section 7.1), but modified to take the
element to partition around as an input parameter.

The SELECT algorithm determines the i th smallest of an input array of n > 1

distinct elements by executing the following steps. (If n D 1, then SELECT merely
returns its only input value as the i th smallest.)

1. Divide the n elements of the input array into bn=5c groups of 5 elements each
and at most one group made up of the remaining n mod 5 elements.

2. Find the median of each of the dn=5e groups by first insertion-sorting the ele-
ments of each group (of which there are at most 5) and then picking the median
from the sorted list of group elements.

3. Use SELECT recursively to find the median x of the dn=5e medians found in
step 2. (If there are an even number of medians, then by our convention, x is
the lower median.)

4. Partition the input array around the median-of-medians x using the modified
version of PARTITION. Let k be one more than the number of elements on the
low side of the partition, so that x is the kth smallest element and there are n�k

elements on the high side of the partition.

5. If i D k, then return x. Otherwise, use SELECT recursively to find the i th
smallest element on the low side if i < k, or the .i � k/th smallest element on
the high side if i > k.

To analyze the running time of SELECT, we first determine a lower bound on the
number of elements that are greater than the partitioning element x. Figure 9.1
helps us to visualize this bookkeeping. At least half of the medians found in

9.3 Selection in worst-case linear time 221

x

Figure 9.1 Analysis of the algorithm SELECT. The n elements are represented by small circles,
and each group of 5 elements occupies a column. The medians of the groups are whitened, and the
median-of-medians x is labeled. (When finding the median of an even number of elements, we use
the lower median.) Arrows go from larger elements to smaller, from which we can see that 3 out
of every full group of 5 elements to the right of x are greater than x, and 3 out of every group of 5

elements to the left of x are less than x. The elements known to be greater than x appear on a shaded
background.

step 2 are greater than or equal to the median-of-medians x.1 Thus, at least half
of the dn=5e groups contribute at least 3 elements that are greater than x, except
for the one group that has fewer than 5 elements if 5 does not divide n exactly, and
the one group containing x itself. Discounting these two groups, it follows that the
number of elements greater than x is at least

3

��
1

2

ln

5

m�
� 2

�
� 3n

10
� 6 :

Similarly, at least 3n=10 � 6 elements are less than x. Thus, in the worst case,
step 5 calls SELECT recursively on at most 7n=10C 6 elements.

We can now develop a recurrence for the worst-case running time T .n/ of the
algorithm SELECT. Steps 1, 2, and 4 take O.n/ time. (Step 2 consists of O.n/

calls of insertion sort on sets of size O.1/.) Step 3 takes time T .dn=5e/, and step 5
takes time at most T .7n=10 C 6/, assuming that T is monotonically increasing.
We make the assumption, which seems unmotivated at first, that any input of fewer
than 140 elements requires O.1/ time; the origin of the magic constant 140 will be
clear shortly. We can therefore obtain the recurrence

1Because of our assumption that the numbers are distinct, all medians except x are either greater
than or less than x.

222 Chapter 9 Medians and Order Statistics

T .n/ �
(

O.1/ if n < 140 ;

T .dn=5e/C T .7n=10C 6/CO.n/ if n � 140 :

We show that the running time is linear by substitution. More specifically, we will
show that T .n/ � cn for some suitably large constant c and all n > 0. We begin by
assuming that T .n/ � cn for some suitably large constant c and all n < 140; this
assumption holds if c is large enough. We also pick a constant a such that the func-
tion described by the O.n/ term above (which describes the non-recursive compo-
nent of the running time of the algorithm) is bounded above by an for all n > 0.
Substituting this inductive hypothesis into the right-hand side of the recurrence
yields

T .n/ � c dn=5e C c.7n=10C 6/C an

� cn=5C c C 7cn=10C 6c C an

D 9cn=10C 7c C an

D cnC .�cn=10C 7c C an/ ;

which is at most cn if

�cn=10C 7c C an � 0 : (9.2)

Inequality (9.2) is equivalent to the inequality c � 10a.n=.n� 70// when n > 70.
Because we assume that n � 140, we have n=.n � 70/ � 2, and so choos-
ing c � 20a will satisfy inequality (9.2). (Note that there is nothing special about
the constant 140; we could replace it by any integer strictly greater than 70 and
then choose c accordingly.) The worst-case running time of SELECT is therefore
linear.

As in a comparison sort (see Section 8.1), SELECT and RANDOMIZED-SELECT

determine information about the relative order of elements only by comparing ele-
ments. Recall from Chapter 8 that sorting requires �.n lg n/ time in the compari-
son model, even on average (see Problem 8-1). The linear-time sorting algorithms
in Chapter 8 make assumptions about the input. In contrast, the linear-time se-
lection algorithms in this chapter do not require any assumptions about the input.
They are not subject to the �.n lg n/ lower bound because they manage to solve
the selection problem without sorting. Thus, solving the selection problem by sort-
ing and indexing, as presented in the introduction to this chapter, is asymptotically
inefficient.

9.3 Selection in worst-case linear time 223

Exercises

9.3-1
In the algorithm SELECT, the input elements are divided into groups of 5. Will
the algorithm work in linear time if they are divided into groups of 7? Argue that
SELECT does not run in linear time if groups of 3 are used.

9.3-2
Analyze SELECT to show that if n � 140, then at least dn=4e elements are greater
than the median-of-medians x and at least dn=4e elements are less than x.

9.3-3
Show how quicksort can be made to run in O.n lg n/ time in the worst case, as-
suming that all elements are distinct.

9.3-4 ?

Suppose that an algorithm uses only comparisons to find the i th smallest element
in a set of n elements. Show that it can also find the i � 1 smaller elements and
the n � i larger elements without performing any additional comparisons.

9.3-5
Suppose that you have a “black-box” worst-case linear-time median subroutine.
Give a simple, linear-time algorithm that solves the selection problem for an arbi-
trary order statistic.

9.3-6
The kth quantiles of an n-element set are the k � 1 order statistics that divide the
sorted set into k equal-sized sets (to within 1). Give an O.n lg k/-time algorithm
to list the kth quantiles of a set.

9.3-7
Describe an O.n/-time algorithm that, given a set S of n distinct numbers and
a positive integer k � n, determines the k numbers in S that are closest to the
median of S .

9.3-8
Let XŒ1 : : n� and Y Œ1 : : n� be two arrays, each containing n numbers already in
sorted order. Give an O.lg n/-time algorithm to find the median of all 2n elements
in arrays X and Y .

9.3-9
Professor Olay is consulting for an oil company, which is planning a large pipeline
running east to west through an oil field of n wells. The company wants to connect

224 Chapter 9 Medians and Order Statistics

Figure 9.2 Professor Olay needs to determine the position of the east-west oil pipeline that mini-
mizes the total length of the north-south spurs.

a spur pipeline from each well directly to the main pipeline along a shortest route
(either north or south), as shown in Figure 9.2. Given the x- and y-coordinates of
the wells, how should the professor pick the optimal location of the main pipeline,
which would be the one that minimizes the total length of the spurs? Show how to
determine the optimal location in linear time.

Problems

9-1 Largest i numbers in sorted order
Given a set of n numbers, we wish to find the i largest in sorted order using a
comparison-based algorithm. Find the algorithm that implements each of the fol-
lowing methods with the best asymptotic worst-case running time, and analyze the
running times of the algorithms in terms of n and i .

a. Sort the numbers, and list the i largest.

b. Build a max-priority queue from the numbers, and call EXTRACT-MAX i times.

c. Use an order-statistic algorithm to find the i th largest number, partition around
that number, and sort the i largest numbers.

Problems for Chapter 9 225

9-2 Weighted median
For n distinct elements x1; x2; : : : ; xn with positive weights w1; w2; : : : ; wn such
that

Pn

iD1 wi D 1, the weighted (lower) median is the element xk satisfyingX
xi <xk

wi <
1

2

andX
xi >xk

wi � 1

2
:

For example, if the elements are 0:1; 0:35; 0:05; 0:1; 0:15; 0:05; 0:2 and each ele-
ment equals its weight (that is, wi D xi for i D 1; 2; : : : ; 7), then the median is 0:1,
but the weighted median is 0:2.

a. Argue that the median of x1; x2; : : : ; xn is the weighted median of the xi with
weights wi D 1=n for i D 1; 2; : : : ; n.

b. Show how to compute the weighted median of n elements in O.n lg n/ worst-
case time using sorting.

c. Show how to compute the weighted median in ‚.n/ worst-case time using a
linear-time median algorithm such as SELECT from Section 9.3.

The post-office location problem is defined as follows. We are given n points
p1; p2; : : : ; pn with associated weights w1; w2; : : : ; wn. We wish to find a point p

(not necessarily one of the input points) that minimizes the sum
Pn

iD1 wi d.p; pi /,
where d.a; b/ is the distance between points a and b.

d. Argue that the weighted median is a best solution for the 1-dimensional post-
office location problem, in which points are simply real numbers and the dis-
tance between points a and b is d.a; b/ D ja � bj.

e. Find the best solution for the 2-dimensional post-office location problem, in
which the points are .x; y/ coordinate pairs and the distance between points
a D .x1; y1/ and b D .x2; y2/ is the Manhattan distance given by d.a; b/ D
jx1 � x2j C jy1 � y2j.

9-3 Small order statistics
We showed that the worst-case number T .n/ of comparisons used by SELECT

to select the i th order statistic from n numbers satisfies T .n/ D ‚.n/, but the
constant hidden by the ‚-notation is rather large. When i is small relative to n, we
can implement a different procedure that uses SELECT as a subroutine but makes
fewer comparisons in the worst case.

226 Chapter 9 Medians and Order Statistics

a. Describe an algorithm that uses Ui.n/ comparisons to find the i th smallest of n

elements, where

Ui.n/ D
(

T .n/ if i � n=2 ;

bn=2c C Ui.dn=2e/C T .2i/ otherwise :

(Hint: Begin with bn=2c disjoint pairwise comparisons, and recurse on the set
containing the smaller element from each pair.)

b. Show that, if i < n=2, then Ui .n/ D nCO.T .2i/ lg.n=i//.

c. Show that if i is a constant less than n=2, then Ui .n/ D nCO.lg n/.

d. Show that if i D n=k for k � 2, then Ui .n/ D nCO.T .2n=k/ lg k/.

9-4 Alternative analysis of randomized selection
In this problem, we use indicator random variables to analyze the RANDOMIZED-
SELECT procedure in a manner akin to our analysis of RANDOMIZED-QUICKSORT

in Section 7.4.2.
As in the quicksort analysis, we assume that all elements are distinct, and we

rename the elements of the input array A as ´1; ´2; : : : ; ´n, where ´i is the i th
smallest element. Thus, the call RANDOMIZED-SELECT.A; 1; n; k/ returns ´k.

For 1 � i < j � n, let

Xijk D I f´i is compared with j́ sometime during the execution of the algorithm
to find ´kg :

a. Give an exact expression for E ŒXijk �. (Hint: Your expression may have differ-
ent values, depending on the values of i , j , and k.)

b. Let Xk denote the total number of comparisons between elements of array A

when finding ´k. Show that

E ŒXk� � 2

kX

iD1

nX
j Dk

1

j � i C 1
C

nX
j DkC1

j � k � 1

j � k C 1
C

k�2X
iD1

k � i � 1

k � i C 1

!
:

c. Show that E ŒXk� � 4n.

d. Conclude that, assuming all elements of array A are distinct, RANDOMIZED-
SELECT runs in expected time O.n/.

Notes for Chapter 9 227

Chapter notes

The worst-case linear-time median-finding algorithm was devised by Blum, Floyd,
Pratt, Rivest, and Tarjan [50]. The fast randomized version is due to Hoare [169].
Floyd and Rivest [108] have developed an improved randomized version that parti-
tions around an element recursively selected from a small sample of the elements.

It is still unknown exactly how many comparisons are needed to determine the
median. Bent and John [41] gave a lower bound of 2n comparisons for median
finding, and Schönhage, Paterson, and Pippenger [302] gave an upper bound of 3n.
Dor and Zwick have improved on both of these bounds. Their upper bound [93]
is slightly less than 2:95n, and their lower bound [94] is .2 C �/n, for a small
positive constant �, thereby improving slightly on related work by Dor et al. [92].
Paterson [272] describes some of these results along with other related work.

III Data Structures

Introduction

Sets are as fundamental to computer science as they are to mathematics. Whereas
mathematical sets are unchanging, the sets manipulated by algorithms can grow,
shrink, or otherwise change over time. We call such sets dynamic. The next five
chapters present some basic techniques for representing finite dynamic sets and
manipulating them on a computer.

Algorithms may require several different types of operations to be performed on
sets. For example, many algorithms need only the ability to insert elements into,
delete elements from, and test membership in a set. We call a dynamic set that
supports these operations a dictionary. Other algorithms require more complicated
operations. For example, min-priority queues, which Chapter 6 introduced in the
context of the heap data structure, support the operations of inserting an element
into and extracting the smallest element from a set. The best way to implement a
dynamic set depends upon the operations that must be supported.

Elements of a dynamic set

In a typical implementation of a dynamic set, each element is represented by an
object whose attributes can be examined and manipulated if we have a pointer to
the object. (Section 10.3 discusses the implementation of objects and pointers in
programming environments that do not contain them as basic data types.) Some
kinds of dynamic sets assume that one of the object’s attributes is an identifying
key. If the keys are all different, we can think of the dynamic set as being a set
of key values. The object may contain satellite data, which are carried around in
other object attributes but are otherwise unused by the set implementation. It may

230 Part III Data Structures

also have attributes that are manipulated by the set operations; these attributes may
contain data or pointers to other objects in the set.

Some dynamic sets presuppose that the keys are drawn from a totally ordered
set, such as the real numbers, or the set of all words under the usual alphabetic
ordering. A total ordering allows us to define the minimum element of the set, for
example, or to speak of the next element larger than a given element in a set.

Operations on dynamic sets

Operations on a dynamic set can be grouped into two categories: queries, which
simply return information about the set, and modifying operations, which change
the set. Here is a list of typical operations. Any specific application will usually
require only a few of these to be implemented.

SEARCH.S; k/

A query that, given a set S and a key value k, returns a pointer x to an element
in S such that x:key D k, or NIL if no such element belongs to S .

INSERT.S; x/

A modifying operation that augments the set S with the element pointed to
by x. We usually assume that any attributes in element x needed by the set
implementation have already been initialized.

DELETE.S; x/

A modifying operation that, given a pointer x to an element in the set S , re-
moves x from S . (Note that this operation takes a pointer to an element x, not
a key value.)

MINIMUM.S/

A query on a totally ordered set S that returns a pointer to the element of S

with the smallest key.

MAXIMUM.S/

A query on a totally ordered set S that returns a pointer to the element of S

with the largest key.

SUCCESSOR.S; x/

A query that, given an element x whose key is from a totally ordered set S ,
returns a pointer to the next larger element in S , or NIL if x is the maximum
element.

PREDECESSOR.S; x/

A query that, given an element x whose key is from a totally ordered set S ,
returns a pointer to the next smaller element in S , or NIL if x is the minimum
element.

Part III Data Structures 231

In some situations, we can extend the queries SUCCESSOR and PREDECESSOR

so that they apply to sets with nondistinct keys. For a set on n keys, the normal
presumption is that a call to MINIMUM followed by n � 1 calls to SUCCESSOR

enumerates the elements in the set in sorted order.
We usually measure the time taken to execute a set operation in terms of the size

of the set. For example, Chapter 13 describes a data structure that can support any
of the operations listed above on a set of size n in time O.lg n/.

Overview of Part III

Chapters 10–14 describe several data structures that we can use to implement
dynamic sets; we shall use many of these later to construct efficient algorithms
for a variety of problems. We already saw another important data structure—the
heap—in Chapter 6.

Chapter 10 presents the essentials of working with simple data structures such
as stacks, queues, linked lists, and rooted trees. It also shows how to implement
objects and pointers in programming environments that do not support them as
primitives. If you have taken an introductory programming course, then much of
this material should be familiar to you.

Chapter 11 introduces hash tables, which support the dictionary operations IN-
SERT, DELETE, and SEARCH. In the worst case, hashing requires ‚.n/ time to per-
form a SEARCH operation, but the expected time for hash-table operations is O.1/.
The analysis of hashing relies on probability, but most of the chapter requires no
background in the subject.

Binary search trees, which are covered in Chapter 12, support all the dynamic-
set operations listed above. In the worst case, each operation takes ‚.n/ time on a
tree with n elements, but on a randomly built binary search tree, the expected time
for each operation is O.lg n/. Binary search trees serve as the basis for many other
data structures.

Chapter 13 introduces red-black trees, which are a variant of binary search trees.
Unlike ordinary binary search trees, red-black trees are guaranteed to perform well:
operations take O.lg n/ time in the worst case. A red-black tree is a balanced search
tree; Chapter 18 in Part V presents another kind of balanced search tree, called a
B-tree. Although the mechanics of red-black trees are somewhat intricate, you can
glean most of their properties from the chapter without studying the mechanics in
detail. Nevertheless, you probably will find walking through the code to be quite
instructive.

In Chapter 14, we show how to augment red-black trees to support operations
other than the basic ones listed above. First, we augment them so that we can
dynamically maintain order statistics for a set of keys. Then, we augment them in
a different way to maintain intervals of real numbers.

10 Elementary Data Structures

In this chapter, we examine the representation of dynamic sets by simple data struc-
tures that use pointers. Although we can construct many complex data structures
using pointers, we present only the rudimentary ones: stacks, queues, linked lists,
and rooted trees. We also show ways to synthesize objects and pointers from ar-
rays.

10.1 Stacks and queues

Stacks and queues are dynamic sets in which the element removed from the set
by the DELETE operation is prespecified. In a stack, the element deleted from
the set is the one most recently inserted: the stack implements a last-in, first-out,
or LIFO, policy. Similarly, in a queue, the element deleted is always the one that
has been in the set for the longest time: the queue implements a first-in, first-out,
or FIFO, policy. There are several efficient ways to implement stacks and queues
on a computer. In this section we show how to use a simple array to implement
each.

Stacks

The INSERT operation on a stack is often called PUSH, and the DELETE opera-
tion, which does not take an element argument, is often called POP. These names
are allusions to physical stacks, such as the spring-loaded stacks of plates used
in cafeterias. The order in which plates are popped from the stack is the reverse
of the order in which they were pushed onto the stack, since only the top plate is
accessible.

As Figure 10.1 shows, we can implement a stack of at most n elements with
an array SŒ1 : : n�. The array has an attribute S: top that indexes the most recently

10.1 Stacks and queues 233

1 2 3 4 5 6 7

S 15 6 2 9

1 2 3 4 5 6 7

S 15 6 2 9 17 3

1 2 3 4 5 6 7

S 15 6 2 9 17 3

(a) (b) (c)

S: top D 4 S: top D 6 S: top D 5

Figure 10.1 An array implementation of a stack S . Stack elements appear only in the lightly shaded
positions. (a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH.S; 17/

and PUSH.S; 3/. (c) Stack S after the call POP.S/ has returned the element 3, which is the one most
recently pushed. Although element 3 still appears in the array, it is no longer in the stack; the top is
element 17.

inserted element. The stack consists of elements SŒ1 : : S: top�, where SŒ1� is the
element at the bottom of the stack and SŒS: top� is the element at the top.

When S: top D 0, the stack contains no elements and is empty. We can test to
see whether the stack is empty by query operation STACK-EMPTY. If we attempt
to pop an empty stack, we say the stack underflows, which is normally an error.
If S: top exceeds n, the stack overflows. (In our pseudocode implementation, we
don’t worry about stack overflow.)

We can implement each of the stack operations with just a few lines of code:

STACK-EMPTY.S/

1 if S: top == 0

2 return TRUE

3 else return FALSE

PUSH.S; x/

1 S: top D S: topC 1

2 SŒS: top� D x

POP.S/

1 if STACK-EMPTY.S/

2 error “underflow”
3 else S: top D S: top � 1

4 return SŒS: topC 1�

Figure 10.1 shows the effects of the modifying operations PUSH and POP. Each of
the three stack operations takes O.1/ time.

234 Chapter 10 Elementary Data Structures

1 2 3 4 5 6 7 8 9 10 11 12

Q(a) 15 6 9 8 4

1 2 3 4 5 6 7 8 9 10 11 12

Q(b) 15 6 9 8 43 5 17

1 2 3 4 5 6 7 8 9 10 11 12

Q(c) 15 6 9 8 43 5 17

Q:head D 7

Q:head D 7 Q: tail D 12

Q: tail D 3

Q: tail D 3

Q:head D 8

Figure 10.2 A queue implemented using an array QŒ1 : : 12�. Queue elements appear only in the
lightly shaded positions. (a) The queue has 5 elements, in locations QŒ7 : : 11�. (b) The configuration
of the queue after the calls ENQUEUE.Q; 17/, ENQUEUE.Q; 3/, and ENQUEUE.Q; 5/. (c) The
configuration of the queue after the call DEQUEUE.Q/ returns the key value 15 formerly at the
head of the queue. The new head has key 6.

Queues

We call the INSERT operation on a queue ENQUEUE, and we call the DELETE

operation DEQUEUE; like the stack operation POP, DEQUEUE takes no element ar-
gument. The FIFO property of a queue causes it to operate like a line of customers
waiting to pay a cashier. The queue has a head and a tail. When an element is en-
queued, it takes its place at the tail of the queue, just as a newly arriving customer
takes a place at the end of the line. The element dequeued is always the one at
the head of the queue, like the customer at the head of the line who has waited the
longest.

Figure 10.2 shows one way to implement a queue of at most n � 1 elements
using an array QŒ1 : : n�. The queue has an attribute Q:head that indexes, or points
to, its head. The attribute Q: tail indexes the next location at which a newly arriv-
ing element will be inserted into the queue. The elements in the queue reside in
locations Q:head; Q:head C 1; : : : ; Q: tail � 1, where we “wrap around” in the
sense that location 1 immediately follows location n in a circular order. When
Q:head D Q: tail, the queue is empty. Initially, we have Q:head D Q: tail D 1.
If we attempt to dequeue an element from an empty queue, the queue underflows.

10.1 Stacks and queues 235

When Q:head D Q: tail C 1, the queue is full, and if we attempt to enqueue an
element, then the queue overflows.

In our procedures ENQUEUE and DEQUEUE, we have omitted the error checking
for underflow and overflow. (Exercise 10.1-4 asks you to supply code that checks
for these two error conditions.) The pseudocode assumes that n D Q: length.

ENQUEUE.Q; x/

1 QŒQ: tail� D x

2 ifQ: tail == Q: length
3 Q: tail D 1

4 elseQ: tail D Q: tailC 1

DEQUEUE.Q/

1 x D QŒQ:head�

2 ifQ:head == Q: length
3 Q:head D 1

4 elseQ:head D Q:head C 1

5 return x

Figure 10.2 shows the effects of the ENQUEUE and DEQUEUE operations. Each
operation takes O.1/ time.

Exercises

10.1-1
Using Figure 10.1 as a model, illustrate the result of each operation in the sequence
PUSH.S; 4/, PUSH.S; 1/, PUSH.S; 3/, POP.S/, PUSH.S; 8/, and POP.S/ on an
initially empty stack S stored in array SŒ1 : : 6�.

10.1-2
Explain how to implement two stacks in one array AŒ1 : : n� in such a way that
neither stack overflows unless the total number of elements in both stacks together
is n. The PUSH and POP operations should run in O.1/ time.

10.1-3
Using Figure 10.2 as a model, illustrate the result of each operation in the
sequence ENQUEUE.Q; 4/, ENQUEUE.Q; 1/, ENQUEUE.Q; 3/, DEQUEUE.Q/,
ENQUEUE.Q; 8/, and DEQUEUE.Q/ on an initially empty queue Q stored in
array QŒ1 : : 6�.

10.1-4
Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow of a queue.

236 Chapter 10 Elementary Data Structures

10.1-5
Whereas a stack allows insertion and deletion of elements at only one end, and a
queue allows insertion at one end and deletion at the other end, a deque (double-
ended queue) allows insertion and deletion at both ends. Write four O.1/-time
procedures to insert elements into and delete elements from both ends of a deque
implemented by an array.

10.1-6
Show how to implement a queue using two stacks. Analyze the running time of the
queue operations.

10.1-7
Show how to implement a stack using two queues. Analyze the running time of the
stack operations.

10.2 Linked lists

A linked list is a data structure in which the objects are arranged in a linear order.
Unlike an array, however, in which the linear order is determined by the array
indices, the order in a linked list is determined by a pointer in each object. Linked
lists provide a simple, flexible representation for dynamic sets, supporting (though
not necessarily efficiently) all the operations listed on page 230.

As shown in Figure 10.3, each element of a doubly linked list L is an object with
an attribute key and two other pointer attributes: next and pre�. The object may
also contain other satellite data. Given an element x in the list, x:next points to its
successor in the linked list, and x:pre� points to its predecessor. If x:pre� D NIL,
the element x has no predecessor and is therefore the first element, or head, of
the list. If x:next D NIL, the element x has no successor and is therefore the last
element, or tail, of the list. An attribute L:head points to the first element of the
list. If L:head D NIL, the list is empty.

A list may have one of several forms. It may be either singly linked or doubly
linked, it may be sorted or not, and it may be circular or not. If a list is singly
linked, we omit the pre� pointer in each element. If a list is sorted, the linear order
of the list corresponds to the linear order of keys stored in elements of the list; the
minimum element is then the head of the list, and the maximum element is the
tail. If the list is unsorted, the elements can appear in any order. In a circular list,
the pre� pointer of the head of the list points to the tail, and the next pointer of
the tail of the list points to the head. We can think of a circular list as a ring of

10.2 Linked lists 237

9 16 4 1

prev key next

(a)

9 16 4 1(b) 25

9 16 1(c) 25L:head

L:head

L:head

Figure 10.3 (a) A doubly linked list L representing the dynamic set f1; 4; 9; 16g. Each element in
the list is an object with attributes for the key and pointers (shown by arrows) to the next and previous
objects. The next attribute of the tail and the pre� attribute of the head are NIL, indicated by a diagonal
slash. The attribute L:head points to the head. (b) Following the execution of LIST-INSERT.L; x/,
where x:key D 25, the linked list has a new object with key 25 as the new head. This new object
points to the old head with key 9. (c) The result of the subsequent call LIST-DELETE.L; x/, where x

points to the object with key 4.

elements. In the remainder of this section, we assume that the lists with which we
are working are unsorted and doubly linked.

Searching a linked list

The procedure LIST-SEARCH.L; k/ finds the first element with key k in list L

by a simple linear search, returning a pointer to this element. If no object with
key k appears in the list, then the procedure returns NIL. For the linked list in
Figure 10.3(a), the call LIST-SEARCH.L; 4/ returns a pointer to the third element,
and the call LIST-SEARCH.L; 7/ returns NIL.

LIST-SEARCH.L; k/

1 x D L:head
2 while x ¤ NIL and x:key ¤ k

3 x D x:next
4 return x

To search a list of n objects, the LIST-SEARCH procedure takes ‚.n/ time in the
worst case, since it may have to search the entire list.

Inserting into a linked list

Given an element x whose key attribute has already been set, the LIST-INSERT

procedure “splices” x onto the front of the linked list, as shown in Figure 10.3(b).

238 Chapter 10 Elementary Data Structures

LIST-INSERT.L; x/

1 x:next D L:head
2 if L:head ¤ NIL

3 L:head:pre� D x

4 L:head D x

5 x:pre� D NIL

(Recall that our attribute notation can cascade, so that L:head:pre� denotes the
pre� attribute of the object that L:head points to.) The running time for LIST-
INSERT on a list of n elements is O.1/.

Deleting from a linked list

The procedure LIST-DELETE removes an element x from a linked list L. It must
be given a pointer to x, and it then “splices” x out of the list by updating pointers.
If we wish to delete an element with a given key, we must first call LIST-SEARCH

to retrieve a pointer to the element.

LIST-DELETE.L; x/

1 if x:pre� ¤ NIL

2 x:pre�:next D x:next
3 else L:head D x:next
4 if x:next ¤ NIL

5 x:next:pre� D x:pre�

Figure 10.3(c) shows how an element is deleted from a linked list. LIST-DELETE

runs in O.1/ time, but if we wish to delete an element with a given key, ‚.n/ time
is required in the worst case because we must first call LIST-SEARCH to find the
element.

Sentinels

The code for LIST-DELETE would be simpler if we could ignore the boundary
conditions at the head and tail of the list:

LIST-DELETE0.L; x/

1 x:pre�:next D x:next
2 x:next:pre� D x:pre�

A sentinel is a dummy object that allows us to simplify boundary conditions. For
example, suppose that we provide with list L an object L:nil that represents NIL

10.2 Linked lists 239

9 16 4 1

9 16 4 125

9 16 425

(a)

(b)

(c)

(d) L:nil

L:nil

L:nil

L:nil

Figure 10.4 A circular, doubly linked list with a sentinel. The sentinel L:nil appears between the
head and tail. The attribute L:head is no longer needed, since we can access the head of the list
by L:nil:next. (a) An empty list. (b) The linked list from Figure 10.3(a), with key 9 at the head and
key 1 at the tail. (c) The list after executing LIST-INSERT0.L; x/, where x:key D 25. The new object
becomes the head of the list. (d) The list after deleting the object with key 1. The new tail is the
object with key 4.

but has all the attributes of the other objects in the list. Wherever we have a ref-
erence to NIL in list code, we replace it by a reference to the sentinel L:nil. As
shown in Figure 10.4, this change turns a regular doubly linked list into a circu-
lar, doubly linked list with a sentinel, in which the sentinel L:nil lies between the
head and tail. The attribute L:nil:next points to the head of the list, and L:nil:pre�

points to the tail. Similarly, both the next attribute of the tail and the pre� at-
tribute of the head point to L:nil. Since L:nil:next points to the head, we can
eliminate the attribute L:head altogether, replacing references to it by references
to L:nil:next. Figure 10.4(a) shows that an empty list consists of just the sentinel,
and both L:nil:next and L:nil:pre� point to L:nil.

The code for LIST-SEARCH remains the same as before, but with the references
to NIL and L:head changed as specified above:

LIST-SEARCH0.L; k/

1 x D L:nil:next
2 while x ¤ L:nil and x:key ¤ k

3 x D x:next
4 return x

We use the two-line procedure LIST-DELETE 0 from before to delete an element
from the list. The following procedure inserts an element into the list:

240 Chapter 10 Elementary Data Structures

LIST-INSERT0.L; x/

1 x:next D L:nil:next
2 L:nil:next:pre� D x

3 L:nil:next D x

4 x:pre� D L:nil

Figure 10.4 shows the effects of LIST-INSERT 0 and LIST-DELETE 0 on a sample list.
Sentinels rarely reduce the asymptotic time bounds of data structure operations,

but they can reduce constant factors. The gain from using sentinels within loops
is usually a matter of clarity of code rather than speed; the linked list code, for
example, becomes simpler when we use sentinels, but we save only O.1/ time in
the LIST-INSERT 0 and LIST-DELETE 0 procedures. In other situations, however, the
use of sentinels helps to tighten the code in a loop, thus reducing the coefficient of,
say, n or n2 in the running time.

We should use sentinels judiciously. When there are many small lists, the extra
storage used by their sentinels can represent significant wasted memory. In this
book, we use sentinels only when they truly simplify the code.

Exercises

10.2-1
Can you implement the dynamic-set operation INSERT on a singly linked list
in O.1/ time? How about DELETE?

10.2-2
Implement a stack using a singly linked list L. The operations PUSH and POP

should still take O.1/ time.

10.2-3
Implement a queue by a singly linked list L. The operations ENQUEUE and DE-
QUEUE should still take O.1/ time.

10.2-4
As written, each loop iteration in the LIST-SEARCH 0 procedure requires two tests:
one for x ¤ L:nil and one for x:key ¤ k. Show how to eliminate the test for
x ¤ L:nil in each iteration.

10.2-5
Implement the dictionary operations INSERT, DELETE, and SEARCH using singly
linked, circular lists. What are the running times of your procedures?

10.3 Implementing pointers and objects 241

10.2-6
The dynamic-set operation UNION takes two disjoint sets S1 and S2 as input, and
it returns a set S D S1 [S2 consisting of all the elements of S1 and S2. The
sets S1 and S2 are usually destroyed by the operation. Show how to support UNION

in O.1/ time using a suitable list data structure.

10.2-7
Give a ‚.n/-time nonrecursive procedure that reverses a singly linked list of n

elements. The procedure should use no more than constant storage beyond that
needed for the list itself.

10.2-8 ?

Explain how to implement doubly linked lists using only one pointer value x:np per
item instead of the usual two (next and pre�). Assume that all pointer values can be
interpreted as k-bit integers, and define x:np to be x:np D x:next XOR x:pre�,
the k-bit “exclusive-or” of x:next and x:pre�. (The value NIL is represented by 0.)
Be sure to describe what information you need to access the head of the list. Show
how to implement the SEARCH, INSERT, and DELETE operations on such a list.
Also show how to reverse such a list in O.1/ time.

10.3 Implementing pointers and objects

How do we implement pointers and objects in languages that do not provide them?
In this section, we shall see two ways of implementing linked data structures with-
out an explicit pointer data type. We shall synthesize objects and pointers from
arrays and array indices.

A multiple-array representation of objects

We can represent a collection of objects that have the same attributes by using an
array for each attribute. As an example, Figure 10.5 shows how we can implement
the linked list of Figure 10.3(a) with three arrays. The array key holds the values
of the keys currently in the dynamic set, and the pointers reside in the arrays next
and pre�. For a given array index x, the array entries keyŒx�, nextŒx�, and pre�Œx�

represent an object in the linked list. Under this interpretation, a pointer x is simply
a common index into the key, next, and pre� arrays.

In Figure 10.3(a), the object with key 4 follows the object with key 16 in the
linked list. In Figure 10.5, key 4 appears in keyŒ2�, and key 16 appears in keyŒ5�,
and so nextŒ5� D 2 and pre�Œ2� D 5. Although the constant NIL appears in the next

242 Chapter 10 Elementary Data Structures

1 2 3 4 5 6 7 8

key

next

prev

L 7

4 1 16 9

3 2 5

5 2 7

Figure 10.5 The linked list of Figure 10.3(a) represented by the arrays key, next, and pre�. Each
vertical slice of the arrays represents a single object. Stored pointers correspond to the array indices
shown at the top; the arrows show how to interpret them. Lightly shaded object positions contain list
elements. The variable L keeps the index of the head.

attribute of the tail and the pre� attribute of the head, we usually use an integer
(such as 0 or �1) that cannot possibly represent an actual index into the arrays. A
variable L holds the index of the head of the list.

A single-array representation of objects

The words in a computer memory are typically addressed by integers from 0

to M � 1, where M is a suitably large integer. In many programming languages,
an object occupies a contiguous set of locations in the computer memory. A pointer
is simply the address of the first memory location of the object, and we can address
other memory locations within the object by adding an offset to the pointer.

We can use the same strategy for implementing objects in programming envi-
ronments that do not provide explicit pointer data types. For example, Figure 10.6
shows how to use a single array A to store the linked list from Figures 10.3(a)
and 10.5. An object occupies a contiguous subarray AŒj : : k�. Each attribute of
the object corresponds to an offset in the range from 0 to k � j , and a pointer to
the object is the index j . In Figure 10.6, the offsets corresponding to key, next, and
pre� are 0, 1, and 2, respectively. To read the value of i:pre�, given a pointer i , we
add the value i of the pointer to the offset 2, thus reading AŒi C 2�.

The single-array representation is flexible in that it permits objects of different
lengths to be stored in the same array. The problem of managing such a heteroge-
neous collection of objects is more difficult than the problem of managing a homo-
geneous collection, where all objects have the same attributes. Since most of the
data structures we shall consider are composed of homogeneous elements, it will
be sufficient for our purposes to use the multiple-array representation of objects.

10.3 Implementing pointers and objects 243

1 2 3 4 5 6 7 8

A

L

4 1 16 97 44

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

prev
next

key

19

1313 19

Figure 10.6 The linked list of Figures 10.3(a) and 10.5 represented in a single array A. Each list
element is an object that occupies a contiguous subarray of length 3 within the array. The three
attributes key, next, and pre� correspond to the offsets 0, 1, and 2, respectively, within each object.
A pointer to an object is the index of the first element of the object. Objects containing list elements
are lightly shaded, and arrows show the list ordering.

Allocating and freeing objects

To insert a key into a dynamic set represented by a doubly linked list, we must al-
locate a pointer to a currently unused object in the linked-list representation. Thus,
it is useful to manage the storage of objects not currently used in the linked-list
representation so that one can be allocated. In some systems, a garbage collec-
tor is responsible for determining which objects are unused. Many applications,
however, are simple enough that they can bear responsibility for returning an un-
used object to a storage manager. We shall now explore the problem of allocating
and freeing (or deallocating) homogeneous objects using the example of a doubly
linked list represented by multiple arrays.

Suppose that the arrays in the multiple-array representation have length m and
that at some moment the dynamic set contains n � m elements. Then n objects
represent elements currently in the dynamic set, and the remaining m�n objects are
free; the free objects are available to represent elements inserted into the dynamic
set in the future.

We keep the free objects in a singly linked list, which we call the free list. The
free list uses only the next array, which stores the next pointers within the list.
The head of the free list is held in the global variable free. When the dynamic
set represented by linked list L is nonempty, the free list may be intertwined with
list L, as shown in Figure 10.7. Note that each object in the representation is either
in list L or in the free list, but not in both.

The free list acts like a stack: the next object allocated is the last one freed. We
can use a list implementation of the stack operations PUSH and POP to implement
the procedures for allocating and freeing objects, respectively. We assume that the
global variable free used in the following procedures points to the first element of
the free list.

244 Chapter 10 Elementary Data Structures

1 2 3 4 5 6 7 8

key

next

prev

L 7

4 1 16 9

3 2 5

5 2 7

4

8 61

free

(a)

1 2 3 4 5 6 7 8

key

next

prev

L 4

4 1 16 9

3 2 5

5 2 7

8

7 61

free

(b)

4

25

1 2 3 4 5 6 7 8

key

next

prev

L 4

4 1 9

3 8 2

7 2

5

7 61

free

(c)

4

25

Figure 10.7 The effect of the ALLOCATE-OBJECT and FREE-OBJECT procedures. (a) The list
of Figure 10.5 (lightly shaded) and a free list (heavily shaded). Arrows show the free-list structure.
(b) The result of calling ALLOCATE-OBJECT./ (which returns index 4), setting keyŒ4� to 25, and
calling LIST-INSERT.L; 4/. The new free-list head is object 8, which had been nextŒ4� on the free
list. (c) After executing LIST-DELETE.L; 5/, we call FREE-OBJECT.5/. Object 5 becomes the new
free-list head, with object 8 following it on the free list.

ALLOCATE-OBJECT./

1 if free == NIL

2 error “out of space”
3 else x D free
4 free D x:next
5 return x

FREE-OBJECT.x/

1 x:next D free
2 free D x

The free list initially contains all n unallocated objects. Once the free list has been
exhausted, running the ALLOCATE-OBJECT procedure signals an error. We can
even service several linked lists with just a single free list. Figure 10.8 shows two
linked lists and a free list intertwined through key, next, and pre� arrays.

The two procedures run in O.1/ time, which makes them quite practical. We
can modify them to work for any homogeneous collection of objects by letting any
one of the attributes in the object act like a next attribute in the free list.

10.3 Implementing pointers and objects 245

1 2 3 4 5 6 7 8 9 10

next

key

prev

free

3

6 2

6 3

715

7 9

9

10

48

1

L2

L1

k1 k2 k3 k5 k6 k7 k9

Figure 10.8 Two linked lists, L1 (lightly shaded) and L2 (heavily shaded), and a free list (dark-
ened) intertwined.

Exercises

10.3-1
Draw a picture of the sequence h13; 4; 8; 19; 5; 11i stored as a doubly linked list
using the multiple-array representation. Do the same for the single-array represen-
tation.

10.3-2
Write the procedures ALLOCATE-OBJECT and FREE-OBJECT for a homogeneous
collection of objects implemented by the single-array representation.

10.3-3
Why don’t we need to set or reset the pre� attributes of objects in the implementa-
tion of the ALLOCATE-OBJECT and FREE-OBJECT procedures?

10.3-4
It is often desirable to keep all elements of a doubly linked list compact in storage,
using, for example, the first m index locations in the multiple-array representation.
(This is the case in a paged, virtual-memory computing environment.) Explain
how to implement the procedures ALLOCATE-OBJECT and FREE-OBJECT so that
the representation is compact. Assume that there are no pointers to elements of the
linked list outside the list itself. (Hint: Use the array implementation of a stack.)

10.3-5
Let L be a doubly linked list of length n stored in arrays key, pre�, and next of
length m. Suppose that these arrays are managed by ALLOCATE-OBJECT and
FREE-OBJECT procedures that keep a doubly linked free list F . Suppose further
that of the m items, exactly n are on list L and m � n are on the free list. Write
a procedure COMPACTIFY-LIST.L; F / that, given the list L and the free list F ,
moves the items in L so that they occupy array positions 1; 2; : : : ; n and adjusts the
free list F so that it remains correct, occupying array positions nC1; nC2; : : : ; m.
The running time of your procedure should be ‚.n/, and it should use only a
constant amount of extra space. Argue that your procedure is correct.

246 Chapter 10 Elementary Data Structures

10.4 Representing rooted trees

The methods for representing lists given in the previous section extend to any ho-
mogeneous data structure. In this section, we look specifically at the problem of
representing rooted trees by linked data structures. We first look at binary trees,
and then we present a method for rooted trees in which nodes can have an arbitrary
number of children.

We represent each node of a tree by an object. As with linked lists, we assume
that each node contains a key attribute. The remaining attributes of interest are
pointers to other nodes, and they vary according to the type of tree.

Binary trees

Figure 10.9 shows how we use the attributes p, left, and right to store pointers to
the parent, left child, and right child of each node in a binary tree T . If x:p D NIL,
then x is the root. If node x has no left child, then x: left D NIL, and similarly for
the right child. The root of the entire tree T is pointed to by the attribute T:root. If
T:root D NIL, then the tree is empty.

Rooted trees with unbounded branching

We can extend the scheme for representing a binary tree to any class of trees in
which the number of children of each node is at most some constant k: we replace
the left and right attributes by child1; child2; : : : ; childk. This scheme no longer
works when the number of children of a node is unbounded, since we do not know
how many attributes (arrays in the multiple-array representation) to allocate in ad-
vance. Moreover, even if the number of children k is bounded by a large constant
but most nodes have a small number of children, we may waste a lot of memory.

Fortunately, there is a clever scheme to represent trees with arbitrary numbers of
children. It has the advantage of using only O.n/ space for any n-node rooted tree.
The left-child, right-sibling representation appears in Figure 10.10. As before,
each node contains a parent pointer p, and T:root points to the root of tree T .
Instead of having a pointer to each of its children, however, each node x has only
two pointers:

1. x: left-child points to the leftmost child of node x, and

2. x:right-sibling points to the sibling of x immediately to its right.

If node x has no children, then x: left-child D NIL, and if node x is the rightmost
child of its parent, then x:right-sibling D NIL.

10.4 Representing rooted trees 247

T:root

Figure 10.9 The representation of a binary tree T . Each node x has the attributes x:p (top), x: left
(lower left), and x:right (lower right). The key attributes are not shown.

T:root

Figure 10.10 The left-child, right-sibling representation of a tree T . Each node x has attributes x:p
(top), x: left-child (lower left), and x:right-sibling (lower right). The key attributes are not shown.

248 Chapter 10 Elementary Data Structures

Other tree representations

We sometimes represent rooted trees in other ways. In Chapter 6, for example,
we represented a heap, which is based on a complete binary tree, by a single array
plus the index of the last node in the heap. The trees that appear in Chapter 21 are
traversed only toward the root, and so only the parent pointers are present; there
are no pointers to children. Many other schemes are possible. Which scheme is
best depends on the application.

Exercises

10.4-1
Draw the binary tree rooted at index 6 that is represented by the following at-
tributes:
index key left right

1 12 7 3
2 15 8 NIL

3 4 10 NIL

4 10 5 9
5 2 NIL NIL

6 18 1 4
7 7 NIL NIL

8 14 6 2
9 21 NIL NIL

10 5 NIL NIL

10.4-2
Write an O.n/-time recursive procedure that, given an n-node binary tree, prints
out the key of each node in the tree.

10.4-3
Write an O.n/-time nonrecursive procedure that, given an n-node binary tree,
prints out the key of each node in the tree. Use a stack as an auxiliary data structure.

10.4-4
Write an O.n/-time procedure that prints all the keys of an arbitrary rooted tree
with n nodes, where the tree is stored using the left-child, right-sibling representa-
tion.

10.4-5 ?

Write an O.n/-time nonrecursive procedure that, given an n-node binary tree,
prints out the key of each node. Use no more than constant extra space outside

Problems for Chapter 10 249

of the tree itself and do not modify the tree, even temporarily, during the proce-
dure.

10.4-6 ?

The left-child, right-sibling representation of an arbitrary rooted tree uses three
pointers in each node: left-child, right-sibling, and parent. From any node, its
parent can be reached and identified in constant time and all its children can be
reached and identified in time linear in the number of children. Show how to use
only two pointers and one boolean value in each node so that the parent of a node
or all of its children can be reached and identified in time linear in the number of
children.

Problems

10-1 Comparisons among lists
For each of the four types of lists in the following table, what is the asymptotic
worst-case running time for each dynamic-set operation listed?

unsorted, sorted, unsorted, sorted,
singly singly doubly doubly
linked linked linked linked

SEARCH.L; k/

INSERT.L; x/

DELETE.L; x/

SUCCESSOR.L; x/

PREDECESSOR.L; x/

MINIMUM.L/

MAXIMUM.L/

250 Chapter 10 Elementary Data Structures

10-2 Mergeable heaps using linked lists
Amergeable heap supports the following operations: MAKE-HEAP (which creates
an empty mergeable heap), INSERT, MINIMUM, EXTRACT-MIN, and UNION.1

Show how to implement mergeable heaps using linked lists in each of the following
cases. Try to make each operation as efficient as possible. Analyze the running
time of each operation in terms of the size of the dynamic set(s) being operated on.

a. Lists are sorted.

b. Lists are unsorted.

c. Lists are unsorted, and dynamic sets to be merged are disjoint.

10-3 Searching a sorted compact list
Exercise 10.3-4 asked how we might maintain an n-element list compactly in the
first n positions of an array. We shall assume that all keys are distinct and that the
compact list is also sorted, that is, keyŒi � < keyŒnextŒi �� for all i D 1; 2; : : : ; n such
that nextŒi � ¤ NIL. We will also assume that we have a variable L that contains
the index of the first element on the list. Under these assumptions, you will show
that we can use the following randomized algorithm to search the list in O.

p
n/

expected time.

COMPACT-LIST-SEARCH.L; n; k/

1 i D L

2 while i ¤ NIL and keyŒi � < k

3 j D RANDOM.1; n/

4 if keyŒi � < keyŒj � and keyŒj � � k

5 i D j

6 if keyŒi � == k

7 return i

8 i D nextŒi �
9 if i == NIL or keyŒi � > k

10 return NIL

11 else return i

If we ignore lines 3–7 of the procedure, we have an ordinary algorithm for
searching a sorted linked list, in which index i points to each position of the list in

1Because we have defined a mergeable heap to support MINIMUM and EXTRACT-MIN, we can also
refer to it as a mergeable min-heap. Alternatively, if it supported MAXIMUM and EXTRACT-MAX,
it would be a mergeable max-heap.

Problems for Chapter 10 251

turn. The search terminates once the index i “falls off” the end of the list or once
keyŒi � � k. In the latter case, if keyŒi � D k, clearly we have found a key with the
value k. If, however, keyŒi � > k, then we will never find a key with the value k,
and so terminating the search was the right thing to do.

Lines 3–7 attempt to skip ahead to a randomly chosen position j . Such a skip
benefits us if keyŒj � is larger than keyŒi � and no larger than k; in such a case, j

marks a position in the list that i would have to reach during an ordinary list search.
Because the list is compact, we know that any choice of j between 1 and n indexes
some object in the list rather than a slot on the free list.

Instead of analyzing the performance of COMPACT-LIST-SEARCH directly, we
shall analyze a related algorithm, COMPACT-LIST-SEARCH 0, which executes two
separate loops. This algorithm takes an additional parameter t which determines
an upper bound on the number of iterations of the first loop.

COMPACT-LIST-SEARCH0.L; n; k; t/

1 i D L

2 for q D 1 to t

3 j D RANDOM.1; n/

4 if keyŒi � < keyŒj � and keyŒj � � k

5 i D j

6 if keyŒi � == k

7 return i

8 while i ¤ NIL and keyŒi � < k

9 i D nextŒi �
10 if i == NIL or keyŒi � > k

11 return NIL

12 else return i

To compare the execution of the algorithms COMPACT-LIST-SEARCH.L; n; k/

and COMPACT-LIST-SEARCH 0.L; n; k; t/, assume that the sequence of integers re-
turned by the calls of RANDOM.1; n/ is the same for both algorithms.

a. Suppose that COMPACT-LIST-SEARCH.L; n; k/ takes t iterations of the while
loop of lines 2–8. Argue that COMPACT-LIST-SEARCH 0.L; n; k; t/ returns the
same answer and that the total number of iterations of both the for and while
loops within COMPACT-LIST-SEARCH 0 is at least t .

In the call COMPACT-LIST-SEARCH 0.L; n; k; t/, let Xt be the random variable that
describes the distance in the linked list (that is, through the chain of next pointers)
from position i to the desired key k after t iterations of the for loop of lines 2–7
have occurred.

252 Chapter 10 Elementary Data Structures

b. Argue that the expected running time of COMPACT-LIST-SEARCH 0.L; n; k; t/

is O.t C E ŒXt �/.

c. Show that E ŒXt � �
Pn

rD1.1 � r=n/t . (Hint: Use equation (C.25).)

d. Show that
Pn�1

rD0 r t � ntC1=.t C 1/.

e. Prove that E ŒXt � � n=.t C 1/.

f. Show that COMPACT-LIST-SEARCH 0.L; n; k; t/ runs in O.t C n=t/ expected
time.

g. Conclude that COMPACT-LIST-SEARCH runs in O.
p

n/ expected time.

h. Why do we assume that all keys are distinct in COMPACT-LIST-SEARCH? Ar-
gue that random skips do not necessarily help asymptotically when the list con-
tains repeated key values.

Chapter notes

Aho, Hopcroft, and Ullman [6] and Knuth [209] are excellent references for ele-
mentary data structures. Many other texts cover both basic data structures and their
implementation in a particular programming language. Examples of these types of
textbooks include Goodrich and Tamassia [147], Main [241], Shaffer [311], and
Weiss [352, 353, 354]. Gonnet [145] provides experimental data on the perfor-
mance of many data-structure operations.

The origin of stacks and queues as data structures in computer science is un-
clear, since corresponding notions already existed in mathematics and paper-based
business practices before the introduction of digital computers. Knuth [209] cites
A. M. Turing for the development of stacks for subroutine linkage in 1947.

Pointer-based data structures also seem to be a folk invention. According to
Knuth, pointers were apparently used in early computers with drum memories. The
A-1 language developed by G. M. Hopper in 1951 represented algebraic formulas
as binary trees. Knuth credits the IPL-II language, developed in 1956 by A. Newell,
J. C. Shaw, and H. A. Simon, for recognizing the importance and promoting the
use of pointers. Their IPL-III language, developed in 1957, included explicit stack
operations.

11 Hash Tables

Many applications require a dynamic set that supports only the dictionary opera-
tions INSERT, SEARCH, and DELETE. For example, a compiler that translates a
programming language maintains a symbol table, in which the keys of elements
are arbitrary character strings corresponding to identifiers in the language. A hash
table is an effective data structure for implementing dictionaries. Although search-
ing for an element in a hash table can take as long as searching for an element in a
linked list—‚.n/ time in the worst case—in practice, hashing performs extremely
well. Under reasonable assumptions, the average time to search for an element in
a hash table is O.1/.

A hash table generalizes the simpler notion of an ordinary array. Directly ad-
dressing into an ordinary array makes effective use of our ability to examine an
arbitrary position in an array in O.1/ time. Section 11.1 discusses direct address-
ing in more detail. We can take advantage of direct addressing when we can afford
to allocate an array that has one position for every possible key.

When the number of keys actually stored is small relative to the total number of
possible keys, hash tables become an effective alternative to directly addressing an
array, since a hash table typically uses an array of size proportional to the number
of keys actually stored. Instead of using the key as an array index directly, the array
index is computed from the key. Section 11.2 presents the main ideas, focusing on
“chaining” as a way to handle “collisions,” in which more than one key maps to the
same array index. Section 11.3 describes how we can compute array indices from
keys using hash functions. We present and analyze several variations on the basic
theme. Section 11.4 looks at “open addressing,” which is another way to deal with
collisions. The bottom line is that hashing is an extremely effective and practical
technique: the basic dictionary operations require only O.1/ time on the average.
Section 11.5 explains how “perfect hashing” can support searches in O.1/ worst-
case time, when the set of keys being stored is static (that is, when the set of keys
never changes once stored).

254 Chapter 11 Hash Tables

11.1 Direct-address tables

Direct addressing is a simple technique that works well when the universe U of
keys is reasonably small. Suppose that an application needs a dynamic set in which
each element has a key drawn from the universe U D f0; 1; : : : ; m � 1g, where m

is not too large. We shall assume that no two elements have the same key.
To represent the dynamic set, we use an array, or direct-address table, denoted

by T Œ0 : : m � 1�, in which each position, or slot, corresponds to a key in the uni-
verse U . Figure 11.1 illustrates the approach; slot k points to an element in the set
with key k. If the set contains no element with key k, then T Œk� D NIL.

The dictionary operations are trivial to implement:

DIRECT-ADDRESS-SEARCH.T; k/

1 return T Œk�

DIRECT-ADDRESS-INSERT.T; x/

1 T Œx:key� D x

DIRECT-ADDRESS-DELETE.T; x/

1 T Œx:key� D NIL

Each of these operations takes only O.1/ time.

T

U
(universe of keys)

K
(actual
keys)

2
3

5
8

1

9
4

0
7

6 2

3

5

8

key satellite data

2

0

1

3

4

5

6

7

8

9

Figure 11.1 How to implement a dynamic set by a direct-address table T . Each key in the universe
U D f0; 1; : : : ; 9g corresponds to an index in the table. The set K D f2; 3; 5; 8g of actual keys
determines the slots in the table that contain pointers to elements. The other slots, heavily shaded,
contain NIL.

11.1 Direct-address tables 255

For some applications, the direct-address table itself can hold the elements in the
dynamic set. That is, rather than storing an element’s key and satellite data in an
object external to the direct-address table, with a pointer from a slot in the table to
the object, we can store the object in the slot itself, thus saving space. We would
use a special key within an object to indicate an empty slot. Moreover, it is often
unnecessary to store the key of the object, since if we have the index of an object
in the table, we have its key. If keys are not stored, however, we must have some
way to tell whether the slot is empty.

Exercises

11.1-1
Suppose that a dynamic set S is represented by a direct-address table T of length m.
Describe a procedure that finds the maximum element of S . What is the worst-case
performance of your procedure?

11.1-2
A bit vector is simply an array of bits (0s and 1s). A bit vector of length m takes
much less space than an array of m pointers. Describe how to use a bit vector
to represent a dynamic set of distinct elements with no satellite data. Dictionary
operations should run in O.1/ time.

11.1-3
Suggest how to implement a direct-address table in which the keys of stored el-
ements do not need to be distinct and the elements can have satellite data. All
three dictionary operations (INSERT, DELETE, and SEARCH) should run in O.1/

time. (Don’t forget that DELETE takes as an argument a pointer to an object to be
deleted, not a key.)

11.1-4 ?

We wish to implement a dictionary by using direct addressing on a huge array. At
the start, the array entries may contain garbage, and initializing the entire array
is impractical because of its size. Describe a scheme for implementing a direct-
address dictionary on a huge array. Each stored object should use O.1/ space;
the operations SEARCH, INSERT, and DELETE should take O.1/ time each; and
initializing the data structure should take O.1/ time. (Hint: Use an additional array,
treated somewhat like a stack whose size is the number of keys actually stored in
the dictionary, to help determine whether a given entry in the huge array is valid or
not.)

256 Chapter 11 Hash Tables

11.2 Hash tables

The downside of direct addressing is obvious: if the universe U is large, storing
a table T of size jU j may be impractical, or even impossible, given the memory
available on a typical computer. Furthermore, the set K of keys actually stored
may be so small relative to U that most of the space allocated for T would be
wasted.

When the set K of keys stored in a dictionary is much smaller than the uni-
verse U of all possible keys, a hash table requires much less storage than a direct-
address table. Specifically, we can reduce the storage requirement to ‚.jKj/ while
we maintain the benefit that searching for an element in the hash table still requires
only O.1/ time. The catch is that this bound is for the average-case time, whereas
for direct addressing it holds for the worst-case time.

With direct addressing, an element with key k is stored in slot k. With hashing,
this element is stored in slot h.k/; that is, we use a hash function h to compute the
slot from the key k. Here, h maps the universe U of keys into the slots of a hash
table T Œ0 : : m � 1�:

h W U ! f0; 1; : : : ; m � 1g ;

where the size m of the hash table is typically much less than jU j. We say that an
element with key k hashes to slot h.k/; we also say that h.k/ is the hash value of
key k. Figure 11.2 illustrates the basic idea. The hash function reduces the range
of array indices and hence the size of the array. Instead of a size of jU j, the array
can have size m.

T

U
(universe of keys)

K
(actual
keys)

0

m–1

k1

k2 k3

k4 k5

h(k1)

h(k4)

h(k3)

h(k2) = h(k5)

Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k2 and k5 map
to the same slot, they collide.

11.2 Hash tables 257

T

U
(universe of keys)

K
(actual
keys)

k1

k2 k3

k4 k5

k6

k7

k8

k1

k2

k3

k4

k5

k6

k7

k8

Figure 11.3 Collision resolution by chaining. Each hash-table slot T Œj � contains a linked list of
all the keys whose hash value is j . For example, h.k1/ D h.k4/ and h.k5/ D h.k7/ D h.k2/.
The linked list can be either singly or doubly linked; we show it as doubly linked because deletion is
faster that way.

There is one hitch: two keys may hash to the same slot. We call this situation
a collision. Fortunately, we have effective techniques for resolving the conflict
created by collisions.

Of course, the ideal solution would be to avoid collisions altogether. We might
try to achieve this goal by choosing a suitable hash function h. One idea is to
make h appear to be “random,” thus avoiding collisions or at least minimizing
their number. The very term “to hash,” evoking images of random mixing and
chopping, captures the spirit of this approach. (Of course, a hash function h must be
deterministic in that a given input k should always produce the same output h.k/.)
Because jU j > m, however, there must be at least two keys that have the same hash
value; avoiding collisions altogether is therefore impossible. Thus, while a well-
designed, “random”-looking hash function can minimize the number of collisions,
we still need a method for resolving the collisions that do occur.

The remainder of this section presents the simplest collision resolution tech-
nique, called chaining. Section 11.4 introduces an alternative method for resolving
collisions, called open addressing.

Collision resolution by chaining

In chaining, we place all the elements that hash to the same slot into the same
linked list, as Figure 11.3 shows. Slot j contains a pointer to the head of the list of
all stored elements that hash to j ; if there are no such elements, slot j contains NIL.

258 Chapter 11 Hash Tables

The dictionary operations on a hash table T are easy to implement when colli-
sions are resolved by chaining:

CHAINED-HASH-INSERT.T; x/

1 insert x at the head of list T Œh.x:key/�

CHAINED-HASH-SEARCH.T; k/

1 search for an element with key k in list T Œh.k/�

CHAINED-HASH-DELETE.T; x/

1 delete x from the list T Œh.x:key/�

The worst-case running time for insertion is O.1/. The insertion procedure is fast
in part because it assumes that the element x being inserted is not already present in
the table; if necessary, we can check this assumption (at additional cost) by search-
ing for an element whose key is x:key before we insert. For searching, the worst-
case running time is proportional to the length of the list; we shall analyze this
operation more closely below. We can delete an element in O.1/ time if the lists
are doubly linked, as Figure 11.3 depicts. (Note that CHAINED-HASH-DELETE

takes as input an element x and not its key k, so that we don’t have to search for x

first. If the hash table supports deletion, then its linked lists should be doubly linked
so that we can delete an item quickly. If the lists were only singly linked, then to
delete element x, we would first have to find x in the list T Œh.x:key/� so that we
could update the next attribute of x’s predecessor. With singly linked lists, both
deletion and searching would have the same asymptotic running times.)

Analysis of hashing with chaining

How well does hashing with chaining perform? In particular, how long does it take
to search for an element with a given key?

Given a hash table T with m slots that stores n elements, we define the load
factor ˛ for T as n=m, that is, the average number of elements stored in a chain.
Our analysis will be in terms of ˛, which can be less than, equal to, or greater
than 1.

The worst-case behavior of hashing with chaining is terrible: all n keys hash
to the same slot, creating a list of length n. The worst-case time for searching is
thus ‚.n/ plus the time to compute the hash function—no better than if we used
one linked list for all the elements. Clearly, we do not use hash tables for their
worst-case performance. (Perfect hashing, described in Section 11.5, does provide
good worst-case performance when the set of keys is static, however.)

The average-case performance of hashing depends on how well the hash func-
tion h distributes the set of keys to be stored among the m slots, on the average.

11.2 Hash tables 259

Section 11.3 discusses these issues, but for now we shall assume that any given
element is equally likely to hash into any of the m slots, independently of where
any other element has hashed to. We call this the assumption of simple uniform
hashing.

For j D 0; 1; : : : ; m � 1, let us denote the length of the list T Œj � by nj , so that

n D n0 C n1 C � � � C nm�1 ; (11.1)

and the expected value of nj is E Œnj � D ˛ D n=m.
We assume that O.1/ time suffices to compute the hash value h.k/, so that

the time required to search for an element with key k depends linearly on the
length nh.k/ of the list T Œh.k/�. Setting aside the O.1/ time required to compute
the hash function and to access slot h.k/, let us consider the expected number of
elements examined by the search algorithm, that is, the number of elements in the
list T Œh.k/� that the algorithm checks to see whether any have a key equal to k. We
shall consider two cases. In the first, the search is unsuccessful: no element in the
table has key k. In the second, the search successfully finds an element with key k.

Theorem 11.1
In a hash table in which collisions are resolved by chaining, an unsuccessful search
takes average-case time ‚.1C˛/, under the assumption of simple uniform hashing.

Proof Under the assumption of simple uniform hashing, any key k not already
stored in the table is equally likely to hash to any of the m slots. The expected time
to search unsuccessfully for a key k is the expected time to search to the end of
list T Œh.k/�, which has expected length E Œnh.k/� D ˛. Thus, the expected number
of elements examined in an unsuccessful search is ˛, and the total time required
(including the time for computing h.k/) is ‚.1C ˛/.

The situation for a successful search is slightly different, since each list is not
equally likely to be searched. Instead, the probability that a list is searched is pro-
portional to the number of elements it contains. Nonetheless, the expected search
time still turns out to be ‚.1C ˛/.

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a successful search
takes average-case time ‚.1C˛/, under the assumption of simple uniform hashing.

Proof We assume that the element being searched for is equally likely to be any
of the n elements stored in the table. The number of elements examined during a
successful search for an element x is one more than the number of elements that

260 Chapter 11 Hash Tables

appear before x in x’s list. Because new elements are placed at the front of the
list, elements before x in the list were all inserted after x was inserted. To find
the expected number of elements examined, we take the average, over the n ele-
ments x in the table, of 1 plus the expected number of elements added to x’s list
after x was added to the list. Let xi denote the i th element inserted into the ta-
ble, for i D 1; 2; : : : ; n, and let ki D xi :key. For keys ki and kj , we define the
indicator random variable Xij D I fh.ki / D h.kj /g. Under the assumption of sim-
ple uniform hashing, we have Pr fh.ki / D h.kj /g D 1=m, and so by Lemma 5.1,
E ŒXij � D 1=m. Thus, the expected number of elements examined in a successful
search is

E

"
1

n

nX
iD1

1C

nX
j DiC1

Xij

!#

D 1

n

nX
iD1

1C

nX
j DiC1

E ŒXij �

!
(by linearity of expectation)

D 1

n

nX
iD1

1C

nX
j DiC1

1

m

!

D 1C 1

nm

nX
iD1

.n � i/

D 1C 1

nm

nX

iD1

n �
nX

iD1

i

!

D 1C 1

nm

�
n2 � n.nC 1/

2

�
(by equation (A.1))

D 1C n � 1

2m

D 1C ˛

2
� ˛

2n
:

Thus, the total time required for a successful search (including the time for com-
puting the hash function) is ‚.2C ˛=2� ˛=2n/ D ‚.1C ˛/.

What does this analysis mean? If the number of hash-table slots is at least pro-
portional to the number of elements in the table, we have n D O.m/ and, con-
sequently, ˛ D n=m D O.m/=m D O.1/. Thus, searching takes constant time
on average. Since insertion takes O.1/ worst-case time and deletion takes O.1/

worst-case time when the lists are doubly linked, we can support all dictionary
operations in O.1/ time on average.

11.2 Hash tables 261

Exercises

11.2-1
Suppose we use a hash function h to hash n distinct keys into an array T of
length m. Assuming simple uniform hashing, what is the expected number of
collisions? More precisely, what is the expected cardinality of ffk; lg W k ¤ l and
h.k/ D h.l/g?
11.2-2
Demonstrate what happens when we insert the keys 5; 28; 19; 15; 20; 33; 12; 17; 10

into a hash table with collisions resolved by chaining. Let the table have 9 slots,
and let the hash function be h.k/ D k mod 9.

11.2-3
Professor Marley hypothesizes that he can obtain substantial performance gains by
modifying the chaining scheme to keep each list in sorted order. How does the pro-
fessor’s modification affect the running time for successful searches, unsuccessful
searches, insertions, and deletions?

11.2-4
Suggest how to allocate and deallocate storage for elements within the hash table
itself by linking all unused slots into a free list. Assume that one slot can store
a flag and either one element plus a pointer or two pointers. All dictionary and
free-list operations should run in O.1/ expected time. Does the free list need to be
doubly linked, or does a singly linked free list suffice?

11.2-5
Suppose that we are storing a set of n keys into a hash table of size m. Show that if
the keys are drawn from a universe U with jU j > nm, then U has a subset of size n

consisting of keys that all hash to the same slot, so that the worst-case searching
time for hashing with chaining is ‚.n/.

11.2-6
Suppose we have stored n keys in a hash table of size m, with collisions resolved by
chaining, and that we know the length of each chain, including the length L of the
longest chain. Describe a procedure that selects a key uniformly at random from
among the keys in the hash table and returns it in expected time O.L � .1C 1=˛//.

262 Chapter 11 Hash Tables

11.3 Hash functions

In this section, we discuss some issues regarding the design of good hash functions
and then present three schemes for their creation. Two of the schemes, hashing by
division and hashing by multiplication, are heuristic in nature, whereas the third
scheme, universal hashing, uses randomization to provide provably good perfor-
mance.

What makes a good hash function?

A good hash function satisfies (approximately) the assumption of simple uniform
hashing: each key is equally likely to hash to any of the m slots, independently of
where any other key has hashed to. Unfortunately, we typically have no way to
check this condition, since we rarely know the probability distribution from which
the keys are drawn. Moreover, the keys might not be drawn independently.

Occasionally we do know the distribution. For example, if we know that the
keys are random real numbers k independently and uniformly distributed in the
range 0 � k < 1, then the hash function

h.k/ D bkmc
satisfies the condition of simple uniform hashing.

In practice, we can often employ heuristic techniques to create a hash function
that performs well. Qualitative information about the distribution of keys may be
useful in this design process. For example, consider a compiler’s symbol table, in
which the keys are character strings representing identifiers in a program. Closely
related symbols, such as pt and pts, often occur in the same program. A good
hash function would minimize the chance that such variants hash to the same slot.

A good approach derives the hash value in a way that we expect to be indepen-
dent of any patterns that might exist in the data. For example, the “division method”
(discussed in Section 11.3.1) computes the hash value as the remainder when the
key is divided by a specified prime number. This method frequently gives good
results, assuming that we choose a prime number that is unrelated to any patterns
in the distribution of keys.

Finally, we note that some applications of hash functions might require stronger
properties than are provided by simple uniform hashing. For example, we might
want keys that are “close” in some sense to yield hash values that are far apart.
(This property is especially desirable when we are using linear probing, defined in
Section 11.4.) Universal hashing, described in Section 11.3.3, often provides the
desired properties.

11.3 Hash functions 263

Interpreting keys as natural numbers

Most hash functions assume that the universe of keys is the set N D f0; 1; 2; : : :g
of natural numbers. Thus, if the keys are not natural numbers, we find a way to
interpret them as natural numbers. For example, we can interpret a character string
as an integer expressed in suitable radix notation. Thus, we might interpret the
identifier pt as the pair of decimal integers .112; 116/, since p D 112 and t D 116

in the ASCII character set; then, expressed as a radix-128 integer, pt becomes
.112 � 128/C 116 D 14452. In the context of a given application, we can usually
devise some such method for interpreting each key as a (possibly large) natural
number. In what follows, we assume that the keys are natural numbers.

11.3.1 The division method

In the division method for creating hash functions, we map a key k into one of m

slots by taking the remainder of k divided by m. That is, the hash function is

h.k/ D k mod m :

For example, if the hash table has size m D 12 and the key is k D 100, then
h.k/ D 4. Since it requires only a single division operation, hashing by division is
quite fast.

When using the division method, we usually avoid certain values of m. For
example, m should not be a power of 2, since if m D 2p , then h.k/ is just the p

lowest-order bits of k. Unless we know that all low-order p-bit patterns are equally
likely, we are better off designing the hash function to depend on all the bits of the
key. As Exercise 11.3-3 asks you to show, choosing m D 2p � 1 when k is a
character string interpreted in radix 2p may be a poor choice, because permuting
the characters of k does not change its hash value.

A prime not too close to an exact power of 2 is often a good choice for m. For
example, suppose we wish to allocate a hash table, with collisions resolved by
chaining, to hold roughly n D 2000 character strings, where a character has 8 bits.
We don’t mind examining an average of 3 elements in an unsuccessful search, and
so we allocate a hash table of size m D 701. We could choose m D 701 because
it is a prime near 2000=3 but not near any power of 2. Treating each key k as an
integer, our hash function would be

h.k/ D k mod 701 :

11.3.2 The multiplication method

Themultiplication method for creating hash functions operates in two steps. First,
we multiply the key k by a constant A in the range 0 < A < 1 and extract the

264 Chapter 11 Hash Tables

× s D A � 2w

w bits

k

r0r1

h.k/

extract p bits

Figure 11.4 The multiplication method of hashing. The w-bit representation of the key k is multi-
plied by the w-bit value s D A � 2w . The p highest-order bits of the lower w-bit half of the product
form the desired hash value h.k/.

fractional part of kA. Then, we multiply this value by m and take the floor of the
result. In short, the hash function is

h.k/ D bm .kA mod 1/c ;

where “kA mod 1” means the fractional part of kA, that is, kA � bkAc.
An advantage of the multiplication method is that the value of m is not critical.

We typically choose it to be a power of 2 (m D 2p for some integer p), since we
can then easily implement the function on most computers as follows. Suppose
that the word size of the machine is w bits and that k fits into a single word. We
restrict A to be a fraction of the form s=2w , where s is an integer in the range
0 < s < 2w . Referring to Figure 11.4, we first multiply k by the w-bit integer
s D A �2w . The result is a 2w-bit value r12w C r0, where r1 is the high-order word
of the product and r0 is the low-order word of the product. The desired p-bit hash
value consists of the p most significant bits of r0.

Although this method works with any value of the constant A, it works better
with some values than with others. The optimal choice depends on the character-
istics of the data being hashed. Knuth [211] suggests that

A � .
p

5� 1/=2 D 0:6180339887 : : : (11.2)

is likely to work reasonably well.
As an example, suppose we have k D 123456, p D 14, m D 214 D 16384,

and w D 32. Adapting Knuth’s suggestion, we choose A to be the fraction of the
form s=232 that is closest to .

p
5 � 1/=2, so that A D 2654435769=232 . Then

k � s D 327706022297664 D .76300 � 232/ C 17612864, and so r1 D 76300

and r0 D 17612864. The 14 most significant bits of r0 yield the value h.k/ D 67.

11.3 Hash functions 265

? 11.3.3 Universal hashing

If a malicious adversary chooses the keys to be hashed by some fixed hash function,
then the adversary can choose n keys that all hash to the same slot, yielding an av-
erage retrieval time of ‚.n/. Any fixed hash function is vulnerable to such terrible
worst-case behavior; the only effective way to improve the situation is to choose
the hash function randomly in a way that is independent of the keys that are actually
going to be stored. This approach, called universal hashing, can yield provably
good performance on average, no matter which keys the adversary chooses.

In universal hashing, at the beginning of execution we select the hash function
at random from a carefully designed class of functions. As in the case of quick-
sort, randomization guarantees that no single input will always evoke worst-case
behavior. Because we randomly select the hash function, the algorithm can be-
have differently on each execution, even for the same input, guaranteeing good
average-case performance for any input. Returning to the example of a compiler’s
symbol table, we find that the programmer’s choice of identifiers cannot now cause
consistently poor hashing performance. Poor performance occurs only when the
compiler chooses a random hash function that causes the set of identifiers to hash
poorly, but the probability of this situation occurring is small and is the same for
any set of identifiers of the same size.

Let H be a finite collection of hash functions that map a given universe U of
keys into the range f0; 1; : : : ; m � 1g. Such a collection is said to be universal
if for each pair of distinct keys k; l 2 U , the number of hash functions h 2 H

for which h.k/ D h.l/ is at most jH j =m. In other words, with a hash function
randomly chosen from H , the chance of a collision between distinct keys k and l

is no more than the chance 1=m of a collision if h.k/ and h.l/ were randomly and
independently chosen from the set f0; 1; : : : ; m � 1g.

The following theorem shows that a universal class of hash functions gives good
average-case behavior. Recall that ni denotes the length of list T Œi �.

Theorem 11.3
Suppose that a hash function h is chosen randomly from a universal collection of
hash functions and has been used to hash n keys into a table T of size m, us-
ing chaining to resolve collisions. If key k is not in the table, then the expected
length E Œnh.k/� of the list that key k hashes to is at most the load factor ˛ D n=m.
If key k is in the table, then the expected length E Œnh.k/� of the list containing key k

is at most 1C ˛.

Proof We note that the expectations here are over the choice of the hash func-
tion and do not depend on any assumptions about the distribution of the keys.
For each pair k and l of distinct keys, define the indicator random variable

266 Chapter 11 Hash Tables

Xkl D I fh.k/ D h.l/g. Since by the definition of a universal collection of hash
functions, a single pair of keys collides with probability at most 1=m, we have
Pr fh.k/ D h.l/g � 1=m. By Lemma 5.1, therefore, we have E ŒXkl � � 1=m.

Next we define, for each key k, the random variable Yk that equals the number
of keys other than k that hash to the same slot as k, so that

Yk D
X
l2T

l¤k

Xkl :

Thus we have

E ŒYk� D E
24X

l2T
l¤k

Xkl

35
D

X
l2T
l¤k

E ŒXkl � (by linearity of expectation)

�
X
l2T
l¤k

1

m
:

The remainder of the proof depends on whether key k is in table T .

� If k 62 T , then nh.k/ D Yk and jfl W l 2 T and l ¤ kgj D n. Thus E Œnh.k/� D
E ŒYk � � n=m D ˛.

� If k 2 T , then because key k appears in list T Œh.k/� and the count Yk does not
include key k, we have nh.k/ D Yk C 1 and jfl W l 2 T and l ¤ kgj D n � 1.
Thus E Œnh.k/� D E ŒYk �C 1 � .n � 1/=mC 1 D 1C ˛ � 1=m < 1C ˛.

The following corollary says universal hashing provides the desired payoff: it
has now become impossible for an adversary to pick a sequence of operations that
forces the worst-case running time. By cleverly randomizing the choice of hash
function at run time, we guarantee that we can process every sequence of operations
with a good average-case running time.

Corollary 11.4
Using universal hashing and collision resolution by chaining in an initially empty
table with m slots, it takes expected time ‚.n/ to handle any sequence of n INSERT,
SEARCH, and DELETE operations containing O.m/ INSERT operations.

Proof Since the number of insertions is O.m/, we have n D O.m/ and so
˛ D O.1/. The INSERT and DELETE operations take constant time and, by The-
orem 11.3, the expected time for each SEARCH operation is O.1/. By linearity of

11.3 Hash functions 267

expectation, therefore, the expected time for the entire sequence of n operations
is O.n/. Since each operation takes �.1/ time, the ‚.n/ bound follows.

Designing a universal class of hash functions

It is quite easy to design a universal class of hash functions, as a little number
theory will help us prove. You may wish to consult Chapter 31 first if you are
unfamiliar with number theory.

We begin by choosing a prime number p large enough so that every possible
key k is in the range 0 to p � 1, inclusive. Let Zp denote the set f0; 1; : : : ; p � 1g,
and let Z

�
p denote the set f1; 2; : : : ; p � 1g. Since p is prime, we can solve equa-

tions modulo p with the methods given in Chapter 31. Because we assume that the
size of the universe of keys is greater than the number of slots in the hash table, we
have p > m.

We now define the hash function hab for any a 2 Z
�
p and any b 2 Zp using a

linear transformation followed by reductions modulo p and then modulo m:

hab.k/ D ..ak C b/ mod p/ mod m : (11.3)

For example, with p D 17 and m D 6, we have h3;4.8/ D 5. The family of all
such hash functions is

Hpm D
˚
hab W a 2 Z

�
p and b 2 Zp

: (11.4)

Each hash function hab maps Zp to Zm. This class of hash functions has the nice
property that the size m of the output range is arbitrary—not necessarily prime—a
feature which we shall use in Section 11.5. Since we have p � 1 choices for a

and p choices for b, the collection Hpm contains p.p � 1/ hash functions.

Theorem 11.5
The class Hpm of hash functions defined by equations (11.3) and (11.4) is universal.

Proof Consider two distinct keys k and l from Zp, so that k ¤ l . For a given
hash function hab we let

r D .ak C b/ mod p ;

s D .al C b/ mod p :

We first note that r ¤ s. Why? Observe that

r � s � a.k � l/ .mod p/ :

It follows that r ¤ s because p is prime and both a and .k � l/ are nonzero
modulo p, and so their product must also be nonzero modulo p by Theorem 31.6.
Therefore, when computing any hab 2 Hpm, distinct inputs k and l map to distinct

268 Chapter 11 Hash Tables

values r and s modulo p; there are no collisions yet at the “mod p level.” Moreover,
each of the possible p.p�1/ choices for the pair .a; b/ with a ¤ 0 yields a different
resulting pair .r; s/ with r ¤ s, since we can solve for a and b given r and s:

a D �
.r � s/..k � l/�1 mod p/

�
mod p ;

b D .r � ak/ mod p ;

where ..k � l/�1 mod p/ denotes the unique multiplicative inverse, modulo p,
of k � l . Since there are only p.p � 1/ possible pairs .r; s/ with r ¤ s, there
is a one-to-one correspondence between pairs .a; b/ with a ¤ 0 and pairs .r; s/

with r ¤ s. Thus, for any given pair of inputs k and l , if we pick .a; b/ uniformly
at random from Z

�
p 	Zp, the resulting pair .r; s/ is equally likely to be any pair of

distinct values modulo p.
Therefore, the probability that distinct keys k and l collide is equal to the prob-

ability that r � s .mod m/ when r and s are randomly chosen as distinct values
modulo p. For a given value of r , of the p � 1 possible remaining values for s, the
number of values s such that s ¤ r and s � r .mod m/ is at most

dp=me � 1 � ..p Cm � 1/=m/ � 1 (by inequality (3.6))

D .p � 1/=m :

The probability that s collides with r when reduced modulo m is at most
..p � 1/=m/=.p � 1/ D 1=m.

Therefore, for any pair of distinct values k; l 2 Zp,

Pr fhab.k/ D hab.l/g � 1=m ;

so that Hpm is indeed universal.

Exercises

11.3-1
Suppose we wish to search a linked list of length n, where each element contains
a key k along with a hash value h.k/. Each key is a long character string. How
might we take advantage of the hash values when searching the list for an element
with a given key?

11.3-2
Suppose that we hash a string of r characters into m slots by treating it as a
radix-128 number and then using the division method. We can easily represent
the number m as a 32-bit computer word, but the string of r characters, treated as
a radix-128 number, takes many words. How can we apply the division method to
compute the hash value of the character string without using more than a constant
number of words of storage outside the string itself?

11.4 Open addressing 269

11.3-3
Consider a version of the division method in which h.k/ D k mod m, where
m D 2p � 1 and k is a character string interpreted in radix 2p . Show that if we
can derive string x from string y by permuting its characters, then x and y hash to
the same value. Give an example of an application in which this property would be
undesirable in a hash function.

11.3-4
Consider a hash table of size m D 1000 and a corresponding hash function h.k/ D
bm .kA mod 1/c for A D .

p
5 � 1/=2. Compute the locations to which the keys

61, 62, 63, 64, and 65 are mapped.

11.3-5 ?

Define a family H of hash functions from a finite set U to a finite set B to be
�-universal if for all pairs of distinct elements k and l in U ,

Pr fh.k/ D h.l/g � � ;

where the probability is over the choice of the hash function h drawn at random
from the family H . Show that an �-universal family of hash functions must have

� � 1

jBj �
1

jU j :

11.3-6 ?

Let U be the set of n-tuples of values drawn from Zp, and let B D Zp , where p

is prime. Define the hash function hb W U ! B for b 2 Zp on an input n-tuple
ha0; a1; : : : ; an�1i from U as

hb.ha0; a1; : : : ; an�1i/ D

n�1X
j D0

aj bj

!
mod p ;

and let H D fhb W b 2 Zpg. Argue that H is ..n � 1/=p/-universal according to
the definition of �-universal in Exercise 11.3-5. (Hint: See Exercise 31.4-4.)

11.4 Open addressing

In open addressing, all elements occupy the hash table itself. That is, each table
entry contains either an element of the dynamic set or NIL. When searching for
an element, we systematically examine table slots until either we find the desired
element or we have ascertained that the element is not in the table. No lists and

270 Chapter 11 Hash Tables

no elements are stored outside the table, unlike in chaining. Thus, in open ad-
dressing, the hash table can “fill up” so that no further insertions can be made; one
consequence is that the load factor ˛ can never exceed 1.

Of course, we could store the linked lists for chaining inside the hash table, in
the otherwise unused hash-table slots (see Exercise 11.2-4), but the advantage of
open addressing is that it avoids pointers altogether. Instead of following pointers,
we compute the sequence of slots to be examined. The extra memory freed by not
storing pointers provides the hash table with a larger number of slots for the same
amount of memory, potentially yielding fewer collisions and faster retrieval.

To perform insertion using open addressing, we successively examine, or probe,
the hash table until we find an empty slot in which to put the key. Instead of being
fixed in the order 0; 1; : : : ; m � 1 (which requires ‚.n/ search time), the sequence
of positions probed depends upon the key being inserted. To determine which slots
to probe, we extend the hash function to include the probe number (starting from 0)
as a second input. Thus, the hash function becomes

h W U 	 f0; 1; : : : ; m � 1g ! f0; 1; : : : ; m � 1g :

With open addressing, we require that for every key k, the probe sequence

hh.k; 0/; h.k; 1/; : : : ; h.k; m � 1/i
be a permutation of h0;1; : : : ;m�1i, so that every hash-table position is eventually
considered as a slot for a new key as the table fills up. In the following pseudocode,
we assume that the elements in the hash table T are keys with no satellite infor-
mation; the key k is identical to the element containing key k. Each slot contains
either a key or NIL (if the slot is empty). The HASH-INSERT procedure takes as
input a hash table T and a key k. It either returns the slot number where it stores
key k or flags an error because the hash table is already full.

HASH-INSERT.T; k/

1 i D 0

2 repeat
3 j D h.k; i/

4 if T Œj � == NIL

5 T Œj � D k

6 return j

7 else i D i C 1

8 until i == m

9 error “hash table overflow”

The algorithm for searching for key k probes the same sequence of slots that the
insertion algorithm examined when key k was inserted. Therefore, the search can

11.4 Open addressing 271

terminate (unsuccessfully) when it finds an empty slot, since k would have been
inserted there and not later in its probe sequence. (This argument assumes that keys
are not deleted from the hash table.) The procedure HASH-SEARCH takes as input
a hash table T and a key k, returning j if it finds that slot j contains key k, or NIL

if key k is not present in table T .

HASH-SEARCH.T; k/

1 i D 0

2 repeat
3 j D h.k; i/

4 if T Œj � == k

5 return j

6 i D i C 1

7 until T Œj � == NIL or i == m

8 return NIL

Deletion from an open-address hash table is difficult. When we delete a key
from slot i , we cannot simply mark that slot as empty by storing NIL in it. If
we did, we might be unable to retrieve any key k during whose insertion we had
probed slot i and found it occupied. We can solve this problem by marking the
slot, storing in it the special value DELETED instead of NIL. We would then modify
the procedure HASH-INSERT to treat such a slot as if it were empty so that we can
insert a new key there. We do not need to modify HASH-SEARCH, since it will pass
over DELETED values while searching. When we use the special value DELETED,
however, search times no longer depend on the load factor ˛, and for this reason
chaining is more commonly selected as a collision resolution technique when keys
must be deleted.

In our analysis, we assume uniform hashing: the probe sequence of each key
is equally likely to be any of the mŠ permutations of h0; 1; : : : ; m � 1i. Uni-
form hashing generalizes the notion of simple uniform hashing defined earlier to a
hash function that produces not just a single number, but a whole probe sequence.
True uniform hashing is difficult to implement, however, and in practice suitable
approximations (such as double hashing, defined below) are used.

We will examine three commonly used techniques to compute the probe se-
quences required for open addressing: linear probing, quadratic probing, and dou-
ble hashing. These techniques all guarantee that hh.k; 0/; h.k; 1/; : : : ; h.k;m� 1/i
is a permutation of h0; 1; : : : ; m� 1i for each key k. None of these techniques ful-
fills the assumption of uniform hashing, however, since none of them is capable of
generating more than m2 different probe sequences (instead of the mŠ that uniform
hashing requires). Double hashing has the greatest number of probe sequences and,
as one might expect, seems to give the best results.

272 Chapter 11 Hash Tables

Linear probing

Given an ordinary hash function h0 W U ! f0; 1; : : : ; m � 1g, which we refer to as
an auxiliary hash function, the method of linear probing uses the hash function

h.k; i/ D .h0.k/C i/ mod m

for i D 0; 1; : : : ; m � 1. Given key k, we first probe T Œh0.k/�, i.e., the slot given
by the auxiliary hash function. We next probe slot T Œh0.k/ C 1�, and so on up to
slot T Œm � 1�. Then we wrap around to slots T Œ0�; T Œ1�; : : : until we finally probe
slot T Œh0.k/ � 1�. Because the initial probe determines the entire probe sequence,
there are only m distinct probe sequences.

Linear probing is easy to implement, but it suffers from a problem known as
primary clustering. Long runs of occupied slots build up, increasing the average
search time. Clusters arise because an empty slot preceded by i full slots gets filled
next with probability .i C 1/=m. Long runs of occupied slots tend to get longer,
and the average search time increases.

Quadratic probing

Quadratic probing uses a hash function of the form

h.k; i/ D .h0.k/C c1i C c2i2/ mod m ; (11.5)

where h0 is an auxiliary hash function, c1 and c2 are positive auxiliary constants,
and i D 0; 1; : : : ; m � 1. The initial position probed is T Œh0.k/�; later positions
probed are offset by amounts that depend in a quadratic manner on the probe num-
ber i . This method works much better than linear probing, but to make full use of
the hash table, the values of c1, c2, and m are constrained. Problem 11-3 shows
one way to select these parameters. Also, if two keys have the same initial probe
position, then their probe sequences are the same, since h.k1; 0/ D h.k2; 0/ im-
plies h.k1; i/ D h.k2; i/. This property leads to a milder form of clustering, called
secondary clustering. As in linear probing, the initial probe determines the entire
sequence, and so only m distinct probe sequences are used.

Double hashing

Double hashing offers one of the best methods available for open addressing be-
cause the permutations produced have many of the characteristics of randomly
chosen permutations. Double hashing uses a hash function of the form

h.k; i/ D .h1.k/C ih2.k// mod m ;

where both h1 and h2 are auxiliary hash functions. The initial probe goes to posi-
tion T Œh1.k/�; successive probe positions are offset from previous positions by the

11.4 Open addressing 273

0

1

2

3

4

5

6

7

8

9

10

11

12

79

69

98

72

14

50

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with h1.k/ D
k mod 13 and h2.k/ D 1C .k mod 11/. Since 14 � 1 .mod 13/ and 14 � 3 .mod 11/, we insert
the key 14 into empty slot 9, after examining slots 1 and 5 and finding them to be occupied.

amount h2.k/, modulo m. Thus, unlike the case of linear or quadratic probing, the
probe sequence here depends in two ways upon the key k, since the initial probe
position, the offset, or both, may vary. Figure 11.5 gives an example of insertion
by double hashing.

The value h2.k/ must be relatively prime to the hash-table size m for the entire
hash table to be searched. (See Exercise 11.4-4.) A convenient way to ensure this
condition is to let m be a power of 2 and to design h2 so that it always produces an
odd number. Another way is to let m be prime and to design h2 so that it always
returns a positive integer less than m. For example, we could choose m prime and
let

h1.k/ D k mod m ;

h2.k/ D 1C .k mod m0/ ;

where m0 is chosen to be slightly less than m (say, m � 1). For example, if
k D 123456, m D 701, and m0 D 700, we have h1.k/ D 80 and h2.k/ D 257, so
that we first probe position 80, and then we examine every 257th slot (modulo m)
until we find the key or have examined every slot.

When m is prime or a power of 2, double hashing improves over linear or qua-
dratic probing in that ‚.m2/ probe sequences are used, rather than ‚.m/, since
each possible .h1.k/; h2.k// pair yields a distinct probe sequence. As a result, for

274 Chapter 11 Hash Tables

such values of m, the performance of double hashing appears to be very close to
the performance of the “ideal” scheme of uniform hashing.

Although values of m other than primes or powers of 2 could in principle be
used with double hashing, in practice it becomes more difficult to efficiently gen-
erate h2.k/ in a way that ensures that it is relatively prime to m, in part because the
relative density �.m/=m of such numbers may be small (see equation (31.24)).

Analysis of open-address hashing

As in our analysis of chaining, we express our analysis of open addressing in terms
of the load factor ˛ D n=m of the hash table. Of course, with open addressing, at
most one element occupies each slot, and thus n � m, which implies ˛ � 1.

We assume that we are using uniform hashing. In this idealized scheme, the
probe sequence hh.k; 0/; h.k; 1/; : : : ; h.k; m � 1/i used to insert or search for
each key k is equally likely to be any permutation of h0; 1; : : : ; m � 1i. Of course,
a given key has a unique fixed probe sequence associated with it; what we mean
here is that, considering the probability distribution on the space of keys and the
operation of the hash function on the keys, each possible probe sequence is equally
likely.

We now analyze the expected number of probes for hashing with open address-
ing under the assumption of uniform hashing, beginning with an analysis of the
number of probes made in an unsuccessful search.

Theorem 11.6
Given an open-address hash table with load factor ˛ D n=m < 1, the expected
number of probes in an unsuccessful search is at most 1=.1�˛/, assuming uniform
hashing.

Proof In an unsuccessful search, every probe but the last accesses an occupied
slot that does not contain the desired key, and the last slot probed is empty. Let us
define the random variable X to be the number of probes made in an unsuccessful
search, and let us also define the event Ai , for i D 1; 2; : : :, to be the event that
an i th probe occurs and it is to an occupied slot. Then the event fX � ig is the
intersection of events A1\A2\� � �\Ai�1. We will bound Pr fX � ig by bounding
Pr fA1 \ A2 \ � � � \ Ai�1g. By Exercise C.2-5,

Pr fA1 \ A2 \ � � � \ Ai�1g D Pr fA1g � Pr fA2 j A1g � Pr fA3 j A1 \ A2g � � �
Pr fAi�1 j A1 \ A2 \ � � � \ Ai�2g :

Since there are n elements and m slots, Pr fA1g D n=m. For j > 1, the probability
that there is a j th probe and it is to an occupied slot, given that the first j � 1

probes were to occupied slots, is .n�j C1/=.m�j C1/. This probability follows

11.4 Open addressing 275

because we would be finding one of the remaining .n � .j � 1// elements in one
of the .m� .j � 1// unexamined slots, and by the assumption of uniform hashing,
the probability is the ratio of these quantities. Observing that n < m implies that
.n� j /=.m� j / � n=m for all j such that 0 � j < m, we have for all i such that
1 � i � m,

Pr fX � ig D n

m
� n � 1

m � 1
� n � 2

m � 2
� � � n � i C 2

m � i C 2

�
� n

m

�i�1

D ˛i�1 :

Now, we use equation (C.25) to bound the expected number of probes:

E ŒX� D
1X

iD1

Pr fX � ig

�
1X

iD1

˛i�1

D
1X

iD0

˛i

D 1

1� ˛
:

This bound of 1=.1�˛/ D 1C˛C˛2C˛3C� � � has an intuitive interpretation.
We always make the first probe. With probability approximately ˛, the first probe
finds an occupied slot, so that we need to probe a second time. With probability
approximately ˛2, the first two slots are occupied so that we make a third probe,
and so on.

If ˛ is a constant, Theorem 11.6 predicts that an unsuccessful search runs in O.1/

time. For example, if the hash table is half full, the average number of probes in an
unsuccessful search is at most 1=.1 � :5/ D 2. If it is 90 percent full, the average
number of probes is at most 1=.1 � :9/ D 10.

Theorem 11.6 gives us the performance of the HASH-INSERT procedure almost
immediately.

Corollary 11.7
Inserting an element into an open-address hash table with load factor ˛ requires at
most 1=.1 � ˛/ probes on average, assuming uniform hashing.

276 Chapter 11 Hash Tables

Proof An element is inserted only if there is room in the table, and thus ˛ < 1.
Inserting a key requires an unsuccessful search followed by placing the key into the
first empty slot found. Thus, the expected number of probes is at most 1=.1�˛/.

We have to do a little more work to compute the expected number of probes for
a successful search.

Theorem 11.8
Given an open-address hash table with load factor ˛ < 1, the expected number of
probes in a successful search is at most

1

˛
ln

1

1� ˛
;

assuming uniform hashing and assuming that each key in the table is equally likely
to be searched for.

Proof A search for a key k reproduces the same probe sequence as when the
element with key k was inserted. By Corollary 11.7, if k was the .i C 1/st key
inserted into the hash table, the expected number of probes made in a search for k

is at most 1=.1 � i=m/ D m=.m � i/. Averaging over all n keys in the hash table
gives us the expected number of probes in a successful search:

1

n

n�1X
iD0

m

m � i
D m

n

n�1X
iD0

1

m � i

D 1

˛

mX
kDm�nC1

1

k

� 1

˛

Z m

m�n

.1=x/ dx (by inequality (A.12))

D 1

˛
ln

m

m � n

D 1

˛
ln

1

1� ˛
:

If the hash table is half full, the expected number of probes in a successful search
is less than 1:387. If the hash table is 90 percent full, the expected number of probes
is less than 2:559.

11.5 Perfect hashing 277

Exercises

11.4-1
Consider inserting the keys 10; 22; 31; 4; 15; 28; 17; 88; 59 into a hash table of
length m D 11 using open addressing with the auxiliary hash function h0.k/ D k.
Illustrate the result of inserting these keys using linear probing, using quadratic
probing with c1 D 1 and c2 D 3, and using double hashing with h1.k/ D k and
h2.k/ D 1C .k mod .m � 1//.

11.4-2
Write pseudocode for HASH-DELETE as outlined in the text, and modify HASH-
INSERT to handle the special value DELETED.

11.4-3
Consider an open-address hash table with uniform hashing. Give upper bounds
on the expected number of probes in an unsuccessful search and on the expected
number of probes in a successful search when the load factor is 3=4 and when it
is 7=8.

11.4-4 ?

Suppose that we use double hashing to resolve collisions—that is, we use the hash
function h.k; i/ D .h1.k/ C ih2.k// mod m. Show that if m and h2.k/ have
greatest common divisor d � 1 for some key k, then an unsuccessful search for
key k examines .1=d/th of the hash table before returning to slot h1.k/. Thus,
when d D 1, so that m and h2.k/ are relatively prime, the search may examine the
entire hash table. (Hint: See Chapter 31.)

11.4-5 ?

Consider an open-address hash table with a load factor ˛. Find the nonzero value ˛

for which the expected number of probes in an unsuccessful search equals twice
the expected number of probes in a successful search. Use the upper bounds given
by Theorems 11.6 and 11.8 for these expected numbers of probes.

? 11.5 Perfect hashing

Although hashing is often a good choice for its excellent average-case perfor-
mance, hashing can also provide excellent worst-case performance when the set of
keys is static: once the keys are stored in the table, the set of keys never changes.
Some applications naturally have static sets of keys: consider the set of reserved
words in a programming language, or the set of file names on a CD-ROM. We

278 Chapter 11 Hash Tables

0

1

2

3

4

5

6

7

8

1 0 0 10

9 10 18 60 75
0 1 2 3

1 0 0 70

0

0

16 23 88 40 37
0 1 2 3 4 5 6 7 8

52

m2
S2a2 b2

m0
S0a0 b0

m5
S5a5 b5

m7
S7a7 b7

T

4 5 6 7 8

72

9 10 11 12 13 14 15

22

Figure 11.6 Using perfect hashing to store the set K D f10; 22; 37; 40; 52; 60; 70; 72; 75g. The
outer hash function is h.k/ D ..ak C b/ mod p/ mod m, where a D 3, b D 42, p D 101, and
m D 9. For example, h.75/ D 2, and so key 75 hashes to slot 2 of table T . A secondary hash
table Sj stores all keys hashing to slot j . The size of hash table Sj is mj D n2

j , and the associated
hash function is hj .k/ D ..aj kC bj / mod p/ mod mj . Since h2.75/ D 7, key 75 is stored in slot 7
of secondary hash table S2. No collisions occur in any of the secondary hash tables, and so searching
takes constant time in the worst case.

call a hashing technique perfect hashing if O.1/ memory accesses are required to
perform a search in the worst case.

To create a perfect hashing scheme, we use two levels of hashing, with universal
hashing at each level. Figure 11.6 illustrates the approach.

The first level is essentially the same as for hashing with chaining: we hash
the n keys into m slots using a hash function h carefully selected from a family of
universal hash functions.

Instead of making a linked list of the keys hashing to slot j , however, we use a
small secondary hash table Sj with an associated hash function hj . By choosing
the hash functions hj carefully, we can guarantee that there are no collisions at the
secondary level.

In order to guarantee that there are no collisions at the secondary level, however,
we will need to let the size mj of hash table Sj be the square of the number nj of
keys hashing to slot j . Although you might think that the quadratic dependence
of mj on nj may seem likely to cause the overall storage requirement to be exces-
sive, we shall show that by choosing the first-level hash function well, we can limit
the expected total amount of space used to O.n/.

We use hash functions chosen from the universal classes of hash functions of
Section 11.3.3. The first-level hash function comes from the class Hpm, where as
in Section 11.3.3, p is a prime number greater than any key value. Those keys

11.5 Perfect hashing 279

hashing to slot j are re-hashed into a secondary hash table Sj of size mj using a
hash function hj chosen from the class Hp;mj

.1

We shall proceed in two steps. First, we shall determine how to ensure that
the secondary tables have no collisions. Second, we shall show that the expected
amount of memory used overall—for the primary hash table and all the secondary
hash tables—is O.n/.

Theorem 11.9
Suppose that we store n keys in a hash table of size m D n2 using a hash function h

randomly chosen from a universal class of hash functions. Then, the probability is
less than 1=2 that there are any collisions.

Proof There are
�

n

2

�
pairs of keys that may collide; each pair collides with prob-

ability 1=m if h is chosen at random from a universal family H of hash functions.
Let X be a random variable that counts the number of collisions. When m D n2,
the expected number of collisions is

E ŒX� D

n

2

!
� 1

n2

D n2 � n

2
� 1

n2

< 1=2 :

(This analysis is similar to the analysis of the birthday paradox in Section 5.4.1.)
Applying Markov’s inequality (C.30), Pr fX � tg � E ŒX� =t , with t D 1, com-
pletes the proof.

In the situation described in Theorem 11.9, where m D n2, it follows that a hash
function h chosen at random from H is more likely than not to have no collisions.
Given the set K of n keys to be hashed (remember that K is static), it is thus easy
to find a collision-free hash function h with a few random trials.

When n is large, however, a hash table of size m D n2 is excessive. Therefore,
we adopt the two-level hashing approach, and we use the approach of Theorem 11.9
only to hash the entries within each slot. We use an outer, or first-level, hash
function h to hash the keys into m D n slots. Then, if nj keys hash to slot j , we
use a secondary hash table Sj of size mj D n2

j to provide collision-free constant-
time lookup.

1When nj D mj D 1, we don’t really need a hash function for slot j ; when we choose a hash
function hab.k/ D ..ak C b/ mod p/ mod mj for such a slot, we just use a D b D 0.

280 Chapter 11 Hash Tables

We now turn to the issue of ensuring that the overall memory used is O.n/.
Since the size mj of the j th secondary hash table grows quadratically with the
number nj of keys stored, we run the risk that the overall amount of storage could
be excessive.

If the first-level table size is m D n, then the amount of memory used is O.n/

for the primary hash table, for the storage of the sizes mj of the secondary hash
tables, and for the storage of the parameters aj and bj defining the secondary hash
functions hj drawn from the class Hp;mj

of Section 11.3.3 (except when nj D 1

and we use a D b D 0). The following theorem and a corollary provide a bound on
the expected combined sizes of all the secondary hash tables. A second corollary
bounds the probability that the combined size of all the secondary hash tables is
superlinear (actually, that it equals or exceeds 4n).

Theorem 11.10
Suppose that we store n keys in a hash table of size m D n using a hash function h

randomly chosen from a universal class of hash functions. Then, we have

E

"
m�1X
j D0

n2
j

#
< 2n ;

where nj is the number of keys hashing to slot j .

Proof We start with the following identity, which holds for any nonnegative inte-
ger a:

a2 D aC 2

a

2

!
: (11.6)

We have

E

"
m�1X
j D0

n2
j

#

D E

"
m�1X
j D0

nj C 2

nj

2

!!#
(by equation (11.6))

D E

"
m�1X
j D0

nj

#
C 2 E

"
m�1X
j D0

nj

2

!#
(by linearity of expectation)

D E Œn�C 2 E

"
m�1X
j D0

nj

2

!#
(by equation (11.1))

11.5 Perfect hashing 281

D nC 2 E

"
m�1X
j D0

nj

2

!#
(since n is not a random variable) .

To evaluate the summation
Pm�1

j D0

�
nj

2

�
, we observe that it is just the total number

of pairs of keys in the hash table that collide. By the properties of universal hashing,
the expected value of this summation is at most

n

2

!
1

m
D n.n� 1/

2m

D n � 1

2
;

since m D n. Thus,

E

"
m�1X
j D0

n2
j

#
� nC 2

n � 1

2

D 2n � 1

< 2n :

Corollary 11.11
Suppose that we store n keys in a hash table of size m D n using a hash func-
tion h randomly chosen from a universal class of hash functions, and we set the
size of each secondary hash table to mj D n2

j for j D 0; 1; : : : ; m � 1. Then,
the expected amount of storage required for all secondary hash tables in a perfect
hashing scheme is less than 2n.

Proof Since mj D n2
j for j D 0; 1; : : : ; m � 1, Theorem 11.10 gives

E

"
m�1X
j D0

mj

#
D E

"
m�1X
j D0

n2
j

#
< 2n ; (11.7)

which completes the proof.

Corollary 11.12
Suppose that we store n keys in a hash table of size m D n using a hash function h

randomly chosen from a universal class of hash functions, and we set the size
of each secondary hash table to mj D n2

j for j D 0; 1; : : : ; m � 1. Then, the
probability is less than 1=2 that the total storage used for secondary hash tables
equals or exceeds 4n.

282 Chapter 11 Hash Tables

Proof Again we apply Markov’s inequality (C.30), Pr fX � tg � E ŒX� =t , this
time to inequality (11.7), with X DPm�1

j D0 mj and t D 4n:

Pr

(
m�1X
j D0

mj � 4n

)
� E

�Pm�1

j D0 mj

�
4n

<
2n

4n
D 1=2 :

From Corollary 11.12, we see that if we test a few randomly chosen hash func-
tions from the universal family, we will quickly find one that uses a reasonable
amount of storage.

Exercises

11.5-1 ?

Suppose that we insert n keys into a hash table of size m using open addressing
and uniform hashing. Let p.n; m/ be the probability that no collisions occur. Show
that p.n; m/ � e�n.n�1/=2m. (Hint: See equation (3.12).) Argue that when n ex-
ceeds

p
m, the probability of avoiding collisions goes rapidly to zero.

Problems

11-1 Longest-probe bound for hashing
Suppose that we use an open-addressed hash table of size m to store n � m=2

items.

a. Assuming uniform hashing, show that for i D 1; 2; : : : ; n, the probability is at
most 2�k that the i th insertion requires strictly more than k probes.

b. Show that for i D 1; 2; : : : ; n, the probability is O.1=n2/ that the i th insertion
requires more than 2 lg n probes.

Let the random variable Xi denote the number of probes required by the i th inser-
tion. You have shown in part (b) that Pr fXi > 2 lg ng D O.1=n2/. Let the random
variable X D max1�i�n Xi denote the maximum number of probes required by
any of the n insertions.

c. Show that Pr fX > 2 lg ng D O.1=n/.

d. Show that the expected length E ŒX� of the longest probe sequence is O.lg n/.

Problems for Chapter 11 283

11-2 Slot-size bound for chaining
Suppose that we have a hash table with n slots, with collisions resolved by chain-
ing, and suppose that n keys are inserted into the table. Each key is equally likely
to be hashed to each slot. Let M be the maximum number of keys in any slot after
all the keys have been inserted. Your mission is to prove an O.lg n= lg lg n/ upper
bound on E ŒM �, the expected value of M .

a. Argue that the probability Qk that exactly k keys hash to a particular slot is
given by

Qk D
�

1

n

�k�
1� 1

n

�n�k

n

k

!
:

b. Let Pk be the probability that M D k, that is, the probability that the slot
containing the most keys contains k keys. Show that Pk � nQk.

c. Use Stirling’s approximation, equation (3.18), to show that Qk < ek=kk .

d. Show that there exists a constant c > 1 such that Qk0
< 1=n3 for k0 D

c lg n= lg lg n. Conclude that Pk < 1=n2 for k � k0 D c lg n= lg lg n.

e. Argue that

E ŒM � � Pr

�
M >

c lg n

lg lg n

�
� nC Pr

�
M � c lg n

lg lg n

�
� c lg n

lg lg n
:

Conclude that E ŒM � D O.lg n= lg lg n/.

11-3 Quadratic probing
Suppose that we are given a key k to search for in a hash table with positions
0; 1; : : : ; m�1, and suppose that we have a hash function h mapping the key space
into the set f0; 1; : : : ; m � 1g. The search scheme is as follows:

1. Compute the value j D h.k/, and set i D 0.

2. Probe in position j for the desired key k. If you find it, or if this position is
empty, terminate the search.

3. Set i D i C 1. If i now equals m, the table is full, so terminate the search.
Otherwise, set j D .i C j / mod m, and return to step 2.

Assume that m is a power of 2.

a. Show that this scheme is an instance of the general “quadratic probing” scheme
by exhibiting the appropriate constants c1 and c2 for equation (11.5).

b. Prove that this algorithm examines every table position in the worst case.

284 Chapter 11 Hash Tables

11-4 Hashing and authentication
Let H be a class of hash functions in which each hash function h 2 H maps the
universe U of keys to f0; 1; : : : ; m � 1g. We say that H is k-universal if, for every
fixed sequence of k distinct keys hx.1/; x.2/; : : : ; x.k/i and for any h chosen at
random from H , the sequence hh.x.1//; h.x.2//; : : : ; h.x.k//i is equally likely to be
any of the mk sequences of length k with elements drawn from f0; 1; : : : ; m � 1g.
a. Show that if the family H of hash functions is 2-universal, then it is universal.

b. Suppose that the universe U is the set of n-tuples of values drawn from
Zp D f0; 1; : : : ; p � 1g, where p is prime. Consider an element x D
hx0; x1; : : : ; xn�1i 2 U . For any n-tuple a D ha0; a1; : : : ; an�1i 2 U , de-
fine the hash function ha by

ha.x/ D

n�1X
j D0

aj xj

!
mod p :

Let H D fhag. Show that H is universal, but not 2-universal. (Hint: Find a key
for which all hash functions in H produce the same value.)

c. Suppose that we modify H slightly from part (b): for any a 2 U and for any
b 2 Zp , define

h0
ab.x/ D

n�1X
j D0

aj xj C b

!
mod p

and H
0 D fh0

abg. Argue that H
0 is 2-universal. (Hint: Consider fixed n-tuples

x 2 U and y 2 U , with xi ¤ yi for some i . What happens to h0
ab

.x/

and h0
ab

.y/ as ai and b range over Zp?)

d. Suppose that Alice and Bob secretly agree on a hash function h from a
2-universal family H of hash functions. Each h 2 H maps from a universe of
keys U to Zp , where p is prime. Later, Alice sends a message m to Bob over the
Internet, where m 2 U . She authenticates this message to Bob by also sending
an authentication tag t D h.m/, and Bob checks that the pair .m; t/ he receives
indeed satisfies t D h.m/. Suppose that an adversary intercepts .m; t/ en route
and tries to fool Bob by replacing the pair .m; t/ with a different pair .m0; t 0/.
Argue that the probability that the adversary succeeds in fooling Bob into ac-
cepting .m0; t 0/ is at most 1=p, no matter how much computing power the ad-
versary has, and even if the adversary knows the family H of hash functions
used.

Notes for Chapter 11 285

Chapter notes

Knuth [211] and Gonnet [145] are excellent references for the analysis of hash-
ing algorithms. Knuth credits H. P. Luhn (1953) for inventing hash tables, along
with the chaining method for resolving collisions. At about the same time, G. M.
Amdahl originated the idea of open addressing.

Carter and Wegman introduced the notion of universal classes of hash functions
in 1979 [58].

Fredman, Komlós, and Szemerédi [112] developed the perfect hashing scheme
for static sets presented in Section 11.5. An extension of their method to dynamic
sets, handling insertions and deletions in amortized expected time O.1/, has been
given by Dietzfelbinger et al. [86].

12 Binary Search Trees

The search tree data structure supports many dynamic-set operations, including
SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and
DELETE. Thus, we can use a search tree both as a dictionary and as a priority
queue.

Basic operations on a binary search tree take time proportional to the height of
the tree. For a complete binary tree with n nodes, such operations run in ‚.lg n/

worst-case time. If the tree is a linear chain of n nodes, however, the same oper-
ations take ‚.n/ worst-case time. We shall see in Section 12.4 that the expected
height of a randomly built binary search tree is O.lg n/, so that basic dynamic-set
operations on such a tree take ‚.lg n/ time on average.

In practice, we can’t always guarantee that binary search trees are built ran-
domly, but we can design variations of binary search trees with good guaranteed
worst-case performance on basic operations. Chapter 13 presents one such vari-
ation, red-black trees, which have height O.lg n/. Chapter 18 introduces B-trees,
which are particularly good for maintaining databases on secondary (disk) storage.

After presenting the basic properties of binary search trees, the following sec-
tions show how to walk a binary search tree to print its values in sorted order, how
to search for a value in a binary search tree, how to find the minimum or maximum
element, how to find the predecessor or successor of an element, and how to insert
into or delete from a binary search tree. The basic mathematical properties of trees
appear in Appendix B.

12.1 What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree, as shown
in Figure 12.1. We can represent such a tree by a linked data structure in which
each node is an object. In addition to a key and satellite data, each node contains
attributes left, right, and p that point to the nodes corresponding to its left child,

12.1 What is a binary search tree? 287

5

2 5

5

8

7

6

(a)

6 8

7

5

2

(b)

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most x:key,
and the keys in the right subtree of x are at least x:key. Different binary search trees can represent
the same set of values. The worst-case running time for most search-tree operations is proportional
to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary
search tree with height 4 that contains the same keys.

its right child, and its parent, respectively. If a child or the parent is missing, the
appropriate attribute contains the value NIL. The root node is the only node in the
tree whose parent is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the
binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree
of x, then y:key � x:key. If y is a node in the right subtree of x, then
y:key � x:key.

Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5 in its left
subtree are no larger than 6, and the keys 7 and 8 in its right subtree are no smaller
than 6. The same property holds for every node in the tree. For example, the key 5

in the root’s left child is no smaller than the key 2 in that node’s left subtree and no
larger than the key 5 in the right subtree.

The binary-search-tree property allows us to print out all the keys in a binary
search tree in sorted order by a simple recursive algorithm, called an inorder tree
walk. This algorithm is so named because it prints the key of the root of a subtree
between printing the values in its left subtree and printing those in its right subtree.
(Similarly, a preorder tree walk prints the root before the values in either subtree,
and a postorder tree walk prints the root after the values in its subtrees.) To use
the following procedure to print all the elements in a binary search tree T , we call
INORDER-TREE-WALK.T:root/.

288 Chapter 12 Binary Search Trees

INORDER-TREE-WALK.x/

1 if x ¤ NIL

2 INORDER-TREE-WALK.x: left/
3 print x:key
4 INORDER-TREE-WALK.x:right/

As an example, the inorder tree walk prints the keys in each of the two binary
search trees from Figure 12.1 in the order 2; 5; 5; 6; 7; 8. The correctness of the
algorithm follows by induction directly from the binary-search-tree property.

It takes ‚.n/ time to walk an n-node binary search tree, since after the ini-
tial call, the procedure calls itself recursively exactly twice for each node in the
tree—once for its left child and once for its right child. The following theorem
gives a formal proof that it takes linear time to perform an inorder tree walk.

Theorem 12.1
If x is the root of an n-node subtree, then the call INORDER-TREE-WALK.x/

takes ‚.n/ time.

Proof Let T .n/ denote the time taken by INORDER-TREE-WALK when it is
called on the root of an n-node subtree. Since INORDER-TREE-WALK visits all n

nodes of the subtree, we have T .n/ D �.n/. It remains to show that T .n/ D O.n/.
Since INORDER-TREE-WALK takes a small, constant amount of time on an

empty subtree (for the test x ¤ NIL), we have T .0/ D c for some constant c > 0.
For n > 0, suppose that INORDER-TREE-WALK is called on a node x whose

left subtree has k nodes and whose right subtree has n � k � 1 nodes. The time to
perform INORDER-TREE-WALK.x/ is bounded by T .n/ � T .k/CT .n�k�1/Cd

for some constant d > 0 that reflects an upper bound on the time to execute the
body of INORDER-TREE-WALK.x/, exclusive of the time spent in recursive calls.

We use the substitution method to show that T .n/ D O.n/ by proving that
T .n/ � .cCd/nC c. For n D 0, we have .cCd/ �0C c D c D T .0/. For n > 0,
we have

T .n/ � T .k/C T .n � k � 1/C d

D ..c C d/k C c/C ..c C d/.n � k � 1/C c/C d

D .c C d/nC c � .c C d/C c C d

D .c C d/nC c ;

which completes the proof.

12.2 Querying a binary search tree 289

Exercises

12.1-1
For the set of f1; 4; 5; 10; 16; 17; 21g of keys, draw binary search trees of heights 2,
3, 4, 5, and 6.

12.1-2
What is the difference between the binary-search-tree property and the min-heap
property (see page 153)? Can the min-heap property be used to print out the keys
of an n-node tree in sorted order in O.n/ time? Show how, or explain why not.

12.1-3
Give a nonrecursive algorithm that performs an inorder tree walk. (Hint: An easy
solution uses a stack as an auxiliary data structure. A more complicated, but ele-
gant, solution uses no stack but assumes that we can test two pointers for equality.)

12.1-4
Give recursive algorithms that perform preorder and postorder tree walks in ‚.n/

time on a tree of n nodes.

12.1-5
Argue that since sorting n elements takes �.n lg n/ time in the worst case in
the comparison model, any comparison-based algorithm for constructing a binary
search tree from an arbitrary list of n elements takes �.n lg n/ time in the worst
case.

12.2 Querying a binary search tree

We often need to search for a key stored in a binary search tree. Besides the
SEARCH operation, binary search trees can support such queries as MINIMUM,
MAXIMUM, SUCCESSOR, and PREDECESSOR. In this section, we shall examine
these operations and show how to support each one in time O.h/ on any binary
search tree of height h.

Searching

We use the following procedure to search for a node with a given key in a binary
search tree. Given a pointer to the root of the tree and a key k, TREE-SEARCH

returns a pointer to a node with key k if one exists; otherwise, it returns NIL.

290 Chapter 12 Binary Search Trees

2 4

3

13

7

6

17 20

18

15

9

Figure 12.2 Queries on a binary search tree. To search for the key 13 in the tree, we follow the path
15 ! 6 ! 7 ! 13 from the root. The minimum key in the tree is 2, which is found by following
left pointers from the root. The maximum key 20 is found by following right pointers from the root.
The successor of the node with key 15 is the node with key 17, since it is the minimum key in the
right subtree of 15. The node with key 13 has no right subtree, and thus its successor is its lowest
ancestor whose left child is also an ancestor. In this case, the node with key 15 is its successor.

TREE-SEARCH.x; k/

1 if x == NIL or k == x:key
2 return x

3 if k < x:key
4 return TREE-SEARCH.x: left; k/

5 else return TREE-SEARCH.x:right; k/

The procedure begins its search at the root and traces a simple path downward in
the tree, as shown in Figure 12.2. For each node x it encounters, it compares the
key k with x:key. If the two keys are equal, the search terminates. If k is smaller
than x:key, the search continues in the left subtree of x, since the binary-search-
tree property implies that k could not be stored in the right subtree. Symmetrically,
if k is larger than x:key, the search continues in the right subtree. The nodes
encountered during the recursion form a simple path downward from the root of
the tree, and thus the running time of TREE-SEARCH is O.h/, where h is the height
of the tree.

We can rewrite this procedure in an iterative fashion by “unrolling” the recursion
into a while loop. On most computers, the iterative version is more efficient.

12.2 Querying a binary search tree 291

ITERATIVE-TREE-SEARCH.x; k/

1 while x ¤ NIL and k ¤ x:key
2 if k < x:key
3 x D x: left
4 else x D x:right
5 return x

Minimum and maximum

We can always find an element in a binary search tree whose key is a minimum by
following left child pointers from the root until we encounter a NIL, as shown in
Figure 12.2. The following procedure returns a pointer to the minimum element in
the subtree rooted at a given node x, which we assume to be non-NIL:

TREE-MINIMUM.x/

1 while x: left ¤ NIL

2 x D x: left
3 return x

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a
node x has no left subtree, then since every key in the right subtree of x is at least as
large as x:key, the minimum key in the subtree rooted at x is x:key. If node x has
a left subtree, then since no key in the right subtree is smaller than x:key and every
key in the left subtree is not larger than x:key, the minimum key in the subtree
rooted at x resides in the subtree rooted at x: left.

The pseudocode for TREE-MAXIMUM is symmetric:

TREE-MAXIMUM.x/

1 while x:right ¤ NIL

2 x D x:right
3 return x

Both of these procedures run in O.h/ time on a tree of height h since, as in TREE-
SEARCH, the sequence of nodes encountered forms a simple path downward from
the root.

Successor and predecessor

Given a node in a binary search tree, sometimes we need to find its successor in
the sorted order determined by an inorder tree walk. If all keys are distinct, the

292 Chapter 12 Binary Search Trees

successor of a node x is the node with the smallest key greater than x:key. The
structure of a binary search tree allows us to determine the successor of a node
without ever comparing keys. The following procedure returns the successor of a
node x in a binary search tree if it exists, and NIL if x has the largest key in the
tree:

TREE-SUCCESSOR.x/

1 if x:right ¤ NIL

2 return TREE-MINIMUM.x:right/
3 y D x:p
4 while y ¤ NIL and x == y:right
5 x D y

6 y D y:p
7 return y

We break the code for TREE-SUCCESSOR into two cases. If the right subtree
of node x is nonempty, then the successor of x is just the leftmost node in x’s
right subtree, which we find in line 2 by calling TREE-MINIMUM.x:right/. For
example, the successor of the node with key 15 in Figure 12.2 is the node with
key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of
node x is empty and x has a successor y, then y is the lowest ancestor of x whose
left child is also an ancestor of x. In Figure 12.2, the successor of the node with
key 13 is the node with key 15. To find y, we simply go up the tree from x until we
encounter a node that is the left child of its parent; lines 3–7 of TREE-SUCCESSOR

handle this case.
The running time of TREE-SUCCESSOR on a tree of height h is O.h/, since we

either follow a simple path up the tree or follow a simple path down the tree. The
procedure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also
runs in time O.h/.

Even if keys are not distinct, we define the successor and predecessor of any
node x as the node returned by calls made to TREE-SUCCESSOR.x/ and TREE-
PREDECESSOR.x/, respectively.

In summary, we have proved the following theorem.

Theorem 12.2
We can implement the dynamic-set operations SEARCH, MINIMUM, MAXIMUM,
SUCCESSOR, and PREDECESSOR so that each one runs in O.h/ time on a binary
search tree of height h.

12.2 Querying a binary search tree 293

Exercises

12.2-1
Suppose that we have numbers between 1 and 1000 in a binary search tree, and we
want to search for the number 363. Which of the following sequences could not be
the sequence of nodes examined?

a. 2, 252, 401, 398, 330, 344, 397, 363.

b. 924, 220, 911, 244, 898, 258, 362, 363.

c. 925, 202, 911, 240, 912, 245, 363.

d. 2, 399, 387, 219, 266, 382, 381, 278, 363.

e. 935, 278, 347, 621, 299, 392, 358, 363.

12.2-2
Write recursive versions of TREE-MINIMUM and TREE-MAXIMUM.

12.2-3
Write the TREE-PREDECESSOR procedure.

12.2-4
Professor Bunyan thinks he has discovered a remarkable property of binary search
trees. Suppose that the search for key k in a binary search tree ends up in a leaf.
Consider three sets: A, the keys to the left of the search path; B , the keys on the
search path; and C , the keys to the right of the search path. Professor Bunyan
claims that any three keys a 2 A, b 2 B , and c 2 C must satisfy a � b � c. Give
a smallest possible counterexample to the professor’s claim.

12.2-5
Show that if a node in a binary search tree has two children, then its successor has
no left child and its predecessor has no right child.

12.2-6
Consider a binary search tree T whose keys are distinct. Show that if the right
subtree of a node x in T is empty and x has a successor y, then y is the lowest
ancestor of x whose left child is also an ancestor of x. (Recall that every node is
its own ancestor.)

12.2-7
An alternative method of performing an inorder tree walk of an n-node binary
search tree finds the minimum element in the tree by calling TREE-MINIMUM and
then making n � 1 calls to TREE-SUCCESSOR. Prove that this algorithm runs
in ‚.n/ time.

294 Chapter 12 Binary Search Trees

12.2-8
Prove that no matter what node we start at in a height-h binary search tree, k

successive calls to TREE-SUCCESSOR take O.k C h/ time.

12.2-9
Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y

be its parent. Show that y:key is either the smallest key in T larger than x:key or
the largest key in T smaller than x:key.

12.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set represented by a
binary search tree to change. The data structure must be modified to reflect this
change, but in such a way that the binary-search-tree property continues to hold.
As we shall see, modifying the tree to insert a new element is relatively straight-
forward, but handling deletion is somewhat more intricate.

Insertion

To insert a new value � into a binary search tree T , we use the procedure TREE-
INSERT. The procedure takes a node ´ for which ´:key D �, ´: left D NIL,
and ´:right D NIL. It modifies T and some of the attributes of ´ in such a way that
it inserts ´ into an appropriate position in the tree.

TREE-INSERT.T; ´/

1 y D NIL

2 x D T:root
3 while x ¤ NIL

4 y D x

5 if ´:key < x:key
6 x D x: left
7 else x D x:right
8 ´:p D y

9 if y == NIL

10 T:root D ´ // tree T was empty
11 elseif ´:key < y:key
12 y: left D ´

13 else y:right D ´

12.3 Insertion and deletion 295

2 9

5

13 17

15 19

18

12

Figure 12.3 Inserting an item with key 13 into a binary search tree. Lightly shaded nodes indicate
the simple path from the root down to the position where the item is inserted. The dashed line
indicates the link in the tree that is added to insert the item.

Figure 12.3 shows how TREE-INSERT works. Just like the procedures TREE-
SEARCH and ITERATIVE-TREE-SEARCH, TREE-INSERT begins at the root of the
tree and the pointer x traces a simple path downward looking for a NIL to replace
with the input item ´. The procedure maintains the trailing pointer y as the parent
of x. After initialization, the while loop in lines 3–7 causes these two pointers
to move down the tree, going left or right depending on the comparison of ´:key
with x:key, until x becomes NIL. This NIL occupies the position where we wish to
place the input item ´. We need the trailing pointer y, because by the time we find
the NIL where ´ belongs, the search has proceeded one step beyond the node that
needs to be changed. Lines 8–13 set the pointers that cause ´ to be inserted.

Like the other primitive operations on search trees, the procedure TREE-INSERT

runs in O.h/ time on a tree of height h.

Deletion

The overall strategy for deleting a node ´ from a binary search tree T has three
basic cases but, as we shall see, one of the cases is a bit tricky.

� If ´ has no children, then we simply remove it by modifying its parent to re-
place ´ with NIL as its child.

� If ´ has just one child, then we elevate that child to take ´’s position in the tree
by modifying ´’s parent to replace ´ by ´’s child.

� If ´ has two children, then we find ´’s successor y—which must be in ´’s right
subtree—and have y take ´’s position in the tree. The rest of ´’s original right
subtree becomes y’s new right subtree, and ´’s left subtree becomes y’s new
left subtree. This case is the tricky one because, as we shall see, it matters
whether y is ´’s right child.

296 Chapter 12 Binary Search Trees

The procedure for deleting a given node ´ from a binary search tree T takes as
arguments pointers to T and ´. It organizes its cases a bit differently from the three
cases outlined previously by considering the four cases shown in Figure 12.4.

� If ´ has no left child (part (a) of the figure), then we replace ´ by its right child,
which may or may not be NIL. When ´’s right child is NIL, this case deals with
the situation in which ´ has no children. When ´’s right child is non-NIL, this
case handles the situation in which ´ has just one child, which is its right child.

� If ´ has just one child, which is its left child (part (b) of the figure), then we
replace ´ by its left child.

� Otherwise, ´ has both a left and a right child. We find ´’s successor y, which
lies in ´’s right subtree and has no left child (see Exercise 12.2-5). We want to
splice y out of its current location and have it replace ´ in the tree.

� If y is ´’s right child (part (c)), then we replace ´ by y, leaving y’s right
child alone.

� Otherwise, y lies within ´’s right subtree but is not ´’s right child (part (d)).
In this case, we first replace y by its own right child, and then we replace ´

by y.

In order to move subtrees around within the binary search tree, we define a
subroutine TRANSPLANT, which replaces one subtree as a child of its parent with
another subtree. When TRANSPLANT replaces the subtree rooted at node u with
the subtree rooted at node �, node u’s parent becomes node �’s parent, and u’s
parent ends up having � as its appropriate child.

TRANSPLANT.T; u; �/

1 if u:p == NIL

2 T:root D �

3 elseif u == u:p: left
4 u:p: left D �

5 else u:p:right D �

6 if � ¤ NIL

7 �:p D u:p

Lines 1–2 handle the case in which u is the root of T . Otherwise, u is either a left
child or a right child of its parent. Lines 3–4 take care of updating u:p: left if u

is a left child, and line 5 updates u:p:right if u is a right child. We allow � to be
NIL, and lines 6–7 update �:p if � is non-NIL. Note that TRANSPLANT does not
attempt to update �: left and �:right; doing so, or not doing so, is the responsibility
of TRANSPLANT’s caller.

12.3 Insertion and deletion 297

qq

z(a) r

qq

z

l

(b)

q

z

l

(c)

q

y

ly

q

z

l

(d)

r

q

z

l r

y

q

l r

y

r

l

x

x

xy

x

x

NIL

NIL

NIL

NIL

NIL

Figure 12.4 Deleting a node ´ from a binary search tree. Node ´ may be the root, a left child of
node q, or a right child of q. (a) Node ´ has no left child. We replace ´ by its right child r , which
may or may not be NIL. (b)Node ´ has a left child l but no right child. We replace ´ by l . (c)Node ´

has two children; its left child is node l , its right child is its successor y, and y’s right child is node x.
We replace ´ by y, updating y’s left child to become l , but leaving x as y’s right child. (d) Node ´

has two children (left child l and right child r), and its successor y ¤ r lies within the subtree rooted
at r . We replace y by its own right child x, and we set y to be r’s parent. Then, we set y to be q’s
child and the parent of l .

298 Chapter 12 Binary Search Trees

With the TRANSPLANT procedure in hand, here is the procedure that deletes
node ´ from binary search tree T :

TREE-DELETE.T; ´/

1 if ´: left == NIL

2 TRANSPLANT.T; ´; ´:right/
3 elseif ´:right == NIL

4 TRANSPLANT.T; ´; ´: left/
5 else y D TREE-MINIMUM.´:right/
6 if y:p ¤ ´

7 TRANSPLANT.T; y; y:right/
8 y:right D ´:right
9 y:right:p D y

10 TRANSPLANT.T; ´; y/

11 y: left D ´: left
12 y: left:p D y

The TREE-DELETE procedure executes the four cases as follows. Lines 1–2
handle the case in which node ´ has no left child, and lines 3–4 handle the case in
which ´ has a left child but no right child. Lines 5–12 deal with the remaining two
cases, in which ´ has two children. Line 5 finds node y, which is the successor
of ´. Because ´ has a nonempty right subtree, its successor must be the node in
that subtree with the smallest key; hence the call to TREE-MINIMUM.´:right/. As
we noted before, y has no left child. We want to splice y out of its current location,
and it should replace ´ in the tree. If y is ´’s right child, then lines 10–12 replace ´

as a child of its parent by y and replace y’s left child by ´’s left child. If y is
not ´’s left child, lines 7–9 replace y as a child of its parent by y’s right child and
turn ´’s right child into y’s right child, and then lines 10–12 replace ´ as a child of
its parent by y and replace y’s left child by ´’s left child.

Each line of TREE-DELETE, including the calls to TRANSPLANT, takes constant
time, except for the call to TREE-MINIMUM in line 5. Thus, TREE-DELETE runs
in O.h/ time on a tree of height h.

In summary, we have proved the following theorem.

Theorem 12.3
We can implement the dynamic-set operations INSERT and DELETE so that each
one runs in O.h/ time on a binary search tree of height h.

12.4 Randomly built binary search trees 299

Exercises

12.3-1
Give a recursive version of the TREE-INSERT procedure.

12.3-2
Suppose that we construct a binary search tree by repeatedly inserting distinct val-
ues into the tree. Argue that the number of nodes examined in searching for a
value in the tree is one plus the number of nodes examined when the value was
first inserted into the tree.

12.3-3
We can sort a given set of n numbers by first building a binary search tree contain-
ing these numbers (using TREE-INSERT repeatedly to insert the numbers one by
one) and then printing the numbers by an inorder tree walk. What are the worst-
case and best-case running times for this sorting algorithm?

12.3-4
Is the operation of deletion “commutative” in the sense that deleting x and then y

from a binary search tree leaves the same tree as deleting y and then x? Argue why
it is or give a counterexample.

12.3-5
Suppose that instead of each node x keeping the attribute x:p, pointing to x’s
parent, it keeps x:succ, pointing to x’s successor. Give pseudocode for SEARCH,
INSERT, and DELETE on a binary search tree T using this representation. These
procedures should operate in time O.h/, where h is the height of the tree T . (Hint:
You may wish to implement a subroutine that returns the parent of a node.)

12.3-6
When node ´ in TREE-DELETE has two children, we could choose node y as
its predecessor rather than its successor. What other changes to TREE-DELETE

would be necessary if we did so? Some have argued that a fair strategy, giving
equal priority to predecessor and successor, yields better empirical performance.
How might TREE-DELETE be changed to implement such a fair strategy?

? 12.4 Randomly built binary search trees

We have shown that each of the basic operations on a binary search tree runs
in O.h/ time, where h is the height of the tree. The height of a binary search

300 Chapter 12 Binary Search Trees

tree varies, however, as items are inserted and deleted. If, for example, the n items
are inserted in strictly increasing order, the tree will be a chain with height n � 1.
On the other hand, Exercise B.5-4 shows that h � blg nc. As with quicksort, we
can show that the behavior of the average case is much closer to the best case than
to the worst case.

Unfortunately, little is known about the average height of a binary search tree
when both insertion and deletion are used to create it. When the tree is created
by insertion alone, the analysis becomes more tractable. Let us therefore define a
randomly built binary search tree on n keys as one that arises from inserting the
keys in random order into an initially empty tree, where each of the nŠ permutations
of the input keys is equally likely. (Exercise 12.4-3 asks you to show that this notion
is different from assuming that every binary search tree on n keys is equally likely.)
In this section, we shall prove the following theorem.

Theorem 12.4
The expected height of a randomly built binary search tree on n distinct keys is
O.lg n/.

Proof We start by defining three random variables that help measure the height
of a randomly built binary search tree. We denote the height of a randomly built
binary search on n keys by Xn, and we define the exponential height Yn D 2Xn .
When we build a binary search tree on n keys, we choose one key as that of the
root, and we let Rn denote the random variable that holds this key’s rank within
the set of n keys; that is, Rn holds the position that this key would occupy if the
set of keys were sorted. The value of Rn is equally likely to be any element of the
set f1; 2; : : : ; ng. If Rn D i , then the left subtree of the root is a randomly built
binary search tree on i � 1 keys, and the right subtree is a randomly built binary
search tree on n � i keys. Because the height of a binary tree is 1 more than the
larger of the heights of the two subtrees of the root, the exponential height of a
binary tree is twice the larger of the exponential heights of the two subtrees of the
root. If we know that Rn D i , it follows that

Yn D 2 �max.Yi�1; Yn�i / :

As base cases, we have that Y1 D 1, because the exponential height of a tree with 1

node is 20 D 1 and, for convenience, we define Y0 D 0.
Next, define indicator random variables Zn;1; Zn;2; : : : ; Zn;n, where

Zn;i D I fRn D ig :

Because Rn is equally likely to be any element of f1; 2; : : : ; ng, it follows that
Pr fRn D ig D 1=n for i D 1; 2; : : : ; n, and hence, by Lemma 5.1, we have

E ŒZn;i � D 1=n ; (12.1)

12.4 Randomly built binary search trees 301

for i D 1; 2; : : : ; n. Because exactly one value of Zn;i is 1 and all others are 0, we
also have

Yn D
nX

iD1

Zn;i .2 �max.Yi�1; Yn�i // :

We shall show that E ŒYn� is polynomial in n, which will ultimately imply that
E ŒXn� D O.lg n/.

We claim that the indicator random variable Zn;i D I fRn D ig is independent
of the values of Yi�1 and Yn�i . Having chosen Rn D i , the left subtree (whose
exponential height is Yi�1) is randomly built on the i � 1 keys whose ranks are
less than i . This subtree is just like any other randomly built binary search tree
on i � 1 keys. Other than the number of keys it contains, this subtree’s structure
is not affected at all by the choice of Rn D i , and hence the random variables
Yi�1 and Zn;i are independent. Likewise, the right subtree, whose exponential
height is Yn�i , is randomly built on the n � i keys whose ranks are greater than i .
Its structure is independent of the value of Rn, and so the random variables Yn�i

and Zn;i are independent. Hence, we have

E ŒYn� D E

"
nX

iD1

Zn;i .2 �max.Yi�1; Yn�i //

#

D
nX

iD1

E ŒZn;i .2 �max.Yi�1; Yn�i //� (by linearity of expectation)

D
nX

iD1

E ŒZn;i � E Œ2 �max.Yi�1; Yn�i /� (by independence)

D
nX

iD1

1

n
� E Œ2 �max.Yi�1; Yn�i /� (by equation (12.1))

D 2

n

nX
iD1

E Œmax.Yi�1; Yn�i /� (by equation (C.22))

� 2

n

nX
iD1

.E ŒYi�1�C E ŒYn�i �/ (by Exercise C.3-4) .

Since each term E ŒY0� ; E ŒY1� ; : : : ; E ŒYn�1� appears twice in the last summation,
once as E ŒYi�1� and once as E ŒYn�i �, we have the recurrence

E ŒYn� � 4

n

n�1X
iD0

E ŒYi � : (12.2)

302 Chapter 12 Binary Search Trees

Using the substitution method, we shall show that for all positive integers n, the
recurrence (12.2) has the solution

E ŒYn� � 1

4

nC 3

3

!
:

In doing so, we shall use the identity
n�1X
iD0

i C 3

3

!
D

nC 3

4

!
: (12.3)

(Exercise 12.4-1 asks you to prove this identity.)
For the base cases, we note that the bounds 0 D Y0 D E ŒY0� � .1=4/

�
3

3

� D 1=4

and 1 D Y1 D E ŒY1� � .1=4/
�

1C3

3

� D 1 hold. For the inductive case, we have that

E ŒYn� � 4

n

n�1X
iD0

E ŒYi �

� 4

n

n�1X
iD0

1

4

i C 3

3

!
(by the inductive hypothesis)

D 1

n

n�1X
iD0

i C 3

3

!

D 1

n

nC 3

4

!
(by equation (12.3))

D 1

n
� .nC 3/Š

4Š .n � 1/Š

D 1

4
� .nC 3/Š

3Š nŠ

D 1

4

nC 3

3

!
:

We have bounded E ŒYn�, but our ultimate goal is to bound E ŒXn�. As Exer-
cise 12.4-4 asks you to show, the function f .x/ D 2x is convex (see page 1199).
Therefore, we can employ Jensen’s inequality (C.26), which says that

2EŒXn� � E
�
2Xn

�
D E ŒYn� ;

as follows:

2EŒXn� � 1

4

nC 3

3

!

Problems for Chapter 12 303

D 1

4
� .nC 3/.nC 2/.nC 1/

6

D n3 C 6n2 C 11nC 6

24
:

Taking logarithms of both sides gives E ŒXn� D O.lg n/.

Exercises

12.4-1
Prove equation (12.3).

12.4-2
Describe a binary search tree on n nodes such that the average depth of a node in
the tree is ‚.lg n/ but the height of the tree is !.lg n/. Give an asymptotic upper
bound on the height of an n-node binary search tree in which the average depth of
a node is ‚.lg n/.

12.4-3
Show that the notion of a randomly chosen binary search tree on n keys, where
each binary search tree of n keys is equally likely to be chosen, is different from
the notion of a randomly built binary search tree given in this section. (Hint: List
the possibilities when n D 3.)

12.4-4
Show that the function f .x/ D 2x is convex.

12.4-5 ?

Consider RANDOMIZED-QUICKSORT operating on a sequence of n distinct input
numbers. Prove that for any constant k > 0, all but O.1=nk/ of the nŠ input
permutations yield an O.n lg n/ running time.

Problems

12-1 Binary search trees with equal keys
Equal keys pose a problem for the implementation of binary search trees.

a. What is the asymptotic performance of TREE-INSERT when used to insert n

items with identical keys into an initially empty binary search tree?

We propose to improve TREE-INSERT by testing before line 5 to determine whether
´:key D x:key and by testing before line 11 to determine whether ´:key D y:key.

304 Chapter 12 Binary Search Trees

If equality holds, we implement one of the following strategies. For each strategy,
find the asymptotic performance of inserting n items with identical keys into an
initially empty binary search tree. (The strategies are described for line 5, in which
we compare the keys of ´ and x. Substitute y for x to arrive at the strategies for
line 11.)

b. Keep a boolean flag x:b at node x, and set x to either x: left or x:right based
on the value of x:b, which alternates between FALSE and TRUE each time we
visit x while inserting a node with the same key as x.

c. Keep a list of nodes with equal keys at x, and insert ´ into the list.

d. Randomly set x to either x: left or x:right. (Give the worst-case performance
and informally derive the expected running time.)

12-2 Radix trees
Given two strings a D a0a1 : : : ap and b D b0b1 : : : bq, where each ai and each bj

is in some ordered set of characters, we say that string a is lexicographically less
than string b if either

1. there exists an integer j , where 0 � j � min.p; q/, such that ai D bi for all
i D 0; 1; : : : ; j � 1 and aj < bj , or

2. p < q and ai D bi for all i D 0; 1; : : : ; p.

For example, if a and b are bit strings, then 10100 < 10110 by rule 1 (letting
j D 3) and 10100 < 101000 by rule 2. This ordering is similar to that used in
English-language dictionaries.

The radix tree data structure shown in Figure 12.5 stores the bit strings 1011,
10, 011, 100, and 0. When searching for a key a D a0a1 : : : ap, we go left at a
node of depth i if ai D 0 and right if ai D 1. Let S be a set of distinct bit strings
whose lengths sum to n. Show how to use a radix tree to sort S lexicographically
in ‚.n/ time. For the example in Figure 12.5, the output of the sort should be the
sequence 0, 011, 10, 100, 1011.

12-3 Average node depth in a randomly built binary search tree
In this problem, we prove that the average depth of a node in a randomly built
binary search tree with n nodes is O.lg n/. Although this result is weaker than
that of Theorem 12.4, the technique we shall use reveals a surprising similarity
between the building of a binary search tree and the execution of RANDOMIZED-
QUICKSORT from Section 7.3.

We define the total path length P.T / of a binary tree T as the sum, over all
nodes x in T , of the depth of node x, which we denote by d.x; T /.

Problems for Chapter 12 305

011

0

100

10

1011

0 1

1 0

1 0 1

1

Figure 12.5 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. We can determine each
node’s key by traversing the simple path from the root to that node. There is no need, therefore, to
store the keys in the nodes; the keys appear here for illustrative purposes only. Nodes are heavily
shaded if the keys corresponding to them are not in the tree; such nodes are present only to establish
a path to other nodes.

a. Argue that the average depth of a node in T is

1

n

X
x2T

d.x; T / D 1

n
P.T / :

Thus, we wish to show that the expected value of P.T / is O.n lg n/.

b. Let TL and TR denote the left and right subtrees of tree T , respectively. Argue
that if T has n nodes, then

P.T / D P.TL/C P.TR/C n � 1 :

c. Let P.n/ denote the average total path length of a randomly built binary search
tree with n nodes. Show that

P.n/ D 1

n

n�1X
iD0

.P.i/C P.n� i � 1/C n � 1/ :

d. Show how to rewrite P.n/ as

P.n/ D 2

n

n�1X
kD1

P.k/C‚.n/ :

e. Recalling the alternative analysis of the randomized version of quicksort given
in Problem 7-3, conclude that P.n/ D O.n lg n/.

306 Chapter 12 Binary Search Trees

At each recursive invocation of quicksort, we choose a random pivot element to
partition the set of elements being sorted. Each node of a binary search tree parti-
tions the set of elements that fall into the subtree rooted at that node.

f. Describe an implementation of quicksort in which the comparisons to sort a set
of elements are exactly the same as the comparisons to insert the elements into
a binary search tree. (The order in which comparisons are made may differ, but
the same comparisons must occur.)

12-4 Number of different binary trees
Let bn denote the number of different binary trees with n nodes. In this problem,
you will find a formula for bn, as well as an asymptotic estimate.

a. Show that b0 D 1 and that, for n � 1,

bn D
n�1X
kD0

bkbn�1�k :

b. Referring to Problem 4-4 for the definition of a generating function, let B.x/

be the generating function

B.x/ D
1X

nD0

bnxn :

Show that B.x/ D xB.x/2 C 1, and hence one way to express B.x/ in closed
form is

B.x/ D 1

2x

�
1 �
p

1 � 4x
�

:

The Taylor expansion of f .x/ around the point x D a is given by

f .x/ D
1X

kD0

f .k/.a/

kŠ
.x � a/k ;

where f .k/.x/ is the kth derivative of f evaluated at x.

c. Show that

bn D
1

nC 1

2n

n

!

Notes for Chapter 12 307

(the nth Catalan number) by using the Taylor expansion of
p

1 � 4x around
x D 0. (If you wish, instead of using the Taylor expansion, you may use
the generalization of the binomial expansion (C.4) to nonintegral exponents n,
where for any real number n and for any integer k, we interpret

�
n

k

�
to be

n.n � 1/ � � � .n � k C 1/=kŠ if k � 0, and 0 otherwise.)

d. Show that

bn D 4n

p
�n3=2

.1CO.1=n// :

Chapter notes

Knuth [211] contains a good discussion of simple binary search trees as well as
many variations. Binary search trees seem to have been independently discovered
by a number of people in the late 1950s. Radix trees are often called “tries,” which
comes from the middle letters in the word retrieval. Knuth [211] also discusses
them.

Many texts, including the first two editions of this book, have a somewhat sim-
pler method of deleting a node from a binary search tree when both of its children
are present. Instead of replacing node ´ by its successor y, we delete node y but
copy its key and satellite data into node ´. The downside of this approach is that
the node actually deleted might not be the node passed to the delete procedure. If
other components of a program maintain pointers to nodes in the tree, they could
mistakenly end up with “stale” pointers to nodes that have been deleted. Although
the deletion method presented in this edition of this book is a bit more complicated,
it guarantees that a call to delete node ´ deletes node ´ and only node ´.

Section 15.5 will show how to construct an optimal binary search tree when
we know the search frequencies before constructing the tree. That is, given the
frequencies of searching for each key and the frequencies of searching for values
that fall between keys in the tree, we construct a binary search tree for which a
set of searches that follows these frequencies examines the minimum number of
nodes.

The proof in Section 12.4 that bounds the expected height of a randomly built
binary search tree is due to Aslam [24]. Martı́nez and Roura [243] give randomized
algorithms for insertion into and deletion from binary search trees in which the
result of either operation is a random binary search tree. Their definition of a
random binary search tree differs—only slightly—from that of a randomly built
binary search tree in this chapter, however.

13 Red-Black Trees

Chapter 12 showed that a binary search tree of height h can support any of the basic
dynamic-set operations—such as SEARCH, PREDECESSOR, SUCCESSOR, MINI-
MUM, MAXIMUM, INSERT, and DELETE—in O.h/ time. Thus, the set operations
are fast if the height of the search tree is small. If its height is large, however, the
set operations may run no faster than with a linked list. Red-black trees are one
of many search-tree schemes that are “balanced” in order to guarantee that basic
dynamic-set operations take O.lg n/ time in the worst case.

13.1 Properties of red-black trees

A red-black tree is a binary search tree with one extra bit of storage per node: its
color, which can be either RED or BLACK. By constraining the node colors on any
simple path from the root to a leaf, red-black trees ensure that no such path is more
than twice as long as any other, so that the tree is approximately balanced.

Each node of the tree now contains the attributes color, key, left, right, and p. If
a child or the parent of a node does not exist, the corresponding pointer attribute
of the node contains the value NIL. We shall regard these NILs as being pointers to
leaves (external nodes) of the binary search tree and the normal, key-bearing nodes
as being internal nodes of the tree.

A red-black tree is a binary tree that satisfies the following red-black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant leaves contain the
same number of black nodes.

13.1 Properties of red-black trees 309

Figure 13.1(a) shows an example of a red-black tree.
As a matter of convenience in dealing with boundary conditions in red-black

tree code, we use a single sentinel to represent NIL (see page 238). For a red-black
tree T , the sentinel T:nil is an object with the same attributes as an ordinary node
in the tree. Its color attribute is BLACK, and its other attributes—p, left, right,
and key—can take on arbitrary values. As Figure 13.1(b) shows, all pointers to NIL

are replaced by pointers to the sentinel T:nil.
We use the sentinel so that we can treat a NIL child of a node x as an ordinary

node whose parent is x. Although we instead could add a distinct sentinel node
for each NIL in the tree, so that the parent of each NIL is well defined, that ap-
proach would waste space. Instead, we use the one sentinel T:nil to represent all
the NILs—all leaves and the root’s parent. The values of the attributes p, left, right,
and key of the sentinel are immaterial, although we may set them during the course
of a procedure for our convenience.

We generally confine our interest to the internal nodes of a red-black tree, since
they hold the key values. In the remainder of this chapter, we omit the leaves when
we draw red-black trees, as shown in Figure 13.1(c).

We call the number of black nodes on any simple path from, but not including, a
node x down to a leaf the black-height of the node, denoted bh.x/. By property 5,
the notion of black-height is well defined, since all descending simple paths from
the node have the same number of black nodes. We define the black-height of a
red-black tree to be the black-height of its root.

The following lemma shows why red-black trees make good search trees.

Lemma 13.1
A red-black tree with n internal nodes has height at most 2 lg.nC 1/.

Proof We start by showing that the subtree rooted at any node x contains at least
2bh.x/ � 1 internal nodes. We prove this claim by induction on the height of x. If
the height of x is 0, then x must be a leaf (T:nil), and the subtree rooted at x indeed
contains at least 2bh.x/ � 1 D 20 � 1 D 0 internal nodes. For the inductive step,
consider a node x that has positive height and is an internal node with two children.
Each child has a black-height of either bh.x/ or bh.x/ � 1, depending on whether
its color is red or black, respectively. Since the height of a child of x is less than
the height of x itself, we can apply the inductive hypothesis to conclude that each
child has at least 2bh.x/�1 � 1 internal nodes. Thus, the subtree rooted at x contains
at least .2bh.x/�1�1/C .2bh.x/�1�1/C1 D 2bh.x/�1 internal nodes, which proves
the claim.

To complete the proof of the lemma, let h be the height of the tree. According
to property 4, at least half the nodes on any simple path from the root to a leaf, not

310 Chapter 13 Red-Black Trees

NIL NIL

NIL NIL NIL NILNIL

NIL NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL NIL

NIL NIL

26

41

4730

28 38

35 39

17

21

2319

20

14

16

15

10

127

31

1 1

2

1

1

2

1

1 1

2

3

1 1

11

2 1

2

3

(a)

26

41

4730

28 38

35 39

17

21

2319

20

14

16

15

10

127

3

(b)

26

41

4730

28 38

35 39

17

21

2319

20

14

16

15

10

127

3
(c)

T:nil

Figure 13.1 A red-black tree with black nodes darkened and red nodes shaded. Every node in a
red-black tree is either red or black, the children of a red node are both black, and every simple path
from a node to a descendant leaf contains the same number of black nodes. (a) Every leaf, shown
as a NIL, is black. Each non-NIL node is marked with its black-height; NILs have black-height 0.
(b) The same red-black tree but with each NIL replaced by the single sentinel T:nil, which is always
black, and with black-heights omitted. The root’s parent is also the sentinel. (c) The same red-black
tree but with leaves and the root’s parent omitted entirely. We shall use this drawing style in the
remainder of this chapter.

13.1 Properties of red-black trees 311

including the root, must be black. Consequently, the black-height of the root must
be at least h=2; thus,

n � 2h=2 � 1 :

Moving the 1 to the left-hand side and taking logarithms on both sides yields
lg.nC 1/ � h=2, or h � 2 lg.nC 1/.

As an immediate consequence of this lemma, we can implement the dynamic-set
operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR

in O.lg n/ time on red-black trees, since each can run in O.h/ time on a binary
search tree of height h (as shown in Chapter 12) and any red-black tree on n nodes
is a binary search tree with height O.lg n/. (Of course, references to NIL in the
algorithms of Chapter 12 would have to be replaced by T:nil.) Although the al-
gorithms TREE-INSERT and TREE-DELETE from Chapter 12 run in O.lg n/ time
when given a red-black tree as input, they do not directly support the dynamic-set
operations INSERT and DELETE, since they do not guarantee that the modified bi-
nary search tree will be a red-black tree. We shall see in Sections 13.3 and 13.4,
however, how to support these two operations in O.lg n/ time.

Exercises

13.1-1
In the style of Figure 13.1(a), draw the complete binary search tree of height 3 on
the keys f1; 2; : : : ; 15g. Add the NIL leaves and color the nodes in three different
ways such that the black-heights of the resulting red-black trees are 2, 3, and 4.

13.1-2
Draw the red-black tree that results after TREE-INSERT is called on the tree in
Figure 13.1 with key 36. If the inserted node is colored red, is the resulting tree a
red-black tree? What if it is colored black?

13.1-3
Let us define a relaxed red-black tree as a binary search tree that satisfies red-
black properties 1, 3, 4, and 5. In other words, the root may be either red or black.
Consider a relaxed red-black tree T whose root is red. If we color the root of T

black but make no other changes to T , is the resulting tree a red-black tree?

13.1-4
Suppose that we “absorb” every red node in a red-black tree into its black parent,
so that the children of the red node become children of the black parent. (Ignore
what happens to the keys.) What are the possible degrees of a black node after all

312 Chapter 13 Red-Black Trees

its red children are absorbed? What can you say about the depths of the leaves of
the resulting tree?

13.1-5
Show that the longest simple path from a node x in a red-black tree to a descendant
leaf has length at most twice that of the shortest simple path from node x to a
descendant leaf.

13.1-6
What is the largest possible number of internal nodes in a red-black tree with black-
height k? What is the smallest possible number?

13.1-7
Describe a red-black tree on n keys that realizes the largest possible ratio of red in-
ternal nodes to black internal nodes. What is this ratio? What tree has the smallest
possible ratio, and what is the ratio?

13.2 Rotations

The search-tree operations TREE-INSERT and TREE-DELETE, when run on a red-
black tree with n keys, take O.lg n/ time. Because they modify the tree, the result
may violate the red-black properties enumerated in Section 13.1. To restore these
properties, we must change the colors of some of the nodes in the tree and also
change the pointer structure.

We change the pointer structure through rotation, which is a local operation in
a search tree that preserves the binary-search-tree property. Figure 13.2 shows the
two kinds of rotations: left rotations and right rotations. When we do a left rotation
on a node x, we assume that its right child y is not T:nil; x may be any node in
the tree whose right child is not T:nil. The left rotation “pivots” around the link
from x to y. It makes y the new root of the subtree, with x as y’s left child and y’s
left child as x’s right child.

The pseudocode for LEFT-ROTATE assumes that x:right ¤ T:nil and that the
root’s parent is T:nil.

13.2 Rotations 313

y

x

α β

γ

x

yα

β γ

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

Figure 13.2 The rotation operations on a binary search tree. The operation LEFT-ROTATE.T; x/

transforms the configuration of the two nodes on the right into the configuration on the left by chang-
ing a constant number of pointers. The inverse operation RIGHT-ROTATE.T; y/ transforms the con-
figuration on the left into the configuration on the right. The letters ˛, ˇ, and
 represent arbitrary
subtrees. A rotation operation preserves the binary-search-tree property: the keys in ˛ precede x:key,
which precedes the keys in ˇ, which precede y:key, which precedes the keys in
 .

LEFT-ROTATE.T; x/

1 y D x:right // set y

2 x:right D y: left // turn y’s left subtree into x’s right subtree
3 if y: left ¤ T:nil
4 y: left:p D x

5 y:p D x:p // link x’s parent to y

6 if x:p == T:nil
7 T:root D y

8 elseif x == x:p: left
9 x:p: left D y

10 else x:p:right D y

11 y: left D x // put x on y’s left
12 x:p D y

Figure 13.3 shows an example of how LEFT-ROTATE modifies a binary search
tree. The code for RIGHT-ROTATE is symmetric. Both LEFT-ROTATE and RIGHT-
ROTATE run in O.1/ time. Only pointers are changed by a rotation; all other
attributes in a node remain the same.

Exercises

13.2-1
Write pseudocode for RIGHT-ROTATE.

13.2-2
Argue that in every n-node binary search tree, there are exactly n � 1 possible
rotations.

314 Chapter 13 Red-Black Trees

2

3

4

6

7

11

9 18

14

12 17

19

22

20

x

y

2

3

4

6

7

18

19

14

12 17

22

20

x

y

11

9

LEFT-ROTATE(T, x)

Figure 13.3 An example of how the procedure LEFT-ROTATE.T; x/ modifies a binary search tree.
Inorder tree walks of the input tree and the modified tree produce the same listing of key values.

13.2-3
Let a, b, and c be arbitrary nodes in subtrees ˛, ˇ, and
 , respectively, in the left
tree of Figure 13.2. How do the depths of a, b, and c change when a left rotation
is performed on node x in the figure?

13.2-4
Show that any arbitrary n-node binary search tree can be transformed into any other
arbitrary n-node binary search tree using O.n/ rotations. (Hint: First show that at
most n � 1 right rotations suffice to transform the tree into a right-going chain.)

13.2-5 ?

We say that a binary search tree T1 can be right-converted to binary search tree T2

if it is possible to obtain T2 from T1 via a series of calls to RIGHT-ROTATE. Give
an example of two trees T1 and T2 such that T1 cannot be right-converted to T2.
Then, show that if a tree T1 can be right-converted to T2, it can be right-converted
using O.n2/ calls to RIGHT-ROTATE.

13.3 Insertion 315

13.3 Insertion

We can insert a node into an n-node red-black tree in O.lg n/ time. To do so, we
use a slightly modified version of the TREE-INSERT procedure (Section 12.3) to
insert node ´ into the tree T as if it were an ordinary binary search tree, and then we
color ´ red. (Exercise 13.3-1 asks you to explain why we choose to make node ´

red rather than black.) To guarantee that the red-black properties are preserved, we
then call an auxiliary procedure RB-INSERT-FIXUP to recolor nodes and perform
rotations. The call RB-INSERT.T; ´/ inserts node ´, whose key is assumed to have
already been filled in, into the red-black tree T .

RB-INSERT.T; ´/

1 y D T:nil
2 x D T:root
3 while x ¤ T:nil
4 y D x

5 if ´:key < x:key
6 x D x: left
7 else x D x:right
8 ´:p D y

9 if y == T:nil
10 T:root D ´

11 elseif ´:key < y:key
12 y: left D ´

13 else y:right D ´

14 ´: left D T:nil
15 ´:right D T:nil
16 ´:color D RED

17 RB-INSERT-FIXUP.T; ´/

The procedures TREE-INSERT and RB-INSERT differ in four ways. First, all
instances of NIL in TREE-INSERT are replaced by T:nil. Second, we set ´: left
and ´:right to T:nil in lines 14–15 of RB-INSERT, in order to maintain the
proper tree structure. Third, we color ´ red in line 16. Fourth, because col-
oring ´ red may cause a violation of one of the red-black properties, we call
RB-INSERT-FIXUP.T; ´/ in line 17 of RB-INSERT to restore the red-black prop-
erties.

316 Chapter 13 Red-Black Trees

RB-INSERT-FIXUP.T; ´/

1 while ´:p:color == RED

2 if ´:p == ´:p:p: left
3 y D ´:p:p:right
4 if y:color == RED

5 ´:p:color D BLACK // case 1
6 y:color D BLACK // case 1
7 ´:p:p:color D RED // case 1
8 ´ D ´:p:p // case 1
9 else if ´ == ´:p:right

10 ´ D ´:p // case 2
11 LEFT-ROTATE.T; ´/ // case 2
12 ´:p:color D BLACK // case 3
13 ´:p:p:color D RED // case 3
14 RIGHT-ROTATE.T; ´:p:p/ // case 3
15 else (same as then clause

with “right” and “left” exchanged)
16 T:root:color D BLACK

To understand how RB-INSERT-FIXUP works, we shall break our examination
of the code into three major steps. First, we shall determine what violations of
the red-black properties are introduced in RB-INSERT when node ´ is inserted
and colored red. Second, we shall examine the overall goal of the while loop in
lines 1–15. Finally, we shall explore each of the three cases1 within the while
loop’s body and see how they accomplish the goal. Figure 13.4 shows how RB-
INSERT-FIXUP operates on a sample red-black tree.

Which of the red-black properties might be violated upon the call to RB-
INSERT-FIXUP? Property 1 certainly continues to hold, as does property 3, since
both children of the newly inserted red node are the sentinel T:nil. Property 5,
which says that the number of black nodes is the same on every simple path from
a given node, is satisfied as well, because node ´ replaces the (black) sentinel, and
node ´ is red with sentinel children. Thus, the only properties that might be vi-
olated are property 2, which requires the root to be black, and property 4, which
says that a red node cannot have a red child. Both possible violations are due to ´

being colored red. Property 2 is violated if ´ is the root, and property 4 is violated
if ´’s parent is red. Figure 13.4(a) shows a violation of property 4 after the node ´

has been inserted.

1Case 2 falls through into case 3, and so these two cases are not mutually exclusive.

13.3 Insertion 317

z

y

11

2

1 7

5

4

8

14

15

z

y

11

2

1 7

5

4

8

14

15

(a)

(b)

Case 1

z

y

11

7

2 8

4

14

15(c)

Case 2

1 5

4

z

7

2

1 5

11

14(d)

Case 3

4

8

15

Figure 13.4 The operation of RB-INSERT-FIXUP. (a) A node ´ after insertion. Because both ´

and its parent ´:p are red, a violation of property 4 occurs. Since ´’s uncle y is red, case 1 in the
code applies. We recolor nodes and move the pointer ´ up the tree, resulting in the tree shown in (b).
Once again, ´ and its parent are both red, but ´’s uncle y is black. Since ´ is the right child of ´:p,
case 2 applies. We perform a left rotation, and the tree that results is shown in (c). Now, ´ is the left
child of its parent, and case 3 applies. Recoloring and right rotation yield the tree in (d), which is a
legal red-black tree.

318 Chapter 13 Red-Black Trees

The while loop in lines 1–15 maintains the following three-part invariant at the
start of each iteration of the loop:

a. Node ´ is red.

b. If ´:p is the root, then ´:p is black.

c. If the tree violates any of the red-black properties, then it violates at most
one of them, and the violation is of either property 2 or property 4. If the
tree violates property 2, it is because ´ is the root and is red. If the tree
violates property 4, it is because both ´ and ´:p are red.

Part (c), which deals with violations of red-black properties, is more central to
showing that RB-INSERT-FIXUP restores the red-black properties than parts (a)
and (b), which we use along the way to understand situations in the code. Because
we’ll be focusing on node ´ and nodes near it in the tree, it helps to know from
part (a) that ´ is red. We shall use part (b) to show that the node ´:p:p exists when
we reference it in lines 2, 3, 7, 8, 13, and 14.

Recall that we need to show that a loop invariant is true prior to the first itera-
tion of the loop, that each iteration maintains the loop invariant, and that the loop
invariant gives us a useful property at loop termination.

We start with the initialization and termination arguments. Then, as we exam-
ine how the body of the loop works in more detail, we shall argue that the loop
maintains the invariant upon each iteration. Along the way, we shall also demon-
strate that each iteration of the loop has two possible outcomes: either the pointer ´

moves up the tree, or we perform some rotations and then the loop terminates.

Initialization: Prior to the first iteration of the loop, we started with a red-black
tree with no violations, and we added a red node ´. We show that each part of
the invariant holds at the time RB-INSERT-FIXUP is called:

a. When RB-INSERT-FIXUP is called, ´ is the red node that was added.

b. If ´:p is the root, then ´:p started out black and did not change prior to the
call of RB-INSERT-FIXUP.

c. We have already seen that properties 1, 3, and 5 hold when RB-INSERT-
FIXUP is called.
If the tree violates property 2, then the red root must be the newly added
node ´, which is the only internal node in the tree. Because the parent and
both children of ´ are the sentinel, which is black, the tree does not also
violate property 4. Thus, this violation of property 2 is the only violation of
red-black properties in the entire tree.
If the tree violates property 4, then, because the children of node ´ are black
sentinels and the tree had no other violations prior to ´ being added, the

13.3 Insertion 319

violation must be because both ´ and ´:p are red. Moreover, the tree violates
no other red-black properties.

Termination: When the loop terminates, it does so because ´:p is black. (If ´ is
the root, then ´:p is the sentinel T:nil, which is black.) Thus, the tree does not
violate property 4 at loop termination. By the loop invariant, the only property
that might fail to hold is property 2. Line 16 restores this property, too, so that
when RB-INSERT-FIXUP terminates, all the red-black properties hold.

Maintenance: We actually need to consider six cases in the while loop, but three
of them are symmetric to the other three, depending on whether line 2 deter-
mines ´’s parent ´:p to be a left child or a right child of ´’s grandparent ´:p:p.
We have given the code only for the situation in which ´:p is a left child. The
node ´:p:p exists, since by part (b) of the loop invariant, if ´:p is the root,
then ´:p is black. Since we enter a loop iteration only if ´:p is red, we know
that ´:p cannot be the root. Hence, ´:p:p exists.

We distinguish case 1 from cases 2 and 3 by the color of ´’s parent’s sibling,
or “uncle.” Line 3 makes y point to ´’s uncle ´:p:p:right, and line 4 tests y’s
color. If y is red, then we execute case 1. Otherwise, control passes to cases 2
and 3. In all three cases, ´’s grandparent ´:p:p is black, since its parent ´:p is
red, and property 4 is violated only between ´ and ´:p.

Case 1: ´’s uncle y is red

Figure 13.5 shows the situation for case 1 (lines 5–8), which occurs when
both ´:p and y are red. Because ´:p:p is black, we can color both ´:p and y

black, thereby fixing the problem of ´ and ´:p both being red, and we can
color ´:p:p red, thereby maintaining property 5. We then repeat the while loop
with ´:p:p as the new node ´. The pointer ´ moves up two levels in the tree.

Now, we show that case 1 maintains the loop invariant at the start of the next
iteration. We use ´ to denote node ´ in the current iteration, and ´0 D ´:p:p
to denote the node that will be called node ´ at the test in line 1 upon the next
iteration.

a. Because this iteration colors ´:p:p red, node ´0 is red at the start of the next
iteration.

b. The node ´0:p is ´:p:p:p in this iteration, and the color of this node does not
change. If this node is the root, it was black prior to this iteration, and it
remains black at the start of the next iteration.

c. We have already argued that case 1 maintains property 5, and it does not
introduce a violation of properties 1 or 3.

320 Chapter 13 Red-Black Trees

z

y

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

new z

y

C

DB

δ ε

C

DB

A

α β

γ δ ε

new z

(b)

A

α β

γz

Figure 13.5 Case 1 of the procedure RB-INSERT-FIXUP. Property 4 is violated, since ´ and its
parent ´:p are both red. We take the same action whether (a) ´ is a right child or (b) ´ is a left
child. Each of the subtrees ˛, ˇ,
 , ı, and " has a black root, and each has the same black-height.
The code for case 1 changes the colors of some nodes, preserving property 5: all downward simple
paths from a node to a leaf have the same number of blacks. The while loop continues with node ´’s
grandparent ´:p:p as the new ´. Any violation of property 4 can now occur only between the new ´,
which is red, and its parent, if it is red as well.

If node ´0 is the root at the start of the next iteration, then case 1 corrected
the lone violation of property 4 in this iteration. Since ´0 is red and it is the
root, property 2 becomes the only one that is violated, and this violation is
due to ´0.
If node ´0 is not the root at the start of the next iteration, then case 1 has
not created a violation of property 2. Case 1 corrected the lone violation
of property 4 that existed at the start of this iteration. It then made ´0 red
and left ´0:p alone. If ´0:p was black, there is no violation of property 4.
If ´0:p was red, coloring ´0 red created one violation of property 4 between ´0

and ´0:p.

Case 2: ´’s uncle y is black and ´ is a right child
Case 3: ´’s uncle y is black and ´ is a left child

In cases 2 and 3, the color of ´’s uncle y is black. We distinguish the two cases
according to whether ´ is a right or left child of ´:p. Lines 10–11 constitute
case 2, which is shown in Figure 13.6 together with case 3. In case 2, node ´

is a right child of its parent. We immediately use a left rotation to transform
the situation into case 3 (lines 12–14), in which node ´ is a left child. Because

13.3 Insertion 321

C

A

Bα

β γ

δ

Case 2

z

y B

A

α β

γ

δ

Case 3

z

y z A

B

C

α β γ δ

C

Figure 13.6 Cases 2 and 3 of the procedure RB-INSERT-FIXUP. As in case 1, property 4 is violated
in either case 2 or case 3 because ´ and its parent ´:p are both red. Each of the subtrees ˛, ˇ,
 , and ı

has a black root (˛, ˇ, and
 from property 4, and ı because otherwise we would be in case 1), and
each has the same black-height. We transform case 2 into case 3 by a left rotation, which preserves
property 5: all downward simple paths from a node to a leaf have the same number of blacks. Case 3
causes some color changes and a right rotation, which also preserve property 5. The while loop then
terminates, because property 4 is satisfied: there are no longer two red nodes in a row.

both ´ and ´:p are red, the rotation affects neither the black-height of nodes
nor property 5. Whether we enter case 3 directly or through case 2, ´’s uncle y

is black, since otherwise we would have executed case 1. Additionally, the
node ´:p:p exists, since we have argued that this node existed at the time that
lines 2 and 3 were executed, and after moving ´ up one level in line 10 and then
down one level in line 11, the identity of ´:p:p remains unchanged. In case 3,
we execute some color changes and a right rotation, which preserve property 5,
and then, since we no longer have two red nodes in a row, we are done. The
while loop does not iterate another time, since ´:p is now black.

We now show that cases 2 and 3 maintain the loop invariant. (As we have just
argued, ´:p will be black upon the next test in line 1, and the loop body will not
execute again.)

a. Case 2 makes ´ point to ´:p, which is red. No further change to ´ or its color
occurs in cases 2 and 3.

b. Case 3 makes ´:p black, so that if ´:p is the root at the start of the next
iteration, it is black.

c. As in case 1, properties 1, 3, and 5 are maintained in cases 2 and 3.
Since node ´ is not the root in cases 2 and 3, we know that there is no viola-
tion of property 2. Cases 2 and 3 do not introduce a violation of property 2,
since the only node that is made red becomes a child of a black node by the
rotation in case 3.
Cases 2 and 3 correct the lone violation of property 4, and they do not intro-
duce another violation.

322 Chapter 13 Red-Black Trees

Having shown that each iteration of the loop maintains the invariant, we have
shown that RB-INSERT-FIXUP correctly restores the red-black properties.

Analysis

What is the running time of RB-INSERT? Since the height of a red-black tree on n

nodes is O.lg n/, lines 1–16 of RB-INSERT take O.lg n/ time. In RB-INSERT-
FIXUP, the while loop repeats only if case 1 occurs, and then the pointer ´ moves
two levels up the tree. The total number of times the while loop can be executed
is therefore O.lg n/. Thus, RB-INSERT takes a total of O.lg n/ time. Moreover, it
never performs more than two rotations, since the while loop terminates if case 2
or case 3 is executed.

Exercises

13.3-1
In line 16 of RB-INSERT, we set the color of the newly inserted node ´ to red.
Observe that if we had chosen to set ´’s color to black, then property 4 of a red-
black tree would not be violated. Why didn’t we choose to set ´’s color to black?

13.3-2
Show the red-black trees that result after successively inserting the keys 41; 38; 31;

12; 19; 8 into an initially empty red-black tree.

13.3-3
Suppose that the black-height of each of the subtrees ˛; ˇ;
; ı; " in Figures 13.5
and 13.6 is k. Label each node in each figure with its black-height to verify that
the indicated transformation preserves property 5.

13.3-4
Professor Teach is concerned that RB-INSERT-FIXUP might set T:nil:color to
RED, in which case the test in line 1 would not cause the loop to terminate when ´

is the root. Show that the professor’s concern is unfounded by arguing that RB-
INSERT-FIXUP never sets T:nil:color to RED.

13.3-5
Consider a red-black tree formed by inserting n nodes with RB-INSERT. Argue
that if n > 1, the tree has at least one red node.

13.3-6
Suggest how to implement RB-INSERT efficiently if the representation for red-
black trees includes no storage for parent pointers.

13.4 Deletion 323

13.4 Deletion

Like the other basic operations on an n-node red-black tree, deletion of a node takes
time O.lg n/. Deleting a node from a red-black tree is a bit more complicated than
inserting a node.

The procedure for deleting a node from a red-black tree is based on the TREE-
DELETE procedure (Section 12.3). First, we need to customize the TRANSPLANT

subroutine that TREE-DELETE calls so that it applies to a red-black tree:

RB-TRANSPLANT.T; u; �/

1 if u:p == T:nil
2 T:root D �

3 elseif u == u:p: left
4 u:p: left D �

5 else u:p:right D �

6 �:p D u:p

The procedure RB-TRANSPLANT differs from TRANSPLANT in two ways. First,
line 1 references the sentinel T:nil instead of NIL. Second, the assignment to �:p in
line 6 occurs unconditionally: we can assign to �:p even if � points to the sentinel.
In fact, we shall exploit the ability to assign to �:p when � D T:nil.

The procedure RB-DELETE is like the TREE-DELETE procedure, but with ad-
ditional lines of pseudocode. Some of the additional lines keep track of a node y

that might cause violations of the red-black properties. When we want to delete
node ´ and ´ has fewer than two children, then ´ is removed from the tree, and we
want y to be ´. When ´ has two children, then y should be ´’s successor, and y

moves into ´’s position in the tree. We also remember y’s color before it is re-
moved from or moved within the tree, and we keep track of the node x that moves
into y’s original position in the tree, because node x might also cause violations
of the red-black properties. After deleting node ´, RB-DELETE calls an auxiliary
procedure RB-DELETE-FIXUP, which changes colors and performs rotations to
restore the red-black properties.

324 Chapter 13 Red-Black Trees

RB-DELETE.T; ´/

1 y D ´

2 y-original-color D y:color
3 if ´: left == T:nil
4 x D ´:right
5 RB-TRANSPLANT.T; ´; ´:right/
6 elseif ´:right == T:nil
7 x D ´: left
8 RB-TRANSPLANT.T; ´; ´: left/
9 else y D TREE-MINIMUM.´:right/

10 y-original-color D y:color
11 x D y:right
12 if y:p == ´

13 x:p D y

14 else RB-TRANSPLANT.T; y; y:right/
15 y:right D ´:right
16 y:right:p D y

17 RB-TRANSPLANT.T; ´; y/

18 y: left D ´: left
19 y: left:p D y

20 y:color D ´:color
21 if y-original-color == BLACK

22 RB-DELETE-FIXUP.T; x/

Although RB-DELETE contains almost twice as many lines of pseudocode as
TREE-DELETE, the two procedures have the same basic structure. You can find
each line of TREE-DELETE within RB-DELETE (with the changes of replacing
NIL by T:nil and replacing calls to TRANSPLANT by calls to RB-TRANSPLANT),
executed under the same conditions.

Here are the other differences between the two procedures:

� We maintain node y as the node either removed from the tree or moved within
the tree. Line 1 sets y to point to node ´ when ´ has fewer than two children
and is therefore removed. When ´ has two children, line 9 sets y to point to ´’s
successor, just as in TREE-DELETE, and y will move into ´’s position in the
tree.

� Because node y’s color might change, the variable y-original-color stores y’s
color before any changes occur. Lines 2 and 10 set this variable immediately
after assignments to y. When ´ has two children, then y ¤ ´ and node y

moves into node ´’s original position in the red-black tree; line 20 gives y the
same color as ´. We need to save y’s original color in order to test it at the

13.4 Deletion 325

end of RB-DELETE; if it was black, then removing or moving y could cause
violations of the red-black properties.

� As discussed, we keep track of the node x that moves into node y’s original
position. The assignments in lines 4, 7, and 11 set x to point to either y’s only
child or, if y has no children, the sentinel T:nil. (Recall from Section 12.3
that y has no left child.)

� Since node x moves into node y’s original position, the attribute x:p is always
set to point to the original position in the tree of y’s parent, even if x is, in fact,
the sentinel T:nil. Unless ´ is y’s original parent (which occurs only when ´ has
two children and its successor y is ´’s right child), the assignment to x:p takes
place in line 6 of RB-TRANSPLANT. (Observe that when RB-TRANSPLANT

is called in lines 5, 8, or 14, the second parameter passed is the same as x.)

When y’s original parent is ´, however, we do not want x:p to point to y’s orig-
inal parent, since we are removing that node from the tree. Because node y will
move up to take ´’s position in the tree, setting x:p to y in line 13 causes x:p
to point to the original position of y’s parent, even if x D T:nil.

� Finally, if node y was black, we might have introduced one or more violations
of the red-black properties, and so we call RB-DELETE-FIXUP in line 22 to
restore the red-black properties. If y was red, the red-black properties still hold
when y is removed or moved, for the following reasons:

1. No black-heights in the tree have changed.

2. No red nodes have been made adjacent. Because y takes ´’s place in the
tree, along with ´’s color, we cannot have two adjacent red nodes at y’s new
position in the tree. In addition, if y was not ´’s right child, then y’s original
right child x replaces y in the tree. If y is red, then x must be black, and so
replacing y by x cannot cause two red nodes to become adjacent.

3. Since y could not have been the root if it was red, the root remains black.

If node y was black, three problems may arise, which the call of RB-DELETE-
FIXUP will remedy. First, if y had been the root and a red child of y becomes the
new root, we have violated property 2. Second, if both x and x:p are red, then
we have violated property 4. Third, moving y within the tree causes any simple
path that previously contained y to have one fewer black node. Thus, property 5
is now violated by any ancestor of y in the tree. We can correct the violation
of property 5 by saying that node x, now occupying y’s original position, has an
“extra” black. That is, if we add 1 to the count of black nodes on any simple path
that contains x, then under this interpretation, property 5 holds. When we remove
or move the black node y, we “push” its blackness onto node x. The problem is
that now node x is neither red nor black, thereby violating property 1. Instead,

326 Chapter 13 Red-Black Trees

node x is either “doubly black” or “red-and-black,” and it contributes either 2 or 1,
respectively, to the count of black nodes on simple paths containing x. The color
attribute of x will still be either RED (if x is red-and-black) or BLACK (if x is
doubly black). In other words, the extra black on a node is reflected in x’s pointing
to the node rather than in the color attribute.

We can now see the procedure RB-DELETE-FIXUP and examine how it restores
the red-black properties to the search tree.

RB-DELETE-FIXUP.T; x/

1 while x ¤ T:root and x:color == BLACK

2 if x == x:p: left
3 w D x:p:right
4 if w:color == RED

5 w:color D BLACK // case 1
6 x:p:color D RED // case 1
7 LEFT-ROTATE.T; x:p/ // case 1
8 w D x:p:right // case 1
9 if w: left:color == BLACK and w:right:color == BLACK

10 w:color D RED // case 2
11 x D x:p // case 2
12 else if w:right:color == BLACK

13 w: left:color D BLACK // case 3
14 w:color D RED // case 3
15 RIGHT-ROTATE.T; w/ // case 3
16 w D x:p:right // case 3
17 w:color D x:p:color // case 4
18 x:p:color D BLACK // case 4
19 w:right:color D BLACK // case 4
20 LEFT-ROTATE.T; x:p/ // case 4
21 x D T:root // case 4
22 else (same as then clause with “right” and “left” exchanged)
23 x:color D BLACK

The procedure RB-DELETE-FIXUP restores properties 1, 2, and 4. Exercises
13.4-1 and 13.4-2 ask you to show that the procedure restores properties 2 and 4,
and so in the remainder of this section, we shall focus on property 1. The goal of
the while loop in lines 1–22 is to move the extra black up the tree until

1. x points to a red-and-black node, in which case we color x (singly) black in
line 23;

2. x points to the root, in which case we simply “remove” the extra black; or

3. having performed suitable rotations and recolorings, we exit the loop.

13.4 Deletion 327

Within the while loop, x always points to a nonroot doubly black node. We
determine in line 2 whether x is a left child or a right child of its parent x:p. (We
have given the code for the situation in which x is a left child; the situation in
which x is a right child—line 22—is symmetric.) We maintain a pointer w to
the sibling of x. Since node x is doubly black, node w cannot be T:nil, because
otherwise, the number of blacks on the simple path from x:p to the (singly black)
leaf w would be smaller than the number on the simple path from x:p to x.

The four cases2 in the code appear in Figure 13.7. Before examining each case
in detail, let’s look more generally at how we can verify that the transformation
in each of the cases preserves property 5. The key idea is that in each case, the
transformation applied preserves the number of black nodes (including x’s extra
black) from (and including) the root of the subtree shown to each of the subtrees
˛; ˇ; : : : ; �. Thus, if property 5 holds prior to the transformation, it continues to
hold afterward. For example, in Figure 13.7(a), which illustrates case 1, the num-
ber of black nodes from the root to either subtree ˛ or ˇ is 3, both before and after
the transformation. (Again, remember that node x adds an extra black.) Similarly,
the number of black nodes from the root to any of
 , ı, ", and � is 2, both be-
fore and after the transformation. In Figure 13.7(b), the counting must involve the
value c of the color attribute of the root of the subtree shown, which can be either
RED or BLACK. If we define count.RED/ D 0 and count.BLACK/ D 1, then the
number of black nodes from the root to ˛ is 2 C count.c/, both before and after
the transformation. In this case, after the transformation, the new node x has color
attribute c, but this node is really either red-and-black (if c D RED) or doubly black
(if c D BLACK). You can verify the other cases similarly (see Exercise 13.4-5).

Case 1: x’s sibling w is red
Case 1 (lines 5–8 of RB-DELETE-FIXUP and Figure 13.7(a)) occurs when node w,
the sibling of node x, is red. Since w must have black children, we can switch the
colors of w and x:p and then perform a left-rotation on x:p without violating any
of the red-black properties. The new sibling of x, which is one of w’s children
prior to the rotation, is now black, and thus we have converted case 1 into case 2,
3, or 4.

Cases 2, 3, and 4 occur when node w is black; they are distinguished by the
colors of w’s children.

2As in RB-INSERT-FIXUP, the cases in RB-DELETE-FIXUP are not mutually exclusive.

328 Chapter 13 Red-Black Trees

Case 2: x’s sibling w is black, and both of w’s children are black
In case 2 (lines 10–11 of RB-DELETE-FIXUP and Figure 13.7(b)), both of w’s
children are black. Since w is also black, we take one black off both x and w,
leaving x with only one black and leaving w red. To compensate for removing
one black from x and w, we would like to add an extra black to x:p, which was
originally either red or black. We do so by repeating the while loop with x:p as
the new node x. Observe that if we enter case 2 through case 1, the new node x

is red-and-black, since the original x:p was red. Hence, the value c of the color
attribute of the new node x is RED, and the loop terminates when it tests the loop
condition. We then color the new node x (singly) black in line 23.

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black
Case 3 (lines 13–16 and Figure 13.7(c)) occurs when w is black, its left child
is red, and its right child is black. We can switch the colors of w and its left
child w: left and then perform a right rotation on w without violating any of the
red-black properties. The new sibling w of x is now a black node with a red right
child, and thus we have transformed case 3 into case 4.

Case 4: x’s sibling w is black, and w’s right child is red
Case 4 (lines 17–21 and Figure 13.7(d)) occurs when node x’s sibling w is black
and w’s right child is red. By making some color changes and performing a left ro-
tation on x:p, we can remove the extra black on x, making it singly black, without
violating any of the red-black properties. Setting x to be the root causes the while
loop to terminate when it tests the loop condition.

Analysis

What is the running time of RB-DELETE? Since the height of a red-black tree of n

nodes is O.lg n/, the total cost of the procedure without the call to RB-DELETE-
FIXUP takes O.lg n/ time. Within RB-DELETE-FIXUP, each of cases 1, 3, and 4
lead to termination after performing a constant number of color changes and at
most three rotations. Case 2 is the only case in which the while loop can be re-
peated, and then the pointer x moves up the tree at most O.lg n/ times, performing
no rotations. Thus, the procedure RB-DELETE-FIXUP takes O.lg n/ time and per-
forms at most three rotations, and the overall time for RB-DELETE is therefore
also O.lg n/.

13.4 Deletion 329

A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E(d)

(c)

(b)

(a)

γ δ ε ζ

Case 4

Case 3

Case 2

Case 1

E

c′ c′

new x D T:root

Figure 13.7 The cases in the while loop of the procedure RB-DELETE-FIXUP. Darkened nodes
have color attributes BLACK, heavily shaded nodes have color attributes RED, and lightly shaded
nodes have color attributes represented by c and c0, which may be either RED or BLACK. The letters
˛; ˇ; : : : ; � represent arbitrary subtrees. Each case transforms the configuration on the left into the
configuration on the right by changing some colors and/or performing a rotation. Any node pointed
to by x has an extra black and is either doubly black or red-and-black. Only case 2 causes the loop to
repeat. (a) Case 1 is transformed to case 2, 3, or 4 by exchanging the colors of nodes B and D and
performing a left rotation. (b) In case 2, the extra black represented by the pointer x moves up the
tree by coloring node D red and setting x to point to node B . If we enter case 2 through case 1, the
while loop terminates because the new node x is red-and-black, and therefore the value c of its color
attribute is RED. (c) Case 3 is transformed to case 4 by exchanging the colors of nodes C and D and
performing a right rotation. (d) Case 4 removes the extra black represented by x by changing some
colors and performing a left rotation (without violating the red-black properties), and then the loop
terminates.

330 Chapter 13 Red-Black Trees

Exercises

13.4-1
Argue that after executing RB-DELETE-FIXUP, the root of the tree must be black.

13.4-2
Argue that if in RB-DELETE both x and x:p are red, then property 4 is restored by
the call to RB-DELETE-FIXUP.T; x/.

13.4-3
In Exercise 13.3-2, you found the red-black tree that results from successively
inserting the keys 41; 38; 31; 12; 19; 8 into an initially empty tree. Now show the
red-black trees that result from the successive deletion of the keys in the order
8; 12; 19; 31; 38; 41.

13.4-4
In which lines of the code for RB-DELETE-FIXUP might we examine or modify
the sentinel T:nil?

13.4-5
In each of the cases of Figure 13.7, give the count of black nodes from the root of
the subtree shown to each of the subtrees ˛; ˇ; : : : ; �, and verify that each count
remains the same after the transformation. When a node has a color attribute c

or c 0, use the notation count.c/ or count.c 0/ symbolically in your count.

13.4-6
Professors Skelton and Baron are concerned that at the start of case 1 of RB-
DELETE-FIXUP, the node x:p might not be black. If the professors are correct,
then lines 5–6 are wrong. Show that x:p must be black at the start of case 1, so that
the professors have nothing to worry about.

13.4-7
Suppose that a node x is inserted into a red-black tree with RB-INSERT and then
is immediately deleted with RB-DELETE. Is the resulting red-black tree the same
as the initial red-black tree? Justify your answer.

Problems for Chapter 13 331

Problems

13-1 Persistent dynamic sets
During the course of an algorithm, we sometimes find that we need to maintain past
versions of a dynamic set as it is updated. We call such a set persistent. One way to
implement a persistent set is to copy the entire set whenever it is modified, but this
approach can slow down a program and also consume much space. Sometimes, we
can do much better.

Consider a persistent set S with the operations INSERT, DELETE, and SEARCH,
which we implement using binary search trees as shown in Figure 13.8(a). We
maintain a separate root for every version of the set. In order to insert the key 5

into the set, we create a new node with key 5. This node becomes the left child
of a new node with key 7, since we cannot modify the existing node with key 7.
Similarly, the new node with key 7 becomes the left child of a new node with
key 8 whose right child is the existing node with key 10. The new node with key 8

becomes, in turn, the right child of a new root r 0 with key 4 whose left child is the
existing node with key 3. We thus copy only part of the tree and share some of the
nodes with the original tree, as shown in Figure 13.8(b).

Assume that each tree node has the attributes key, left, and right but no parent.
(See also Exercise 13.3-6.)

4

3

2

8

7 10

4

3

2

8

7 10

4

8

7

5

(b)(a)

r r r′

Figure 13.8 (a) A binary search tree with keys 2; 3; 4; 7; 8; 10. (b) The persistent binary search
tree that results from the insertion of key 5. The most recent version of the set consists of the nodes
reachable from the root r 0, and the previous version consists of the nodes reachable from r . Heavily
shaded nodes are added when key 5 is inserted.

332 Chapter 13 Red-Black Trees

a. For a general persistent binary search tree, identify the nodes that we need to
change to insert a key k or delete a node y.

b. Write a procedure PERSISTENT-TREE-INSERT that, given a persistent tree T

and a key k to insert, returns a new persistent tree T 0 that is the result of insert-
ing k into T .

c. If the height of the persistent binary search tree T is h, what are the time and
space requirements of your implementation of PERSISTENT-TREE-INSERT?
(The space requirement is proportional to the number of new nodes allocated.)

d. Suppose that we had included the parent attribute in each node. In this case,
PERSISTENT-TREE-INSERT would need to perform additional copying. Prove
that PERSISTENT-TREE-INSERT would then require �.n/ time and space,
where n is the number of nodes in the tree.

e. Show how to use red-black trees to guarantee that the worst-case running time
and space are O.lg n/ per insertion or deletion.

13-2 Join operation on red-black trees
The join operation takes two dynamic sets S1 and S2 and an element x such that
for any x1 2 S1 and x2 2 S2, we have x1:key � x:key � x2:key. It returns a set
S D S1 [fxg [S2. In this problem, we investigate how to implement the join
operation on red-black trees.

a. Given a red-black tree T , let us store its black-height as the new attribute T:bh.
Argue that RB-INSERT and RB-DELETE can maintain the bh attribute with-
out requiring extra storage in the nodes of the tree and without increasing the
asymptotic running times. Show that while descending through T , we can de-
termine the black-height of each node we visit in O.1/ time per node visited.

We wish to implement the operation RB-JOIN.T1; x; T2/, which destroys T1 and T2

and returns a red-black tree T D T1[fxg[T2. Let n be the total number of nodes
in T1 and T2.

b. Assume that T1:bh � T2:bh. Describe an O.lg n/-time algorithm that finds a
black node y in T1 with the largest key from among those nodes whose black-
height is T2:bh.

c. Let Ty be the subtree rooted at y. Describe how Ty [fxg [T2 can replace Ty

in O.1/ time without destroying the binary-search-tree property.

d. What color should we make x so that red-black properties 1, 3, and 5 are main-
tained? Describe how to enforce properties 2 and 4 in O.lg n/ time.

Problems for Chapter 13 333

e. Argue that no generality is lost by making the assumption in part (b). Describe
the symmetric situation that arises when T1:bh � T2:bh.

f. Argue that the running time of RB-JOIN is O.lg n/.

13-3 AVL trees
An AVL tree is a binary search tree that is height balanced: for each node x, the
heights of the left and right subtrees of x differ by at most 1. To implement an AVL
tree, we maintain an extra attribute in each node: x:h is the height of node x. As
for any other binary search tree T , we assume that T:root points to the root node.

a. Prove that an AVL tree with n nodes has height O.lg n/. (Hint: Prove that
an AVL tree of height h has at least Fh nodes, where Fh is the hth Fibonacci
number.)

b. To insert into an AVL tree, we first place a node into the appropriate place in bi-
nary search tree order. Afterward, the tree might no longer be height balanced.
Specifically, the heights of the left and right children of some node might differ
by 2. Describe a procedure BALANCE.x/, which takes a subtree rooted at x

whose left and right children are height balanced and have heights that differ
by at most 2, i.e., jx:right:h� x: left:hj � 2, and alters the subtree rooted at x

to be height balanced. (Hint: Use rotations.)

c. Using part (b), describe a recursive procedure AVL-INSERT.x; ´/ that takes
a node x within an AVL tree and a newly created node ´ (whose key has al-
ready been filled in), and adds ´ to the subtree rooted at x, maintaining the
property that x is the root of an AVL tree. As in TREE-INSERT from Sec-
tion 12.3, assume that ´:key has already been filled in and that ´: left D NIL

and ´:right D NIL; also assume that ´:h D 0. Thus, to insert the node ´ into
the AVL tree T , we call AVL-INSERT.T:root; ´/.

d. Show that AVL-INSERT, run on an n-node AVL tree, takes O.lg n/ time and
performs O.1/ rotations.

13-4 Treaps
If we insert a set of n items into a binary search tree, the resulting tree may be
horribly unbalanced, leading to long search times. As we saw in Section 12.4,
however, randomly built binary search trees tend to be balanced. Therefore, one
strategy that, on average, builds a balanced tree for a fixed set of items would be to
randomly permute the items and then insert them in that order into the tree.

What if we do not have all the items at once? If we receive the items one at a
time, can we still randomly build a binary search tree out of them?

334 Chapter 13 Red-Black Trees

G: 4

B: 7 H: 5

A: 10 E: 23 K: 65

I: 73

Figure 13.9 A treap. Each node x is labeled with x:key : x:priority. For example, the root has
key G and priority 4.

We will examine a data structure that answers this question in the affirmative. A
treap is a binary search tree with a modified way of ordering the nodes. Figure 13.9
shows an example. As usual, each node x in the tree has a key value x:key. In
addition, we assign x:priority, which is a random number chosen independently
for each node. We assume that all priorities are distinct and also that all keys are
distinct. The nodes of the treap are ordered so that the keys obey the binary-search-
tree property and the priorities obey the min-heap order property:

� If � is a left child of u, then �:key < u:key.

� If � is a right child of u, then �:key > u:key.

� If � is a child of u, then �:priority > u:priority.

(This combination of properties is why the tree is called a “treap”: it has features
of both a binary search tree and a heap.)

It helps to think of treaps in the following way. Suppose that we insert nodes
x1; x2; : : : ; xn, with associated keys, into a treap. Then the resulting treap is the
tree that would have been formed if the nodes had been inserted into a normal
binary search tree in the order given by their (randomly chosen) priorities, i.e.,
xi :priority < xj :priority means that we had inserted xi before xj .

a. Show that given a set of nodes x1; x2; : : : ; xn, with associated keys and priori-
ties, all distinct, the treap associated with these nodes is unique.

b. Show that the expected height of a treap is ‚.lg n/, and hence the expected time
to search for a value in the treap is ‚.lg n/.

Let us see how to insert a new node into an existing treap. The first thing we do
is assign to the new node a random priority. Then we call the insertion algorithm,
which we call TREAP-INSERT, whose operation is illustrated in Figure 13.10.

Problems for Chapter 13 335

G: 4

B: 7 H: 5

A: 10 E: 23 K: 65

I: 73

G: 4

B: 7 H: 5

A: 10 E: 23 K: 65

I: 73

C: 25

C: 25

(a) (b)

G: 4

B: 7 H: 5

A: 10 E: 23 K: 65

I: 73C: 25

(c)

D: 9

D: 9

G: 4

B: 7 H: 5

A: 10 E: 23 K: 65

I: 73

(d)

D: 9

C: 25

G: 4

B: 7 H: 5

A: 10 K: 65

I: 73

(e)

D: 9

C: 25 E: 23

B: 7

A: 10

(f)

D: 9

C: 25 E: 23

F: 2

I: 73

K: 65

H: 5

G: 4

F: 2

…

Figure 13.10 The operation of TREAP-INSERT. (a) The original treap, prior to insertion. (b) The
treap after inserting a node with key C and priority 25. (c)–(d) Intermediate stages when inserting a
node with key D and priority 9. (e) The treap after the insertion of parts (c) and (d) is done. (f) The
treap after inserting a node with key F and priority 2.

336 Chapter 13 Red-Black Trees

15

9 18

3 12 25

216

(a)

15

9 18

3 12 25

216

(b)

Figure 13.11 Spines of a binary search tree. The left spine is shaded in (a), and the right spine is
shaded in (b).

c. Explain how TREAP-INSERT works. Explain the idea in English and give pseu-
docode. (Hint: Execute the usual binary-search-tree insertion procedure and
then perform rotations to restore the min-heap order property.)

d. Show that the expected running time of TREAP-INSERT is ‚.lg n/.

TREAP-INSERT performs a search and then a sequence of rotations. Although
these two operations have the same expected running time, they have different
costs in practice. A search reads information from the treap without modifying it.
In contrast, a rotation changes parent and child pointers within the treap. On most
computers, read operations are much faster than write operations. Thus we would
like TREAP-INSERT to perform few rotations. We will show that the expected
number of rotations performed is bounded by a constant.

In order to do so, we will need some definitions, which Figure 13.11 depicts.
The left spine of a binary search tree T is the simple path from the root to the node
with the smallest key. In other words, the left spine is the simple path from the
root that consists of only left edges. Symmetrically, the right spine of T is the
simple path from the root consisting of only right edges. The length of a spine is
the number of nodes it contains.

e. Consider the treap T immediately after TREAP-INSERT has inserted node x.
Let C be the length of the right spine of the left subtree of x. Let D be the
length of the left spine of the right subtree of x. Prove that the total number of
rotations that were performed during the insertion of x is equal to C CD.

We will now calculate the expected values of C and D. Without loss of generality,
we assume that the keys are 1; 2; : : : ; n, since we are comparing them only to one
another.

Notes for Chapter 13 337

For nodes x and y in treap T , where y ¤ x, let k D x:key and i D y:key. We
define indicator random variables

Xik D I fy is in the right spine of the left subtree of xg :

f. Show that Xik D 1 if and only if y:priority > x:priority, y:key < x:key, and,
for every ´ such that y:key < ´:key < x:key, we have y:priority < ´:priority.

g. Show that

Pr fXik D 1g D .k � i � 1/Š

.k � i C 1/Š

D 1

.k � i C 1/.k � i/
:

h. Show that

E ŒC � D
k�1X
j D1

1

j.j C 1/

D 1� 1

k
:

i. Use a symmetry argument to show that

E ŒD� D 1 � 1

n � k C 1
:

j. Conclude that the expected number of rotations performed when inserting a
node into a treap is less than 2.

Chapter notes

The idea of balancing a search tree is due to Adel’son-Vel’skiı̆ and Landis [2], who
introduced a class of balanced search trees called “AVL trees” in 1962, described in
Problem 13-3. Another class of search trees, called “2-3 trees,” was introduced by
J. E. Hopcroft (unpublished) in 1970. A 2-3 tree maintains balance by manipulating
the degrees of nodes in the tree. Chapter 18 covers a generalization of 2-3 trees
introduced by Bayer and McCreight [35], called “B-trees.”

Red-black trees were invented by Bayer [34] under the name “symmetric binary
B-trees.” Guibas and Sedgewick [155] studied their properties at length and in-
troduced the red/black color convention. Andersson [15] gives a simpler-to-code

338 Chapter 13 Red-Black Trees

variant of red-black trees. Weiss [351] calls this variant AA-trees. An AA-tree is
similar to a red-black tree except that left children may never be red.

Treaps, the subject of Problem 13-4, were proposed by Seidel and Aragon [309].
They are the default implementation of a dictionary in LEDA [253], which is a
well-implemented collection of data structures and algorithms.

There are many other variations on balanced binary trees, including weight-
balanced trees [264], k-neighbor trees [245], and scapegoat trees [127]. Perhaps
the most intriguing are the “splay trees” introduced by Sleator and Tarjan [320],
which are “self-adjusting.” (See Tarjan [330] for a good description of splay trees.)
Splay trees maintain balance without any explicit balance condition such as color.
Instead, “splay operations” (which involve rotations) are performed within the tree
every time an access is made. The amortized cost (see Chapter 17) of each opera-
tion on an n-node tree is O.lg n/.

Skip lists [286] provide an alternative to balanced binary trees. A skip list is a
linked list that is augmented with a number of additional pointers. Each dictionary
operation runs in expected time O.lg n/ on a skip list of n items.

14 Augmenting Data Structures

Some engineering situations require no more than a “textbook” data struc-
ture—such as a doubly linked list, a hash table, or a binary search tree—but many
others require a dash of creativity. Only in rare situations will you need to cre-
ate an entirely new type of data structure, though. More often, it will suffice to
augment a textbook data structure by storing additional information in it. You can
then program new operations for the data structure to support the desired applica-
tion. Augmenting a data structure is not always straightforward, however, since the
added information must be updated and maintained by the ordinary operations on
the data structure.

This chapter discusses two data structures that we construct by augmenting red-
black trees. Section 14.1 describes a data structure that supports general order-
statistic operations on a dynamic set. We can then quickly find the i th smallest
number in a set or the rank of a given element in the total ordering of the set.
Section 14.2 abstracts the process of augmenting a data structure and provides a
theorem that can simplify the process of augmenting red-black trees. Section 14.3
uses this theorem to help design a data structure for maintaining a dynamic set of
intervals, such as time intervals. Given a query interval, we can then quickly find
an interval in the set that overlaps it.

14.1 Dynamic order statistics

Chapter 9 introduced the notion of an order statistic. Specifically, the i th order
statistic of a set of n elements, where i 2 f1; 2; : : : ; ng, is simply the element in the
set with the i th smallest key. We saw how to determine any order statistic in O.n/

time from an unordered set. In this section, we shall see how to modify red-black
trees so that we can determine any order statistic for a dynamic set in O.lg n/ time.
We shall also see how to compute the rank of an element—its position in the linear
order of the set—in O.lg n/ time.

340 Chapter 14 Augmenting Data Structures

1
3

7 12

10

14

16

14

2 1 1

24

7

20

19 21

21

17

28

35 39

38

4730

41

26

1

2 1

4

12

1

1 1

3

5 1

7

20

key

size

Figure 14.1 An order-statistic tree, which is an augmented red-black tree. Shaded nodes are red,
and darkened nodes are black. In addition to its usual attributes, each node x has an attribute x:size,
which is the number of nodes, other than the sentinel, in the subtree rooted at x.

Figure 14.1 shows a data structure that can support fast order-statistic operations.
An order-statistic tree T is simply a red-black tree with additional information
stored in each node. Besides the usual red-black tree attributes x:key, x:color, x:p,
x: left, and x:right in a node x, we have another attribute, x:size. This attribute
contains the number of (internal) nodes in the subtree rooted at x (including x

itself), that is, the size of the subtree. If we define the sentinel’s size to be 0—that
is, we set T:nil:size to be 0—then we have the identity

x:size D x: left:sizeC x:right:sizeC 1 :

We do not require keys to be distinct in an order-statistic tree. (For example, the
tree in Figure 14.1 has two keys with value 14 and two keys with value 21.) In the
presence of equal keys, the above notion of rank is not well defined. We remove
this ambiguity for an order-statistic tree by defining the rank of an element as the
position at which it would be printed in an inorder walk of the tree. In Figure 14.1,
for example, the key 14 stored in a black node has rank 5, and the key 14 stored in
a red node has rank 6.

Retrieving an element with a given rank

Before we show how to maintain this size information during insertion and dele-
tion, let us examine the implementation of two order-statistic queries that use this
additional information. We begin with an operation that retrieves an element with
a given rank. The procedure OS-SELECT.x; i/ returns a pointer to the node con-
taining the i th smallest key in the subtree rooted at x. To find the node with the i th
smallest key in an order-statistic tree T , we call OS-SELECT.T:root; i/.

14.1 Dynamic order statistics 341

OS-SELECT.x; i/

1 r D x: left:sizeC 1

2 if i == r

3 return x

4 elseif i < r

5 return OS-SELECT.x: left; i/

6 else return OS-SELECT.x:right; i � r/

In line 1 of OS-SELECT, we compute r , the rank of node x within the subtree
rooted at x. The value of x: left:size is the number of nodes that come before x

in an inorder tree walk of the subtree rooted at x. Thus, x: left:size C 1 is the
rank of x within the subtree rooted at x. If i D r , then node x is the i th smallest
element, and so we return x in line 3. If i < r , then the i th smallest element
resides in x’s left subtree, and so we recurse on x: left in line 5. If i > r , then
the i th smallest element resides in x’s right subtree. Since the subtree rooted at x

contains r elements that come before x’s right subtree in an inorder tree walk, the
i th smallest element in the subtree rooted at x is the .i � r/th smallest element in
the subtree rooted at x:right. Line 6 determines this element recursively.

To see how OS-SELECT operates, consider a search for the 17th smallest ele-
ment in the order-statistic tree of Figure 14.1. We begin with x as the root, whose
key is 26, and with i D 17. Since the size of 26’s left subtree is 12, its rank is 13.
Thus, we know that the node with rank 17 is the 17 � 13 D 4th smallest element
in 26’s right subtree. After the recursive call, x is the node with key 41, and i D 4.
Since the size of 41’s left subtree is 5, its rank within its subtree is 6. Thus, we
know that the node with rank 4 is the 4th smallest element in 41’s left subtree. Af-
ter the recursive call, x is the node with key 30, and its rank within its subtree is 2.
Thus, we recurse once again to find the 4�2 D 2nd smallest element in the subtree
rooted at the node with key 38. We now find that its left subtree has size 1, which
means it is the second smallest element. Thus, the procedure returns a pointer to
the node with key 38.

Because each recursive call goes down one level in the order-statistic tree, the
total time for OS-SELECT is at worst proportional to the height of the tree. Since
the tree is a red-black tree, its height is O.lg n/, where n is the number of nodes.
Thus, the running time of OS-SELECT is O.lg n/ for a dynamic set of n elements.

Determining the rank of an element

Given a pointer to a node x in an order-statistic tree T , the procedure OS-RANK

returns the position of x in the linear order determined by an inorder tree walk
of T .

342 Chapter 14 Augmenting Data Structures

OS-RANK.T; x/

1 r D x: left:sizeC 1

2 y D x

3 while y ¤ T:root
4 if y == y:p:right
5 r D r C y:p: left:sizeC 1

6 y D y:p
7 return r

The procedure works as follows. We can think of node x’s rank as the number of
nodes preceding x in an inorder tree walk, plus 1 for x itself. OS-RANK maintains
the following loop invariant:

At the start of each iteration of the while loop of lines 3–6, r is the rank
of x:key in the subtree rooted at node y.

We use this loop invariant to show that OS-RANK works correctly as follows:

Initialization: Prior to the first iteration, line 1 sets r to be the rank of x:key within
the subtree rooted at x. Setting y D x in line 2 makes the invariant true the
first time the test in line 3 executes.

Maintenance: At the end of each iteration of the while loop, we set y D y:p.
Thus we must show that if r is the rank of x:key in the subtree rooted at y at the
start of the loop body, then r is the rank of x:key in the subtree rooted at y:p
at the end of the loop body. In each iteration of the while loop, we consider
the subtree rooted at y:p. We have already counted the number of nodes in the
subtree rooted at node y that precede x in an inorder walk, and so we must add
the nodes in the subtree rooted at y’s sibling that precede x in an inorder walk,
plus 1 for y:p if it, too, precedes x. If y is a left child, then neither y:p nor any
node in y:p’s right subtree precedes x, and so we leave r alone. Otherwise, y is
a right child and all the nodes in y:p’s left subtree precede x, as does y:p itself.
Thus, in line 5, we add y:p: left:sizeC 1 to the current value of r .

Termination: The loop terminates when y D T:root, so that the subtree rooted
at y is the entire tree. Thus, the value of r is the rank of x:key in the entire tree.

As an example, when we run OS-RANK on the order-statistic tree of Figure 14.1
to find the rank of the node with key 38, we get the following sequence of values
of y:key and r at the top of the while loop:

iteration y:key r

1 38 2
2 30 4
3 41 4
4 26 17

14.1 Dynamic order statistics 343

The procedure returns the rank 17.
Since each iteration of the while loop takes O.1/ time, and y goes up one level in

the tree with each iteration, the running time of OS-RANK is at worst proportional
to the height of the tree: O.lg n/ on an n-node order-statistic tree.

Maintaining subtree sizes

Given the size attribute in each node, OS-SELECT and OS-RANK can quickly
compute order-statistic information. But unless we can efficiently maintain these
attributes within the basic modifying operations on red-black trees, our work will
have been for naught. We shall now show how to maintain subtree sizes for both
insertion and deletion without affecting the asymptotic running time of either op-
eration.

We noted in Section 13.3 that insertion into a red-black tree consists of two
phases. The first phase goes down the tree from the root, inserting the new node
as a child of an existing node. The second phase goes up the tree, changing colors
and performing rotations to maintain the red-black properties.

To maintain the subtree sizes in the first phase, we simply increment x:size for
each node x on the simple path traversed from the root down toward the leaves. The
new node added gets a size of 1. Since there are O.lg n/ nodes on the traversed
path, the additional cost of maintaining the size attributes is O.lg n/.

In the second phase, the only structural changes to the underlying red-black tree
are caused by rotations, of which there are at most two. Moreover, a rotation is
a local operation: only two nodes have their size attributes invalidated. The link
around which the rotation is performed is incident on these two nodes. Referring
to the code for LEFT-ROTATE.T; x/ in Section 13.2, we add the following lines:

13 y:size D x:size
14 x:size D x: left:sizeC x:right:sizeC 1

Figure 14.2 illustrates how the attributes are updated. The change to RIGHT-
ROTATE is symmetric.

Since at most two rotations are performed during insertion into a red-black tree,
we spend only O.1/ additional time updating size attributes in the second phase.
Thus, the total time for insertion into an n-node order-statistic tree is O.lg n/,
which is asymptotically the same as for an ordinary red-black tree.

Deletion from a red-black tree also consists of two phases: the first operates
on the underlying search tree, and the second causes at most three rotations and
otherwise performs no structural changes. (See Section 13.4.) The first phase
either removes one node y from the tree or moves upward it within the tree. To
update the subtree sizes, we simply traverse a simple path from node y (starting
from its original position within the tree) up to the root, decrementing the size

344 Chapter 14 Augmenting Data Structures

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

93
19

y

42
11

x

6 4

7

93

42
19

12
6

4 7

x

y

Figure 14.2 Updating subtree sizes during rotations. The link around which we rotate is incident
on the two nodes whose size attributes need to be updated. The updates are local, requiring only the
size information stored in x, y, and the roots of the subtrees shown as triangles.

attribute of each node on the path. Since this path has length O.lg n/ in an n-
node red-black tree, the additional time spent maintaining size attributes in the first
phase is O.lg n/. We handle the O.1/ rotations in the second phase of deletion
in the same manner as for insertion. Thus, both insertion and deletion, including
maintaining the size attributes, take O.lg n/ time for an n-node order-statistic tree.

Exercises

14.1-1
Show how OS-SELECT.T:root; 10/ operates on the red-black tree T of Fig-
ure 14.1.

14.1-2
Show how OS-RANK.T; x/ operates on the red-black tree T of Figure 14.1 and
the node x with x:key D 35.

14.1-3
Write a nonrecursive version of OS-SELECT.

14.1-4
Write a recursive procedure OS-KEY-RANK.T; k/ that takes as input an order-
statistic tree T and a key k and returns the rank of k in the dynamic set represented
by T . Assume that the keys of T are distinct.

14.1-5
Given an element x in an n-node order-statistic tree and a natural number i , how
can we determine the i th successor of x in the linear order of the tree in O.lg n/

time?

14.2 How to augment a data structure 345

14.1-6
Observe that whenever we reference the size attribute of a node in either OS-
SELECT or OS-RANK, we use it only to compute a rank. Accordingly, suppose
we store in each node its rank in the subtree of which it is the root. Show how to
maintain this information during insertion and deletion. (Remember that these two
operations can cause rotations.)

14.1-7
Show how to use an order-statistic tree to count the number of inversions (see
Problem 2-4) in an array of size n in time O.n lg n/.

14.1-8 ?

Consider n chords on a circle, each defined by its endpoints. Describe an O.n lg n/-
time algorithm to determine the number of pairs of chords that intersect inside the
circle. (For example, if the n chords are all diameters that meet at the center, then
the correct answer is

�
n

2

�
.) Assume that no two chords share an endpoint.

14.2 How to augment a data structure

The process of augmenting a basic data structure to support additional functionality
occurs quite frequently in algorithm design. We shall use it again in the next section
to design a data structure that supports operations on intervals. In this section, we
examine the steps involved in such augmentation. We shall also prove a theorem
that allows us to augment red-black trees easily in many cases.

We can break the process of augmenting a data structure into four steps:

1. Choose an underlying data structure.

2. Determine additional information to maintain in the underlying data structure.

3. Verify that we can maintain the additional information for the basic modifying
operations on the underlying data structure.

4. Develop new operations.

As with any prescriptive design method, you should not blindly follow the steps
in the order given. Most design work contains an element of trial and error, and
progress on all steps usually proceeds in parallel. There is no point, for example, in
determining additional information and developing new operations (steps 2 and 4)
if we will not be able to maintain the additional information efficiently. Neverthe-
less, this four-step method provides a good focus for your efforts in augmenting
a data structure, and it is also a good way to organize the documentation of an
augmented data structure.

346 Chapter 14 Augmenting Data Structures

We followed these steps in Section 14.1 to design our order-statistic trees. For
step 1, we chose red-black trees as the underlying data structure. A clue to the
suitability of red-black trees comes from their efficient support of other dynamic-
set operations on a total order, such as MINIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR.

For step 2, we added the size attribute, in which each node x stores the size of the
subtree rooted at x. Generally, the additional information makes operations more
efficient. For example, we could have implemented OS-SELECT and OS-RANK

using just the keys stored in the tree, but they would not have run in O.lg n/ time.
Sometimes, the additional information is pointer information rather than data, as
in Exercise 14.2-1.

For step 3, we ensured that insertion and deletion could maintain the size at-
tributes while still running in O.lg n/ time. Ideally, we should need to update only
a few elements of the data structure in order to maintain the additional information.
For example, if we simply stored in each node its rank in the tree, the OS-SELECT

and OS-RANK procedures would run quickly, but inserting a new minimum ele-
ment would cause a change to this information in every node of the tree. When we
store subtree sizes instead, inserting a new element causes information to change
in only O.lg n/ nodes.

For step 4, we developed the operations OS-SELECT and OS-RANK. After all,
the need for new operations is why we bother to augment a data structure in the first
place. Occasionally, rather than developing new operations, we use the additional
information to expedite existing ones, as in Exercise 14.2-1.

Augmenting red-black trees

When red-black trees underlie an augmented data structure, we can prove that in-
sertion and deletion can always efficiently maintain certain kinds of additional in-
formation, thereby making step 3 very easy. The proof of the following theorem is
similar to the argument from Section 14.1 that we can maintain the size attribute
for order-statistic trees.

Theorem 14.1 (Augmenting a red-black tree)
Let f be an attribute that augments a red-black tree T of n nodes, and suppose that
the value of f for each node x depends on only the information in nodes x, x: left,
and x:right, possibly including x: left: f and x:right: f . Then, we can maintain the
values of f in all nodes of T during insertion and deletion without asymptotically
affecting the O.lg n/ performance of these operations.

Proof The main idea of the proof is that a change to an f attribute in a node x

propagates only to ancestors of x in the tree. That is, changing x: f may re-

14.2 How to augment a data structure 347

quire x:p: f to be updated, but nothing else; updating x:p: f may require x:p:p: f
to be updated, but nothing else; and so on up the tree. Once we have updated
T:root: f , no other node will depend on the new value, and so the process termi-
nates. Since the height of a red-black tree is O.lg n/, changing an f attribute in a
node costs O.lg n/ time in updating all nodes that depend on the change.

Insertion of a node x into T consists of two phases. (See Section 13.3.) The
first phase inserts x as a child of an existing node x:p. We can compute the value
of x: f in O.1/ time since, by supposition, it depends only on information in the
other attributes of x itself and the information in x’s children, but x’s children are
both the sentinel T:nil. Once we have computed x: f , the change propagates up
the tree. Thus, the total time for the first phase of insertion is O.lg n/. During the
second phase, the only structural changes to the tree come from rotations. Since
only two nodes change in a rotation, the total time for updating the f attributes
is O.lg n/ per rotation. Since the number of rotations during insertion is at most
two, the total time for insertion is O.lg n/.

Like insertion, deletion has two phases. (See Section 13.4.) In the first phase,
changes to the tree occur when the deleted node is removed from the tree. If the
deleted node had two children at the time, then its successor moves into the position
of the deleted node. Propagating the updates to f caused by these changes costs
at most O.lg n/, since the changes modify the tree locally. Fixing up the red-black
tree during the second phase requires at most three rotations, and each rotation
requires at most O.lg n/ time to propagate the updates to f . Thus, like insertion,
the total time for deletion is O.lg n/.

In many cases, such as maintaining the size attributes in order-statistic trees, the
cost of updating after a rotation is O.1/, rather than the O.lg n/ derived in the proof
of Theorem 14.1. Exercise 14.2-3 gives an example.

Exercises

14.2-1
Show, by adding pointers to the nodes, how to support each of the dynamic-set
queries MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in O.1/ worst-
case time on an augmented order-statistic tree. The asymptotic performance of
other operations on order-statistic trees should not be affected.

14.2-2
Can we maintain the black-heights of nodes in a red-black tree as attributes in the
nodes of the tree without affecting the asymptotic performance of any of the red-
black tree operations? Show how, or argue why not. How about maintaining the
depths of nodes?

348 Chapter 14 Augmenting Data Structures

14.2-3 ?

Let˝ be an associative binary operator, and let a be an attribute maintained in each
node of a red-black tree. Suppose that we want to include in each node x an addi-
tional attribute f such that x: f D x1:a˝ x2:a˝ � � � ˝ xm:a, where x1; x2; : : : ; xm

is the inorder listing of nodes in the subtree rooted at x. Show how to update the f

attributes in O.1/ time after a rotation. Modify your argument slightly to apply it
to the size attributes in order-statistic trees.

14.2-4 ?

We wish to augment red-black trees with an operation RB-ENUMERATE.x; a; b/

that outputs all the keys k such that a � k � b in a red-black tree rooted at x.
Describe how to implement RB-ENUMERATE in ‚.mC lg n/ time, where m is the
number of keys that are output and n is the number of internal nodes in the tree.
(Hint: You do not need to add new attributes to the red-black tree.)

14.3 Interval trees

In this section, we shall augment red-black trees to support operations on dynamic
sets of intervals. A closed interval is an ordered pair of real numbers Œt1; t2�, with
t1 � t2. The interval Œt1; t2� represents the set ft 2 R W t1 � t � t2g. Open and
half-open intervals omit both or one of the endpoints from the set, respectively. In
this section, we shall assume that intervals are closed; extending the results to open
and half-open intervals is conceptually straightforward.

Intervals are convenient for representing events that each occupy a continuous
period of time. We might, for example, wish to query a database of time intervals
to find out what events occurred during a given interval. The data structure in this
section provides an efficient means for maintaining such an interval database.

We can represent an interval Œt1; t2� as an object i , with attributes i: low D t1
(the low endpoint) and i:high D t2 (the high endpoint). We say that intervals i

and i 0 overlap if i \ i 0 ¤ ;, that is, if i: low � i 0:high and i 0: low � i:high. As
Figure 14.3 shows, any two intervals i and i 0 satisfy the interval trichotomy; that
is, exactly one of the following three properties holds:

a. i and i 0 overlap,

b. i is to the left of i 0 (i.e., i:high < i 0: low),

c. i is to the right of i 0 (i.e., i 0:high < i: low).

An interval tree is a red-black tree that maintains a dynamic set of elements, with
each element x containing an interval x: int. Interval trees support the following
operations:

14.3 Interval trees 349

i i i i

(a)

i

(b)

i

(c)

i′ i′ i′ i′

i′i′

Figure 14.3 The interval trichotomy for two closed intervals i and i 0. (a) If i and i 0 overlap, there
are four situations; in each, i: low � i 0:high and i 0: low � i:high. (b) The intervals do not overlap,
and i:high < i 0: low. (c) The intervals do not overlap, and i 0:high < i: low.

INTERVAL-INSERT.T; x/ adds the element x, whose int attribute is assumed to
contain an interval, to the interval tree T .

INTERVAL-DELETE.T; x/ removes the element x from the interval tree T .

INTERVAL-SEARCH.T; i/ returns a pointer to an element x in the interval tree T

such that x: int overlaps interval i , or a pointer to the sentinel T:nil if no such
element is in the set.

Figure 14.4 shows how an interval tree represents a set of intervals. We shall track
the four-step method from Section 14.2 as we review the design of an interval tree
and the operations that run on it.

Step 1: Underlying data structure

We choose a red-black tree in which each node x contains an interval x: int and the
key of x is the low endpoint, x: int: low, of the interval. Thus, an inorder tree walk
of the data structure lists the intervals in sorted order by low endpoint.

Step 2: Additional information

In addition to the intervals themselves, each node x contains a value x:max, which
is the maximum value of any interval endpoint stored in the subtree rooted at x.

Step 3: Maintaining the information

We must verify that insertion and deletion take O.lg n/ time on an interval tree
of n nodes. We can determine x:max given interval x: int and the max values of
node x’s children:

350 Chapter 14 Augmenting Data Structures

0 5 10 15 20 25 30

0
5

6
8

15
16

17
19

25
26 26

30
20

19
21

23
9

10
8

3

(a)

[0,3]
3

[6,10]
10

[5,8]
10

[8,9]
23

[15,23]
23

[16,21]
30

[17,19]
20

[26,26]
26

[19,20]
20

(b)

[25,30]
30

int

max

Figure 14.4 An interval tree. (a) A set of 10 intervals, shown sorted bottom to top by left endpoint.
(b) The interval tree that represents them. Each node x contains an interval, shown above the dashed
line, and the maximum value of any interval endpoint in the subtree rooted at x, shown below the
dashed line. An inorder tree walk of the tree lists the nodes in sorted order by left endpoint.

x:max D max.x: int:high; x: left:max; x:right:max/ :

Thus, by Theorem 14.1, insertion and deletion run in O.lg n/ time. In fact, we
can update the max attributes after a rotation in O.1/ time, as Exercises 14.2-3
and 14.3-1 show.

Step 4: Developing new operations

The only new operation we need is INTERVAL-SEARCH.T; i/, which finds a node
in tree T whose interval overlaps interval i . If there is no interval that overlaps i in
the tree, the procedure returns a pointer to the sentinel T:nil.

14.3 Interval trees 351

INTERVAL-SEARCH.T; i/

1 x D T:root
2 while x ¤ T:nil and i does not overlap x: int
3 if x: left ¤ T:nil and x: left:max � i: low
4 x D x: left
5 else x D x:right
6 return x

The search for an interval that overlaps i starts with x at the root of the tree and
proceeds downward. It terminates when either it finds an overlapping interval or x

points to the sentinel T:nil. Since each iteration of the basic loop takes O.1/ time,
and since the height of an n-node red-black tree is O.lg n/, the INTERVAL-SEARCH

procedure takes O.lg n/ time.
Before we see why INTERVAL-SEARCH is correct, let’s examine how it works

on the interval tree in Figure 14.4. Suppose we wish to find an interval that overlaps
the interval i D Œ22; 25�. We begin with x as the root, which contains Œ16; 21� and
does not overlap i . Since x: left:max D 23 is greater than i: low D 22, the loop
continues with x as the left child of the root—the node containing Œ8; 9�, which also
does not overlap i . This time, x: left:max D 10 is less than i: low D 22, and so the
loop continues with the right child of x as the new x. Because the interval Œ15; 23�

stored in this node overlaps i , the procedure returns this node.
As an example of an unsuccessful search, suppose we wish to find an interval

that overlaps i D Œ11; 14� in the interval tree of Figure 14.4. We once again be-
gin with x as the root. Since the root’s interval Œ16; 21� does not overlap i , and
since x: left:max D 23 is greater than i: low D 11, we go left to the node con-
taining Œ8; 9�. Interval Œ8; 9� does not overlap i , and x: left:max D 10 is less than
i: low D 11, and so we go right. (Note that no interval in the left subtree over-
laps i .) Interval Œ15; 23� does not overlap i , and its left child is T:nil, so again we
go right, the loop terminates, and we return the sentinel T:nil.

To see why INTERVAL-SEARCH is correct, we must understand why it suffices
to examine a single path from the root. The basic idea is that at any node x,
if x: int does not overlap i , the search always proceeds in a safe direction: the
search will definitely find an overlapping interval if the tree contains one. The
following theorem states this property more precisely.

Theorem 14.2
Any execution of INTERVAL-SEARCH.T; i/ either returns a node whose interval
overlaps i , or it returns T:nil and the tree T contains no node whose interval over-
laps i .

352 Chapter 14 Augmenting Data Structures

i

(a) (b)

i′
i′ i i′

i′′
i′′

i′′

Figure 14.5 Intervals in the proof of Theorem 14.2. The value of x: left:max is shown in each case
as a dashed line. (a) The search goes right. No interval i 0 in x’s left subtree can overlap i . (b) The
search goes left. The left subtree of x contains an interval that overlaps i (situation not shown),
or x’s left subtree contains an interval i 0 such that i 0:high D x: left:max. Since i does not overlap i 0,
neither does it overlap any interval i 00 in x’s right subtree, since i 0: low � i 00: low.

Proof The while loop of lines 2–5 terminates either when x D T:nil or i over-
laps x: int. In the latter case, it is certainly correct to return x. Therefore, we focus
on the former case, in which the while loop terminates because x D T:nil.

We use the following invariant for the while loop of lines 2–5:

If tree T contains an interval that overlaps i , then the subtree rooted at x

contains such an interval.

We use this loop invariant as follows:

Initialization: Prior to the first iteration, line 1 sets x to be the root of T , so that
the invariant holds.

Maintenance: Each iteration of the while loop executes either line 4 or line 5. We
shall show that both cases maintain the loop invariant.

If line 5 is executed, then because of the branch condition in line 3, we
have x: left D T:nil, or x: left:max < i: low. If x: left D T:nil, the subtree
rooted at x: left clearly contains no interval that overlaps i , and so setting x

to x:right maintains the invariant. Suppose, therefore, that x: left ¤ T:nil and
x: left:max < i: low. As Figure 14.5(a) shows, for each interval i 0 in x’s left
subtree, we have

i 0:high � x: left:max

< i: low :

By the interval trichotomy, therefore, i 0 and i do not overlap. Thus, the left
subtree of x contains no intervals that overlap i , so that setting x to x:right
maintains the invariant.

14.3 Interval trees 353

If, on the other hand, line 4 is executed, then we will show that the contrapos-
itive of the loop invariant holds. That is, if the subtree rooted at x: left con-
tains no interval overlapping i , then no interval anywhere in the tree overlaps i .
Since line 4 is executed, then because of the branch condition in line 3, we
have x: left:max � i: low. Moreover, by definition of the max attribute, x’s left
subtree must contain some interval i 0 such that

i 0:high D x: left:max

� i: low :

(Figure 14.5(b) illustrates the situation.) Since i and i 0 do not overlap, and
since it is not true that i 0:high < i: low, it follows by the interval trichotomy
that i:high < i 0: low. Interval trees are keyed on the low endpoints of intervals,
and thus the search-tree property implies that for any interval i 00 in x’s right
subtree,

i:high < i 0: low

� i 00: low :

By the interval trichotomy, i and i 00 do not overlap. We conclude that whether
or not any interval in x’s left subtree overlaps i , setting x to x: left maintains
the invariant.

Termination: If the loop terminates when x D T:nil, then the subtree rooted at x

contains no interval overlapping i . The contrapositive of the loop invariant
implies that T contains no interval that overlaps i . Hence it is correct to return
x D T:nil.

Thus, the INTERVAL-SEARCH procedure works correctly.

Exercises

14.3-1
Write pseudocode for LEFT-ROTATE that operates on nodes in an interval tree and
updates the max attributes in O.1/ time.

14.3-2
Rewrite the code for INTERVAL-SEARCH so that it works properly when all inter-
vals are open.

14.3-3
Describe an efficient algorithm that, given an interval i , returns an interval over-
lapping i that has the minimum low endpoint, or T:nil if no such interval exists.

354 Chapter 14 Augmenting Data Structures

14.3-4
Given an interval tree T and an interval i , describe how to list all intervals in T

that overlap i in O.min.n; k lg n// time, where k is the number of intervals in the
output list. (Hint: One simple method makes several queries, modifying the tree
between queries. A slightly more complicated method does not modify the tree.)

14.3-5
Suggest modifications to the interval-tree procedures to support the new opera-
tion INTERVAL-SEARCH-EXACTLY.T; i/, where T is an interval tree and i is
an interval. The operation should return a pointer to a node x in T such that
x: int: low D i: low and x: int:high D i:high, or T:nil if T contains no such node.
All operations, including INTERVAL-SEARCH-EXACTLY, should run in O.lg n/

time on an n-node interval tree.

14.3-6
Show how to maintain a dynamic set Q of numbers that supports the operation
MIN-GAP, which gives the magnitude of the difference of the two closest num-
bers in Q. For example, if Q D f1; 5; 9; 15; 18; 22g, then MIN-GAP.Q/ returns
18 � 15 D 3, since 15 and 18 are the two closest numbers in Q. Make the op-
erations INSERT, DELETE, SEARCH, and MIN-GAP as efficient as possible, and
analyze their running times.

14.3-7 ?

VLSI databases commonly represent an integrated circuit as a list of rectan-
gles. Assume that each rectangle is rectilinearly oriented (sides parallel to the
x- and y-axes), so that we represent a rectangle by its minimum and maximum x-
and y-coordinates. Give an O.n lg n/-time algorithm to decide whether or not a set
of n rectangles so represented contains two rectangles that overlap. Your algorithm
need not report all intersecting pairs, but it must report that an overlap exists if one
rectangle entirely covers another, even if the boundary lines do not intersect. (Hint:
Move a “sweep” line across the set of rectangles.)

Problems

14-1 Point of maximum overlap
Suppose that we wish to keep track of a point of maximum overlap in a set of
intervals—a point with the largest number of intervals in the set that overlap it.

a. Show that there will always be a point of maximum overlap that is an endpoint
of one of the segments.

Notes for Chapter 14 355

b. Design a data structure that efficiently supports the operations INTERVAL-
INSERT, INTERVAL-DELETE, and FIND-POM, which returns a point of max-
imum overlap. (Hint: Keep a red-black tree of all the endpoints. Associate
a value of C1 with each left endpoint, and associate a value of �1 with each
right endpoint. Augment each node of the tree with some extra information to
maintain the point of maximum overlap.)

14-2 Josephus permutation
We define the Josephus problem as follows. Suppose that n people form a circle
and that we are given a positive integer m � n. Beginning with a designated
first person, we proceed around the circle, removing every mth person. After each
person is removed, counting continues around the circle that remains. This process
continues until we have removed all n people. The order in which the people are
removed from the circle defines the .n; m/-Josephus permutation of the integers
1; 2; : : : ; n. For example, the .7; 3/-Josephus permutation is h3; 6; 2; 7; 5; 1; 4i.
a. Suppose that m is a constant. Describe an O.n/-time algorithm that, given an

integer n, outputs the .n; m/-Josephus permutation.

b. Suppose that m is not a constant. Describe an O.n lg n/-time algorithm that,
given integers n and m, outputs the .n; m/-Josephus permutation.

Chapter notes

In their book, Preparata and Shamos [282] describe several of the interval trees
that appear in the literature, citing work by H. Edelsbrunner (1980) and E. M.
McCreight (1981). The book details an interval tree that, given a static database
of n intervals, allows us to enumerate all k intervals that overlap a given query
interval in O.k C lg n/ time.

IV Advanced Design and Analysis Techniques

Introduction

This part covers three important techniques used in designing and analyzing effi-
cient algorithms: dynamic programming (Chapter 15), greedy algorithms (Chap-
ter 16), and amortized analysis (Chapter 17). Earlier parts have presented other
widely applicable techniques, such as divide-and-conquer, randomization, and how
to solve recurrences. The techniques in this part are somewhat more sophisticated,
but they help us to attack many computational problems. The themes introduced in
this part will recur later in this book.

Dynamic programming typically applies to optimization problems in which we
make a set of choices in order to arrive at an optimal solution. As we make
each choice, subproblems of the same form often arise. Dynamic programming
is effective when a given subproblem may arise from more than one partial set of
choices; the key technique is to store the solution to each such subproblem in case it
should reappear. Chapter 15 shows how this simple idea can sometimes transform
exponential-time algorithms into polynomial-time algorithms.

Like dynamic-programming algorithms, greedy algorithms typically apply to
optimization problems in which we make a set of choices in order to arrive at an
optimal solution. The idea of a greedy algorithm is to make each choice in a locally
optimal manner. A simple example is coin-changing: to minimize the number of
U.S. coins needed to make change for a given amount, we can repeatedly select
the largest-denomination coin that is not larger than the amount that remains. A
greedy approach provides an optimal solution for many such problems much more
quickly than would a dynamic-programming approach. We cannot always easily
tell whether a greedy approach will be effective, however. Chapter 16 introduces

358 Part IV Advanced Design and Analysis Techniques

matroid theory, which provides a mathematical basis that can help us to show that
a greedy algorithm yields an optimal solution.

We use amortized analysis to analyze certain algorithms that perform a sequence
of similar operations. Instead of bounding the cost of the sequence of operations
by bounding the actual cost of each operation separately, an amortized analysis
provides a bound on the actual cost of the entire sequence. One advantage of this
approach is that although some operations might be expensive, many others might
be cheap. In other words, many of the operations might run in well under the worst-
case time. Amortized analysis is not just an analysis tool, however; it is also a way
of thinking about the design of algorithms, since the design of an algorithm and the
analysis of its running time are often closely intertwined. Chapter 17 introduces
three ways to perform an amortized analysis of an algorithm.

15 Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems by
combining the solutions to subproblems. (“Programming” in this context refers
to a tabular method, not to writing computer code.) As we saw in Chapters 2
and 4, divide-and-conquer algorithms partition the problem into disjoint subprob-
lems, solve the subproblems recursively, and then combine their solutions to solve
the original problem. In contrast, dynamic programming applies when the subprob-
lems overlap—that is, when subproblems share subsubproblems. In this context,
a divide-and-conquer algorithm does more work than necessary, repeatedly solv-
ing the common subsubproblems. A dynamic-programming algorithm solves each
subsubproblem just once and then saves its answer in a table, thereby avoiding the
work of recomputing the answer every time it solves each subsubproblem.

We typically apply dynamic programming to optimization problems. Such prob-
lems can have many possible solutions. Each solution has a value, and we wish to
find a solution with the optimal (minimum or maximum) value. We call such a
solution an optimal solution to the problem, as opposed to the optimal solution,
since there may be several solutions that achieve the optimal value.

When developing a dynamic-programming algorithm, we follow a sequence of
four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Steps 1–3 form the basis of a dynamic-programming solution to a problem. If we
need only the value of an optimal solution, and not the solution itself, then we
can omit step 4. When we do perform step 4, we sometimes maintain additional
information during step 3 so that we can easily construct an optimal solution.

The sections that follow use the dynamic-programming method to solve some
optimization problems. Section 15.1 examines the problem of cutting a rod into

360 Chapter 15 Dynamic Programming

rods of smaller length in way that maximizes their total value. Section 15.2 asks
how we can multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 15.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 15.4 then shows how to find the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 15.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i D 1; 2; : : :, the price pi in dollars that Serling
Enterprises charges for a rod of length i inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices pi for i D 1; 2; : : : ; n, determine the maximum revenue rn obtain-
able by cutting up the rod and selling the pieces. Note that if the price pn for a rod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n D 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p2Cp2 D 5C 5 D 10, which
is optimal.

We can cut up a rod of length n in 2n�1 different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.

15.1 Rod cutting 361

9

(a)

1

(b)

8

(c) (d)

(e) (f) (g)

1

(h)

1 1 1

5 5 18

511 5 11 5 11

Figure 15.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the
value of that piece, according to the sample price chart of Figure 15.1. The optimal strategy is
part (c)—cutting the rod into two pieces of length 2—which has total value 10.

for i D 1; 2; : : : ; n � 1.1 We denote a decomposition into pieces using ordinary
additive notation, so that 7 D 2C 2C 3 indicates that a rod of length 7 is cut into
three pieces—two of length 2 and one of length 3. If an optimal solution cuts the
rod into k pieces, for some 1 � k � n, then an optimal decomposition

n D i1 C i2 C � � � C ik

of the rod into pieces of lengths i1, i2, . . . , ik provides maximum corresponding
revenue

rn D pi1 C pi2 C � � � C pik :

For our sample problem, we can determine the optimal revenue figures ri , for
i D 1; 2; : : : ; 10, by inspection, with the corresponding optimal decompositions

1If we required the pieces to be cut in order of nondecreasing size, there would be fewer ways
to consider. For n D 4, we would consider only 5 such ways: parts (a), (b), (c), (e), and (h)
in Figure 15.2. The number of ways is called the partition function; it is approximately equal to

e�
p

2n=3=4n
p

3. This quantity is less than 2n�1, but still much greater than any polynomial in n.
We shall not pursue this line of inquiry further, however.

362 Chapter 15 Dynamic Programming

r1 D 1 from solution 1 D 1 (no cuts) ;

r2 D 5 from solution 2 D 2 (no cuts) ;

r3 D 8 from solution 3 D 3 (no cuts) ;

r4 D 10 from solution 4 D 2C 2 ;

r5 D 13 from solution 5 D 2C 3 ;

r6 D 17 from solution 6 D 6 (no cuts) ;

r7 D 18 from solution 7 D 1C 6 or 7 D 2C 2C 3 ;

r8 D 22 from solution 8 D 2C 6 ;

r9 D 25 from solution 9 D 3C 6 ;

r10 D 30 from solution 10 D 10 (no cuts) :

More generally, we can frame the values rn for n � 1 in terms of optimal rev-
enues from shorter rods:

rn D max .pn; r1 C rn�1; r2 C rn�2; : : : ; rn�1 C r1/ : (15.1)

The first argument, pn, corresponds to making no cuts at all and selling the rod of
length n as is. The other n� 1 arguments to max correspond to the maximum rev-
enue obtained by making an initial cut of the rod into two pieces of size i and n � i ,
for each i D 1; 2; : : : ; n � 1, and then optimally cutting up those pieces further,
obtaining revenues ri and rn�i from those two pieces. Since we don’t know ahead
of time which value of i optimizes revenue, we have to consider all possible values
for i and pick the one that maximizes revenue. We also have the option of picking
no i at all if we can obtain more revenue by selling the rod uncut.

Note that to solve the original problem of size n, we solve smaller problems of
the same type, but of smaller sizes. Once we make the first cut, we may consider
the two pieces as independent instances of the rod-cutting problem. The overall
optimal solution incorporates optimal solutions to the two related subproblems,
maximizing revenue from each of those two pieces. We say that the rod-cutting
problem exhibits optimal substructure: optimal solutions to a problem incorporate
optimal solutions to related subproblems, which we may solve independently.

In a related, but slightly simpler, way to arrange a recursive structure for the rod-
cutting problem, we view a decomposition as consisting of a first piece of length i

cut off the left-hand end, and then a right-hand remainder of length n � i . Only
the remainder, and not the first piece, may be further divided. We may view every
decomposition of a length-n rod in this way: as a first piece followed by some
decomposition of the remainder. When doing so, we can couch the solution with
no cuts at all as saying that the first piece has size i D n and revenue pn and that
the remainder has size 0 with corresponding revenue r0 D 0. We thus obtain the
following simpler version of equation (15.1):

rn D max
1�i�n

.pi C rn�i / : (15.2)

15.1 Rod cutting 363

In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation

The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0

2 return 0
3 q D �1
4 for i D 1 to n

5 q D max.q; pŒi �C CUT-ROD.p; n � i//

6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n� of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to �1, so that the for loop in lines 4–5 correctly computes
q D max1�i�n.pi C CUT-ROD.p; n� i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n � i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n � 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and

364 Chapter 15 Dynamic Programming

3

1 0

0

0

01

2 0

0

1

2

0

1 0

4

Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s � t

and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2n�1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and 2n�1

leaves.

T .n/ D 1C
n�1X
j D0

T .j / : (15.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n � i/, where j D n � i .
As Exercise 15.1-1 asks you to show,

T .n/ D 2n ; (15.4)

and so the running time of CUT-ROD is exponential in n.
In retrospect, this exponential running time is not so surprising. CUT-ROD ex-

plicitly considers all the 2n�1 possible ways of cutting up a rod of length n. The
tree of recursive calls has 2n�1 leaves, one for each possible way of cutting up the
rod. The labels on the simple path from the root to a leaf give the sizes of each
remaining right-hand piece before making each cut. That is, the labels give the
corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting

We now show how to convert CUT-ROD into an efficient algorithm, using dynamic
programming.

The dynamic-programming method works as follows. Having observed that a
naive recursive solution is inefficient because it solves the same subproblems re-
peatedly, we arrange for each subproblem to be solved only once, saving its solu-
tion. If we need to refer to this subproblem’s solution again later, we can just look it

15.1 Rod cutting 365

up, rather than recompute it. Dynamic programming thus uses additional memory
to save computation time; it serves an example of a time-memory trade-off. The
savings may be dramatic: an exponential-time solution may be transformed into a
polynomial-time solution. A dynamic-programming approach runs in polynomial
time when the number of distinct subproblems involved is polynomial in the input
size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization.2 In this approach, we write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has beenmemoized;
it “remembers” what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends
on some natural notion of the “size” of a subproblem, such that solving any par-
ticular subproblem depends only on solving “smaller” subproblems. We sort the
subproblems by size and solve them in size order, smallest first. When solving a
particular subproblem, we have already solved all of the smaller subproblems its
solution depends upon, and we have saved their solutions. We solve each sub-
problem only once, and when we first see it, we have already solved all of its
prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
ization added:

MEMOIZED-CUT-ROD.p; n/

1 let rŒ0 : : n� be a new array
2 for i D 0 to n

3 rŒi � D �1
4 return MEMOIZED-CUT-ROD-AUX.p; n; r/

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes
from memo, since the technique consists of recording a value so that we can look it up later.

366 Chapter 15 Dynamic Programming

MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn� � 0

2 return rŒn�

3 if n == 0

4 q D 0

5 else q D �1
6 for i D 1 to n

7 q D max.q; pŒi �CMEMOIZED-CUT-ROD-AUX.p; n � i; r//

8 rŒn� D q

9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n� with the value �1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn�, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n� be a new array
2 rŒ0� D 0

3 for j D 1 to n

4 q D �1
5 for i D 1 to j

6 q D max.q; pŒi �C rŒj � i �/

7 rŒj � D q

8 return rŒn�

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD

uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n� in
which to save the results of the subproblems, and line 2 initializes rŒ0� to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

15.1 Rod cutting 367

3

0

1

2

4

Figure 15.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels
give the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that we need a
solution to subproblem y when solving subproblem x. This graph is a reduced version of the tree of
Figure 15.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

directly references array entry rŒj � i � instead of making a recursive call to solve
the subproblem of size j � i . Line 7 saves in rŒj � the solution to the subproblem
of size j . Finally, line 8 returns rŒn�, which equals the optimal value rn.

The bottom-up and top-down versions have the same asymptotic running time.
The running time of procedure BOTTOM-UP-CUT-ROD is ‚.n2/, due to its
doubly-nested loop structure. The number of iterations of its inner for loop, in
lines 5–6, forms an arithmetic series. The running time of its top-down counterpart,
MEMOIZED-CUT-ROD, is also ‚.n2/, although this running time may be a little
harder to see. Because a recursive call to solve a previously solved subproblem
returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It
solves subproblems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for
loop of lines 6–7 iterates n times. Thus, the total number of iterations of this for
loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series,
giving a total of ‚.n2/ iterations, just like the inner for loop of BOTTOM-UP-
CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see
aggregate analysis in detail in Section 17.1.)

Subproblem graphs

When we think about a dynamic-programming problem, we should understand the
set of subproblems involved and how subproblems depend on one another.

The subproblem graph for the problem embodies exactly this information. Fig-
ure 15.4 shows the subproblem graph for the rod-cutting problem with n D 4. It
is a directed graph, containing one vertex for each distinct subproblem. The sub-

368 Chapter 15 Dynamic Programming

problem graph has a directed edge from the vertex for subproblem x to the vertex
for subproblem y if determining an optimal solution for subproblem x involves
directly considering an optimal solution for subproblem y. For example, the sub-
problem graph contains an edge from x to y if a top-down recursive procedure for
solving x directly calls itself to solve y. We can think of the subproblem graph
as a “reduced” or “collapsed” version of the recursion tree for the top-down recur-
sive method, in which we coalesce all nodes for the same subproblem into a single
vertex and direct all edges from parent to child.

The bottom-up method for dynamic programming considers the vertices of the
subproblem graph in such an order that we solve the subproblems y adjacent to
a given subproblem x before we solve subproblem x. (Recall from Section B.4
that the adjacency relation is not necessarily symmetric.) Using the terminology
from Chapter 22, in a bottom-up dynamic-programming algorithm, we consider the
vertices of the subproblem graph in an order that is a “reverse topological sort,” or
a “topological sort of the transpose” (see Section 22.4) of the subproblem graph. In
other words, no subproblem is considered until all of the subproblems it depends
upon have been solved. Similarly, using notions from the same chapter, we can
view the top-down method (with memoization) for dynamic programming as a
“depth-first search” of the subproblem graph (see Section 22.3).

The size of the subproblem graph G D .V; E/ can help us determine the running
time of the dynamic programming algorithm. Since we solve each subproblem just
once, the running time is the sum of the times needed to solve each subproblem.
Typically, the time to compute the solution to a subproblem is proportional to the
degree (number of outgoing edges) of the corresponding vertex in the subproblem
graph, and the number of subproblems is equal to the number of vertices in the sub-
problem graph. In this common case, the running time of dynamic programming
is linear in the number of vertices and edges.

Reconstructing a solution

Our dynamic-programming solutions to the rod-cutting problem return the value of
an optimal solution, but they do not return an actual solution: a list of piece sizes.
We can extend the dynamic-programming approach to record not only the optimal
value computed for each subproblem, but also a choice that led to the optimal
value. With this information, we can readily print an optimal solution.

Here is an extended version of BOTTOM-UP-CUT-ROD that computes, for each
rod size j , not only the maximum revenue rj , but also sj , the optimal size of the
first piece to cut off:

15.1 Rod cutting 369

EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n� and sŒ0 : : n� be new arrays
2 rŒ0� D 0

3 for j D 1 to n

4 q D �1
5 for i D 1 to j

6 if q < pŒi�C rŒj � i �

7 q D pŒi�C rŒj � i �

8 sŒj � D i

9 rŒj � D q

10 return r and s

This procedure is similar to BOTTOM-UP-CUT-ROD, except that it creates the ar-
ray s in line 1, and it updates sŒj � in line 8 to hold the optimal size i of the first
piece to cut off when solving a subproblem of size j .

The following procedure takes a price table p and a rod size n, and it calls
EXTENDED-BOTTOM-UP-CUT-ROD to compute the array sŒ1 : : n� of optimal
first-piece sizes and then prints out the complete list of piece sizes in an optimal
decomposition of a rod of length n:

PRINT-CUT-ROD-SOLUTION.p; n/

1 .r; s/ D EXTENDED-BOTTOM-UP-CUT-ROD.p; n/

2 while n > 0

3 print sŒn�

4 n D n � sŒn�

In our rod-cutting example, the call EXTENDED-BOTTOM-UP-CUT-ROD.p; 10/

would return the following arrays:

i 0 1 2 3 4 5 6 7 8 9 10

rŒi � 0 1 5 8 10 13 17 18 22 25 30

sŒi � 0 1 2 3 2 2 6 1 2 3 10

A call to PRINT-CUT-ROD-SOLUTION.p; 10/ would print just 10, but a call with
n D 7 would print the cuts 1 and 6, corresponding to the first optimal decomposi-
tion for r7 given earlier.

Exercises

15.1-1
Show that equation (15.4) follows from equation (15.3) and the initial condition
T .0/ D 1.

370 Chapter 15 Dynamic Programming

15.1-2
Show, by means of a counterexample, that the following “greedy” strategy does
not always determine an optimal way to cut rods. Define the density of a rod of
length i to be pi=i , that is, its value per inch. The greedy strategy for a rod of
length n cuts off a first piece of length i , where 1 � i � n, having maximum
density. It then continues by applying the greedy strategy to the remaining piece of
length n � i .

15.1-3
Consider a modification of the rod-cutting problem in which, in addition to a
price pi for each rod, each cut incurs a fixed cost of c. The revenue associated with
a solution is now the sum of the prices of the pieces minus the costs of making the
cuts. Give a dynamic-programming algorithm to solve this modified problem.

15.1-4
Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution,
too.

15.1-5
The Fibonacci numbers are defined by recurrence (3.22). Give an O.n/-time
dynamic-programming algorithm to compute the nth Fibonacci number. Draw the
subproblem graph. How many vertices and edges are in the graph?

15.2 Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves the problem
of matrix-chain multiplication. We are given a sequence (chain) hA1; A2; : : : ; Ani
of n matrices to be multiplied, and we wish to compute the product

A1A2 � � �An : (15.5)

We can evaluate the expression (15.5) using the standard algorithm for multiply-
ing pairs of matrices as a subroutine once we have parenthesized it to resolve all
ambiguities in how the matrices are multiplied together. Matrix multiplication is
associative, and so all parenthesizations yield the same product. A product of ma-
trices is fully parenthesized if it is either a single matrix or the product of two fully
parenthesized matrix products, surrounded by parentheses. For example, if the
chain of matrices is hA1; A2; A3; A4i, then we can fully parenthesize the product
A1A2A3A4 in five distinct ways:

15.2 Matrix-chain multiplication 371

.A1.A2.A3A4/// ;

.A1..A2A3/A4// ;

..A1A2/.A3A4// ;

..A1.A2A3//A4/ ;

...A1A2/A3/A4/ :

How we parenthesize a chain of matrices can have a dramatic impact on the cost
of evaluating the product. Consider first the cost of multiplying two matrices. The
standard algorithm is given by the following pseudocode, which generalizes the
SQUARE-MATRIX-MULTIPLY procedure from Section 4.2. The attributes rows
and columns are the numbers of rows and columns in a matrix.

MATRIX-MULTIPLY.A; B/

1 if A:columns ¤ B:rows
2 error “incompatible dimensions”
3 else let C be a new A:rows 	 B:columns matrix
4 for i D 1 to A:rows
5 for j D 1 to B:columns
6 cij D 0

7 for k D 1 to A:columns
8 cij D cij C aik � bkj

9 return C

We can multiply two matrices A and B only if they are compatible: the number of
columns of A must equal the number of rows of B . If A is a p 	 q matrix and B is
a q 	 r matrix, the resulting matrix C is a p 	 r matrix. The time to compute C is
dominated by the number of scalar multiplications in line 8, which is pqr . In what
follows, we shall express costs in terms of the number of scalar multiplications.

To illustrate the different costs incurred by different parenthesizations of a matrix
product, consider the problem of a chain hA1; A2; A3i of three matrices. Suppose
that the dimensions of the matrices are 10 	 100, 100 	 5, and 5 	 50, respec-
tively. If we multiply according to the parenthesization ..A1A2/A3/, we perform
10 � 100 � 5 D 5000 scalar multiplications to compute the 10 	 5 matrix prod-
uct A1A2, plus another 10 � 5 � 50 D 2500 scalar multiplications to multiply this
matrix by A3, for a total of 7500 scalar multiplications. If instead we multiply
according to the parenthesization .A1.A2A3//, we perform 100 � 5 � 50 D 25,000
scalar multiplications to compute the 100 	 50 matrix product A2A3, plus another
10 � 100 � 50 D 50,000 scalar multiplications to multiply A1 by this matrix, for a
total of 75,000 scalar multiplications. Thus, computing the product according to
the first parenthesization is 10 times faster.

We state the matrix-chain multiplication problem as follows: given a chain
hA1;A2; : : : ;Ani of n matrices, where for i D 1; 2; : : : ; n, matrix Ai has dimension

372 Chapter 15 Dynamic Programming

pi�1 	 pi , fully parenthesize the product A1A2 � � �An in a way that minimizes the
number of scalar multiplications.

Note that in the matrix-chain multiplication problem, we are not actually multi-
plying matrices. Our goal is only to determine an order for multiplying matrices
that has the lowest cost. Typically, the time invested in determining this optimal
order is more than paid for by the time saved later on when actually performing the
matrix multiplications (such as performing only 7500 scalar multiplications instead
of 75,000).

Counting the number of parenthesizations

Before solving the matrix-chain multiplication problem by dynamic programming,
let us convince ourselves that exhaustively checking all possible parenthesizations
does not yield an efficient algorithm. Denote the number of alternative parenthe-
sizations of a sequence of n matrices by P.n/. When n D 1, we have just one
matrix and therefore only one way to fully parenthesize the matrix product. When
n � 2, a fully parenthesized matrix product is the product of two fully parenthe-
sized matrix subproducts, and the split between the two subproducts may occur
between the kth and .k C 1/st matrices for any k D 1; 2; : : : ; n � 1. Thus, we
obtain the recurrence

P.n/ D

�
1 if n D 1 ;
n�1X
kD1

P.k/P.n� k/ if n � 2 :
(15.6)

Problem 12-4 asked you to show that the solution to a similar recurrence is the
sequence of Catalan numbers, which grows as �.4n=n3=2/. A simpler exercise
(see Exercise 15.2-3) is to show that the solution to the recurrence (15.6) is �.2n/.
The number of solutions is thus exponential in n, and the brute-force method of
exhaustive search makes for a poor strategy when determining how to optimally
parenthesize a matrix chain.

Applying dynamic programming

We shall use the dynamic-programming method to determine how to optimally
parenthesize a matrix chain. In so doing, we shall follow the four-step sequence
that we stated at the beginning of this chapter:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

15.2 Matrix-chain multiplication 373

4. Construct an optimal solution from computed information.

We shall go through these steps in order, demonstrating clearly how we apply each
step to the problem.

Step 1: The structure of an optimal parenthesization

For our first step in the dynamic-programming paradigm, we find the optimal sub-
structure and then use it to construct an optimal solution to the problem from opti-
mal solutions to subproblems. In the matrix-chain multiplication problem, we can
perform this step as follows. For convenience, let us adopt the notation Ai ::j , where
i � j , for the matrix that results from evaluating the product AiAiC1 � � �Aj . Ob-
serve that if the problem is nontrivial, i.e., i < j , then to parenthesize the product
AiAiC1 � � �Aj , we must split the product between Ak and AkC1 for some integer k

in the range i � k < j . That is, for some value of k, we first compute the matrices
Ai ::k and AkC1::j and then multiply them together to produce the final product Ai ::j .
The cost of parenthesizing this way is the cost of computing the matrix Ai ::k , plus
the cost of computing AkC1::j , plus the cost of multiplying them together.

The optimal substructure of this problem is as follows. Suppose that to op-
timally parenthesize AiAiC1 � � �Aj , we split the product between Ak and AkC1.
Then the way we parenthesize the “prefix” subchain AiAiC1 � � �Ak within this
optimal parenthesization of AiAiC1 � � �Aj must be an optimal parenthesization of
AiAiC1 � � �Ak. Why? If there were a less costly way to parenthesize AiAiC1 � � �Ak,
then we could substitute that parenthesization in the optimal parenthesization
of AiAiC1 � � �Aj to produce another way to parenthesize AiAiC1 � � �Aj whose cost
was lower than the optimum: a contradiction. A similar observation holds for how
we parenthesize the subchain AkC1AkC2 � � �Aj in the optimal parenthesization of
AiAiC1 � � �Aj : it must be an optimal parenthesization of AkC1AkC2 � � �Aj .

Now we use our optimal substructure to show that we can construct an optimal
solution to the problem from optimal solutions to subproblems. We have seen that
any solution to a nontrivial instance of the matrix-chain multiplication problem
requires us to split the product, and that any optimal solution contains within it op-
timal solutions to subproblem instances. Thus, we can build an optimal solution to
an instance of the matrix-chain multiplication problem by splitting the problem into
two subproblems (optimally parenthesizing AiAiC1 � � �Ak and AkC1AkC2 � � �Aj),
finding optimal solutions to subproblem instances, and then combining these op-
timal subproblem solutions. We must ensure that when we search for the correct
place to split the product, we have considered all possible places, so that we are
sure of having examined the optimal one.

374 Chapter 15 Dynamic Programming

Step 2: A recursive solution

Next, we define the cost of an optimal solution recursively in terms of the optimal
solutions to subproblems. For the matrix-chain multiplication problem, we pick as
our subproblems the problems of determining the minimum cost of parenthesizing
AiAiC1 � � �Aj for 1 � i � j � n. Let mŒi; j � be the minimum number of scalar
multiplications needed to compute the matrix Ai ::j ; for the full problem, the lowest-
cost way to compute A1::n would thus be mŒ1; n�.

We can define mŒi; j � recursively as follows. If i D j , the problem is trivial;
the chain consists of just one matrix Ai ::i D Ai , so that no scalar multiplications
are necessary to compute the product. Thus, mŒi; i � D 0 for i D 1; 2; : : : ; n. To
compute mŒi; j � when i < j , we take advantage of the structure of an optimal
solution from step 1. Let us assume that to optimally parenthesize, we split the
product AiAiC1 � � �Aj between Ak and AkC1, where i � k < j . Then, mŒi; j �

equals the minimum cost for computing the subproducts Ai ::k and AkC1::j , plus the
cost of multiplying these two matrices together. Recalling that each matrix Ai is
pi�1 	 pi , we see that computing the matrix product Ai ::kAkC1::j takes pi�1pkpj

scalar multiplications. Thus, we obtain

mŒi; j � D mŒi; k�CmŒk C 1; j �C pi�1pkpj :

This recursive equation assumes that we know the value of k, which we do not.
There are only j �i possible values for k, however, namely k D i; iC1; : : : ; j �1.
Since the optimal parenthesization must use one of these values for k, we need only
check them all to find the best. Thus, our recursive definition for the minimum cost
of parenthesizing the product AiAiC1 � � �Aj becomes

mŒi; j � D
(

0 if i D j ;

min
i�k<j

fmŒi; k�CmŒk C 1; j �C pi�1pkpj g if i < j :
(15.7)

The mŒi; j � values give the costs of optimal solutions to subproblems, but they
do not provide all the information we need to construct an optimal solution. To
help us do so, we define sŒi; j � to be a value of k at which we split the product
AiAiC1 � � �Aj in an optimal parenthesization. That is, sŒi; j � equals a value k such
that mŒi; j � D mŒi; k�CmŒk C 1; j �C pi�1pkpj .

Step 3: Computing the optimal costs

At this point, we could easily write a recursive algorithm based on recurrence (15.7)
to compute the minimum cost mŒ1; n� for multiplying A1A2 � � �An. As we saw for
the rod-cutting problem, and as we shall see in Section 15.3, this recursive algo-
rithm takes exponential time, which is no better than the brute-force method of
checking each way of parenthesizing the product.

15.2 Matrix-chain multiplication 375

Observe that we have relatively few distinct subproblems: one subproblem for
each choice of i and j satisfying 1 � i � j � n, or

�
n

2

� C n D ‚.n2/ in all.
A recursive algorithm may encounter each subproblem many times in different
branches of its recursion tree. This property of overlapping subproblems is the
second hallmark of when dynamic programming applies (the first hallmark being
optimal substructure).

Instead of computing the solution to recurrence (15.7) recursively, we compute
the optimal cost by using a tabular, bottom-up approach. (We present the corre-
sponding top-down approach using memoization in Section 15.3.)

We shall implement the tabular, bottom-up method in the procedure MATRIX-
CHAIN-ORDER, which appears below. This procedure assumes that matrix Ai

has dimensions pi�1 	 pi for i D 1; 2; : : : ; n. Its input is a sequence p D
hp0; p1; : : : ; pni, where p: length D n C 1. The procedure uses an auxiliary
table mŒ1 : : n; 1 : : n� for storing the mŒi; j � costs and another auxiliary table
sŒ1 : : n � 1; 2 : : n� that records which index of k achieved the optimal cost in com-
puting mŒi; j �. We shall use the table s to construct an optimal solution.

In order to implement the bottom-up approach, we must determine which entries
of the table we refer to when computing mŒi; j �. Equation (15.7) shows that the
cost mŒi; j � of computing a matrix-chain product of j�iC1 matrices depends only
on the costs of computing matrix-chain products of fewer than j � i C 1 matrices.
That is, for k D i; i C 1; : : : ; j � 1, the matrix Ai ::k is a product of k � i C 1 <

j � i C 1 matrices and the matrix AkC1::j is a product of j � k < j � i C 1

matrices. Thus, the algorithm should fill in the table m in a manner that corresponds
to solving the parenthesization problem on matrix chains of increasing length. For
the subproblem of optimally parenthesizing the chain AiAiC1 � � �Aj , we consider
the subproblem size to be the length j � i C 1 of the chain.

MATRIX-CHAIN-ORDER.p/

1 n D p: length � 1

2 let mŒ1 : : n; 1 : : n� and sŒ1 : : n � 1; 2 : : n� be new tables
3 for i D 1 to n

4 mŒi; i � D 0

5 for l D 2 to n // l is the chain length
6 for i D 1 to n � l C 1

7 j D i C l � 1

8 mŒi; j � D 1
9 for k D i to j � 1

10 q D mŒi; k�CmŒk C 1; j �C pi�1pkpj

11 if q < mŒi; j �

12 mŒi; j � D q

13 sŒi; j � D k

14 return m and s

376 Chapter 15 Dynamic Programming

A6A5A4A3A2A1

0 0 0 0 0 0

15,750 2,625 750 1,000 5,000

7,875 4,375 2,500 3,500

9,375 7,125 5,375

11,875 10,500

15,125

1

2

3

4

5

6 1

2

3

4

5

6

j i

m

1 2 3 4 5

1 3 3 5

3 3 3

3 3

3

2

3

4

5

6 1

2

3

4

5

j i

s

Figure 15.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n D 6 and the follow-
ing matrix dimensions:

matrix A1 A2 A3 A4 A5 A6

dimension 30 	 35 35 	 15 15 	 5 5 	 10 10 	 20 20 	 25

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main
diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of
scalar multiplications to multiply the 6 matrices is mŒ1; 6� D 15,125. Of the darker entries, the pairs
that have the same shading are taken together in line 10 when computing

mŒ2; 5� D min

8̂<̂
:

mŒ2; 2�CmŒ3; 5�C p1p2p5 D 0C 2500C 35 � 15 � 20 D 13,000 ;

mŒ2; 3�CmŒ4; 5�C p1p3p5 D 2625C 1000C 35 � 5 � 20 D 7125 ;

mŒ2; 4�CmŒ5; 5�C p1p4p5 D 4375C 0C 35 � 10 � 20 D 11,375

D 7125 :

The algorithm first computes mŒi; i � D 0 for i D 1; 2; : : : ; n (the minimum
costs for chains of length 1) in lines 3–4. It then uses recurrence (15.7) to compute
mŒi; i C 1� for i D 1; 2; : : : ; n � 1 (the minimum costs for chains of length l D 2)
during the first execution of the for loop in lines 5–13. The second time through the
loop, it computes mŒi; iC2� for i D 1; 2; : : : ; n�2 (the minimum costs for chains of
length l D 3), and so forth. At each step, the mŒi; j � cost computed in lines 10–13
depends only on table entries mŒi; k� and mŒk C 1; j � already computed.

Figure 15.5 illustrates this procedure on a chain of n D 6 matrices. Since
we have defined mŒi; j � only for i � j , only the portion of the table m strictly
above the main diagonal is used. The figure shows the table rotated to make the
main diagonal run horizontally. The matrix chain is listed along the bottom. Us-
ing this layout, we can find the minimum cost mŒi; j � for multiplying a subchain
AiAiC1 � � �Aj of matrices at the intersection of lines running northeast from Ai and

15.2 Matrix-chain multiplication 377

northwest from Aj . Each horizontal row in the table contains the entries for matrix
chains of the same length. MATRIX-CHAIN-ORDER computes the rows from bot-
tom to top and from left to right within each row. It computes each entry mŒi; j �

using the products pi�1pkpj for k D i; i C 1; : : : ; j � 1 and all entries southwest
and southeast from mŒi; j �.

A simple inspection of the nested loop structure of MATRIX-CHAIN-ORDER

yields a running time of O.n3/ for the algorithm. The loops are nested three deep,
and each loop index (l , i , and k) takes on at most n�1 values. Exercise 15.2-5 asks
you to show that the running time of this algorithm is in fact also �.n3/. The al-
gorithm requires ‚.n2/ space to store the m and s tables. Thus, MATRIX-CHAIN-
ORDER is much more efficient than the exponential-time method of enumerating
all possible parenthesizations and checking each one.

Step 4: Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number of scalar mul-
tiplications needed to compute a matrix-chain product, it does not directly show
how to multiply the matrices. The table sŒ1 : : n � 1; 2 : : n� gives us the informa-
tion we need to do so. Each entry sŒi; j � records a value of k such that an op-
timal parenthesization of AiAiC1 � � �Aj splits the product between Ak and AkC1.
Thus, we know that the final matrix multiplication in computing A1::n optimally
is A1::sŒ1;n�AsŒ1;n�C1::n. We can determine the earlier matrix multiplications recur-
sively, since sŒ1; sŒ1; n�� determines the last matrix multiplication when computing
A1::sŒ1;n� and sŒsŒ1; n� C 1; n� determines the last matrix multiplication when com-
puting AsŒ1;n�C1::n. The following recursive procedure prints an optimal parenthe-
sization of hAi ; AiC1; : : : ; Aj i, given the s table computed by MATRIX-CHAIN-
ORDER and the indices i and j . The initial call PRINT-OPTIMAL-PARENS.s; 1; n/

prints an optimal parenthesization of hA1; A2; : : : ; Ani.

PRINT-OPTIMAL-PARENS.s; i; j /

1 if i == j

2 print “A”i

3 else print “(”
4 PRINT-OPTIMAL-PARENS.s; i; sŒi; j �/

5 PRINT-OPTIMAL-PARENS.s; sŒi; j � C 1; j /

6 print “)”

In the example of Figure 15.5, the call PRINT-OPTIMAL-PARENS.s; 1; 6/ prints
the parenthesization ..A1.A2A3//..A4A5/A6//.

378 Chapter 15 Dynamic Programming

Exercises

15.2-1
Find an optimal parenthesization of a matrix-chain product whose sequence of
dimensions is h5; 10; 3; 12; 5; 50; 6i.
15.2-2
Give a recursive algorithm MATRIX-CHAIN-MULTIPLY.A; s; i; j / that actually
performs the optimal matrix-chain multiplication, given the sequence of matrices
hA1; A2; : : : ; Ani, the s table computed by MATRIX-CHAIN-ORDER, and the in-
dices i and j . (The initial call would be MATRIX-CHAIN-MULTIPLY.A; s; 1; n/.)

15.2-3
Use the substitution method to show that the solution to the recurrence (15.6)
is �.2n/.

15.2-4
Describe the subproblem graph for matrix-chain multiplication with an input chain
of length n. How many vertices does it have? How many edges does it have, and
which edges are they?

15.2-5
Let R.i; j / be the number of times that table entry mŒi; j � is referenced while
computing other table entries in a call of MATRIX-CHAIN-ORDER. Show that the
total number of references for the entire table is

nX
iD1

nX
j Di

R.i; j / D n3 � n

3
:

(Hint: You may find equation (A.3) useful.)

15.2-6
Show that a full parenthesization of an n-element expression has exactly n�1 pairs
of parentheses.

15.3 Elements of dynamic programming

Although we have just worked through two examples of the dynamic-programming
method, you might still be wondering just when the method applies. From an en-
gineering perspective, when should we look for a dynamic-programming solution
to a problem? In this section, we examine the two key ingredients that an opti-

15.3 Elements of dynamic programming 379

mization problem must have in order for dynamic programming to apply: optimal
substructure and overlapping subproblems. We also revisit and discuss more fully
how memoization might help us take advantage of the overlapping-subproblems
property in a top-down recursive approach.

Optimal substructure

The first step in solving an optimization problem by dynamic programming is to
characterize the structure of an optimal solution. Recall that a problem exhibits
optimal substructure if an optimal solution to the problem contains within it opti-
mal solutions to subproblems. Whenever a problem exhibits optimal substructure,
we have a good clue that dynamic programming might apply. (As Chapter 16 dis-
cusses, it also might mean that a greedy strategy applies, however.) In dynamic
programming, we build an optimal solution to the problem from optimal solutions
to subproblems. Consequently, we must take care to ensure that the range of sub-
problems we consider includes those used in an optimal solution.

We discovered optimal substructure in both of the problems we have examined
in this chapter so far. In Section 15.1, we observed that the optimal way of cut-
ting up a rod of length n (if we make any cuts at all) involves optimally cutting
up the two pieces resulting from the first cut. In Section 15.2, we observed that
an optimal parenthesization of AiAiC1 � � �Aj that splits the product between Ak

and AkC1 contains within it optimal solutions to the problems of parenthesizing
AiAiC1 � � �Ak and AkC1AkC2 � � �Aj .

You will find yourself following a common pattern in discovering optimal sub-
structure:

1. You show that a solution to the problem consists of making a choice, such as
choosing an initial cut in a rod or choosing an index at which to split the matrix
chain. Making this choice leaves one or more subproblems to be solved.

2. You suppose that for a given problem, you are given the choice that leads to an
optimal solution. You do not concern yourself yet with how to determine this
choice. You just assume that it has been given to you.

3. Given this choice, you determine which subproblems ensue and how to best
characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within an optimal solution
to the problem must themselves be optimal by using a “cut-and-paste” tech-
nique. You do so by supposing that each of the subproblem solutions is not
optimal and then deriving a contradiction. In particular, by “cutting out” the
nonoptimal solution to each subproblem and “pasting in” the optimal one, you
show that you can get a better solution to the original problem, thus contradict-
ing your supposition that you already had an optimal solution. If an optimal

380 Chapter 15 Dynamic Programming

solution gives rise to more than one subproblem, they are typically so similar
that you can modify the cut-and-paste argument for one to apply to the others
with little effort.

To characterize the space of subproblems, a good rule of thumb says to try to
keep the space as simple as possible and then expand it as necessary. For example,
the space of subproblems that we considered for the rod-cutting problem contained
the problems of optimally cutting up a rod of length i for each size i . This sub-
problem space worked well, and we had no need to try a more general space of
subproblems.

Conversely, suppose that we had tried to constrain our subproblem space for
matrix-chain multiplication to matrix products of the form A1A2 � � �Aj . As before,
an optimal parenthesization must split this product between Ak and AkC1 for some
1 � k < j . Unless we could guarantee that k always equals j � 1, we would find
that we had subproblems of the form A1A2 � � �Ak and AkC1AkC2 � � �Aj , and that
the latter subproblem is not of the form A1A2 � � �Aj . For this problem, we needed
to allow our subproblems to vary at “both ends,” that is, to allow both i and j to
vary in the subproblem AiAiC1 � � �Aj .

Optimal substructure varies across problem domains in two ways:

1. how many subproblems an optimal solution to the original problem uses, and

2. how many choices we have in determining which subproblem(s) to use in an
optimal solution.

In the rod-cutting problem, an optimal solution for cutting up a rod of size n

uses just one subproblem (of size n � i), but we must consider n choices for i

in order to determine which one yields an optimal solution. Matrix-chain mul-
tiplication for the subchain AiAiC1 � � �Aj serves as an example with two sub-
problems and j � i choices. For a given matrix Ak at which we split the prod-
uct, we have two subproblems—parenthesizing AiAiC1 � � �Ak and parenthesizing
AkC1AkC2 � � �Aj —and we must solve both of them optimally. Once we determine
the optimal solutions to subproblems, we choose from among j � i candidates for
the index k.

Informally, the running time of a dynamic-programming algorithm depends on
the product of two factors: the number of subproblems overall and how many
choices we look at for each subproblem. In rod cutting, we had ‚.n/ subproblems
overall, and at most n choices to examine for each, yielding an O.n2/ running time.
Matrix-chain multiplication had ‚.n2/ subproblems overall, and in each we had at
most n� 1 choices, giving an O.n3/ running time (actually, a ‚.n3/ running time,
by Exercise 15.2-5).

Usually, the subproblem graph gives an alternative way to perform the same
analysis. Each vertex corresponds to a subproblem, and the choices for a sub-

15.3 Elements of dynamic programming 381

problem are the edges incident to that subproblem. Recall that in rod cutting,
the subproblem graph had n vertices and at most n edges per vertex, yielding an
O.n2/ running time. For matrix-chain multiplication, if we were to draw the sub-
problem graph, it would have ‚.n2/ vertices and each vertex would have degree at
most n � 1, giving a total of O.n3/ vertices and edges.

Dynamic programming often uses optimal substructure in a bottom-up fashion.
That is, we first find optimal solutions to subproblems and, having solved the sub-
problems, we find an optimal solution to the problem. Finding an optimal solu-
tion to the problem entails making a choice among subproblems as to which we
will use in solving the problem. The cost of the problem solution is usually the
subproblem costs plus a cost that is directly attributable to the choice itself. In
rod cutting, for example, first we solved the subproblems of determining optimal
ways to cut up rods of length i for i D 0; 1; : : : ; n � 1, and then we determined
which such subproblem yielded an optimal solution for a rod of length n, using
equation (15.2). The cost attributable to the choice itself is the term pi in equa-
tion (15.2). In matrix-chain multiplication, we determined optimal parenthesiza-
tions of subchains of AiAiC1 � � �Aj , and then we chose the matrix Ak at which to
split the product. The cost attributable to the choice itself is the term pi�1pkpj .

In Chapter 16, we shall examine “greedy algorithms,” which have many similar-
ities to dynamic programming. In particular, problems to which greedy algorithms
apply have optimal substructure. One major difference between greedy algorithms
and dynamic programming is that instead of first finding optimal solutions to sub-
problems and then making an informed choice, greedy algorithms first make a
“greedy” choice—the choice that looks best at the time—and then solve a resulting
subproblem, without bothering to solve all possible related smaller subproblems.
Surprisingly, in some cases this strategy works!

Subtleties
You should be careful not to assume that optimal substructure applies when it does
not. Consider the following two problems in which we are given a directed graph
G D .V; E/ and vertices u; � 2 V .

Unweighted shortest path:3 Find a path from u to � consisting of the fewest
edges. Such a path must be simple, since removing a cycle from a path pro-
duces a path with fewer edges.

3We use the term “unweighted” to distinguish this problem from that of finding shortest paths with
weighted edges, which we shall see in Chapters 24 and 25. We can use the breadth-first search
technique of Chapter 22 to solve the unweighted problem.

382 Chapter 15 Dynamic Programming

q r

s t

Figure 15.6 A directed graph showing that the problem of finding a longest simple path in an
unweighted directed graph does not have optimal substructure. The path q ! r ! t is a longest
simple path from q to t , but the subpath q ! r is not a longest simple path from q to r , nor is the
subpath r ! t a longest simple path from r to t .

Unweighted longest simple path: Find a simple path from u to � consisting of
the most edges. We need to include the requirement of simplicity because other-
wise we can traverse a cycle as many times as we like to create paths with an
arbitrarily large number of edges.

The unweighted shortest-path problem exhibits optimal substructure, as follows.
Suppose that u ¤ �, so that the problem is nontrivial. Then, any path p from u

to � must contain an intermediate vertex, say w. (Note that w may be u or �.)
Thus, we can decompose the path u

p
� � into subpaths u

p1
� w

p2
� �. Clearly, the

number of edges in p equals the number of edges in p1 plus the number of edges
in p2. We claim that if p is an optimal (i.e., shortest) path from u to �, then p1

must be a shortest path from u to w. Why? We use a “cut-and-paste” argument:
if there were another path, say p0

1, from u to w with fewer edges than p1, then we

could cut out p1 and paste in p0
1 to produce a path u

p0
1

� w
p2
� � with fewer edges

than p, thus contradicting p’s optimality. Symmetrically, p2 must be a shortest
path from w to �. Thus, we can find a shortest path from u to � by considering
all intermediate vertices w, finding a shortest path from u to w and a shortest path
from w to �, and choosing an intermediate vertex w that yields the overall shortest
path. In Section 25.2, we use a variant of this observation of optimal substructure
to find a shortest path between every pair of vertices on a weighted, directed graph.

You might be tempted to assume that the problem of finding an unweighted
longest simple path exhibits optimal substructure as well. After all, if we decom-
pose a longest simple path u

p
� � into subpaths u

p1
� w

p2
� �, then mustn’t p1

be a longest simple path from u to w, and mustn’t p2 be a longest simple path
from w to �? The answer is no! Figure 15.6 supplies an example. Consider the
path q ! r ! t , which is a longest simple path from q to t . Is q ! r a longest
simple path from q to r? No, for the path q ! s ! t ! r is a simple path
that is longer. Is r ! t a longest simple path from r to t? No again, for the path
r ! q ! s ! t is a simple path that is longer.

15.3 Elements of dynamic programming 383

This example shows that for longest simple paths, not only does the problem
lack optimal substructure, but we cannot necessarily assemble a “legal” solution
to the problem from solutions to subproblems. If we combine the longest simple
paths q ! s ! t ! r and r ! q ! s ! t , we get the path q ! s ! t ! r !
q ! s ! t , which is not simple. Indeed, the problem of finding an unweighted
longest simple path does not appear to have any sort of optimal substructure. No
efficient dynamic-programming algorithm for this problem has ever been found. In
fact, this problem is NP-complete, which—as we shall see in Chapter 34—means
that we are unlikely to find a way to solve it in polynomial time.

Why is the substructure of a longest simple path so different from that of a short-
est path? Although a solution to a problem for both longest and shortest paths uses
two subproblems, the subproblems in finding the longest simple path are not inde-
pendent, whereas for shortest paths they are. What do we mean by subproblems
being independent? We mean that the solution to one subproblem does not affect
the solution to another subproblem of the same problem. For the example of Fig-
ure 15.6, we have the problem of finding a longest simple path from q to t with two
subproblems: finding longest simple paths from q to r and from r to t . For the first
of these subproblems, we choose the path q ! s ! t ! r , and so we have also
used the vertices s and t . We can no longer use these vertices in the second sub-
problem, since the combination of the two solutions to subproblems would yield a
path that is not simple. If we cannot use vertex t in the second problem, then we
cannot solve it at all, since t is required to be on the path that we find, and it is
not the vertex at which we are “splicing” together the subproblem solutions (that
vertex being r). Because we use vertices s and t in one subproblem solution, we
cannot use them in the other subproblem solution. We must use at least one of them
to solve the other subproblem, however, and we must use both of them to solve it
optimally. Thus, we say that these subproblems are not independent. Looked at
another way, using resources in solving one subproblem (those resources being
vertices) renders them unavailable for the other subproblem.

Why, then, are the subproblems independent for finding a shortest path? The
answer is that by nature, the subproblems do not share resources. We claim that
if a vertex w is on a shortest path p from u to �, then we can splice together any
shortest path u

p1
� w and any shortest path w

p2
� � to produce a shortest path from u

to �. We are assured that, other than w, no vertex can appear in both paths p1

and p2. Why? Suppose that some vertex x ¤ w appears in both p1 and p2, so that
we can decompose p1 as u

pux
� x � w and p2 as w � x

px�
� �. By the optimal

substructure of this problem, path p has as many edges as p1 and p2 together; let’s
say that p has e edges. Now let us construct a path p0 D u

pux
� x

px�
� � from u to �.

Because we have excised the paths from x to w and from w to x, each of which
contains at least one edge, path p0 contains at most e � 2 edges, which contradicts

384 Chapter 15 Dynamic Programming

the assumption that p is a shortest path. Thus, we are assured that the subproblems
for the shortest-path problem are independent.

Both problems examined in Sections 15.1 and 15.2 have independent subprob-
lems. In matrix-chain multiplication, the subproblems are multiplying subchains
AiAiC1 � � �Ak and AkC1AkC2 � � �Aj . These subchains are disjoint, so that no ma-
trix could possibly be included in both of them. In rod cutting, to determine the
best way to cut up a rod of length n, we look at the best ways of cutting up rods
of length i for i D 0; 1; : : : ; n � 1. Because an optimal solution to the length-n
problem includes just one of these subproblem solutions (after we have cut off the
first piece), independence of subproblems is not an issue.

Overlapping subproblems

The second ingredient that an optimization problem must have for dynamic pro-
gramming to apply is that the space of subproblems must be “small” in the sense
that a recursive algorithm for the problem solves the same subproblems over and
over, rather than always generating new subproblems. Typically, the total number
of distinct subproblems is a polynomial in the input size. When a recursive algo-
rithm revisits the same problem repeatedly, we say that the optimization problem
has overlapping subproblems.4 In contrast, a problem for which a divide-and-
conquer approach is suitable usually generates brand-new problems at each step
of the recursion. Dynamic-programming algorithms typically take advantage of
overlapping subproblems by solving each subproblem once and then storing the
solution in a table where it can be looked up when needed, using constant time per
lookup.

In Section 15.1, we briefly examined how a recursive solution to rod cut-
ting makes exponentially many calls to find solutions of smaller subproblems.
Our dynamic-programming solution takes an exponential-time recursive algorithm
down to quadratic time.

To illustrate the overlapping-subproblems property in greater detail, let us re-
examine the matrix-chain multiplication problem. Referring back to Figure 15.5,
observe that MATRIX-CHAIN-ORDER repeatedly looks up the solution to subprob-
lems in lower rows when solving subproblems in higher rows. For example, it
references entry mŒ3; 4� four times: during the computations of mŒ2; 4�, mŒ1; 4�,

4It may seem strange that dynamic programming relies on subproblems being both independent
and overlapping. Although these requirements may sound contradictory, they describe two different
notions, rather than two points on the same axis. Two subproblems of the same problem are inde-
pendent if they do not share resources. Two subproblems are overlapping if they are really the same
subproblem that occurs as a subproblem of different problems.

15.3 Elements of dynamic programming 385

1..4

1..1 2..4 1..2 3..4 1..3 4..4

2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

Figure 15.7 The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN.p; 1; 4/.
Each node contains the parameters i and j . The computations performed in a shaded subtree are
replaced by a single table lookup in MEMOIZED-MATRIX-CHAIN.

mŒ3; 5�, and mŒ3; 6�. If we were to recompute mŒ3; 4� each time, rather than just
looking it up, the running time would increase dramatically. To see how, consider
the following (inefficient) recursive procedure that determines mŒi; j �, the mini-
mum number of scalar multiplications needed to compute the matrix-chain product
Ai ::j D AiAiC1 � � �Aj . The procedure is based directly on the recurrence (15.7).

RECURSIVE-MATRIX-CHAIN.p; i; j /

1 if i == j

2 return 0

3 mŒi; j � D 1
4 for k D i to j � 1

5 q D RECURSIVE-MATRIX-CHAIN.p; i; k/

C RECURSIVE-MATRIX-CHAIN.p; k C 1; j /

C pi�1pkpj

6 if q < mŒi; j �

7 mŒi; j � D q

8 return mŒi; j �

Figure 15.7 shows the recursion tree produced by the call RECURSIVE-MATRIX-
CHAIN.p; 1; 4/. Each node is labeled by the values of the parameters i and j .
Observe that some pairs of values occur many times.

In fact, we can show that the time to compute mŒ1; n� by this recursive proce-
dure is at least exponential in n. Let T .n/ denote the time taken by RECURSIVE-
MATRIX-CHAIN to compute an optimal parenthesization of a chain of n matrices.
Because the execution of lines 1–2 and of lines 6–7 each take at least unit time, as

386 Chapter 15 Dynamic Programming

does the multiplication in line 5, inspection of the procedure yields the recurrence

T .1/ � 1 ;

T .n/ � 1C
n�1X
kD1

.T .k/C T .n � k/C 1/ for n > 1 :

Noting that for i D 1; 2; : : : ; n� 1, each term T .i/ appears once as T .k/ and once
as T .n � k/, and collecting the n � 1 1s in the summation together with the 1 out
front, we can rewrite the recurrence as

T .n/ � 2

n�1X
iD1

T .i/C n : (15.8)

We shall prove that T .n/ D �.2n/ using the substitution method. Specifi-
cally, we shall show that T .n/ � 2n�1 for all n � 1. The basis is easy, since
T .1/ � 1 D 20. Inductively, for n � 2 we have

T .n/ � 2

n�1X
iD1

2i�1 C n

D 2

n�2X
iD0

2i C n

D 2.2n�1 � 1/C n (by equation (A.5))

D 2n � 2C n

� 2n�1 ;

which completes the proof. Thus, the total amount of work performed by the call
RECURSIVE-MATRIX-CHAIN.p; 1; n/ is at least exponential in n.

Compare this top-down, recursive algorithm (without memoization) with the
bottom-up dynamic-programming algorithm. The latter is more efficient because
it takes advantage of the overlapping-subproblems property. Matrix-chain mul-
tiplication has only ‚.n2/ distinct subproblems, and the dynamic-programming
algorithm solves each exactly once. The recursive algorithm, on the other hand,
must again solve each subproblem every time it reappears in the recursion tree.
Whenever a recursion tree for the natural recursive solution to a problem contains
the same subproblem repeatedly, and the total number of distinct subproblems is
small, dynamic programming can improve efficiency, sometimes dramatically.

15.3 Elements of dynamic programming 387

Reconstructing an optimal solution

As a practical matter, we often store which choice we made in each subproblem in
a table so that we do not have to reconstruct this information from the costs that we
stored.

For matrix-chain multiplication, the table sŒi; j � saves us a significant amount of
work when reconstructing an optimal solution. Suppose that we did not maintain
the sŒi; j � table, having filled in only the table mŒi; j � containing optimal subprob-
lem costs. We choose from among j � i possibilities when we determine which
subproblems to use in an optimal solution to parenthesizing AiAiC1 � � �Aj , and
j � i is not a constant. Therefore, it would take ‚.j � i/ D !.1/ time to recon-
struct which subproblems we chose for a solution to a given problem. By storing
in sŒi; j � the index of the matrix at which we split the product AiAiC1 � � �Aj , we
can reconstruct each choice in O.1/ time.

Memoization

As we saw for the rod-cutting problem, there is an alternative approach to dy-
namic programming that often offers the efficiency of the bottom-up dynamic-
programming approach while maintaining a top-down strategy. The idea is to
memoize the natural, but inefficient, recursive algorithm. As in the bottom-up ap-
proach, we maintain a table with subproblem solutions, but the control structure
for filling in the table is more like the recursive algorithm.

A memoized recursive algorithm maintains an entry in a table for the solution to
each subproblem. Each table entry initially contains a special value to indicate that
the entry has yet to be filled in. When the subproblem is first encountered as the
recursive algorithm unfolds, its solution is computed and then stored in the table.
Each subsequent time that we encounter this subproblem, we simply look up the
value stored in the table and return it.5

Here is a memoized version of RECURSIVE-MATRIX-CHAIN. Note where it
resembles the memoized top-down method for the rod-cutting problem.

5This approach presupposes that we know the set of all possible subproblem parameters and that we
have established the relationship between table positions and subproblems. Another, more general,
approach is to memoize by using hashing with the subproblem parameters as keys.

388 Chapter 15 Dynamic Programming

MEMOIZED-MATRIX-CHAIN.p/

1 n D p: length � 1

2 let mŒ1 : : n; 1 : : n� be a new table
3 for i D 1 to n

4 for j D i to n

5 mŒi; j � D 1
6 return LOOKUP-CHAIN.m; p; 1; n/

LOOKUP-CHAIN.m; p; i; j /

1 if mŒi; j � <1
2 return mŒi; j �

3 if i == j

4 mŒi; j � D 0

5 else for k D i to j � 1

6 q D LOOKUP-CHAIN.m; p; i; k/

C LOOKUP-CHAIN.m; p; k C 1; j /C pi�1pkpj

7 if q < mŒi; j �

8 mŒi; j � D q

9 return mŒi; j �

The MEMOIZED-MATRIX-CHAIN procedure, like MATRIX-CHAIN-ORDER,
maintains a table mŒ1 : : n; 1 : : n� of computed values of mŒi; j �, the minimum num-
ber of scalar multiplications needed to compute the matrix Ai ::j . Each table entry
initially contains the value1 to indicate that the entry has yet to be filled in. Upon
calling LOOKUP-CHAIN.m; p; i; j /, if line 1 finds that mŒi; j � <1, then the pro-
cedure simply returns the previously computed cost mŒi; j � in line 2. Otherwise,
the cost is computed as in RECURSIVE-MATRIX-CHAIN, stored in mŒi; j �, and
returned. Thus, LOOKUP-CHAIN.m; p; i; j / always returns the value of mŒi; j �,
but it computes it only upon the first call of LOOKUP-CHAIN with these specific
values of i and j .

Figure 15.7 illustrates how MEMOIZED-MATRIX-CHAIN saves time compared
with RECURSIVE-MATRIX-CHAIN. Shaded subtrees represent values that it looks
up rather than recomputes.

Like the bottom-up dynamic-programming algorithm MATRIX-CHAIN-ORDER,
the procedure MEMOIZED-MATRIX-CHAIN runs in O.n3/ time. Line 5 of
MEMOIZED-MATRIX-CHAIN executes ‚.n2/ times. We can categorize the calls
of LOOKUP-CHAIN into two types:

1. calls in which mŒi; j � D1, so that lines 3–9 execute, and

2. calls in which mŒi; j � <1, so that LOOKUP-CHAIN simply returns in line 2.

15.3 Elements of dynamic programming 389

There are ‚.n2/ calls of the first type, one per table entry. All calls of the sec-
ond type are made as recursive calls by calls of the first type. Whenever a given
call of LOOKUP-CHAIN makes recursive calls, it makes O.n/ of them. There-
fore, there are O.n3/ calls of the second type in all. Each call of the second type
takes O.1/ time, and each call of the first type takes O.n/ time plus the time spent
in its recursive calls. The total time, therefore, is O.n3/. Memoization thus turns
an �.2n/-time algorithm into an O.n3/-time algorithm.

In summary, we can solve the matrix-chain multiplication problem by either a
top-down, memoized dynamic-programming algorithm or a bottom-up dynamic-
programming algorithm in O.n3/ time. Both methods take advantage of the
overlapping-subproblems property. There are only ‚.n2/ distinct subproblems in
total, and either of these methods computes the solution to each subproblem only
once. Without memoization, the natural recursive algorithm runs in exponential
time, since solved subproblems are repeatedly solved.

In general practice, if all subproblems must be solved at least once, a bottom-up
dynamic-programming algorithm usually outperforms the corresponding top-down
memoized algorithm by a constant factor, because the bottom-up algorithm has no
overhead for recursion and less overhead for maintaining the table. Moreover, for
some problems we can exploit the regular pattern of table accesses in the dynamic-
programming algorithm to reduce time or space requirements even further. Alter-
natively, if some subproblems in the subproblem space need not be solved at all,
the memoized solution has the advantage of solving only those subproblems that
are definitely required.

Exercises

15.3-1
Which is a more efficient way to determine the optimal number of multiplications
in a matrix-chain multiplication problem: enumerating all the ways of parenthesiz-
ing the product and computing the number of multiplications for each, or running
RECURSIVE-MATRIX-CHAIN? Justify your answer.

15.3-2
Draw the recursion tree for the MERGE-SORT procedure from Section 2.3.1 on an
array of 16 elements. Explain why memoization fails to speed up a good divide-
and-conquer algorithm such as MERGE-SORT.

15.3-3
Consider a variant of the matrix-chain multiplication problem in which the goal is
to parenthesize the sequence of matrices so as to maximize, rather than minimize,

390 Chapter 15 Dynamic Programming

the number of scalar multiplications. Does this problem exhibit optimal substruc-
ture?

15.3-4
As stated, in dynamic programming we first solve the subproblems and then choose
which of them to use in an optimal solution to the problem. Professor Capulet
claims that we do not always need to solve all the subproblems in order to find an
optimal solution. She suggests that we can find an optimal solution to the matrix-
chain multiplication problem by always choosing the matrix Ak at which to split
the subproduct AiAiC1 � � �Aj (by selecting k to minimize the quantity pi�1pkpj)
before solving the subproblems. Find an instance of the matrix-chain multiplica-
tion problem for which this greedy approach yields a suboptimal solution.

15.3-5
Suppose that in the rod-cutting problem of Section 15.1, we also had limit li on the
number of pieces of length i that we are allowed to produce, for i D 1; 2; : : : ; n.
Show that the optimal-substructure property described in Section 15.1 no longer
holds.

15.3-6
Imagine that you wish to exchange one currency for another. You realize that
instead of directly exchanging one currency for another, you might be better off
making a series of trades through other currencies, winding up with the currency
you want. Suppose that you can trade n different currencies, numbered 1; 2; : : : ; n,
where you start with currency 1 and wish to wind up with currency n. You are
given, for each pair of currencies i and j , an exchange rate rij , meaning that if
you start with d units of currency i , you can trade for drij units of currency j .
A sequence of trades may entail a commission, which depends on the number of
trades you make. Let ck be the commission that you are charged when you make k

trades. Show that, if ck D 0 for all k D 1; 2; : : : ; n, then the problem of finding the
best sequence of exchanges from currency 1 to currency n exhibits optimal sub-
structure. Then show that if commissions ck are arbitrary values, then the problem
of finding the best sequence of exchanges from currency 1 to currency n does not
necessarily exhibit optimal substructure.

15.4 Longest common subsequence

Biological applications often need to compare the DNA of two (or more) dif-
ferent organisms. A strand of DNA consists of a string of molecules called

15.4 Longest common subsequence 391

bases, where the possible bases are adenine, guanine, cytosine, and thymine.
Representing each of these bases by its initial letter, we can express a strand
of DNA as a string over the finite set fA;C;G;Tg. (See Appendix C for
the definition of a string.) For example, the DNA of one organism may be
S1 D ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, and the DNA of another organ-
ism may be S2 D GTCGTTCGGAATGCCGTTGCTCTGTAAA. One reason to com-
pare two strands of DNA is to determine how “similar” the two strands are, as some
measure of how closely related the two organisms are. We can, and do, define sim-
ilarity in many different ways. For example, we can say that two DNA strands are
similar if one is a substring of the other. (Chapter 32 explores algorithms to solve
this problem.) In our example, neither S1 nor S2 is a substring of the other. Alter-
natively, we could say that two strands are similar if the number of changes needed
to turn one into the other is small. (Problem 15-5 looks at this notion.) Yet another
way to measure the similarity of strands S1 and S2 is by finding a third strand S3

in which the bases in S3 appear in each of S1 and S2; these bases must appear
in the same order, but not necessarily consecutively. The longer the strand S3 we
can find, the more similar S1 and S2 are. In our example, the longest strand S3 is
GTCGTCGGAAGCCGGCCGAA.

We formalize this last notion of similarity as the longest-common-subsequence
problem. A subsequence of a given sequence is just the given sequence with zero or
more elements left out. Formally, given a sequence X D hx1; x2; : : : ; xmi, another
sequence Z D h´1; ´2; : : : ; ´ki is a subsequence of X if there exists a strictly
increasing sequence hi1; i2; : : : ; iki of indices of X such that for all j D 1; 2; : : : ; k,
we have xij D j́ . For example, Z D hB; C; D; Bi is a subsequence of X D
hA; B; C; B; D; A; Bi with corresponding index sequence h2; 3; 5; 7i.

Given two sequences X and Y , we say that a sequence Z is a common sub-
sequence of X and Y if Z is a subsequence of both X and Y . For example, if
X D hA;B;C;B;D;A;Bi and Y D hB;D;C;A;B;Ai, the sequence hB;C;Ai is
a common subsequence of both X and Y . The sequence hB; C; Ai is not a longest
common subsequence (LCS) of X and Y , however, since it has length 3 and the
sequence hB; C; B; Ai, which is also common to both X and Y , has length 4. The
sequence hB; C; B; Ai is an LCS of X and Y , as is the sequence hB; D; A; Bi,
since X and Y have no common subsequence of length 5 or greater.

In the longest-common-subsequence problem, we are given two sequences
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni and wish to find a maximum-
length common subsequence of X and Y . This section shows how to efficiently
solve the LCS problem using dynamic programming.

392 Chapter 15 Dynamic Programming

Step 1: Characterizing a longest common subsequence

In a brute-force approach to solving the LCS problem, we would enumerate all
subsequences of X and check each subsequence to see whether it is also a subse-
quence of Y , keeping track of the longest subsequence we find. Each subsequence
of X corresponds to a subset of the indices f1; 2; : : : ; mg of X . Because X has 2m

subsequences, this approach requires exponential time, making it impractical for
long sequences.

The LCS problem has an optimal-substructure property, however, as the follow-
ing theorem shows. As we shall see, the natural classes of subproblems corre-
spond to pairs of “prefixes” of the two input sequences. To be precise, given a
sequence X D hx1; x2; : : : ; xmi, we define the i th prefix of X , for i D 0; 1; : : : ; m,
as Xi D hx1; x2; : : : ; xi i. For example, if X D hA; B; C; B; D; A; Bi, then
X4 D hA; B; C; Bi and X0 is the empty sequence.

Theorem 15.1 (Optimal substructure of an LCS)
Let X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni be sequences, and let Z D
h´1; ´2; : : : ; ´ki be any LCS of X and Y .

1. If xm D yn, then ´k D xm D yn and Zk�1 is an LCS of Xm�1 and Yn�1.

2. If xm ¤ yn, then ´k ¤ xm implies that Z is an LCS of Xm�1 and Y .

3. If xm ¤ yn, then ´k ¤ yn implies that Z is an LCS of X and Yn�1.

Proof (1) If ´k ¤ xm, then we could append xm D yn to Z to obtain a common
subsequence of X and Y of length k C 1, contradicting the supposition that Z is
a longest common subsequence of X and Y . Thus, we must have ´k D xm D yn.
Now, the prefix Zk�1 is a length-.k � 1/ common subsequence of Xm�1 and Yn�1.
We wish to show that it is an LCS. Suppose for the purpose of contradiction
that there exists a common subsequence W of Xm�1 and Yn�1 with length greater
than k � 1. Then, appending xm D yn to W produces a common subsequence of
X and Y whose length is greater than k, which is a contradiction.

(2) If ´k ¤ xm, then Z is a common subsequence of Xm�1 and Y . If there were a
common subsequence W of Xm�1 and Y with length greater than k, then W would
also be a common subsequence of Xm and Y , contradicting the assumption that Z

is an LCS of X and Y .
(3) The proof is symmetric to (2).

The way that Theorem 15.1 characterizes longest common subsequences tells
us that an LCS of two sequences contains within it an LCS of prefixes of the two
sequences. Thus, the LCS problem has an optimal-substructure property. A recur-

15.4 Longest common subsequence 393

sive solution also has the overlapping-subproblems property, as we shall see in a
moment.

Step 2: A recursive solution

Theorem 15.1 implies that we should examine either one or two subproblems when
finding an LCS of X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. If xm D yn,
we must find an LCS of Xm�1 and Yn�1. Appending xm D yn to this LCS yields
an LCS of X and Y . If xm ¤ yn, then we must solve two subproblems: finding an
LCS of Xm�1 and Y and finding an LCS of X and Yn�1. Whichever of these two
LCSs is longer is an LCS of X and Y . Because these cases exhaust all possibilities,
we know that one of the optimal subproblem solutions must appear within an LCS
of X and Y .

We can readily see the overlapping-subproblems property in the LCS problem.
To find an LCS of X and Y , we may need to find the LCSs of X and Yn�1 and
of Xm�1 and Y . But each of these subproblems has the subsubproblem of finding
an LCS of Xm�1 and Yn�1. Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS
problem involves establishing a recurrence for the value of an optimal solution.
Let us define cŒi; j � to be the length of an LCS of the sequences Xi and Yj . If
either i D 0 or j D 0, one of the sequences has length 0, and so the LCS has
length 0. The optimal substructure of the LCS problem gives the recursive formula

cŒi; j � D

�
0 if i D 0 or j D 0 ;

cŒi � 1; j � 1�C 1 if i; j > 0 and xi D yj ;

max.cŒi; j � 1�; cŒi � 1; j �/ if i; j > 0 and xi ¤ yj :

(15.9)

Observe that in this recursive formulation, a condition in the problem restricts
which subproblems we may consider. When xi D yj , we can and should consider
the subproblem of finding an LCS of Xi�1 and Yj �1. Otherwise, we instead con-
sider the two subproblems of finding an LCS of Xi and Yj �1 and of Xi�1 and Yj . In
the previous dynamic-programming algorithms we have examined—for rod cutting
and matrix-chain multiplication—we ruled out no subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS

Based on equation (15.9), we could easily write an exponential-time recursive al-
gorithm to compute the length of an LCS of two sequences. Since the LCS problem

394 Chapter 15 Dynamic Programming

has only ‚.mn/ distinct subproblems, however, we can use dynamic programming
to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X D hx1; x2; : : : ; xmi and
Y D hy1;y2; : : : ;yni as inputs. It stores the cŒi; j � values in a table cŒ0 : : m; 0 : : n�,
and it computes the entries in row-major order. (That is, the procedure fills in the
first row of c from left to right, then the second row, and so on.) The procedure also
maintains the table bŒ1 : : m; 1 : : n� to help us construct an optimal solution. Intu-
itively, bŒi; j � points to the table entry corresponding to the optimal subproblem
solution chosen when computing cŒi; j �. The procedure returns the b and c tables;
cŒm; n� contains the length of an LCS of X and Y .

LCS-LENGTH.X; Y /

1 m D X: length
2 n D Y: length
3 let bŒ1 : : m; 1 : : n� and cŒ0 : : m; 0 : : n� be new tables
4 for i D 1 to m

5 cŒi; 0� D 0

6 for j D 0 to n

7 cŒ0; j � D 0

8 for i D 1 to m

9 for j D 1 to n

10 if xi == yj

11 cŒi; j � D cŒi � 1; j � 1�C 1

12 bŒi; j � D “-”
13 elseif cŒi � 1; j � � cŒi; j � 1�

14 cŒi; j � D cŒi � 1; j �

15 bŒi; j � D “"”
16 else cŒi; j � D cŒi; j � 1�

17 bŒi; j � D “ ”
18 return c and b

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences X D
hA; B; C; B; D; A; Bi and Y D hB; D; C; A; B; Ai. The running time of the
procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

Step 4: Constructing an LCS

The b table returned by LCS-LENGTH enables us to quickly construct an LCS of
X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni. We simply begin at bŒm; n� and
trace through the table by following the arrows. Whenever we encounter a “-” in
entry bŒi; j �, it implies that xi D yj is an element of the LCS that LCS-LENGTH

15.4 Longest common subsequence 395

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 1 1 1 2 2

0 1 1 2 2 2

0 1 1 2 2 3

0 1 2 2 2 3 3

0 1 2 2 3 3

0 1 2 2 3 4 4

1

2

3

4

B D C A B A

1 2 3 4 5 60

A

B

C

B

D

A

B

1

2

3

4

5

6

7

0

j

i

xi

yj

Figure 15.8 The c and b tables computed by LCS-LENGTH on the sequences X D hA; B; C; B;

D;A;Bi and Y D hB;D;C;A;B;Ai. The square in row i and column j contains the value of cŒi; j �

and the appropriate arrow for the value of bŒi; j �. The entry 4 in cŒ7; 6�—the lower right-hand corner
of the table—is the length of an LCS hB; C; B; Ai of X and Y . For i; j > 0, entry cŒi; j � depends
only on whether xi D yj and the values in entries cŒi � 1; j �, cŒi; j � 1�, and cŒi � 1; j � 1�, which
are computed before cŒi; j �. To reconstruct the elements of an LCS, follow the bŒi; j � arrows from
the lower right-hand corner; the sequence is shaded. Each “-” on the shaded sequence corresponds
to an entry (highlighted) for which xi D yj is a member of an LCS.

found. With this method, we encounter the elements of this LCS in reverse order.
The following recursive procedure prints out an LCS of X and Y in the proper,
forward order. The initial call is PRINT-LCS.b; X; X: length; Y: length/.

PRINT-LCS.b; X; i; j /

1 if i == 0 or j == 0

2 return
3 if bŒi; j � == “-”
4 PRINT-LCS.b; X; i � 1; j � 1/

5 print xi

6 elseif bŒi; j � == “"”
7 PRINT-LCS.b; X; i � 1; j /

8 else PRINT-LCS.b; X; i; j � 1/

For the b table in Figure 15.8, this procedure prints BCBA. The procedure takes
time O.mC n/, since it decrements at least one of i and j in each recursive call.

396 Chapter 15 Dynamic Programming

Improving the code

Once you have developed an algorithm, you will often find that you can improve
on the time or space it uses. Some changes can simplify the code and improve
constant factors but otherwise yield no asymptotic improvement in performance.
Others can yield substantial asymptotic savings in time and space.

In the LCS algorithm, for example, we can eliminate the b table altogether. Each
cŒi; j � entry depends on only three other c table entries: cŒi � 1; j � 1�, cŒi � 1; j �,
and cŒi; j � 1�. Given the value of cŒi; j �, we can determine in O.1/ time which of
these three values was used to compute cŒi; j �, without inspecting table b. Thus, we
can reconstruct an LCS in O.mCn/ time using a procedure similar to PRINT-LCS.
(Exercise 15.4-2 asks you to give the pseudocode.) Although we save ‚.mn/ space
by this method, the auxiliary space requirement for computing an LCS does not
asymptotically decrease, since we need ‚.mn/ space for the c table anyway.

We can, however, reduce the asymptotic space requirements for LCS-LENGTH,
since it needs only two rows of table c at a time: the row being computed and the
previous row. (In fact, as Exercise 15.4-4 asks you to show, we can use only slightly
more than the space for one row of c to compute the length of an LCS.) This
improvement works if we need only the length of an LCS; if we need to reconstruct
the elements of an LCS, the smaller table does not keep enough information to
retrace our steps in O.mC n/ time.

Exercises

15.4-1
Determine an LCS of h1; 0; 0; 1; 0; 1; 0; 1i and h0; 1; 0; 1; 1; 0; 1; 1; 0i.
15.4-2
Give pseudocode to reconstruct an LCS from the completed c table and the original
sequences X D hx1; x2; : : : ; xmi and Y D hy1; y2; : : : ; yni in O.m C n/ time,
without using the b table.

15.4-3
Give a memoized version of LCS-LENGTH that runs in O.mn/ time.

15.4-4
Show how to compute the length of an LCS using only 2 �min.m; n/ entries in the c

table plus O.1/ additional space. Then show how to do the same thing, but using
min.m; n/ entries plus O.1/ additional space.

15.5 Optimal binary search trees 397

15.4-5
Give an O.n2/-time algorithm to find the longest monotonically increasing subse-
quence of a sequence of n numbers.

15.4-6 ?

Give an O.n lg n/-time algorithm to find the longest monotonically increasing sub-
sequence of a sequence of n numbers. (Hint: Observe that the last element of a
candidate subsequence of length i is at least as large as the last element of a can-
didate subsequence of length i � 1. Maintain candidate subsequences by linking
them through the input sequence.)

15.5 Optimal binary search trees

Suppose that we are designing a program to translate text from English to French.
For each occurrence of each English word in the text, we need to look up its French
equivalent. We could perform these lookup operations by building a binary search
tree with n English words as keys and their French equivalents as satellite data.
Because we will search the tree for each individual word in the text, we want the
total time spent searching to be as low as possible. We could ensure an O.lg n/

search time per occurrence by using a red-black tree or any other balanced binary
search tree. Words appear with different frequencies, however, and a frequently
used word such as the may appear far from the root while a rarely used word such
as machicolation appears near the root. Such an organization would slow down the
translation, since the number of nodes visited when searching for a key in a binary
search tree equals one plus the depth of the node containing the key. We want
words that occur frequently in the text to be placed nearer the root.6 Moreover,
some words in the text might have no French translation,7 and such words would
not appear in the binary search tree at all. How do we organize a binary search tree
so as to minimize the number of nodes visited in all searches, given that we know
how often each word occurs?

What we need is known as an optimal binary search tree. Formally, we are
given a sequence K D hk1; k2; : : : ; kni of n distinct keys in sorted order (so that
k1 < k2 < � � � < kn), and we wish to build a binary search tree from these keys.
For each key ki , we have a probability pi that a search will be for ki . Some
searches may be for values not in K, and so we also have n C 1 “dummy keys”

6If the subject of the text is castle architecture, we might want machicolation to appear near the root.

7Yes, machicolation has a French counterpart: mâchicoulis.

398 Chapter 15 Dynamic Programming

k2

k1 k4

k3 k5d0 d1

d2 d3 d4 d5

(a)

k2

k1

k4

k3

k5

d0 d1

d2 d3

d4

d5

(b)

Figure 15.9 Two binary search trees for a set of n D 5 keys with the following probabilities:

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

(a)A binary search tree with expected search cost 2.80. (b)A binary search tree with expected search
cost 2.75. This tree is optimal.

d0; d1; d2; : : : ; dn representing values not in K. In particular, d0 represents all val-
ues less than k1, dn represents all values greater than kn, and for i D 1; 2; : : : ; n�1,
the dummy key di represents all values between ki and kiC1. For each dummy
key di , we have a probability qi that a search will correspond to di . Figure 15.9
shows two binary search trees for a set of n D 5 keys. Each key ki is an internal
node, and each dummy key di is a leaf. Every search is either successful (finding
some key ki) or unsuccessful (finding some dummy key di), and so we have

nX
iD1

pi C
nX

iD0

qi D 1 : (15.10)

Because we have probabilities of searches for each key and each dummy key,
we can determine the expected cost of a search in a given binary search tree T . Let
us assume that the actual cost of a search equals the number of nodes examined,
i.e., the depth of the node found by the search in T , plus 1. Then the expected cost
of a search in T is

E Œsearch cost in T � D
nX

iD1

.depthT .ki /C 1/ � pi C
nX

iD0

.depthT .di /C 1/ � qi

D 1C
nX

iD1

depthT .ki / � pi C
nX

iD0

depthT .di/ � qi ; (15.11)

15.5 Optimal binary search trees 399

where depthT denotes a node’s depth in the tree T . The last equality follows from
equation (15.10). In Figure 15.9(a), we can calculate the expected search cost node
by node:

node depth probability contribution
k1 1 0.15 0.30
k2 0 0.10 0.10
k3 2 0.05 0.15
k4 1 0.10 0.20
k5 2 0.20 0.60
d0 2 0.05 0.15
d1 2 0.10 0.30
d2 3 0.05 0.20
d3 3 0.05 0.20
d4 3 0.05 0.20
d5 3 0.10 0.40

Total 2.80

For a given set of probabilities, we wish to construct a binary search tree whose
expected search cost is smallest. We call such a tree an optimal binary search tree.
Figure 15.9(b) shows an optimal binary search tree for the probabilities given in
the figure caption; its expected cost is 2.75. This example shows that an optimal
binary search tree is not necessarily a tree whose overall height is smallest. Nor
can we necessarily construct an optimal binary search tree by always putting the
key with the greatest probability at the root. Here, key k5 has the greatest search
probability of any key, yet the root of the optimal binary search tree shown is k2.
(The lowest expected cost of any binary search tree with k5 at the root is 2.85.)

As with matrix-chain multiplication, exhaustive checking of all possibilities fails
to yield an efficient algorithm. We can label the nodes of any n-node binary tree
with the keys k1; k2; : : : ; kn to construct a binary search tree, and then add in the
dummy keys as leaves. In Problem 12-4, we saw that the number of binary trees
with n nodes is �.4n=n3=2/, and so we would have to examine an exponential
number of binary search trees in an exhaustive search. Not surprisingly, we shall
solve this problem with dynamic programming.

Step 1: The structure of an optimal binary search tree

To characterize the optimal substructure of optimal binary search trees, we start
with an observation about subtrees. Consider any subtree of a binary search tree.
It must contain keys in a contiguous range ki ; : : : ; kj , for some 1 � i � j � n.
In addition, a subtree that contains keys ki ; : : : ; kj must also have as its leaves the
dummy keys di�1; : : : ; dj .

Now we can state the optimal substructure: if an optimal binary search tree T

has a subtree T 0 containing keys ki ; : : : ; kj , then this subtree T 0 must be optimal as

400 Chapter 15 Dynamic Programming

well for the subproblem with keys ki ; : : : ; kj and dummy keys di�1; : : : ; dj . The
usual cut-and-paste argument applies. If there were a subtree T 00 whose expected
cost is lower than that of T 0, then we could cut T 0 out of T and paste in T 00,
resulting in a binary search tree of lower expected cost than T , thus contradicting
the optimality of T .

We need to use the optimal substructure to show that we can construct an opti-
mal solution to the problem from optimal solutions to subproblems. Given keys
ki ; : : : ; kj , one of these keys, say kr (i � r � j), is the root of an optimal
subtree containing these keys. The left subtree of the root kr contains the keys
ki ; : : : ; kr�1 (and dummy keys di�1; : : : ; dr�1), and the right subtree contains the
keys krC1; : : : ; kj (and dummy keys dr ; : : : ; dj). As long as we examine all candi-
date roots kr , where i � r � j , and we determine all optimal binary search trees
containing ki ; : : : ; kr�1 and those containing krC1; : : : ; kj , we are guaranteed that
we will find an optimal binary search tree.

There is one detail worth noting about “empty” subtrees. Suppose that in a
subtree with keys ki ; : : : ; kj , we select ki as the root. By the above argument, ki ’s
left subtree contains the keys ki ; : : : ; ki�1. We interpret this sequence as containing
no keys. Bear in mind, however, that subtrees also contain dummy keys. We adopt
the convention that a subtree containing keys ki ; : : : ; ki�1 has no actual keys but
does contain the single dummy key di�1. Symmetrically, if we select kj as the root,
then kj ’s right subtree contains the keys kj C1; : : : ; kj ; this right subtree contains
no actual keys, but it does contain the dummy key dj .

Step 2: A recursive solution

We are ready to define the value of an optimal solution recursively. We pick our
subproblem domain as finding an optimal binary search tree containing the keys
ki ; : : : ; kj , where i � 1, j � n, and j � i � 1. (When j D i � 1, there
are no actual keys; we have just the dummy key di�1.) Let us define eŒi; j � as
the expected cost of searching an optimal binary search tree containing the keys
ki ; : : : ; kj . Ultimately, we wish to compute eŒ1; n�.

The easy case occurs when j D i � 1. Then we have just the dummy key di�1.
The expected search cost is eŒi; i � 1� D qi�1.

When j � i , we need to select a root kr from among ki ; : : : ; kj and then make an
optimal binary search tree with keys ki ; : : : ; kr�1 as its left subtree and an optimal
binary search tree with keys krC1; : : : ; kj as its right subtree. What happens to the
expected search cost of a subtree when it becomes a subtree of a node? The depth
of each node in the subtree increases by 1. By equation (15.11), the expected search
cost of this subtree increases by the sum of all the probabilities in the subtree. For
a subtree with keys ki ; : : : ; kj , let us denote this sum of probabilities as

15.5 Optimal binary search trees 401

w.i; j / D
jX

lDi

pl C
jX

lDi�1

ql : (15.12)

Thus, if kr is the root of an optimal subtree containing keys ki ; : : : ; kj , we have

eŒi; j � D pr C .eŒi; r � 1�Cw.i; r � 1//C .eŒr C 1; j �C w.r C 1; j // :

Noting that

w.i; j / D w.i; r � 1/C pr Cw.r C 1; j / ;

we rewrite eŒi; j � as

eŒi; j � D eŒi; r � 1�C eŒr C 1; j �Cw.i; j / : (15.13)

The recursive equation (15.13) assumes that we know which node kr to use as
the root. We choose the root that gives the lowest expected search cost, giving us
our final recursive formulation:

eŒi; j � D
(

qi�1 if j D i � 1 ;

min
i�r�j

feŒi; r � 1�C eŒr C 1; j �C w.i; j /g if i � j :
(15.14)

The eŒi; j � values give the expected search costs in optimal binary search trees.
To help us keep track of the structure of optimal binary search trees, we define
rootŒi; j �, for 1 � i � j � n, to be the index r for which kr is the root of an
optimal binary search tree containing keys ki ; : : : ; kj . Although we will see how
to compute the values of rootŒi; j �, we leave the construction of an optimal binary
search tree from these values as Exercise 15.5-1.

Step 3: Computing the expected search cost of an optimal binary search tree

At this point, you may have noticed some similarities between our characterizations
of optimal binary search trees and matrix-chain multiplication. For both problem
domains, our subproblems consist of contiguous index subranges. A direct, recur-
sive implementation of equation (15.14) would be as inefficient as a direct, recur-
sive matrix-chain multiplication algorithm. Instead, we store the eŒi; j � values in a
table eŒ1 : : nC1; 0 : : n�. The first index needs to run to nC1 rather than n because
in order to have a subtree containing only the dummy key dn, we need to compute
and store eŒn C 1; n�. The second index needs to start from 0 because in order to
have a subtree containing only the dummy key d0, we need to compute and store
eŒ1; 0�. We use only the entries eŒi; j � for which j � i � 1. We also use a table
rootŒi; j �, for recording the root of the subtree containing keys ki ; : : : ; kj . This
table uses only the entries for which 1 � i � j � n.

We will need one other table for efficiency. Rather than compute the value
of w.i; j / from scratch every time we are computing eŒi; j �—which would take

402 Chapter 15 Dynamic Programming

‚.j � i/ additions—we store these values in a table wŒ1 : : nC 1; 0 : : n�. For the
base case, we compute wŒi; i � 1� D qi�1 for 1 � i � n C 1. For j � i , we
compute

wŒi; j � D wŒi; j � 1�C pj C qj : (15.15)

Thus, we can compute the ‚.n2/ values of wŒi; j � in ‚.1/ time each.
The pseudocode that follows takes as inputs the probabilities p1; : : : ; pn and

q0; : : : ; qn and the size n, and it returns the tables e and root.

OPTIMAL-BST.p; q; n/

1 let eŒ1 : : nC 1; 0 : : n�, wŒ1 : : nC 1; 0 : : n�,
and rootŒ1 : : n; 1 : : n� be new tables

2 for i D 1 to nC 1

3 eŒi; i � 1� D qi�1

4 wŒi; i � 1� D qi�1

5 for l D 1 to n

6 for i D 1 to n � l C 1

7 j D i C l � 1

8 eŒi; j � D 1
9 wŒi; j � D wŒi; j � 1�C pj C qj

10 for r D i to j

11 t D eŒi; r � 1�C eŒr C 1; j �CwŒi; j �

12 if t < eŒi; j �

13 eŒi; j � D t

14 rootŒi; j � D r

15 return e and root

From the description above and the similarity to the MATRIX-CHAIN-ORDER pro-
cedure in Section 15.2, you should find the operation of this procedure to be fairly
straightforward. The for loop of lines 2–4 initializes the values of eŒi; i � 1�

and wŒi; i � 1�. The for loop of lines 5–14 then uses the recurrences (15.14)
and (15.15) to compute eŒi; j � and wŒi; j � for all 1 � i � j � n. In the first itera-
tion, when l D 1, the loop computes eŒi; i � and wŒi; i � for i D 1; 2; : : : ; n. The sec-
ond iteration, with l D 2, computes eŒi; iC1� and wŒi; iC1� for i D 1; 2; : : : ; n�1,
and so forth. The innermost for loop, in lines 10–14, tries each candidate index r

to determine which key kr to use as the root of an optimal binary search tree con-
taining keys ki ; : : : ; kj . This for loop saves the current value of the index r in
rootŒi; j � whenever it finds a better key to use as the root.

Figure 15.10 shows the tables eŒi; j �, wŒi; j �, and rootŒi; j � computed by the
procedure OPTIMAL-BST on the key distribution shown in Figure 15.9. As in the
matrix-chain multiplication example of Figure 15.5, the tables are rotated to make

15.5 Optimal binary search trees 403

2.75

1.75

1.25

0.90

0.45

0.05

2.00

1.20

0.70

0.40

0.10

1.30

0.60

0.25

0.05

0.90

0.30

0.05

0.50

0.05 0.10

e

0

1

2

3

4

5

6

5

4

3

2

1
j i 1.00

0.70

0.55

0.45

0.30

0.05

0.80

0.50

0.35

0.25

0.10

0.60

0.30

0.15

0.05

0.50

0.20

0.05

0.35

0.05 0.10

w

0

1

2

3

4

5

6

5

4

3

2

1
j i

2

2

2

1

1

4

2

2

2

5

4

3

5

4 5

root

1

2

3

4

5

5

4

3

2

1
j i

Figure 15.10 The tables eŒi; j �, wŒi; j �, and rootŒi; j � computed by OPTIMAL-BST on the key
distribution shown in Figure 15.9. The tables are rotated so that the diagonals run horizontally.

the diagonals run horizontally. OPTIMAL-BST computes the rows from bottom to
top and from left to right within each row.

The OPTIMAL-BST procedure takes ‚.n3/ time, just like MATRIX-CHAIN-
ORDER. We can easily see that its running time is O.n3/, since its for loops are
nested three deep and each loop index takes on at most n values. The loop indices in
OPTIMAL-BST do not have exactly the same bounds as those in MATRIX-CHAIN-
ORDER, but they are within at most 1 in all directions. Thus, like MATRIX-CHAIN-
ORDER, the OPTIMAL-BST procedure takes �.n3/ time.

Exercises

15.5-1
Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST.root/ which,
given the table root, outputs the structure of an optimal binary search tree. For the
example in Figure 15.10, your procedure should print out the structure

404 Chapter 15 Dynamic Programming

k2 is the root
k1 is the left child of k2

d0 is the left child of k1

d1 is the right child of k1

k5 is the right child of k2

k4 is the left child of k5

k3 is the left child of k4

d2 is the left child of k3

d3 is the right child of k3

d4 is the right child of k4

d5 is the right child of k5

corresponding to the optimal binary search tree shown in Figure 15.9(b).

15.5-2
Determine the cost and structure of an optimal binary search tree for a set of n D 7

keys with the following probabilities:

i 0 1 2 3 4 5 6 7
pi 0.04 0.06 0.08 0.02 0.10 0.12 0.14
qi 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05

15.5-3
Suppose that instead of maintaining the table wŒi; j �, we computed the value
of w.i; j / directly from equation (15.12) in line 9 of OPTIMAL-BST and used this
computed value in line 11. How would this change affect the asymptotic running
time of OPTIMAL-BST?

15.5-4 ?

Knuth [212] has shown that there are always roots of optimal subtrees such that
rootŒi; j � 1� � rootŒi; j � � rootŒi C 1; j � for all 1 � i < j � n. Use this fact to
modify the OPTIMAL-BST procedure to run in ‚.n2/ time.

Problems

15-1 Longest simple path in a directed acyclic graph
Suppose that we are given a directed acyclic graph G D .V; E/ with real-
valued edge weights and two distinguished vertices s and t . Describe a dynamic-
programming approach for finding a longest weighted simple path from s to t .
What does the subproblem graph look like? What is the efficiency of your algo-
rithm?

Problems for Chapter 15 405

(a) (b)

Figure 15.11 Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with
length approximately 24:89. This tour is not bitonic. (b) The shortest bitonic tour for the same set of
points. Its length is approximately 25:58.

15-2 Longest palindrome subsequence
A palindrome is a nonempty string over some alphabet that reads the same for-
ward and backward. Examples of palindromes are all strings of length 1, civic,
racecar, and aibohphobia (fear of palindromes).

Give an efficient algorithm to find the longest palindrome that is a subsequence
of a given input string. For example, given the input character, your algorithm
should return carac. What is the running time of your algorithm?

15-3 Bitonic euclidean traveling-salesman problem
In the euclidean traveling-salesman problem, we are given a set of n points in
the plane, and we wish to find the shortest closed tour that connects all n points.
Figure 15.11(a) shows the solution to a 7-point problem. The general problem is
NP-hard, and its solution is therefore believed to require more than polynomial
time (see Chapter 34).

J. L. Bentley has suggested that we simplify the problem by restricting our at-
tention to bitonic tours, that is, tours that start at the leftmost point, go strictly
rightward to the rightmost point, and then go strictly leftward back to the starting
point. Figure 15.11(b) shows the shortest bitonic tour of the same 7 points. In this
case, a polynomial-time algorithm is possible.

Describe an O.n2/-time algorithm for determining an optimal bitonic tour. You
may assume that no two points have the same x-coordinate and that all operations
on real numbers take unit time. (Hint: Scan left to right, maintaining optimal pos-
sibilities for the two parts of the tour.)

15-4 Printing neatly
Consider the problem of neatly printing a paragraph with a monospaced font (all
characters having the same width) on a printer. The input text is a sequence of n

406 Chapter 15 Dynamic Programming

words of lengths l1; l2; : : : ; ln, measured in characters. We want to print this para-
graph neatly on a number of lines that hold a maximum of M characters each. Our
criterion of “neatness” is as follows. If a given line contains words i through j ,
where i � j , and we leave exactly one space between words, the number of extra
space characters at the end of the line is M � j C i �Pj

kDi lk, which must be
nonnegative so that the words fit on the line. We wish to minimize the sum, over
all lines except the last, of the cubes of the numbers of extra space characters at the
ends of lines. Give a dynamic-programming algorithm to print a paragraph of n

words neatly on a printer. Analyze the running time and space requirements of
your algorithm.

15-5 Edit distance
In order to transform one source string of text xŒ1 : : m� to a target string yŒ1 : : n�,
we can perform various transformation operations. Our goal is, given x and y,
to produce a series of transformations that change x to y. We use an ar-
ray ´—assumed to be large enough to hold all the characters it will need—to hold
the intermediate results. Initially, ´ is empty, and at termination, we should have
´Œj � D yŒj � for j D 1; 2; : : : ; n. We maintain current indices i into x and j into ´,
and the operations are allowed to alter ´ and these indices. Initially, i D j D 1.
We are required to examine every character in x during the transformation, which
means that at the end of the sequence of transformation operations, we must have
i D mC 1.

We may choose from among six transformation operations:

Copy a character from x to ´ by setting ´Œj � D xŒi � and then incrementing both i

and j . This operation examines xŒi �.

Replace a character from x by another character c, by setting ´Œj � D c, and then
incrementing both i and j . This operation examines xŒi �.

Delete a character from x by incrementing i but leaving j alone. This operation
examines xŒi �.

Insert the character c into ´ by setting ´Œj � D c and then incrementing j , but
leaving i alone. This operation examines no characters of x.

Twiddle (i.e., exchange) the next two characters by copying them from x to ´ but
in the opposite order; we do so by setting ´Œj � D xŒiC 1� and ´Œj C 1� D xŒi �

and then setting i D i C 2 and j D j C 2. This operation examines xŒi �

and xŒi C 1�.

Kill the remainder of x by setting i D m C 1. This operation examines all char-
acters in x that have not yet been examined. This operation, if performed, must
be the final operation.

Problems for Chapter 15 407

As an example, one way to transform the source string algorithm to the target
string altruistic is to use the following sequence of operations, where the
underlined characters are xŒi � and ´Œj � after the operation:

Operation x ´

initial strings algorithm
copy algorithm a
copy algorithm al
replace by t algorithm alt
delete algorithm alt
copy algorithm altr
insert u algorithm altru
insert i algorithm altrui
insert s algorithm altruis
twiddle algorithm altruisti
insert c algorithm altruistic
kill algorithm altruistic

Note that there are several other sequences of transformation operations that trans-
form algorithm to altruistic.

Each of the transformation operations has an associated cost. The cost of an
operation depends on the specific application, but we assume that each operation’s
cost is a constant that is known to us. We also assume that the individual costs of
the copy and replace operations are less than the combined costs of the delete and
insert operations; otherwise, the copy and replace operations would not be used.
The cost of a given sequence of transformation operations is the sum of the costs
of the individual operations in the sequence. For the sequence above, the cost of
transforming algorithm to altruistic is

.3 � cost.copy//C cost.replace/C cost.delete/C .4 � cost.insert//

C cost.twiddle/C cost.kill/ :

a. Given two sequences xŒ1 : : m� and yŒ1 : : n� and set of transformation-operation
costs, the edit distance from x to y is the cost of the least expensive operation
sequence that transforms x to y. Describe a dynamic-programming algorithm
that finds the edit distance from xŒ1 : : m� to yŒ1 : : n� and prints an optimal op-
eration sequence. Analyze the running time and space requirements of your
algorithm.

The edit-distance problem generalizes the problem of aligning two DNA sequences
(see, for example, Setubal and Meidanis [310, Section 3.2]). There are several
methods for measuring the similarity of two DNA sequences by aligning them.
One such method to align two sequences x and y consists of inserting spaces at

408 Chapter 15 Dynamic Programming

arbitrary locations in the two sequences (including at either end) so that the result-
ing sequences x 0 and y 0 have the same length but do not have a space in the same
position (i.e., for no position j are both x 0Œj � and y 0Œj � a space). Then we assign a
“score” to each position. Position j receives a score as follows:

� C1 if x 0Œj � D y 0Œj � and neither is a space,
� �1 if x 0Œj � ¤ y 0Œj � and neither is a space,
� �2 if either x 0Œj � or y 0Œj � is a space.

The score for the alignment is the sum of the scores of the individual positions. For
example, given the sequences x D GATCGGCAT and y D CAATGTGAATC, one
alignment is

G ATCG GCAT
CAAT GTGAATC
-*++*+*+-++*

A + under a position indicates a score ofC1 for that position, a - indicates a score
of �1, and a * indicates a score of �2, so that this alignment has a total score of
6 � 1� 2 � 1 � 4 � 2 D �4.

b. Explain how to cast the problem of finding an optimal alignment as an edit
distance problem using a subset of the transformation operations copy, replace,
delete, insert, twiddle, and kill.

15-6 Planning a company party
Professor Stewart is consulting for the president of a corporation that is planning
a company party. The company has a hierarchical structure; that is, the supervisor
relation forms a tree rooted at the president. The personnel office has ranked each
employee with a conviviality rating, which is a real number. In order to make the
party fun for all attendees, the president does not want both an employee and his
or her immediate supervisor to attend.

Professor Stewart is given the tree that describes the structure of the corporation,
using the left-child, right-sibling representation described in Section 10.4. Each
node of the tree holds, in addition to the pointers, the name of an employee and
that employee’s conviviality ranking. Describe an algorithm to make up a guest
list that maximizes the sum of the conviviality ratings of the guests. Analyze the
running time of your algorithm.

15-7 Viterbi algorithm
We can use dynamic programming on a directed graph G D .V; E/ for speech
recognition. Each edge .u; �/ 2 E is labeled with a sound 	.u; �/ from a fi-
nite set † of sounds. The labeled graph is a formal model of a person speaking

Problems for Chapter 15 409

a restricted language. Each path in the graph starting from a distinguished ver-
tex �0 2 V corresponds to a possible sequence of sounds produced by the model.
We define the label of a directed path to be the concatenation of the labels of the
edges on that path.

a. Describe an efficient algorithm that, given an edge-labeled graph G with dis-
tinguished vertex �0 and a sequence s D h	1; 	2; : : : ; 	ki of sounds from †,
returns a path in G that begins at �0 and has s as its label, if any such path exists.
Otherwise, the algorithm should return NO-SUCH-PATH. Analyze the running
time of your algorithm. (Hint: You may find concepts from Chapter 22 useful.)

Now, suppose that every edge .u; �/ 2 E has an associated nonnegative proba-
bility p.u; �/ of traversing the edge .u; �/ from vertex u and thus producing the
corresponding sound. The sum of the probabilities of the edges leaving any vertex
equals 1. The probability of a path is defined to be the product of the probabil-
ities of its edges. We can view the probability of a path beginning at �0 as the
probability that a “random walk” beginning at �0 will follow the specified path,
where we randomly choose which edge to take leaving a vertex u according to the
probabilities of the available edges leaving u.

b. Extend your answer to part (a) so that if a path is returned, it is a most prob-
able path starting at �0 and having label s. Analyze the running time of your
algorithm.

15-8 Image compression by seam carving
We are given a color picture consisting of an m	n array AŒ1 : : m; 1 : : n� of pixels,
where each pixel specifies a triple of red, green, and blue (RGB) intensities. Sup-
pose that we wish to compress this picture slightly. Specifically, we wish to remove
one pixel from each of the m rows, so that the whole picture becomes one pixel
narrower. To avoid disturbing visual effects, however, we require that the pixels
removed in two adjacent rows be in the same or adjacent columns; the pixels re-
moved form a “seam” from the top row to the bottom row where successive pixels
in the seam are adjacent vertically or diagonally.

a. Show that the number of such possible seams grows at least exponentially in m,
assuming that n > 1.

b. Suppose now that along with each pixel AŒi; j �, we have calculated a real-
valued disruption measure dŒi; j �, indicating how disruptive it would be to
remove pixel AŒi; j �. Intuitively, the lower a pixel’s disruption measure, the
more similar the pixel is to its neighbors. Suppose further that we define the
disruption measure of a seam to be the sum of the disruption measures of its
pixels.

410 Chapter 15 Dynamic Programming

Give an algorithm to find a seam with the lowest disruption measure. How
efficient is your algorithm?

15-9 Breaking a string
A certain string-processing language allows a programmer to break a string into
two pieces. Because this operation copies the string, it costs n time units to break
a string of n characters into two pieces. Suppose a programmer wants to break
a string into many pieces. The order in which the breaks occur can affect the
total amount of time used. For example, suppose that the programmer wants to
break a 20-character string after characters 2, 8, and 10 (numbering the characters
in ascending order from the left-hand end, starting from 1). If she programs the
breaks to occur in left-to-right order, then the first break costs 20 time units, the
second break costs 18 time units (breaking the string from characters 3 to 20 at
character 8), and the third break costs 12 time units, totaling 50 time units. If she
programs the breaks to occur in right-to-left order, however, then the first break
costs 20 time units, the second break costs 10 time units, and the third break costs
8 time units, totaling 38 time units. In yet another order, she could break first at 8

(costing 20), then break the left piece at 2 (costing 8), and finally the right piece
at 10 (costing 12), for a total cost of 40.

Design an algorithm that, given the numbers of characters after which to break,
determines a least-cost way to sequence those breaks. More formally, given a
string S with n characters and an array LŒ1 : : m� containing the break points, com-
pute the lowest cost for a sequence of breaks, along with a sequence of breaks that
achieves this cost.

15-10 Planning an investment strategy
Your knowledge of algorithms helps you obtain an exciting job with the Acme
Computer Company, along with a $10,000 signing bonus. You decide to invest
this money with the goal of maximizing your return at the end of 10 years. You
decide to use the Amalgamated Investment Company to manage your investments.
Amalgamated Investments requires you to observe the following rules. It offers n

different investments, numbered 1 through n. In each year j , investment i provides
a return rate of rij . In other words, if you invest d dollars in investment i in year j ,
then at the end of year j , you have drij dollars. The return rates are guaranteed,
that is, you are given all the return rates for the next 10 years for each investment.
You make investment decisions only once per year. At the end of each year, you
can leave the money made in the previous year in the same investments, or you
can shift money to other investments, by either shifting money between existing
investments or moving money to a new investement. If you do not move your
money between two consecutive years, you pay a fee of f1 dollars, whereas if you
switch your money, you pay a fee of f2 dollars, where f2 > f1.

Problems for Chapter 15 411

a. The problem, as stated, allows you to invest your money in multiple investments
in each year. Prove that there exists an optimal investment strategy that, in
each year, puts all the money into a single investment. (Recall that an optimal
investment strategy maximizes the amount of money after 10 years and is not
concerned with any other objectives, such as minimizing risk.)

b. Prove that the problem of planning your optimal investment strategy exhibits
optimal substructure.

c. Design an algorithm that plans your optimal investment strategy. What is the
running time of your algorithm?

d. Suppose that Amalgamated Investments imposed the additional restriction that,
at any point, you can have no more than $15,000 in any one investment. Show
that the problem of maximizing your income at the end of 10 years no longer
exhibits optimal substructure.

15-11 Inventory planning
The Rinky Dink Company makes machines that resurface ice rinks. The demand
for such products varies from month to month, and so the company needs to de-
velop a strategy to plan its manufacturing given the fluctuating, but predictable,
demand. The company wishes to design a plan for the next n months. For each
month i , the company knows the demand di , that is, the number of machines that
it will sell. Let D D Pn

iD1 di be the total demand over the next n months. The
company keeps a full-time staff who provide labor to manufacture up to m ma-
chines per month. If the company needs to make more than m machines in a given
month, it can hire additional, part-time labor, at a cost that works out to c dollars
per machine. Furthermore, if, at the end of a month, the company is holding any
unsold machines, it must pay inventory costs. The cost for holding j machines is
given as a function h.j / for j D 1; 2; : : : ; D, where h.j / � 0 for 1 � j � D and
h.j / � h.j C 1/ for 1 � j � D � 1.

Give an algorithm that calculates a plan for the company that minimizes its costs
while fulfilling all the demand. The running time should be polyomial in n and D.

15-12 Signing free-agent baseball players
Suppose that you are the general manager for a major-league baseball team. During
the off-season, you need to sign some free-agent players for your team. The team
owner has given you a budget of $X to spend on free agents. You are allowed to
spend less than $X altogether, but the owner will fire you if you spend any more
than $X .

412 Chapter 15 Dynamic Programming

You are considering N different positions, and for each position, P free-agent
players who play that position are available.8 Because you do not want to overload
your roster with too many players at any position, for each position you may sign
at most one free agent who plays that position. (If you do not sign any players at a
particular position, then you plan to stick with the players you already have at that
position.)

To determine how valuable a player is going to be, you decide to use a sabermet-
ric statistic9 known as “VORP,” or “value over replacement player.” A player with
a higher VORP is more valuable than a player with a lower VORP. A player with a
higher VORP is not necessarily more expensive to sign than a player with a lower
VORP, because factors other than a player’s value determine how much it costs to
sign him.

For each available free-agent player, you have three pieces of information:

� the player’s position,

� the amount of money it will cost to sign the player, and

� the player’s VORP.

Devise an algorithm that maximizes the total VORP of the players you sign while
spending no more than $X altogether. You may assume that each player signs for a
multiple of $100,000. Your algorithm should output the total VORP of the players
you sign, the total amount of money you spend, and a list of which players you
sign. Analyze the running time and space requirement of your algorithm.

Chapter notes

R. Bellman began the systematic study of dynamic programming in 1955. The
word “programming,” both here and in linear programming, refers to using a tab-
ular solution method. Although optimization techniques incorporating elements of
dynamic programming were known earlier, Bellman provided the area with a solid
mathematical basis [37].

8Although there are nine positions on a baseball team, N is not necesarily equal to 9 because some
general managers have particular ways of thinking about positions. For example, a general manager
might consider right-handed pitchers and left-handed pitchers to be separate “positions,” as well as
starting pitchers, long relief pitchers (relief pitchers who can pitch several innings), and short relief
pitchers (relief pitchers who normally pitch at most only one inning).

9Sabermetrics is the application of statistical analysis to baseball records. It provides several ways
to compare the relative values of individual players.

Notes for Chapter 15 413

Galil and Park [125] classify dynamic-programming algorithms according to the
size of the table and the number of other table entries each entry depends on. They
call a dynamic-programming algorithm tD=eD if its table size is O.nt / and each
entry depends on O.ne/ other entries. For example, the matrix-chain multiplication
algorithm in Section 15.2 would be 2D=1D, and the longest-common-subsequence
algorithm in Section 15.4 would be 2D=0D.

Hu and Shing [182, 183] give an O.n lg n/-time algorithm for the matrix-chain
multiplication problem.

The O.mn/-time algorithm for the longest-common-subsequence problem ap-
pears to be a folk algorithm. Knuth [70] posed the question of whether subquadratic
algorithms for the LCS problem exist. Masek and Paterson [244] answered this
question in the affirmative by giving an algorithm that runs in O.mn= lg n/ time,
where n � m and the sequences are drawn from a set of bounded size. For the
special case in which no element appears more than once in an input sequence,
Szymanski [326] shows how to solve the problem in O..nCm/ lg.nCm// time.
Many of these results extend to the problem of computing string edit distances
(Problem 15-5).

An early paper on variable-length binary encodings by Gilbert and Moore [133]
had applications to constructing optimal binary search trees for the case in which all
probabilities pi are 0; this paper contains an O.n3/-time algorithm. Aho, Hopcroft,
and Ullman [5] present the algorithm from Section 15.5. Exercise 15.5-4 is due to
Knuth [212]. Hu and Tucker [184] devised an algorithm for the case in which all
probabilities pi are 0 that uses O.n2/ time and O.n/ space; subsequently, Knuth
[211] reduced the time to O.n lg n/.

Problem 15-8 is due to Avidan and Shamir [27], who have posted on the Web a
wonderful video illustrating this image-compression technique.

16 Greedy Algorithms

Algorithms for optimization problems typically go through a sequence of steps,
with a set of choices at each step. For many optimization problems, using dynamic
programming to determine the best choices is overkill; simpler, more efficient al-
gorithms will do. A greedy algorithm always makes the choice that looks best at
the moment. That is, it makes a locally optimal choice in the hope that this choice
will lead to a globally optimal solution. This chapter explores optimization prob-
lems for which greedy algorithms provide optimal solutions. Before reading this
chapter, you should read about dynamic programming in Chapter 15, particularly
Section 15.3.

Greedy algorithms do not always yield optimal solutions, but for many problems
they do. We shall first examine, in Section 16.1, a simple but nontrivial problem,
the activity-selection problem, for which a greedy algorithm efficiently computes
an optimal solution. We shall arrive at the greedy algorithm by first consider-
ing a dynamic-programming approach and then showing that we can always make
greedy choices to arrive at an optimal solution. Section 16.2 reviews the basic
elements of the greedy approach, giving a direct approach for proving greedy al-
gorithms correct. Section 16.3 presents an important application of greedy tech-
niques: designing data-compression (Huffman) codes. In Section 16.4, we inves-
tigate some of the theory underlying combinatorial structures called “matroids,”
for which a greedy algorithm always produces an optimal solution. Finally, Sec-
tion 16.5 applies matroids to solve a problem of scheduling unit-time tasks with
deadlines and penalties.

The greedy method is quite powerful and works well for a wide range of prob-
lems. Later chapters will present many algorithms that we can view as applica-
tions of the greedy method, including minimum-spanning-tree algorithms (Chap-
ter 23), Dijkstra’s algorithm for shortest paths from a single source (Chapter 24),
and Chvátal’s greedy set-covering heuristic (Chapter 35). Minimum-spanning-tree
algorithms furnish a classic example of the greedy method. Although you can read

16.1 An activity-selection problem 415

this chapter and Chapter 23 independently of each other, you might find it useful
to read them together.

16.1 An activity-selection problem

Our first example is the problem of scheduling several competing activities that re-
quire exclusive use of a common resource, with a goal of selecting a maximum-size
set of mutually compatible activities. Suppose we have a set S D fa1; a2; : : : ; ang
of n proposed activities that wish to use a resource, such as a lecture hall, which
can serve only one activity at a time. Each activity ai has a start time si and a finish
time fi , where 0 � si < fi < 1. If selected, activity ai takes place during the
half-open time interval Œsi ; fi /. Activities ai and aj are compatible if the intervals
Œsi ; fi / and Œsj ; fj / do not overlap. That is, ai and aj are compatible if si � fj

or sj � fi . In the activity-selection problem, we wish to select a maximum-size
subset of mutually compatible activities. We assume that the activities are sorted
in monotonically increasing order of finish time:

f1 � f2 � f3 � � � � � fn�1 � fn : (16.1)

(We shall see later the advantage that this assumption provides.) For example,
consider the following set S of activities:

i 1 2 3 4 5 6 7 8 9 10 11
si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

For this example, the subset fa3; a9; a11g consists of mutually compatible activities.
It is not a maximum subset, however, since the subset fa1; a4; a8; a11g is larger. In
fact, fa1; a4; a8; a11g is a largest subset of mutually compatible activities; another
largest subset is fa2; a4; a9; a11g.

We shall solve this problem in several steps. We start by thinking about a
dynamic-programming solution, in which we consider several choices when deter-
mining which subproblems to use in an optimal solution. We shall then observe that
we need to consider only one choice—the greedy choice—and that when we make
the greedy choice, only one subproblem remains. Based on these observations, we
shall develop a recursive greedy algorithm to solve the activity-scheduling prob-
lem. We shall complete the process of developing a greedy solution by converting
the recursive algorithm to an iterative one. Although the steps we shall go through
in this section are slightly more involved than is typical when developing a greedy
algorithm, they illustrate the relationship between greedy algorithms and dynamic
programming.

416 Chapter 16 Greedy Algorithms

The optimal substructure of the activity-selection problem

We can easily verify that the activity-selection problem exhibits optimal substruc-
ture. Let us denote by Sij the set of activities that start after activity ai finishes and
that finish before activity aj starts. Suppose that we wish to find a maximum set of
mutually compatible activities in Sij , and suppose further that such a maximum set
is Aij , which includes some activity ak. By including ak in an optimal solution, we
are left with two subproblems: finding mutually compatible activities in the set Sik

(activities that start after activity ai finishes and that finish before activity ak starts)
and finding mutually compatible activities in the set Skj (activities that start after
activity ak finishes and that finish before activity aj starts). Let Aik D Aij \ Sik

and Akj D Aij \Skj , so that Aik contains the activities in Aij that finish before ak

starts and Akj contains the activities in Aij that start after ak finishes. Thus, we
have Aij D Aik [fakg [Akj , and so the maximum-size set Aij of mutually com-
patible activities in Sij consists of jAij j D jAikj C jAkj j C 1 activities.

The usual cut-and-paste argument shows that the optimal solution Aij must also
include optimal solutions to the two subproblems for Sik and Skj . If we could
find a set A0

kj
of mutually compatible activities in Skj where jA0

kj
j > jAkj j, then

we could use A0
kj

, rather than Akj , in a solution to the subproblem for Sij . We
would have constructed a set of jAikj C jA0

kj
j C 1 > jAikj C jAkj j C 1 D jAij j

mutually compatible activities, which contradicts the assumption that Aij is an
optimal solution. A symmetric argument applies to the activities in Sik.

This way of characterizing optimal substructure suggests that we might solve
the activity-selection problem by dynamic programming. If we denote the size of
an optimal solution for the set Sij by cŒi; j �, then we would have the recurrence

cŒi; j � D cŒi; k�C cŒk; j �C 1 :

Of course, if we did not know that an optimal solution for the set Sij includes
activity ak, we would have to examine all activities in Sij to find which one to
choose, so that

cŒi; j � D
(

0 if Sij D ; ;

max
ak2Sij

fcŒi; k�C cŒk; j �C 1g if Sij ¤ ; :
(16.2)

We could then develop a recursive algorithm and memoize it, or we could work
bottom-up and fill in table entries as we go along. But we would be overlooking
another important characteristic of the activity-selection problem that we can use
to great advantage.

16.1 An activity-selection problem 417

Making the greedy choice

What if we could choose an activity to add to our optimal solution without having
to first solve all the subproblems? That could save us from having to consider all
the choices inherent in recurrence (16.2). In fact, for the activity-selection problem,
we need consider only one choice: the greedy choice.

What do we mean by the greedy choice for the activity-selection problem? Intu-
ition suggests that we should choose an activity that leaves the resource available
for as many other activities as possible. Now, of the activities we end up choos-
ing, one of them must be the first one to finish. Our intuition tells us, therefore,
to choose the activity in S with the earliest finish time, since that would leave the
resource available for as many of the activities that follow it as possible. (If more
than one activity in S has the earliest finish time, then we can choose any such
activity.) In other words, since the activities are sorted in monotonically increasing
order by finish time, the greedy choice is activity a1. Choosing the first activity
to finish is not the only way to think of making a greedy choice for this problem;
Exercise 16.1-3 asks you to explore other possibilities.

If we make the greedy choice, we have only one remaining subproblem to solve:
finding activities that start after a1 finishes. Why don’t we have to consider ac-
tivities that finish before a1 starts? We have that s1 < f1, and f1 is the earliest
finish time of any activity, and therefore no activity can have a finish time less than
or equal to s1. Thus, all activities that are compatible with activity a1 must start
after a1 finishes.

Furthermore, we have already established that the activity-selection problem ex-
hibits optimal substructure. Let Sk D fai 2 S W si � fkg be the set of activities that
start after activity ak finishes. If we make the greedy choice of activity a1, then S1

remains as the only subproblem to solve.1 Optimal substructure tells us that if a1

is in the optimal solution, then an optimal solution to the original problem consists
of activity a1 and all the activities in an optimal solution to the subproblem S1.

One big question remains: is our intuition correct? Is the greedy choice—in
which we choose the first activity to finish—always part of some optimal solution?
The following theorem shows that it is.

1We sometimes refer to the sets Sk as subproblems rather than as just sets of activities. It will always
be clear from the context whether we are referring to Sk as a set of activities or as a subproblem
whose input is that set.

418 Chapter 16 Greedy Algorithms

Theorem 16.1
Consider any nonempty subproblem Sk, and let am be an activity in Sk with the
earliest finish time. Then am is included in some maximum-size subset of mutually
compatible activities of Sk .

Proof Let Ak be a maximum-size subset of mutually compatible activities in Sk,
and let aj be the activity in Ak with the earliest finish time. If aj D am, we are
done, since we have shown that am is in some maximum-size subset of mutually
compatible activities of Sk. If aj ¤ am, let the set A0

k
D Ak � faj g [famg be Ak

but substituting am for aj . The activities in A0
k

are disjoint, which follows because
the activities in Ak are disjoint, aj is the first activity in Ak to finish, and fm � fj .
Since jA0

kj D jAkj, we conclude that A0
k

is a maximum-size subset of mutually
compatible activities of Sk , and it includes am.

Thus, we see that although we might be able to solve the activity-selection prob-
lem with dynamic programming, we don’t need to. (Besides, we have not yet
examined whether the activity-selection problem even has overlapping subprob-
lems.) Instead, we can repeatedly choose the activity that finishes first, keep only
the activities compatible with this activity, and repeat until no activities remain.
Moreover, because we always choose the activity with the earliest finish time, the
finish times of the activities we choose must strictly increase. We can consider
each activity just once overall, in monotonically increasing order of finish times.

An algorithm to solve the activity-selection problem does not need to work
bottom-up, like a table-based dynamic-programming algorithm. Instead, it can
work top-down, choosing an activity to put into the optimal solution and then solv-
ing the subproblem of choosing activities from those that are compatible with those
already chosen. Greedy algorithms typically have this top-down design: make a
choice and then solve a subproblem, rather than the bottom-up technique of solving
subproblems before making a choice.

A recursive greedy algorithm

Now that we have seen how to bypass the dynamic-programming approach and in-
stead use a top-down, greedy algorithm, we can write a straightforward, recursive
procedure to solve the activity-selection problem. The procedure RECURSIVE-
ACTIVITY-SELECTOR takes the start and finish times of the activities, represented
as arrays s and f ,2 the index k that defines the subproblem Sk it is to solve, and

2Because the pseudocode takes s and f as arrays, it indexes into them with square brackets rather
than subscripts.

16.1 An activity-selection problem 419

the size n of the original problem. It returns a maximum-size set of mutually com-
patible activities in Sk . We assume that the n input activities are already ordered
by monotonically increasing finish time, according to equation (16.1). If not, we
can sort them into this order in O.n lg n/ time, breaking ties arbitrarily. In order
to start, we add the fictitious activity a0 with f0 D 0, so that subproblem S0 is
the entire set of activities S . The initial call, which solves the entire problem, is
RECURSIVE-ACTIVITY-SELECTOR.s; f; 0; n/.

RECURSIVE-ACTIVITY-SELECTOR.s; f; k; n/

1 m D k C 1

2 while m � n and sŒm� < f Œk� // find the first activity in Sk to finish
3 m D mC 1

4 if m � n

5 return famg [RECURSIVE-ACTIVITY-SELECTOR.s; f; m; n/

6 else return ;

Figure 16.1 shows the operation of the algorithm. In a given recursive call
RECURSIVE-ACTIVITY-SELECTOR.s; f; k; n/, the while loop of lines 2–3 looks
for the first activity in Sk to finish. The loop examines akC1; akC2; : : : ; an, un-
til it finds the first activity am that is compatible with ak; such an activity has
sm � fk. If the loop terminates because it finds such an activity, line 5 returns
the union of famg and the maximum-size subset of Sm returned by the recursive
call RECURSIVE-ACTIVITY-SELECTOR.s; f; m; n/. Alternatively, the loop may
terminate because m > n, in which case we have examined all activities in Sk

without finding one that is compatible with ak. In this case, Sk D ;, and so the
procedure returns ; in line 6.

Assuming that the activities have already been sorted by finish times, the running
time of the call RECURSIVE-ACTIVITY-SELECTOR.s; f; 0; n/ is ‚.n/, which we
can see as follows. Over all recursive calls, each activity is examined exactly once
in the while loop test of line 2. In particular, activity ai is examined in the last call
made in which k < i .

An iterative greedy algorithm

We easily can convert our recursive procedure to an iterative one. The procedure
RECURSIVE-ACTIVITY-SELECTOR is almost “tail recursive” (see Problem 7-4):
it ends with a recursive call to itself followed by a union operation. It is usually a
straightforward task to transform a tail-recursive procedure to an iterative form; in
fact, some compilers for certain programming languages perform this task automat-
ically. As written, RECURSIVE-ACTIVITY-SELECTOR works for subproblems Sk ,
i.e., subproblems that consist of the last activities to finish.

420 Chapter 16 Greedy Algorithms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
time

2 3 5

3 0 6

4 5 7

5 3 9

6 5 9

7 6 10

8 8 11

9 8 12

10 2 14

11 12 16

1 1 4

k sk fk

a1

a2

a1

a3

a1

a4

a1 a4

a5

a1 a4

a6

a1 a4

a7

a1 a4

a8

a1 a4 a8

a9

a1 a4 a8

a10

a1 a4 a8

a11

a1 a4 a8 a11

0 – 0

a1

a0

a0

RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 1, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 4, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 8, 11)

m = 1

m = 4

m = 8

m = 11

RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11)

15 16

Figure 16.1 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities given ear-
lier. Activities considered in each recursive call appear between horizontal lines. The fictitious
activity a0 finishes at time 0, and the initial call RECURSIVE-ACTIVITY-SELECTOR.s; f; 0; 11/, se-
lects activity a1. In each recursive call, the activities that have already been selected are shaded,
and the activity shown in white is being considered. If the starting time of an activity occurs before
the finish time of the most recently added activity (the arrow between them points left), it is re-
jected. Otherwise (the arrow points directly up or to the right), it is selected. The last recursive call,
RECURSIVE-ACTIVITY-SELECTOR.s; f; 11; 11/, returns ;. The resulting set of selected activities is
fa1; a4; a8; a11g.

16.1 An activity-selection problem 421

The procedure GREEDY-ACTIVITY-SELECTOR is an iterative version of the pro-
cedure RECURSIVE-ACTIVITY-SELECTOR. It also assumes that the input activi-
ties are ordered by monotonically increasing finish time. It collects selected activ-
ities into a set A and returns this set when it is done.

GREEDY-ACTIVITY-SELECTOR.s; f /

1 n D s: length
2 A D fa1g
3 k D 1

4 for m D 2 to n

5 if sŒm� � f Œk�

6 A D A [famg
7 k D m

8 return A

The procedure works as follows. The variable k indexes the most recent addition
to A, corresponding to the activity ak in the recursive version. Since we consider
the activities in order of monotonically increasing finish time, fk is always the
maximum finish time of any activity in A. That is,

fk D max ffi W ai 2 Ag : (16.3)

Lines 2–3 select activity a1, initialize A to contain just this activity, and initialize k

to index this activity. The for loop of lines 4–7 finds the earliest activity in Sk to
finish. The loop considers each activity am in turn and adds am to A if it is compat-
ible with all previously selected activities; such an activity is the earliest in Sk to
finish. To see whether activity am is compatible with every activity currently in A,
it suffices by equation (16.3) to check (in line 5) that its start time sm is not earlier
than the finish time fk of the activity most recently added to A. If activity am is
compatible, then lines 6–7 add activity am to A and set k to m. The set A returned
by the call GREEDY-ACTIVITY-SELECTOR.s; f / is precisely the set returned by
the call RECURSIVE-ACTIVITY-SELECTOR.s; f; 0; n/.

Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n

activities in ‚.n/ time, assuming that the activities were already sorted initially by
their finish times.

Exercises

16.1-1
Give a dynamic-programming algorithm for the activity-selection problem, based
on recurrence (16.2). Have your algorithm compute the sizes cŒi; j � as defined
above and also produce the maximum-size subset of mutually compatible activities.

422 Chapter 16 Greedy Algorithms

Assume that the inputs have been sorted as in equation (16.1). Compare the running
time of your solution to the running time of GREEDY-ACTIVITY-SELECTOR.

16.1-2
Suppose that instead of always selecting the first activity to finish, we instead select
the last activity to start that is compatible with all previously selected activities. De-
scribe how this approach is a greedy algorithm, and prove that it yields an optimal
solution.

16.1-3
Not just any greedy approach to the activity-selection problem produces a max-
imum-size set of mutually compatible activities. Give an example to show that
the approach of selecting the activity of least duration from among those that are
compatible with previously selected activities does not work. Do the same for
the approaches of always selecting the compatible activity that overlaps the fewest
other remaining activities and always selecting the compatible remaining activity
with the earliest start time.

16.1-4
Suppose that we have a set of activities to schedule among a large number of lecture
halls, where any activity can take place in any lecture hall. We wish to schedule
all the activities using as few lecture halls as possible. Give an efficient greedy
algorithm to determine which activity should use which lecture hall.

(This problem is also known as the interval-graph coloring problem. We can
create an interval graph whose vertices are the given activities and whose edges
connect incompatible activities. The smallest number of colors required to color
every vertex so that no two adjacent vertices have the same color corresponds to
finding the fewest lecture halls needed to schedule all of the given activities.)

16.1-5
Consider a modification to the activity-selection problem in which each activity ai

has, in addition to a start and finish time, a value �i . The objective is no longer
to maximize the number of activities scheduled, but instead to maximize the total
value of the activities scheduled. That is, we wish to choose a set A of compatible
activities such that

P
ak2A �k is maximized. Give a polynomial-time algorithm for

this problem.

16.2 Elements of the greedy strategy 423

16.2 Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by making a sequence
of choices. At each decision point, the algorithm makes choice that seems best at
the moment. This heuristic strategy does not always produce an optimal solution,
but as we saw in the activity-selection problem, sometimes it does. This section
discusses some of the general properties of greedy methods.

The process that we followed in Section 16.1 to develop a greedy algorithm was
a bit more involved than is typical. We went through the following steps:

1. Determine the optimal substructure of the problem.

2. Develop a recursive solution. (For the activity-selection problem, we formu-
lated recurrence (16.2), but we bypassed developing a recursive algorithm based
on this recurrence.)

3. Show that if we make the greedy choice, then only one subproblem remains.

4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur
in either order.)

5. Develop a recursive algorithm that implements the greedy strategy.

6. Convert the recursive algorithm to an iterative algorithm.

In going through these steps, we saw in great detail the dynamic-programming un-
derpinnings of a greedy algorithm. For example, in the activity-selection problem,
we first defined the subproblems Sij , where both i and j varied. We then found
that if we always made the greedy choice, we could restrict the subproblems to be
of the form Sk .

Alternatively, we could have fashioned our optimal substructure with a greedy
choice in mind, so that the choice leaves just one subproblem to solve. In the
activity-selection problem, we could have started by dropping the second subscript
and defining subproblems of the form Sk. Then, we could have proven that a greedy
choice (the first activity am to finish in Sk), combined with an optimal solution to
the remaining set Sm of compatible activities, yields an optimal solution to Sk .
More generally, we design greedy algorithms according to the following sequence
of steps:

1. Cast the optimization problem as one in which we make a choice and are left
with one subproblem to solve.

2. Prove that there is always an optimal solution to the original problem that makes
the greedy choice, so that the greedy choice is always safe.

424 Chapter 16 Greedy Algorithms

3. Demonstrate optimal substructure by showing that, having made the greedy
choice, what remains is a subproblem with the property that if we combine an
optimal solution to the subproblem with the greedy choice we have made, we
arrive at an optimal solution to the original problem.

We shall use this more direct process in later sections of this chapter. Neverthe-
less, beneath every greedy algorithm, there is almost always a more cumbersome
dynamic-programming solution.

How can we tell whether a greedy algorithm will solve a particular optimization
problem? No way works all the time, but the greedy-choice property and optimal
substructure are the two key ingredients. If we can demonstrate that the problem
has these properties, then we are well on the way to developing a greedy algorithm
for it.

Greedy-choice property

The first key ingredient is the greedy-choice property: we can assemble a globally
optimal solution by making locally optimal (greedy) choices. In other words, when
we are considering which choice to make, we make the choice that looks best in
the current problem, without considering results from subproblems.

Here is where greedy algorithms differ from dynamic programming. In dynamic
programming, we make a choice at each step, but the choice usually depends on the
solutions to subproblems. Consequently, we typically solve dynamic-programming
problems in a bottom-up manner, progressing from smaller subproblems to larger
subproblems. (Alternatively, we can solve them top down, but memoizing. Of
course, even though the code works top down, we still must solve the subprob-
lems before making a choice.) In a greedy algorithm, we make whatever choice
seems best at the moment and then solve the subproblem that remains. The choice
made by a greedy algorithm may depend on choices so far, but it cannot depend on
any future choices or on the solutions to subproblems. Thus, unlike dynamic pro-
gramming, which solves the subproblems before making the first choice, a greedy
algorithm makes its first choice before solving any subproblems. A dynamic-
programming algorithm proceeds bottom up, whereas a greedy strategy usually
progresses in a top-down fashion, making one greedy choice after another, reduc-
ing each given problem instance to a smaller one.

Of course, we must prove that a greedy choice at each step yields a globally
optimal solution. Typically, as in the case of Theorem 16.1, the proof examines
a globally optimal solution to some subproblem. It then shows how to modify
the solution to substitute the greedy choice for some other choice, resulting in one
similar, but smaller, subproblem.

We can usually make the greedy choice more efficiently than when we have to
consider a wider set of choices. For example, in the activity-selection problem, as-

16.2 Elements of the greedy strategy 425

suming that we had already sorted the activities in monotonically increasing order
of finish times, we needed to examine each activity just once. By preprocessing the
input or by using an appropriate data structure (often a priority queue), we often
can make greedy choices quickly, thus yielding an efficient algorithm.

Optimal substructure

A problem exhibits optimal substructure if an optimal solution to the problem
contains within it optimal solutions to subproblems. This property is a key in-
gredient of assessing the applicability of dynamic programming as well as greedy
algorithms. As an example of optimal substructure, recall how we demonstrated in
Section 16.1 that if an optimal solution to subproblem Sij includes an activity ak,
then it must also contain optimal solutions to the subproblems Sik and Skj . Given
this optimal substructure, we argued that if we knew which activity to use as ak, we
could construct an optimal solution to Sij by selecting ak along with all activities
in optimal solutions to the subproblems Sik and Skj . Based on this observation of
optimal substructure, we were able to devise the recurrence (16.2) that described
the value of an optimal solution.

We usually use a more direct approach regarding optimal substructure when
applying it to greedy algorithms. As mentioned above, we have the luxury of
assuming that we arrived at a subproblem by having made the greedy choice in
the original problem. All we really need to do is argue that an optimal solution to
the subproblem, combined with the greedy choice already made, yields an optimal
solution to the original problem. This scheme implicitly uses induction on the
subproblems to prove that making the greedy choice at every step produces an
optimal solution.

Greedy versus dynamic programming

Because both the greedy and dynamic-programming strategies exploit optimal sub-
structure, you might be tempted to generate a dynamic-programming solution to a
problem when a greedy solution suffices or, conversely, you might mistakenly think
that a greedy solution works when in fact a dynamic-programming solution is re-
quired. To illustrate the subtleties between the two techniques, let us investigate
two variants of a classical optimization problem.

The 0-1 knapsack problem is the following. A thief robbing a store finds n

items. The i th item is worth �i dollars and weighs wi pounds, where �i and wi are
integers. The thief wants to take as valuable a load as possible, but he can carry at
most W pounds in his knapsack, for some integer W . Which items should he take?
(We call this the 0-1 knapsack problem because for each item, the thief must either

426 Chapter 16 Greedy Algorithms

take it or leave it behind; he cannot take a fractional amount of an item or take an
item more than once.)

In the fractional knapsack problem, the setup is the same, but the thief can take
fractions of items, rather than having to make a binary (0-1) choice for each item.
You can think of an item in the 0-1 knapsack problem as being like a gold ingot
and an item in the fractional knapsack problem as more like gold dust.

Both knapsack problems exhibit the optimal-substructure property. For the 0-1
problem, consider the most valuable load that weighs at most W pounds. If we
remove item j from this load, the remaining load must be the most valuable load
weighing at most W � wj that the thief can take from the n � 1 original items
excluding j . For the comparable fractional problem, consider that if we remove
a weight w of one item j from the optimal load, the remaining load must be the
most valuable load weighing at most W � w that the thief can take from the n � 1

original items plus wj � w pounds of item j .
Although the problems are similar, we can solve the fractional knapsack problem

by a greedy strategy, but we cannot solve the 0-1 problem by such a strategy. To
solve the fractional problem, we first compute the value per pound �i=wi for each
item. Obeying a greedy strategy, the thief begins by taking as much as possible of
the item with the greatest value per pound. If the supply of that item is exhausted
and he can still carry more, he takes as much as possible of the item with the next
greatest value per pound, and so forth, until he reaches his weight limit W . Thus,
by sorting the items by value per pound, the greedy algorithm runs in O.n lg n/

time. We leave the proof that the fractional knapsack problem has the greedy-
choice property as Exercise 16.2-1.

To see that this greedy strategy does not work for the 0-1 knapsack problem,
consider the problem instance illustrated in Figure 16.2(a). This example has 3

items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and
is worth 60 dollars. Item 2 weighs 20 pounds and is worth 100 dollars. Item 3

weighs 30 pounds and is worth 120 dollars. Thus, the value per pound of item 1 is
6 dollars per pound, which is greater than the value per pound of either item 2 (5
dollars per pound) or item 3 (4 dollars per pound). The greedy strategy, therefore,
would take item 1 first. As you can see from the case analysis in Figure 16.2(b),
however, the optimal solution takes items 2 and 3, leaving item 1 behind. The two
possible solutions that take item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy, which
takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c). Tak-
ing item 1 doesn’t work in the 0-1 problem because the thief is unable to fill his
knapsack to capacity, and the empty space lowers the effective value per pound of
his load. In the 0-1 problem, when we consider whether to include an item in the
knapsack, we must compare the solution to the subproblem that includes the item
with the solution to the subproblem that excludes the item before we can make the

16.2 Elements of the greedy strategy 427

10

$60

item 1
20

$100

item 2

30

$120

item 3

50

knapsack

(a)

+

$120

$100

= $220

+

$60

$100

= $160

+

$60

$120

= $180

(b)

+

$60

$100

= $240

$80

+

(c)

20

30

10

20

10

30

10

20

20
30

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack
problem. (a) The thief must select a subset of the three items shown whose weight must not exceed
50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal,
even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking
the items in order of greatest value per pound yields an optimal solution.

choice. The problem formulated in this way gives rise to many overlapping sub-
problems—a hallmark of dynamic programming, and indeed, as Exercise 16.2-2
asks you to show, we can use dynamic programming to solve the 0-1 problem.

Exercises

16.2-1
Prove that the fractional knapsack problem has the greedy-choice property.

16.2-2
Give a dynamic-programming solution to the 0-1 knapsack problem that runs in
O.n W / time, where n is the number of items and W is the maximum weight of
items that the thief can put in his knapsack.

16.2-3
Suppose that in a 0-1 knapsack problem, the order of the items when sorted by
increasing weight is the same as their order when sorted by decreasing value. Give
an efficient algorithm to find an optimal solution to this variant of the knapsack
problem, and argue that your algorithm is correct.

16.2-4
Professor Gekko has always dreamed of inline skating across North Dakota. He
plans to cross the state on highway U.S. 2, which runs from Grand Forks, on the
eastern border with Minnesota, to Williston, near the western border with Montana.

428 Chapter 16 Greedy Algorithms

The professor can carry two liters of water, and he can skate m miles before running
out of water. (Because North Dakota is relatively flat, the professor does not have
to worry about drinking water at a greater rate on uphill sections than on flat or
downhill sections.) The professor will start in Grand Forks with two full liters of
water. His official North Dakota state map shows all the places along U.S. 2 at
which he can refill his water and the distances between these locations.

The professor’s goal is to minimize the number of water stops along his route
across the state. Give an efficient method by which he can determine which water
stops he should make. Prove that your strategy yields an optimal solution, and give
its running time.

16.2-5
Describe an efficient algorithm that, given a set fx1; x2; : : : ; xng of points on the
real line, determines the smallest set of unit-length closed intervals that contains
all of the given points. Argue that your algorithm is correct.

16.2-6 ?

Show how to solve the fractional knapsack problem in O.n/ time.

16.2-7
Suppose you are given two sets A and B , each containing n positive integers. You
can choose to reorder each set however you like. After reordering, let ai be the i th
element of set A, and let bi be the i th element of set B . You then receive a payoff
of
Qn

iD1 ai
bi . Give an algorithm that will maximize your payoff. Prove that your

algorithm maximizes the payoff, and state its running time.

16.3 Huffman codes

Huffman codes compress data very effectively: savings of 20% to 90% are typical,
depending on the characteristics of the data being compressed. We consider the
data to be a sequence of characters. Huffman’s greedy algorithm uses a table giving
how often each character occurs (i.e., its frequency) to build up an optimal way of
representing each character as a binary string.

Suppose we have a 100,000-character data file that we wish to store compactly.
We observe that the characters in the file occur with the frequencies given by Fig-
ure 16.3. That is, only 6 different characters appear, and the character a occurs
45,000 times.

We have many options for how to represent such a file of information. Here,
we consider the problem of designing a binary character code (or code for short)

16.3 Huffman codes 429

a b c d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the char-
acters a–f, with the frequencies indicated. If we assign each character a 3-bit codeword, we can
encode the file in 300,000 bits. Using the variable-length code shown, we can encode the file in only
224,000 bits.

in which each character is represented by a unique binary string, which we call a
codeword. If we use a fixed-length code, we need 3 bits to represent 6 characters:
a = 000, b = 001, . . . , f = 101. This method requires 300,000 bits to code the
entire file. Can we do better?

A variable-length code can do considerably better than a fixed-length code, by
giving frequent characters short codewords and infrequent characters long code-
words. Figure 16.3 shows such a code; here the 1-bit string 0 represents a, and the
4-bit string 1100 represents f. This code requires

.45 � 1 C 13 � 3 C 12 � 3 C 16 � 3 C 9 � 4 C 5 � 4/ � 1,000 D 224,000 bits

to represent the file, a savings of approximately 25%. In fact, this is an optimal
character code for this file, as we shall see.

Prefix codes

We consider here only codes in which no codeword is also a prefix of some other
codeword. Such codes are called prefix codes.3 Although we won’t prove it here, a
prefix code can always achieve the optimal data compression among any character
code, and so we suffer no loss of generality by restricting our attention to prefix
codes.

Encoding is always simple for any binary character code; we just concatenate the
codewords representing each character of the file. For example, with the variable-
length prefix code of Figure 16.3, we code the 3-character file abc as 0�101�100 D
0101100, where “�” denotes concatenation.

Prefix codes are desirable because they simplify decoding. Since no codeword
is a prefix of any other, the codeword that begins an encoded file is unambiguous.
We can simply identify the initial codeword, translate it back to the original char-

3Perhaps “prefix-free codes” would be a better name, but the term “prefix codes” is standard in the
literature.

430 Chapter 16 Greedy Algorithms

a:45 b:13 c:12 d:16 e:9 f:5

58 28 14

86 14

100

0 1 0 1 0 1

0 1 0

0 1

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16

30

0 1

55

0 1

a:45

100

0 1

(a) (b)

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with
a character and its frequency of occurrence. Each internal node is labeled with the sum of the fre-
quencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code a = 000, . . . ,
f = 101. (b) The tree corresponding to the optimal prefix code a = 0, b = 101, . . . , f = 1100.

acter, and repeat the decoding process on the remainder of the encoded file. In our
example, the string 001011101 parses uniquely as 0 � 0 � 101 � 1101, which decodes
to aabe.

The decoding process needs a convenient representation for the prefix code so
that we can easily pick off the initial codeword. A binary tree whose leaves are
the given characters provides one such representation. We interpret the binary
codeword for a character as the simple path from the root to that character, where 0

means “go to the left child” and 1 means “go to the right child.” Figure 16.4 shows
the trees for the two codes of our example. Note that these are not binary search
trees, since the leaves need not appear in sorted order and internal nodes do not
contain character keys.

An optimal code for a file is always represented by a full binary tree, in which
every nonleaf node has two children (see Exercise 16.3-2). The fixed-length code
in our example is not optimal since its tree, shown in Figure 16.4(a), is not a full bi-
nary tree: it contains codewords beginning 10. . . , but none beginning 11. . . . Since
we can now restrict our attention to full binary trees, we can say that if C is the
alphabet from which the characters are drawn and all character frequencies are pos-
itive, then the tree for an optimal prefix code has exactly jC j leaves, one for each
letter of the alphabet, and exactly jC j � 1 internal nodes (see Exercise B.5-3).

Given a tree T corresponding to a prefix code, we can easily compute the number
of bits required to encode a file. For each character c in the alphabet C , let the
attribute c: freq denote the frequency of c in the file and let dT .c/ denote the depth

16.3 Huffman codes 431

of c’s leaf in the tree. Note that dT .c/ is also the length of the codeword for
character c. The number of bits required to encode a file is thus

B.T / D
X
c2C

c: freq � dT .c/ ; (16.4)

which we define as the cost of the tree T .

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix code called
a Huffman code. In line with our observations in Section 16.2, its proof of cor-
rectness relies on the greedy-choice property and optimal substructure. Rather
than demonstrating that these properties hold and then developing pseudocode, we
present the pseudocode first. Doing so will help clarify how the algorithm makes
greedy choices.

In the pseudocode that follows, we assume that C is a set of n characters and
that each character c 2 C is an object with an attribute c: freq giving its frequency.
The algorithm builds the tree T corresponding to the optimal code in a bottom-up
manner. It begins with a set of jC j leaves and performs a sequence of jC j � 1

“merging” operations to create the final tree. The algorithm uses a min-priority
queue Q, keyed on the freq attribute, to identify the two least-frequent objects to
merge together. When we merge two objects, the result is a new object whose
frequency is the sum of the frequencies of the two objects that were merged.

HUFFMAN.C /

1 n D jC j
2 Q D C

3 for i D 1 to n � 1

4 allocate a new node ´

5 ´: left D x D EXTRACT-MIN.Q/

6 ´:right D y D EXTRACT-MIN.Q/

7 ´: freq D x: freqC y: freq
8 INSERT.Q; ´/

9 return EXTRACT-MIN.Q/ // return the root of the tree

For our example, Huffman’s algorithm proceeds as shown in Figure 16.5. Since
the alphabet contains 6 letters, the initial queue size is n D 6, and 5 merge steps
build the tree. The final tree represents the optimal prefix code. The codeword for
a letter is the sequence of edge labels on the simple path from the root to the letter.

Line 2 initializes the min-priority queue Q with the characters in C . The for
loop in lines 3–8 repeatedly extracts the two nodes x and y of lowest frequency

432 Chapter 16 Greedy Algorithms

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16

30

0 1

55

0 1
a:45

100

0 1

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16

30

0 1

55

0 1
a:45

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16

30

0 1

a:45

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16 a:45

e:9f:5

14

0 1

c:12 b:13 d:16 a:45e:9f:5 c:12 b:13 d:16 a:45(a)

(c)

(e)

(b)

(d)

(f)

Figure 16.5 The steps of Huffman’s algorithm for the frequencies given in Figure 16.3. Each part
shows the contents of the queue sorted into increasing order by frequency. At each step, the two
trees with lowest frequencies are merged. Leaves are shown as rectangles containing a character
and its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their
children. An edge connecting an internal node with its children is labeled 0 if it is an edge to a left
child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels on the
edges connecting the root to the leaf for that letter. (a) The initial set of n D 6 nodes, one for each
letter. (b)–(e) Intermediate stages. (f) The final tree.

from the queue, replacing them in the queue with a new node ´ representing their
merger. The frequency of ´ is computed as the sum of the frequencies of x and y

in line 7. The node ´ has x as its left child and y as its right child. (This order is
arbitrary; switching the left and right child of any node yields a different code of
the same cost.) After n � 1 mergers, line 9 returns the one node left in the queue,
which is the root of the code tree.

Although the algorithm would produce the same result if we were to excise the
variables x and y—assigning directly to ´: left and ´:right in lines 5 and 6, and
changing line 7 to ´: freq D ´: left: freq C ´:right: freq—we shall use the node

16.3 Huffman codes 433

names x and y in the proof of correctness. Therefore, we find it convenient to
leave them in.

To analyze the running time of Huffman’s algorithm, we assume that Q is im-
plemented as a binary min-heap (see Chapter 6). For a set C of n characters, we
can initialize Q in line 2 in O.n/ time using the BUILD-MIN-HEAP procedure dis-
cussed in Section 6.3. The for loop in lines 3–8 executes exactly n � 1 times, and
since each heap operation requires time O.lg n/, the loop contributes O.n lg n/ to
the running time. Thus, the total running time of HUFFMAN on a set of n charac-
ters is O.n lg n/. We can reduce the running time to O.n lg lg n/ by replacing the
binary min-heap with a van Emde Boas tree (see Chapter 20).

Correctness of Huffman’s algorithm

To prove that the greedy algorithm HUFFMAN is correct, we show that the prob-
lem of determining an optimal prefix code exhibits the greedy-choice and optimal-
substructure properties. The next lemma shows that the greedy-choice property
holds.

Lemma 16.2
Let C be an alphabet in which each character c 2 C has frequency c: freq. Let
x and y be two characters in C having the lowest frequencies. Then there exists
an optimal prefix code for C in which the codewords for x and y have the same
length and differ only in the last bit.

Proof The idea of the proof is to take the tree T representing an arbitrary optimal
prefix code and modify it to make a tree representing another optimal prefix code
such that the characters x and y appear as sibling leaves of maximum depth in the
new tree. If we can construct such a tree, then the codewords for x and y will have
the same length and differ only in the last bit.

Let a and b be two characters that are sibling leaves of maximum depth in T .
Without loss of generality, we assume that a: freq � b: freq and x: freq � y: freq.
Since x: freq and y: freq are the two lowest leaf frequencies, in order, and a: freq
and b: freq are two arbitrary frequencies, in order, we have x: freq � a: freq and
y: freq � b: freq.

In the remainder of the proof, it is possible that we could have x: freq D a: freq
or y: freq D b: freq. However, if we had x: freq D b: freq, then we would also have
a: freq D b: freq D x: freq D y: freq (see Exercise 16.3-1), and the lemma would
be trivially true. Thus, we will assume that x: freq ¤ b: freq, which means that
x ¤ b.

As Figure 16.6 shows, we exchange the positions in T of a and x to produce a
tree T 0, and then we exchange the positions in T 0 of b and y to produce a tree T 00

434 Chapter 16 Greedy Algorithms

x

y

a b x

y

a

b x y

a

b

T′′T T′

Figure 16.6 An illustration of the key step in the proof of Lemma 16.2. In the optimal tree T ,
leaves a and b are two siblings of maximum depth. Leaves x and y are the two characters with the
lowest frequencies; they appear in arbitrary positions in T . Assuming that x ¤ b, swapping leaves a

and x produces tree T 0, and then swapping leaves b and y produces tree T 00. Since each swap does
not increase the cost, the resulting tree T 00 is also an optimal tree.

in which x and y are sibling leaves of maximum depth. (Note that if x D b but
y ¤ a, then tree T 00 does not have x and y as sibling leaves of maximum depth.
Because we assume that x ¤ b, this situation cannot occur.) By equation (16.4),
the difference in cost between T and T 0 is

B.T / � B.T 0/

D
X
c2C

c: freq � dT .c/�
X
c2C

c: freq � dT 0.c/

D x: freq � dT .x/C a: freq � dT .a/ � x: freq � dT 0.x/ � a: freq � dT 0.a/

D x: freq � dT .x/C a: freq � dT .a/ � x: freq � dT .a/ � a: freq � dT .x/

D .a: freq � x: freq/.dT .a/ � dT .x//

� 0 ;

because both a: freq � x: freq and dT .a/ � dT .x/ are nonnegative. More specifi-
cally, a: freq � x: freq is nonnegative because x is a minimum-frequency leaf, and
dT .a/�dT .x/ is nonnegative because a is a leaf of maximum depth in T . Similarly,
exchanging y and b does not increase the cost, and so B.T 0/�B.T 00/ is nonnega-
tive. Therefore, B.T 00/ � B.T /, and since T is optimal, we have B.T / � B.T 00/,
which implies B.T 00/ D B.T /. Thus, T 00 is an optimal tree in which x and y

appear as sibling leaves of maximum depth, from which the lemma follows.

Lemma 16.2 implies that the process of building up an optimal tree by mergers
can, without loss of generality, begin with the greedy choice of merging together
those two characters of lowest frequency. Why is this a greedy choice? We can
view the cost of a single merger as being the sum of the frequencies of the two items
being merged. Exercise 16.3-4 shows that the total cost of the tree constructed
equals the sum of the costs of its mergers. Of all possible mergers at each step,
HUFFMAN chooses the one that incurs the least cost.

16.3 Huffman codes 435

The next lemma shows that the problem of constructing optimal prefix codes has
the optimal-substructure property.

Lemma 16.3
Let C be a given alphabet with frequency c: freq defined for each character c 2 C .
Let x and y be two characters in C with minimum frequency. Let C 0 be the
alphabet C with the characters x and y removed and a new character ´ added,
so that C 0 D C � fx; yg [f´g. Define f for C 0 as for C , except that
´: freq D x: freqC y: freq. Let T 0 be any tree representing an optimal prefix code
for the alphabet C 0. Then the tree T , obtained from T 0 by replacing the leaf node
for ´ with an internal node having x and y as children, represents an optimal prefix
code for the alphabet C .

Proof We first show how to express the cost B.T / of tree T in terms of the
cost B.T 0/ of tree T 0, by considering the component costs in equation (16.4).
For each character c 2 C � fx; yg, we have that dT .c/ D dT 0.c/, and hence
c: freq � dT .c/ D c: freq � dT 0.c/. Since dT .x/ D dT .y/ D dT 0.´/C 1, we have

x: freq � dT .x/C y: freq � dT .y/ D .x: freqC y: freq/.dT 0.´/C 1/

D ´: freq � dT 0.´/C .x: freqC y: freq/ ;

from which we conclude that

B.T / D B.T 0/C x: freqC y: freq

or, equivalently,

B.T 0/ D B.T / � x: freq� y: freq :

We now prove the lemma by contradiction. Suppose that T does not repre-
sent an optimal prefix code for C . Then there exists an optimal tree T 00 such that
B.T 00/ < B.T /. Without loss of generality (by Lemma 16.2), T 00 has x and y as
siblings. Let T 000 be the tree T 00 with the common parent of x and y replaced by a
leaf ´ with frequency ´: freq D x: freqC y: freq. Then

B.T 000/ D B.T 00/ � x: freq� y: freq

< B.T / � x: freq� y: freq

D B.T 0/ ;

yielding a contradiction to the assumption that T 0 represents an optimal prefix code
for C 0. Thus, T must represent an optimal prefix code for the alphabet C .

Theorem 16.4
Procedure HUFFMAN produces an optimal prefix code.

Proof Immediate from Lemmas 16.2 and 16.3.

436 Chapter 16 Greedy Algorithms

Exercises

16.3-1
Explain why, in the proof of Lemma 16.2, if x: freq D b: freq, then we must have
a: freq D b: freq D x: freq D y: freq.

16.3-2
Prove that a binary tree that is not full cannot correspond to an optimal prefix code.

16.3-3
What is an optimal Huffman code for the following set of frequencies, based on
the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Can you generalize your answer to find the optimal code when the frequencies are
the first n Fibonacci numbers?

16.3-4
Prove that we can also express the total cost of a tree for a code as the sum, over
all internal nodes, of the combined frequencies of the two children of the node.

16.3-5
Prove that if we order the characters in an alphabet so that their frequencies
are monotonically decreasing, then there exists an optimal code whose codeword
lengths are monotonically increasing.

16.3-6
Suppose we have an optimal prefix code on a set C D f0; 1; : : : ; n � 1g of charac-
ters and we wish to transmit this code using as few bits as possible. Show how to
represent any optimal prefix code on C using only 2n � 1C n dlg ne bits. (Hint:
Use 2n � 1 bits to specify the structure of the tree, as discovered by a walk of the
tree.)

16.3-7
Generalize Huffman’s algorithm to ternary codewords (i.e., codewords using the
symbols 0, 1, and 2), and prove that it yields optimal ternary codes.

16.3-8
Suppose that a data file contains a sequence of 8-bit characters such that all 256
characters are about equally common: the maximum character frequency is less
than twice the minimum character frequency. Prove that Huffman coding in this
case is no more efficient than using an ordinary 8-bit fixed-length code.

16.4 Matroids and greedy methods 437

16.3-9
Show that no compression scheme can expect to compress a file of randomly cho-
sen 8-bit characters by even a single bit. (Hint: Compare the number of possible
files with the number of possible encoded files.)

? 16.4 Matroids and greedy methods

In this section, we sketch a beautiful theory about greedy algorithms. This theory
describes many situations in which the greedy method yields optimal solutions. It
involves combinatorial structures known as “matroids.” Although this theory does
not cover all cases for which a greedy method applies (for example, it does not
cover the activity-selection problem of Section 16.1 or the Huffman-coding prob-
lem of Section 16.3), it does cover many cases of practical interest. Furthermore,
this theory has been extended to cover many applications; see the notes at the end
of this chapter for references.

Matroids

A matroid is an ordered pair M D .S; � / satisfying the following conditions.

1. S is a finite set.

2. � is a nonempty family of subsets of S , called the independent subsets of S ,
such that if B 2 � and A � B , then A 2 � . We say that � is hereditary if it
satisfies this property. Note that the empty set ; is necessarily a member of � .

3. If A 2 � , B 2 � , and jAj < jBj, then there exists some element x 2 B � A

such that A [fxg 2 � . We say that M satisfies the exchange property.

The word “matroid” is due to Hassler Whitney. He was studying matric ma-
troids, in which the elements of S are the rows of a given matrix and a set of rows is
independent if they are linearly independent in the usual sense. As Exercise 16.4-2
asks you to show, this structure defines a matroid.

As another example of matroids, consider the graphic matroid MG D .SG; �G/

defined in terms of a given undirected graph G D .V; E/ as follows:

� The set SG is defined to be E, the set of edges of G.

� If A is a subset of E, then A 2 �G if and only if A is acyclic. That is, a set of
edges A is independent if and only if the subgraph GA D .V; A/ forms a forest.

The graphic matroid MG is closely related to the minimum-spanning-tree problem,
which Chapter 23 covers in detail.

438 Chapter 16 Greedy Algorithms

Theorem 16.5
If G D .V; E/ is an undirected graph, then MG D .SG; �G/ is a matroid.

Proof Clearly, SG D E is a finite set. Furthermore, �G is hereditary, since a
subset of a forest is a forest. Putting it another way, removing edges from an
acyclic set of edges cannot create cycles.

Thus, it remains to show that MG satisfies the exchange property. Suppose that
GA D .V; A/ and GB D .V; B/ are forests of G and that jBj > jAj. That is, A

and B are acyclic sets of edges, and B contains more edges than A does.
We claim that a forest F D .VF ; EF / contains exactly jVF j � jEF j trees. To

see why, suppose that F consists of t trees, where the i th tree contains �i vertices
and ei edges. Then, we have

jEF j D
tX

iD1

ei

D
tX

iD1

.�i � 1/ (by Theorem B.2)

D
tX

iD1

�i � t

D jVF j � t ;

which implies that t D jVF j � jEF j. Thus, forest GA contains jV j � jAj trees, and
forest GB contains jV j � jBj trees.

Since forest GB has fewer trees than forest GA does, forest GB must contain
some tree T whose vertices are in two different trees in forest GA. Moreover,
since T is connected, it must contain an edge .u; �/ such that vertices u and �

are in different trees in forest GA. Since the edge .u; �/ connects vertices in two
different trees in forest GA, we can add the edge .u; �/ to forest GA without creating
a cycle. Therefore, MG satisfies the exchange property, completing the proof that
MG is a matroid.

Given a matroid M D .S; � /, we call an element x … A an extension of A 2 �

if we can add x to A while preserving independence; that is, x is an extension
of A if A [fxg 2 � . As an example, consider a graphic matroid MG . If A is an
independent set of edges, then edge e is an extension of A if and only if e is not
in A and the addition of e to A does not create a cycle.

If A is an independent subset in a matroid M , we say that A is maximal if it has
no extensions. That is, A is maximal if it is not contained in any larger independent
subset of M . The following property is often useful.

16.4 Matroids and greedy methods 439

Theorem 16.6
All maximal independent subsets in a matroid have the same size.

Proof Suppose to the contrary that A is a maximal independent subset of M

and there exists another larger maximal independent subset B of M . Then, the
exchange property implies that for some x 2 B � A, we can extend A to a larger
independent set A[fxg, contradicting the assumption that A is maximal.

As an illustration of this theorem, consider a graphic matroid MG for a con-
nected, undirected graph G. Every maximal independent subset of MG must be a
free tree with exactly jV j � 1 edges that connects all the vertices of G. Such a tree
is called a spanning tree of G.

We say that a matroid M D .S; � / is weighted if it is associated with a weight
function w that assigns a strictly positive weight w.x/ to each element x 2 S . The
weight function w extends to subsets of S by summation:

w.A/ D
X
x2A

w.x/

for any A � S . For example, if we let w.e/ denote the weight of an edge e in a
graphic matroid MG , then w.A/ is the total weight of the edges in edge set A.

Greedy algorithms on a weighted matroid

Many problems for which a greedy approach provides optimal solutions can be for-
mulated in terms of finding a maximum-weight independent subset in a weighted
matroid. That is, we are given a weighted matroid M D .S; � /, and we wish to
find an independent set A 2 � such that w.A/ is maximized. We call such a sub-
set that is independent and has maximum possible weight an optimal subset of the
matroid. Because the weight w.x/ of any element x 2 S is positive, an optimal
subset is always a maximal independent subset—it always helps to make A as large
as possible.

For example, in theminimum-spanning-tree problem, we are given a connected
undirected graph G D .V; E/ and a length function w such that w.e/ is the (posi-
tive) length of edge e. (We use the term “length” here to refer to the original edge
weights for the graph, reserving the term “weight” to refer to the weights in the
associated matroid.) We wish to find a subset of the edges that connects all of
the vertices together and has minimum total length. To view this as a problem of
finding an optimal subset of a matroid, consider the weighted matroid MG with
weight function w0, where w0.e/ D w0 �w.e/ and w0 is larger than the maximum
length of any edge. In this weighted matroid, all weights are positive and an opti-
mal subset is a spanning tree of minimum total length in the original graph. More
specifically, each maximal independent subset A corresponds to a spanning tree

440 Chapter 16 Greedy Algorithms

with jV j � 1 edges, and since

w0.A/ D
X
e2A

w0.e/

D
X
e2A

.w0 � w.e//

D .jV j � 1/w0 �
X
e2A

w.e/

D .jV j � 1/w0 � w.A/

for any maximal independent subset A, an independent subset that maximizes the
quantity w0.A/ must minimize w.A/. Thus, any algorithm that can find an optimal
subset A in an arbitrary matroid can solve the minimum-spanning-tree problem.

Chapter 23 gives algorithms for the minimum-spanning-tree problem, but here
we give a greedy algorithm that works for any weighted matroid. The algorithm
takes as input a weighted matroid M D .S; � / with an associated positive weight
function w, and it returns an optimal subset A. In our pseudocode, we denote the
components of M by M:S and M:� and the weight function by w. The algorithm
is greedy because it considers in turn each element x 2 S , in order of monotoni-
cally decreasing weight, and immediately adds it to the set A being accumulated if
A [fxg is independent.

GREEDY.M; w/

1 A D ;
2 sort M:S into monotonically decreasing order by weight w

3 for each x 2M:S, taken in monotonically decreasing order by weight w.x/

4 if A [fxg 2M:�

5 A D A [fxg
6 return A

Line 4 checks whether adding each element x to A would maintain A as an inde-
pendent set. If A would remain independent, then line 5 adds x to A. Otherwise, x

is discarded. Since the empty set is independent, and since each iteration of the for
loop maintains A’s independence, the subset A is always independent, by induc-
tion. Therefore, GREEDY always returns an independent subset A. We shall see in
a moment that A is a subset of maximum possible weight, so that A is an optimal
subset.

The running time of GREEDY is easy to analyze. Let n denote jS j. The sorting
phase of GREEDY takes time O.n lg n/. Line 4 executes exactly n times, once for
each element of S . Each execution of line 4 requires a check on whether or not
the set A [fxg is independent. If each such check takes time O.f .n//, the entire
algorithm runs in time O.n lg nC nf .n//.

16.4 Matroids and greedy methods 441

We now prove that GREEDY returns an optimal subset.

Lemma 16.7 (Matroids exhibit the greedy-choice property)
Suppose that M D .S; � / is a weighted matroid with weight function w and that S

is sorted into monotonically decreasing order by weight. Let x be the first element
of S such that fxg is independent, if any such x exists. If x exists, then there exists
an optimal subset A of S that contains x.

Proof If no such x exists, then the only independent subset is the empty set and
the lemma is vacuously true. Otherwise, let B be any nonempty optimal subset.
Assume that x … B; otherwise, letting A D B gives an optimal subset of S that
contains x.

No element of B has weight greater than w.x/. To see why, observe that y 2 B

implies that fyg is independent, since B 2 � and � is hereditary. Our choice of x

therefore ensures that w.x/ � w.y/ for any y 2 B .
Construct the set A as follows. Begin with A D fxg. By the choice of x, set A is

independent. Using the exchange property, repeatedly find a new element of B that
we can add to A until jAj D jBj, while preserving the independence of A. At that
point, A and B are the same except that A has x and B has some other element y.
That is, A D B � fyg [fxg for some y 2 B , and so

w.A/ D w.B/� w.y/Cw.x/

� w.B/ :

Because set B is optimal, set A, which contains x, must also be optimal.

We next show that if an element is not an option initially, then it cannot be an
option later.

Lemma 16.8
Let M D .S; � / be any matroid. If x is an element of S that is an extension of
some independent subset A of S , then x is also an extension of ;.

Proof Since x is an extension of A, we have that A[fxg is independent. Since �

is hereditary, fxg must be independent. Thus, x is an extension of ;.

Corollary 16.9
Let M D .S; � / be any matroid. If x is an element of S such that x is not an
extension of ;, then x is not an extension of any independent subset A of S .

Proof This corollary is simply the contrapositive of Lemma 16.8.

442 Chapter 16 Greedy Algorithms

Corollary 16.9 says that any element that cannot be used immediately can never
be used. Therefore, GREEDY cannot make an error by passing over any initial
elements in S that are not an extension of ;, since they can never be used.

Lemma 16.10 (Matroids exhibit the optimal-substructure property)
Let x be the first element of S chosen by GREEDY for the weighted matroid
M D .S; � /. The remaining problem of finding a maximum-weight indepen-
dent subset containing x reduces to finding a maximum-weight independent subset
of the weighted matroid M 0 D .S 0; �

0/, where

S 0 D fy 2 S W fx; yg 2 � g ;

�
0 D fB � S � fxg W B [fxg 2 � g ;

and the weight function for M 0 is the weight function for M , restricted to S 0. (We
call M 0 the contraction of M by the element x.)

Proof If A is any maximum-weight independent subset of M containing x, then
A0 D A � fxg is an independent subset of M 0. Conversely, any independent sub-
set A0 of M 0 yields an independent subset A D A0 [fxg of M . Since we have in
both cases that w.A/ D w.A0/Cw.x/, a maximum-weight solution in M contain-
ing x yields a maximum-weight solution in M 0, and vice versa.

Theorem 16.11 (Correctness of the greedy algorithm on matroids)
If M D .S; � / is a weighted matroid with weight function w, then GREEDY.M; w/

returns an optimal subset.

Proof By Corollary 16.9, any elements that GREEDY passes over initially be-
cause they are not extensions of ; can be forgotten about, since they can never
be useful. Once GREEDY selects the first element x, Lemma 16.7 implies that
the algorithm does not err by adding x to A, since there exists an optimal subset
containing x. Finally, Lemma 16.10 implies that the remaining problem is one of
finding an optimal subset in the matroid M 0 that is the contraction of M by x.
After the procedure GREEDY sets A to fxg, we can interpret all of its remaining
steps as acting in the matroid M 0 D .S 0; �

0/, because B is independent in M 0 if
and only if B [fxg is independent in M , for all sets B 2 �

0. Thus, the subsequent
operation of GREEDY will find a maximum-weight independent subset for M 0, and
the overall operation of GREEDY will find a maximum-weight independent subset
for M .

16.5 A task-scheduling problem as a matroid 443

Exercises

16.4-1
Show that .S; �k/ is a matroid, where S is any finite set and �k is the set of all
subsets of S of size at most k, where k � jS j.
16.4-2 ?

Given an m 	 n matrix T over some field (such as the reals), show that .S; � / is a
matroid, where S is the set of columns of T and A 2 � if and only if the columns
in A are linearly independent.

16.4-3 ?

Show that if .S; � / is a matroid, then .S; �
0/ is a matroid, where

�
0 D fA0 W S � A0 contains some maximal A 2 � g :

That is, the maximal independent sets of .S; �
0/ are just the complements of the

maximal independent sets of .S; � /.

16.4-4 ?

Let S be a finite set and let S1; S2; : : : ; Sk be a partition of S into nonempty disjoint
subsets. Define the structure .S; � / by the condition that � D fA W jA \ Si j � 1

for i D 1; 2; : : : ; kg. Show that .S; � / is a matroid. That is, the set of all sets A

that contain at most one member of each subset in the partition determines the
independent sets of a matroid.

16.4-5
Show how to transform the weight function of a weighted matroid problem, where
the desired optimal solution is a minimum-weight maximal independent subset, to
make it a standard weighted-matroid problem. Argue carefully that your transfor-
mation is correct.

? 16.5 A task-scheduling problem as a matroid

An interesting problem that we can solve using matroids is the problem of op-
timally scheduling unit-time tasks on a single processor, where each task has a
deadline, along with a penalty paid if the task misses its deadline. The problem
looks complicated, but we can solve it in a surprisingly simple manner by casting
it as a matroid and using a greedy algorithm.

A unit-time task is a job, such as a program to be run on a computer, that requires
exactly one unit of time to complete. Given a finite set S of unit-time tasks, a

444 Chapter 16 Greedy Algorithms

schedule for S is a permutation of S specifying the order in which to perform
these tasks. The first task in the schedule begins at time 0 and finishes at time 1,
the second task begins at time 1 and finishes at time 2, and so on.

The problem of scheduling unit-time tasks with deadlines and penalties for a
single processor has the following inputs:

� a set S D fa1; a2; : : : ; ang of n unit-time tasks;

� a set of n integer deadlines d1; d2; : : : ; dn, such that each di satisfies 1 � di � n

and task ai is supposed to finish by time di ; and

� a set of n nonnegative weights or penalties w1; w2; : : : ; wn, such that we incur
a penalty of wi if task ai is not finished by time di , and we incur no penalty if
a task finishes by its deadline.

We wish to find a schedule for S that minimizes the total penalty incurred for
missed deadlines.

Consider a given schedule. We say that a task is late in this schedule if it finishes
after its deadline. Otherwise, the task is early in the schedule. We can always trans-
form an arbitrary schedule into early-first form, in which the early tasks precede
the late tasks. To see why, note that if some early task ai follows some late task aj ,
then we can switch the positions of ai and aj , and ai will still be early and aj will
still be late.

Furthermore, we claim that we can always transform an arbitrary schedule into
canonical form, in which the early tasks precede the late tasks and we schedule
the early tasks in order of monotonically increasing deadlines. To do so, we put
the schedule into early-first form. Then, as long as there exist two early tasks ai

and aj finishing at respective times k and k C 1 in the schedule such that dj < di ,
we swap the positions of ai and aj . Since aj is early before the swap, k C 1 � dj .
Therefore, k C 1 < di , and so ai is still early after the swap. Because task aj is
moved earlier in the schedule, it remains early after the swap.

The search for an optimal schedule thus reduces to finding a set A of tasks that
we assign to be early in the optimal schedule. Having determined A, we can create
the actual schedule by listing the elements of A in order of monotonically increas-
ing deadlines, then listing the late tasks (i.e., S � A) in any order, producing a
canonical ordering of the optimal schedule.

We say that a set A of tasks is independent if there exists a schedule for these
tasks such that no tasks are late. Clearly, the set of early tasks for a schedule forms
an independent set of tasks. Let � denote the set of all independent sets of tasks.

Consider the problem of determining whether a given set A of tasks is indepen-
dent. For t D 0; 1; 2; : : : ; n, let Nt .A/ denote the number of tasks in A whose
deadline is t or earlier. Note that N0.A/ D 0 for any set A.

16.5 A task-scheduling problem as a matroid 445

Lemma 16.12
For any set of tasks A, the following statements are equivalent.

1. The set A is independent.

2. For t D 0; 1; 2; : : : ; n, we have Nt.A/ � t .

3. If the tasks in A are scheduled in order of monotonically increasing deadlines,
then no task is late.

Proof To show that (1) implies (2), we prove the contrapositive: if Nt .A/ > t for
some t , then there is no way to make a schedule with no late tasks for set A, because
more than t tasks must finish before time t . Therefore, (1) implies (2). If (2) holds,
then (3) must follow: there is no way to “get stuck” when scheduling the tasks in
order of monotonically increasing deadlines, since (2) implies that the i th largest
deadline is at least i . Finally, (3) trivially implies (1).

Using property 2 of Lemma 16.12, we can easily compute whether or not a given
set of tasks is independent (see Exercise 16.5-2).

The problem of minimizing the sum of the penalties of the late tasks is the same
as the problem of maximizing the sum of the penalties of the early tasks. The
following theorem thus ensures that we can use the greedy algorithm to find an
independent set A of tasks with the maximum total penalty.

Theorem 16.13
If S is a set of unit-time tasks with deadlines, and � is the set of all independent
sets of tasks, then the corresponding system .S; � / is a matroid.

Proof Every subset of an independent set of tasks is certainly independent. To
prove the exchange property, suppose that B and A are independent sets of tasks
and that jBj > jAj. Let k be the largest t such that Nt .B/ � Nt.A/. (Such a value
of t exists, since N0.A/ D N0.B/ D 0.) Since Nn.B/ D jBj and Nn.A/ D jAj,
but jBj > jAj, we must have that k < n and that Nj .B/ > Nj .A/ for all j in
the range k C 1 � j � n. Therefore, B contains more tasks with deadline k C 1

than A does. Let ai be a task in B � A with deadline k C 1. Let A0 D A [faig.
We now show that A0 must be independent by using property 2 of Lemma 16.12.

For 0 � t � k, we have Nt.A
0/ D Nt .A/ � t , since A is independent. For

k < t � n, we have Nt.A
0/ � Nt.B/ � t , since B is independent. Therefore, A0

is independent, completing our proof that .S; � / is a matroid.

By Theorem 16.11, we can use a greedy algorithm to find a maximum-weight
independent set of tasks A. We can then create an optimal schedule having the
tasks in A as its early tasks. This method is an efficient algorithm for scheduling

446 Chapter 16 Greedy Algorithms

Task
ai 1 2 3 4 5 6 7

di 4 2 4 3 1 4 6
wi 70 60 50 40 30 20 10

Figure 16.7 An instance of the problem of scheduling unit-time tasks with deadlines and penalties
for a single processor.

unit-time tasks with deadlines and penalties for a single processor. The running
time is O.n2/ using GREEDY, since each of the O.n/ independence checks made
by that algorithm takes time O.n/ (see Exercise 16.5-2). Problem 16-4 gives a
faster implementation.

Figure 16.7 demonstrates an example of the problem of scheduling unit-time
tasks with deadlines and penalties for a single processor. In this example, the
greedy algorithm selects, in order, tasks a1, a2, a3, and a4, then rejects a5 (because
N4.fa1; a2; a3; a4; a5g/ D 5) and a6 (because N4.fa1; a2; a3; a4; a6g/ D 5), and
finally accepts a7. The final optimal schedule is

ha2; a4; a1; a3; a7; a5; a6i ;

which has a total penalty incurred of w5 Cw6 D 50.

Exercises

16.5-1
Solve the instance of the scheduling problem given in Figure 16.7, but with each
penalty wi replaced by 80 � wi .

16.5-2
Show how to use property 2 of Lemma 16.12 to determine in time O.jAj/ whether
or not a given set A of tasks is independent.

Problems

16-1 Coin changing
Consider the problem of making change for n cents using the fewest number of
coins. Assume that each coin’s value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters, dimes,
nickels, and pennies. Prove that your algorithm yields an optimal solution.

Problems for Chapter 16 447

b. Suppose that the available coins are in the denominations that are powers of c,
i.e., the denominations are c0; c1; : : : ; ck for some integers c > 1 and k � 1.
Show that the greedy algorithm always yields an optimal solution.

c. Give a set of coin denominations for which the greedy algorithm does not yield
an optimal solution. Your set should include a penny so that there is a solution
for every value of n.

d. Give an O.nk/-time algorithm that makes change for any set of k different coin
denominations, assuming that one of the coins is a penny.

16-2 Scheduling to minimize average completion time
Suppose you are given a set S D fa1; a2; : : : ; ang of tasks, where task ai re-
quires pi units of processing time to complete, once it has started. You have one
computer on which to run these tasks, and the computer can run only one task at a
time. Let ci be the completion time of task ai , that is, the time at which task ai com-
pletes processing. Your goal is to minimize the average completion time, that is,
to minimize .1=n/

Pn

iD1 ci . For example, suppose there are two tasks, a1 and a2,
with p1 D 3 and p2 D 5, and consider the schedule in which a2 runs first, followed
by a1. Then c2 D 5, c1 D 8, and the average completion time is .5C 8/=2 D 6:5.
If task a1 runs first, however, then c1 D 3, c2 D 8, and the average completion
time is .3C 8/=2 D 5:5.

a. Give an algorithm that schedules the tasks so as to minimize the average com-
pletion time. Each task must run non-preemptively, that is, once task ai starts, it
must run continuously for pi units of time. Prove that your algorithm minimizes
the average completion time, and state the running time of your algorithm.

b. Suppose now that the tasks are not all available at once. That is, each task
cannot start until its release time ri . Suppose also that we allow preemption, so
that a task can be suspended and restarted at a later time. For example, a task ai

with processing time pi D 6 and release time ri D 1 might start running at
time 1 and be preempted at time 4. It might then resume at time 10 but be
preempted at time 11, and it might finally resume at time 13 and complete at
time 15. Task ai has run for a total of 6 time units, but its running time has been
divided into three pieces. In this scenario, ai ’s completion time is 15. Give
an algorithm that schedules the tasks so as to minimize the average completion
time in this new scenario. Prove that your algorithm minimizes the average
completion time, and state the running time of your algorithm.

448 Chapter 16 Greedy Algorithms

16-3 Acyclic subgraphs
a. The incidence matrix for an undirected graph G D .V; E/ is a jV j 	 jEj ma-

trix M such that M�e D 1 if edge e is incident on vertex �, and M�e D 0 other-
wise. Argue that a set of columns of M is linearly independent over the field
of integers modulo 2 if and only if the corresponding set of edges is acyclic.
Then, use the result of Exercise 16.4-2 to provide an alternate proof that .E; � /

of part (a) is a matroid.

b. Suppose that we associate a nonnegative weight w.e/ with each edge in an
undirected graph G D .V; E/. Give an efficient algorithm to find an acyclic
subset of E of maximum total weight.

c. Let G.V; E/ be an arbitrary directed graph, and let .E; � / be defined so that
A 2 � if and only if A does not contain any directed cycles. Give an example
of a directed graph G such that the associated system .E; � / is not a matroid.
Specify which defining condition for a matroid fails to hold.

d. The incidence matrix for a directed graph G D .V; E/ with no self-loops is a
jV j 	 jEj matrix M such that M�e D �1 if edge e leaves vertex �, M�e D 1 if
edge e enters vertex �, and M�e D 0 otherwise. Argue that if a set of columns
of M is linearly independent, then the corresponding set of edges does not
contain a directed cycle.

e. Exercise 16.4-2 tells us that the set of linearly independent sets of columns of
any matrix M forms a matroid. Explain carefully why the results of parts (d)
and (e) are not contradictory. How can there fail to be a perfect correspon-
dence between the notion of a set of edges being acyclic and the notion of the
associated set of columns of the incidence matrix being linearly independent?

16-4 Scheduling variations
Consider the following algorithm for the problem from Section 16.5 of scheduling
unit-time tasks with deadlines and penalties. Let all n time slots be initially empty,
where time slot i is the unit-length slot of time that finishes at time i . We consider
the tasks in order of monotonically decreasing penalty. When considering task aj ,
if there exists a time slot at or before aj ’s deadline dj that is still empty, assign aj

to the latest such slot, filling it. If there is no such slot, assign task aj to the latest
of the as yet unfilled slots.

a. Argue that this algorithm always gives an optimal answer.

b. Use the fast disjoint-set forest presented in Section 21.3 to implement the algo-
rithm efficiently. Assume that the set of input tasks has already been sorted into

Problems for Chapter 16 449

monotonically decreasing order by penalty. Analyze the running time of your
implementation.

16-5 Off-line caching
Modern computers use a cache to store a small amount of data in a fast memory.
Even though a program may access large amounts of data, by storing a small subset
of the main memory in the cache—a small but faster memory—overall access time
can greatly decrease. When a computer program executes, it makes a sequence
hr1; r2; : : : ; rni of n memory requests, where each request is for a particular data
element. For example, a program that accesses 4 distinct elements fa; b; c; dg
might make the sequence of requests hd; b; d; b; d; a; c; d; b; a; c; bi. Let k be the
size of the cache. When the cache contains k elements and the program requests the
.k C 1/st element, the system must decide, for this and each subsequent request,
which k elements to keep in the cache. More precisely, for each request ri , the
cache-management algorithm checks whether element ri is already in the cache. If
it is, then we have a cache hit; otherwise, we have a cache miss. Upon a cache
miss, the system retrieves ri from the main memory, and the cache-management
algorithm must decide whether to keep ri in the cache. If it decides to keep ri and
the cache already holds k elements, then it must evict one element to make room
for ri . The cache-management algorithm evicts data with the goal of minimizing
the number of cache misses over the entire sequence of requests.

Typically, caching is an on-line problem. That is, we have to make decisions
about which data to keep in the cache without knowing the future requests. Here,
however, we consider the off-line version of this problem, in which we are given
in advance the entire sequence of n requests and the cache size k, and we wish to
minimize the total number of cache misses.

We can solve this off-line problem by a greedy strategy called furthest-in-future,
which chooses to evict the item in the cache whose next access in the request
sequence comes furthest in the future.

a. Write pseudocode for a cache manager that uses the furthest-in-future strategy.
The input should be a sequence hr1; r2; : : : ; rni of requests and a cache size k,
and the output should be a sequence of decisions about which data element (if
any) to evict upon each request. What is the running time of your algorithm?

b. Show that the off-line caching problem exhibits optimal substructure.

c. Prove that furthest-in-future produces the minimum possible number of cache
misses.

450 Chapter 16 Greedy Algorithms

Chapter notes

Much more material on greedy algorithms and matroids can be found in Lawler
[224] and Papadimitriou and Steiglitz [271].

The greedy algorithm first appeared in the combinatorial optimization literature
in a 1971 article by Edmonds [101], though the theory of matroids dates back to
a 1935 article by Whitney [355].

Our proof of the correctness of the greedy algorithm for the activity-selection
problem is based on that of Gavril [131]. The task-scheduling problem is studied
in Lawler [224]; Horowitz, Sahni, and Rajasekaran [181]; and Brassard and Bratley
[54].

Huffman codes were invented in 1952 [185]; Lelewer and Hirschberg [231] sur-
veys data-compression techniques known as of 1987.

An extension of matroid theory to greedoid theory was pioneered by Korte and
Lovász [216, 217, 218, 219], who greatly generalize the theory presented here.

17 Amortized Analysis

In an amortized analysis, we average the time required to perform a sequence of
data-structure operations over all the operations performed. With amortized analy-
sis, we can show that the average cost of an operation is small, if we average over a
sequence of operations, even though a single operation within the sequence might
be expensive. Amortized analysis differs from average-case analysis in that prob-
ability is not involved; an amortized analysis guarantees the average performance
of each operation in the worst case.

The first three sections of this chapter cover the three most common techniques
used in amortized analysis. Section 17.1 starts with aggregate analysis, in which
we determine an upper bound T .n/ on the total cost of a sequence of n operations.
The average cost per operation is then T .n/=n. We take the average cost as the
amortized cost of each operation, so that all operations have the same amortized
cost.

Section 17.2 covers the accounting method, in which we determine an amortized
cost of each operation. When there is more than one type of operation, each type of
operation may have a different amortized cost. The accounting method overcharges
some operations early in the sequence, storing the overcharge as “prepaid credit”
on specific objects in the data structure. Later in the sequence, the credit pays for
operations that are charged less than they actually cost.

Section 17.3 discusses the potential method, which is like the accounting method
in that we determine the amortized cost of each operation and may overcharge op-
erations early on to compensate for undercharges later. The potential method main-
tains the credit as the “potential energy” of the data structure as a whole instead of
associating the credit with individual objects within the data structure.

We shall use two examples to examine these three methods. One is a stack
with the additional operation MULTIPOP, which pops several objects at once. The
other is a binary counter that counts up from 0 by means of the single operation
INCREMENT.

452 Chapter 17 Amortized Analysis

While reading this chapter, bear in mind that the charges assigned during an
amortized analysis are for analysis purposes only. They need not—and should
not—appear in the code. If, for example, we assign a credit to an object x when
using the accounting method, we have no need to assign an appropriate amount to
some attribute, such as x:credit, in the code.

When we perform an amortized analysis, we often gain insight into a particular
data structure, and this insight can help us optimize the design. In Section 17.4,
for example, we shall use the potential method to analyze a dynamically expanding
and contracting table.

17.1 Aggregate analysis

In aggregate analysis, we show that for all n, a sequence of n operations takes
worst-case time T .n/ in total. In the worst case, the average cost, or amortized
cost, per operation is therefore T .n/=n. Note that this amortized cost applies to
each operation, even when there are several types of operations in the sequence.
The other two methods we shall study in this chapter, the accounting method and
the potential method, may assign different amortized costs to different types of
operations.

Stack operations

In our first example of aggregate analysis, we analyze stacks that have been aug-
mented with a new operation. Section 10.1 presented the two fundamental stack
operations, each of which takes O.1/ time:

PUSH.S; x/ pushes object x onto stack S .

POP.S/ pops the top of stack S and returns the popped object. Calling POP on an
empty stack generates an error.

Since each of these operations runs in O.1/ time, let us consider the cost of each
to be 1. The total cost of a sequence of n PUSH and POP operations is therefore n,
and the actual running time for n operations is therefore ‚.n/.

Now we add the stack operation MULTIPOP.S; k/, which removes the k top ob-
jects of stack S , popping the entire stack if the stack contains fewer than k objects.
Of course, we assume that k is positive; otherwise the MULTIPOP operation leaves
the stack unchanged. In the following pseudocode, the operation STACK-EMPTY

returns TRUE if there are no objects currently on the stack, and FALSE otherwise.

17.1 Aggregate analysis 453

23
17
6

39
10
47

(a)

top

10
47

(b)

top

(c)

Figure 17.1 The action of MULTIPOP on a stack S , shown initially in (a). The top 4 objects are
popped by MULTIPOP.S; 4/, whose result is shown in (b). The next operation is MULTIPOP.S; 7/,
which empties the stack—shown in (c)—since there were fewer than 7 objects remaining.

MULTIPOP.S; k/

1 while not STACK-EMPTY.S/ and k > 0

2 POP.S/

3 k D k � 1

Figure 17.1 shows an example of MULTIPOP.
What is the running time of MULTIPOP.S; k/ on a stack of s objects? The

actual running time is linear in the number of POP operations actually executed,
and thus we can analyze MULTIPOP in terms of the abstract costs of 1 each for
PUSH and POP. The number of iterations of the while loop is the number min.s; k/

of objects popped off the stack. Each iteration of the loop makes one call to POP in
line 2. Thus, the total cost of MULTIPOP is min.s; k/, and the actual running time
is a linear function of this cost.

Let us analyze a sequence of n PUSH, POP, and MULTIPOP operations on an ini-
tially empty stack. The worst-case cost of a MULTIPOP operation in the sequence
is O.n/, since the stack size is at most n. The worst-case time of any stack opera-
tion is therefore O.n/, and hence a sequence of n operations costs O.n2/, since we
may have O.n/ MULTIPOP operations costing O.n/ each. Although this analysis
is correct, the O.n2/ result, which we obtained by considering the worst-case cost
of each operation individually, is not tight.

Using aggregate analysis, we can obtain a better upper bound that considers the
entire sequence of n operations. In fact, although a single MULTIPOP operation
can be expensive, any sequence of n PUSH, POP, and MULTIPOP operations on an
initially empty stack can cost at most O.n/. Why? We can pop each object from the
stack at most once for each time we have pushed it onto the stack. Therefore, the
number of times that POP can be called on a nonempty stack, including calls within
MULTIPOP, is at most the number of PUSH operations, which is at most n. For any
value of n, any sequence of n PUSH, POP, and MULTIPOP operations takes a total
of O.n/ time. The average cost of an operation is O.n/=n D O.1/. In aggregate

454 Chapter 17 Amortized Analysis

analysis, we assign the amortized cost of each operation to be the average cost. In
this example, therefore, all three stack operations have an amortized cost of O.1/.

We emphasize again that although we have just shown that the average cost, and
hence the running time, of a stack operation is O.1/, we did not use probabilistic
reasoning. We actually showed a worst-case bound of O.n/ on a sequence of n

operations. Dividing this total cost by n yielded the average cost per operation, or
the amortized cost.

Incrementing a binary counter

As another example of aggregate analysis, consider the problem of implementing
a k-bit binary counter that counts upward from 0. We use an array AŒ0 : : k � 1� of
bits, where A: length D k, as the counter. A binary number x that is stored in the
counter has its lowest-order bit in AŒ0� and its highest-order bit in AŒk� 1�, so that
x DPk�1

iD0 AŒi� � 2i . Initially, x D 0, and thus AŒi� D 0 for i D 0; 1; : : : ; k � 1. To
add 1 (modulo 2k) to the value in the counter, we use the following procedure.

INCREMENT.A/

1 i D 0

2 while i < A: length and AŒi� == 1

3 AŒi� D 0

4 i D i C 1

5 if i < A: length
6 AŒi� D 1

Figure 17.2 shows what happens to a binary counter as we increment it 16 times,
starting with the initial value 0 and ending with the value 16. At the start of
each iteration of the while loop in lines 2–4, we wish to add a 1 into position i .
If AŒi� D 1, then adding 1 flips the bit to 0 in position i and yields a carry of 1,
to be added into position i C 1 on the next iteration of the loop. Otherwise, the
loop ends, and then, if i < k, we know that AŒi� D 0, so that line 6 adds a 1 into
position i , flipping the 0 to a 1. The cost of each INCREMENT operation is linear
in the number of bits flipped.

As with the stack example, a cursory analysis yields a bound that is correct but
not tight. A single execution of INCREMENT takes time ‚.k/ in the worst case, in
which array A contains all 1s. Thus, a sequence of n INCREMENT operations on
an initially zero counter takes time O.nk/ in the worst case.

We can tighten our analysis to yield a worst-case cost of O.n/ for a sequence of n

INCREMENT operations by observing that not all bits flip each time INCREMENT

is called. As Figure 17.2 shows, AŒ0� does flip each time INCREMENT is called.
The next bit up, AŒ1�, flips only every other time: a sequence of n INCREMENT

17.1 Aggregate analysis 455

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 11
0 0 0 0 0 0 1 02
0 0 0 0 0 0 1 13
0 0 0 0 0 1 0 04
0 0 0 0 0 1 0 15
0 0 0 0 0 1 1 06
0 0 0 0 0 1 1 17
0 0 0 0 1 0 0 08
0 0 0 0 1 0 0 19
0 0 0 0 1 0 1 010
0 0 0 0 1 0 1 111
0 0 0 0 1 1 0 012
0 0 0 0 1 1 0 113
0 0 0 0 1 1 1 014
0 0 0 0 1 1 1 115
0 0 0 1 0 0 0 016

A[0
]

A[1
]

A[2
]

A[3
]

A[4
]

A[5
]

A[6
]

A[7
]Counter

value
Total
cost

1
3
4
7
8

10
11
15
16
18
19
22
23
25
26
31

0

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT

operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is
shown at the right. Notice that the total cost is always less than twice the total number of INCREMENT

operations.

operations on an initially zero counter causes AŒ1� to flip bn=2c times. Similarly,
bit AŒ2� flips only every fourth time, or bn=4c times in a sequence of n INCREMENT

operations. In general, for i D 0; 1; : : : ; k � 1, bit AŒi� flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i � k,
bit AŒi� does not exist, and so it cannot flip. The total number of flips in the
sequence is thus

k�1X
iD0

j n

2i

k
< n

1X
iD0

1

2i

D 2n ;

by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.

456 Chapter 17 Amortized Analysis

Exercises

17.1-1
If the set of stack operations included a MULTIPUSH operation, which pushes k

items onto the stack, would the O.1/ bound on the amortized cost of stack opera-
tions continue to hold?

17.1-2
Show that if a DECREMENT operation were included in the k-bit counter example,
n operations could cost as much as ‚.nk/ time.

17.1-3
Suppose we perform a sequence of n operations on a data structure in which the i th
operation costs i if i is an exact power of 2, and 1 otherwise. Use aggregate analysis
to determine the amortized cost per operation.

17.2 The accounting method

In the accounting method of amortized analysis, we assign differing charges to
different operations, with some operations charged more or less than they actu-
ally cost. We call the amount we charge an operation its amortized cost. When
an operation’s amortized cost exceeds its actual cost, we assign the difference to
specific objects in the data structure as credit. Credit can help pay for later oper-
ations whose amortized cost is less than their actual cost. Thus, we can view the
amortized cost of an operation as being split between its actual cost and credit that
is either deposited or used up. Different operations may have different amortized
costs. This method differs from aggregate analysis, in which all operations have
the same amortized cost.

We must choose the amortized costs of operations carefully. If we want to show
that in the worst case the average cost per operation is small by analyzing with
amortized costs, we must ensure that the total amortized cost of a sequence of oper-
ations provides an upper bound on the total actual cost of the sequence. Moreover,
as in aggregate analysis, this relationship must hold for all sequences of opera-
tions. If we denote the actual cost of the i th operation by ci and the amortized cost
of the i th operation by yci , we require

nX
iD1

yci �
nX

iD1

ci (17.1)

for all sequences of n operations. The total credit stored in the data structure
is the difference between the total amortized cost and the total actual cost, or

17.2 The accounting method 457

Pn

iD1 yci �
Pn

iD1 ci . By inequality (17.1), the total credit associated with the data
structure must be nonnegative at all times. If we ever were to allow the total credit
to become negative (the result of undercharging early operations with the promise
of repaying the account later on), then the total amortized costs incurred at that
time would be below the total actual costs incurred; for the sequence of operations
up to that time, the total amortized cost would not be an upper bound on the total
actual cost. Thus, we must take care that the total credit in the data structure never
becomes negative.

Stack operations

To illustrate the accounting method of amortized analysis, let us return to the stack
example. Recall that the actual costs of the operations were

PUSH 1 ,
POP 1 ,
MULTIPOP min.k; s/ ,

where k is the argument supplied to MULTIPOP and s is the stack size when it is
called. Let us assign the following amortized costs:

PUSH 2 ,
POP 0 ,
MULTIPOP 0 .

Note that the amortized cost of MULTIPOP is a constant (0), whereas the actual cost
is variable. Here, all three amortized costs are constant. In general, the amortized
costs of the operations under consideration may differ from each other, and they
may even differ asymptotically.

We shall now show that we can pay for any sequence of stack operations by
charging the amortized costs. Suppose we use a dollar bill to represent each unit
of cost. We start with an empty stack. Recall the analogy of Section 10.1 between
the stack data structure and a stack of plates in a cafeteria. When we push a plate
on the stack, we use 1 dollar to pay the actual cost of the push and are left with a
credit of 1 dollar (out of the 2 dollars charged), which we leave on top of the plate.
At any point in time, every plate on the stack has a dollar of credit on it.

The dollar stored on the plate serves as prepayment for the cost of popping it
from the stack. When we execute a POP operation, we charge the operation nothing
and pay its actual cost using the credit stored in the stack. To pop a plate, we take
the dollar of credit off the plate and use it to pay the actual cost of the operation.
Thus, by charging the PUSH operation a little bit more, we can charge the POP

operation nothing.

458 Chapter 17 Amortized Analysis

Moreover, we can also charge MULTIPOP operations nothing. To pop the first
plate, we take the dollar of credit off the plate and use it to pay the actual cost of a
POP operation. To pop a second plate, we again have a dollar of credit on the plate
to pay for the POP operation, and so on. Thus, we have always charged enough
up front to pay for MULTIPOP operations. In other words, since each plate on the
stack has 1 dollar of credit on it, and the stack always has a nonnegative number of
plates, we have ensured that the amount of credit is always nonnegative. Thus, for
any sequence of n PUSH, POP, and MULTIPOP operations, the total amortized cost
is an upper bound on the total actual cost. Since the total amortized cost is O.n/,
so is the total actual cost.

Incrementing a binary counter

As another illustration of the accounting method, we analyze the INCREMENT op-
eration on a binary counter that starts at zero. As we observed earlier, the running
time of this operation is proportional to the number of bits flipped, which we shall
use as our cost for this example. Let us once again use a dollar bill to represent
each unit of cost (the flipping of a bit in this example).

For the amortized analysis, let us charge an amortized cost of 2 dollars to set a
bit to 1. When a bit is set, we use 1 dollar (out of the 2 dollars charged) to pay
for the actual setting of the bit, and we place the other dollar on the bit as credit to
be used later when we flip the bit back to 0. At any point in time, every 1 in the
counter has a dollar of credit on it, and thus we can charge nothing to reset a bit
to 0; we just pay for the reset with the dollar bill on the bit.

Now we can determine the amortized cost of INCREMENT. The cost of resetting
the bits within thewhile loop is paid for by the dollars on the bits that are reset. The
INCREMENT procedure sets at most one bit, in line 6, and therefore the amortized
cost of an INCREMENT operation is at most 2 dollars. The number of 1s in the
counter never becomes negative, and thus the amount of credit stays nonnegative
at all times. Thus, for n INCREMENT operations, the total amortized cost is O.n/,
which bounds the total actual cost.

Exercises

17.2-1
Suppose we perform a sequence of stack operations on a stack whose size never
exceeds k. After every k operations, we make a copy of the entire stack for backup
purposes. Show that the cost of n stack operations, including copying the stack,
is O.n/ by assigning suitable amortized costs to the various stack operations.

17.3 The potential method 459

17.2-2
Redo Exercise 17.1-3 using an accounting method of analysis.

17.2-3
Suppose we wish not only to increment a counter but also to reset it to zero (i.e.,
make all bits in it 0). Counting the time to examine or modify a bit as ‚.1/,
show how to implement a counter as an array of bits so that any sequence of n

INCREMENT and RESET operations takes time O.n/ on an initially zero counter.
(Hint: Keep a pointer to the high-order 1.)

17.3 The potential method

Instead of representing prepaid work as credit stored with specific objects in the
data structure, the potential method of amortized analysis represents the prepaid
work as “potential energy,” or just “potential,” which can be released to pay for
future operations. We associate the potential with the data structure as a whole
rather than with specific objects within the data structure.

The potential method works as follows. We will perform n operations, starting
with an initial data structure D0. For each i D 1; 2; : : : ; n, we let ci be the actual
cost of the i th operation and Di be the data structure that results after applying
the i th operation to data structure Di�1. A potential function ˆ maps each data
structure Di to a real number ˆ.Di /, which is the potential associated with data
structure Di . The amortized cost yci of the i th operation with respect to potential
function ˆ is defined by

yci D ci Cˆ.Di / �ˆ.Di�1/ : (17.2)

The amortized cost of each operation is therefore its actual cost plus the change in
potential due to the operation. By equation (17.2), the total amortized cost of the n

operations is

nX
iD1

yci D
nX

iD1

.ci Cˆ.Di / �ˆ.Di�1//

D
nX

iD1

ci Cˆ.Dn/ �ˆ.D0/ : (17.3)

The second equality follows from equation (A.9) because the ˆ.Di / terms tele-
scope.

If we can define a potential function ˆ so that ˆ.Dn/ � ˆ.D0/, then the total
amortized cost

Pn

iD1 yci gives an upper bound on the total actual cost
Pn

iD1 ci .

460 Chapter 17 Amortized Analysis

In practice, we do not always know how many operations might be performed.
Therefore, if we require that ˆ.Di / � ˆ.D0/ for all i , then we guarantee, as in
the accounting method, that we pay in advance. We usually just define ˆ.D0/ to
be 0 and then show that ˆ.Di / � 0 for all i . (See Exercise 17.3-1 for an easy way
to handle cases in which ˆ.D0/ ¤ 0.)

Intuitively, if the potential difference ˆ.Di/ � ˆ.Di�1/ of the i th operation is
positive, then the amortized cost yci represents an overcharge to the i th operation,
and the potential of the data structure increases. If the potential difference is neg-
ative, then the amortized cost represents an undercharge to the i th operation, and
the decrease in the potential pays for the actual cost of the operation.

The amortized costs defined by equations (17.2) and (17.3) depend on the choice
of the potential function ˆ. Different potential functions may yield different amor-
tized costs yet still be upper bounds on the actual costs. We often find trade-offs
that we can make in choosing a potential function; the best potential function to
use depends on the desired time bounds.

Stack operations

To illustrate the potential method, we return once again to the example of the stack
operations PUSH, POP, and MULTIPOP. We define the potential function ˆ on a
stack to be the number of objects in the stack. For the empty stack D0 with which
we start, we have ˆ.D0/ D 0. Since the number of objects in the stack is never
negative, the stack Di that results after the i th operation has nonnegative potential,
and thus

ˆ.Di / � 0

D ˆ.D0/ :

The total amortized cost of n operations with respect to ˆ therefore represents an
upper bound on the actual cost.

Let us now compute the amortized costs of the various stack operations. If the i th
operation on a stack containing s objects is a PUSH operation, then the potential
difference is

ˆ.Di / �ˆ.Di�1/ D .s C 1/ � s

D 1 :

By equation (17.2), the amortized cost of this PUSH operation is

yci D ci Cˆ.Di / �ˆ.Di�1/

D 1C 1

D 2 :

17.3 The potential method 461

Suppose that the i th operation on the stack is MULTIPOP.S; k/, which causes
k0 D min.k; s/ objects to be popped off the stack. The actual cost of the opera-
tion is k0, and the potential difference is

ˆ.Di / �ˆ.Di�1/ D �k0 :

Thus, the amortized cost of the MULTIPOP operation is

yci D ci Cˆ.Di / �ˆ.Di�1/

D k0 � k0

D 0 :

Similarly, the amortized cost of an ordinary POP operation is 0.
The amortized cost of each of the three operations is O.1/, and thus the total

amortized cost of a sequence of n operations is O.n/. Since we have already argued
that ˆ.Di / � ˆ.D0/, the total amortized cost of n operations is an upper bound
on the total actual cost. The worst-case cost of n operations is therefore O.n/.

Incrementing a binary counter

As another example of the potential method, we again look at incrementing a binary
counter. This time, we define the potential of the counter after the i th INCREMENT

operation to be bi , the number of 1s in the counter after the i th operation.
Let us compute the amortized cost of an INCREMENT operation. Suppose that

the i th INCREMENT operation resets ti bits. The actual cost of the operation is
therefore at most ti C 1, since in addition to resetting ti bits, it sets at most one
bit to 1. If bi D 0, then the i th operation resets all k bits, and so bi�1 D ti D k.
If bi > 0, then bi D bi�1 � ti C 1. In either case, bi � bi�1 � ti C 1, and the
potential difference is

ˆ.Di / �ˆ.Di�1/ � .bi�1 � ti C 1/ � bi�1

D 1� ti :

The amortized cost is therefore

yci D ci Cˆ.Di / �ˆ.Di�1/

� .ti C 1/C .1 � ti /

D 2 :

If the counter starts at zero, then ˆ.D0/ D 0. Since ˆ.Di/ � 0 for all i , the total
amortized cost of a sequence of n INCREMENT operations is an upper bound on the
total actual cost, and so the worst-case cost of n INCREMENT operations is O.n/.

The potential method gives us an easy way to analyze the counter even when
it does not start at zero. The counter starts with b0 1s, and after n INCREMENT

462 Chapter 17 Amortized Analysis

operations it has bn 1s, where 0 � b0; bn � k. (Recall that k is the number of bits
in the counter.) We can rewrite equation (17.3) as

nX
iD1

ci D
nX

iD1

yci �ˆ.Dn/Cˆ.D0/ : (17.4)

We have yci � 2 for all 1 � i � n. Since ˆ.D0/ D b0 and ˆ.Dn/ D bn, the total
actual cost of n INCREMENT operations is

nX
iD1

ci �
nX

iD1

2 � bn C b0

D 2n � bn C b0 :

Note in particular that since b0 � k, as long as k D O.n/, the total actual cost
is O.n/. In other words, if we execute at least n D �.k/ INCREMENT operations,
the total actual cost is O.n/, no matter what initial value the counter contains.

Exercises

17.3-1
Suppose we have a potential function ˆ such that ˆ.Di / � ˆ.D0/ for all i , but
ˆ.D0/ ¤ 0. Show that there exists a potential function ˆ0 such that ˆ0.D0/ D 0,
ˆ0.Di / � 0 for all i � 1, and the amortized costs using ˆ0 are the same as the
amortized costs using ˆ.

17.3-2
Redo Exercise 17.1-3 using a potential method of analysis.

17.3-3
Consider an ordinary binary min-heap data structure with n elements supporting
the instructions INSERT and EXTRACT-MIN in O.lg n/ worst-case time. Give a
potential function ˆ such that the amortized cost of INSERT is O.lg n/ and the
amortized cost of EXTRACT-MIN is O.1/, and show that it works.

17.3-4
What is the total cost of executing n of the stack operations PUSH, POP, and
MULTIPOP, assuming that the stack begins with s0 objects and finishes with sn

objects?

17.3-5
Suppose that a counter begins at a number with b 1s in its binary representa-
tion, rather than at 0. Show that the cost of performing n INCREMENT operations
is O.n/ if n D �.b/. (Do not assume that b is constant.)

17.4 Dynamic tables 463

17.3-6
Show how to implement a queue with two ordinary stacks (Exercise 10.1-6) so that
the amortized cost of each ENQUEUE and each DEQUEUE operation is O.1/.

17.3-7
Design a data structure to support the following two operations for a dynamic
multiset S of integers, which allows duplicate values:

INSERT.S; x/ inserts x into S .

DELETE-LARGER-HALF.S/ deletes the largest djS j =2e elements from S .

Explain how to implement this data structure so that any sequence of m INSERT

and DELETE-LARGER-HALF operations runs in O.m/ time. Your implementation
should also include a way to output the elements of S in O.jS j/ time.

17.4 Dynamic tables

We do not always know in advance how many objects some applications will store
in a table. We might allocate space for a table, only to find out later that it is not
enough. We must then reallocate the table with a larger size and copy all objects
stored in the original table over into the new, larger table. Similarly, if many objects
have been deleted from the table, it may be worthwhile to reallocate the table with
a smaller size. In this section, we study this problem of dynamically expanding and
contracting a table. Using amortized analysis, we shall show that the amortized cost
of insertion and deletion is only O.1/, even though the actual cost of an operation
is large when it triggers an expansion or a contraction. Moreover, we shall see how
to guarantee that the unused space in a dynamic table never exceeds a constant
fraction of the total space.

We assume that the dynamic table supports the operations TABLE-INSERT and
TABLE-DELETE. TABLE-INSERT inserts into the table an item that occupies a sin-
gle slot, that is, a space for one item. Likewise, TABLE-DELETE removes an item
from the table, thereby freeing a slot. The details of the data-structuring method
used to organize the table are unimportant; we might use a stack (Section 10.1),
a heap (Chapter 6), or a hash table (Chapter 11). We might also use an array or
collection of arrays to implement object storage, as we did in Section 10.3.

We shall find it convenient to use a concept introduced in our analysis of hashing
(Chapter 11). We define the load factor ˛.T / of a nonempty table T to be the
number of items stored in the table divided by the size (number of slots) of the
table. We assign an empty table (one with no items) size 0, and we define its load
factor to be 1. If the load factor of a dynamic table is bounded below by a constant,

464 Chapter 17 Amortized Analysis

the unused space in the table is never more than a constant fraction of the total
amount of space.

We start by analyzing a dynamic table in which we only insert items. We then
consider the more general case in which we both insert and delete items.

17.4.1 Table expansion

Let us assume that storage for a table is allocated as an array of slots. A table fills
up when all slots have been used or, equivalently, when its load factor is 1.1 In some
software environments, upon attempting to insert an item into a full table, the only
alternative is to abort with an error. We shall assume, however, that our software
environment, like many modern ones, provides a memory-management system that
can allocate and free blocks of storage on request. Thus, upon inserting an item
into a full table, we can expand the table by allocating a new table with more slots
than the old table had. Because we always need the table to reside in contiguous
memory, we must allocate a new array for the larger table and then copy items from
the old table into the new table.

A common heuristic allocates a new table with twice as many slots as the old
one. If the only table operations are insertions, then the load factor of the table is
always at least 1=2, and thus the amount of wasted space never exceeds half the
total space in the table.

In the following pseudocode, we assume that T is an object representing the
table. The attribute T: table contains a pointer to the block of storage representing
the table, T:num contains the number of items in the table, and T:size gives the total
number of slots in the table. Initially, the table is empty: T:num D T:size D 0.

TABLE-INSERT.T; x/

1 if T:size == 0

2 allocate T: table with 1 slot
3 T:size D 1

4 if T:num == T:size
5 allocate new-table with 2 � T:size slots
6 insert all items in T: table into new-table
7 free T: table
8 T: table D new-table
9 T:size D 2 � T:size

10 insert x into T: table
11 T:num D T:numC 1

1In some situations, such as an open-address hash table, we may wish to consider a table to be full if
its load factor equals some constant strictly less than 1. (See Exercise 17.4-1.)

17.4 Dynamic tables 465

Notice that we have two “insertion” procedures here: the TABLE-INSERT proce-
dure itself and the elementary insertion into a table in lines 6 and 10. We can
analyze the running time of TABLE-INSERT in terms of the number of elementary
insertions by assigning a cost of 1 to each elementary insertion. We assume that
the actual running time of TABLE-INSERT is linear in the time to insert individual
items, so that the overhead for allocating an initial table in line 2 is constant and
the overhead for allocating and freeing storage in lines 5 and 7 is dominated by
the cost of transferring items in line 6. We call the event in which lines 5–9 are
executed an expansion.

Let us analyze a sequence of n TABLE-INSERT operations on an initially empty
table. What is the cost ci of the i th operation? If the current table has room for the
new item (or if this is the first operation), then ci D 1, since we need only perform
the one elementary insertion in line 10. If the current table is full, however, and an
expansion occurs, then ci D i : the cost is 1 for the elementary insertion in line 10
plus i � 1 for the items that we must copy from the old table to the new table in
line 6. If we perform n operations, the worst-case cost of an operation is O.n/,
which leads to an upper bound of O.n2/ on the total running time for n operations.

This bound is not tight, because we rarely expand the table in the course of n

TABLE-INSERT operations. Specifically, the i th operation causes an expansion
only when i � 1 is an exact power of 2. The amortized cost of an operation is in
fact O.1/, as we can show using aggregate analysis. The cost of the i th operation
is

ci D
(

i if i � 1 is an exact power of 2 ;

1 otherwise :

The total cost of n TABLE-INSERT operations is therefore
nX

iD1

ci � nC
blg ncX
j D0

2j

< nC 2n

D 3n ;

because at most n operations cost 1 and the costs of the remaining operations form
a geometric series. Since the total cost of n TABLE-INSERT operations is bounded
by 3n, the amortized cost of a single operation is at most 3.

By using the accounting method, we can gain some feeling for why the amor-
tized cost of a TABLE-INSERT operation should be 3. Intuitively, each item pays
for 3 elementary insertions: inserting itself into the current table, moving itself
when the table expands, and moving another item that has already been moved
once when the table expands. For example, suppose that the size of the table is m

immediately after an expansion. Then the table holds m=2 items, and it contains

466 Chapter 17 Amortized Analysis

no credit. We charge 3 dollars for each insertion. The elementary insertion that
occurs immediately costs 1 dollar. We place another dollar as credit on the item
inserted. We place the third dollar as credit on one of the m=2 items already in the
table. The table will not fill again until we have inserted another m=2 � 1 items,
and thus, by the time the table contains m items and is full, we will have placed a
dollar on each item to pay to reinsert it during the expansion.

We can use the potential method to analyze a sequence of n TABLE-INSERT

operations, and we shall use it in Section 17.4.2 to design a TABLE-DELETE op-
eration that has an O.1/ amortized cost as well. We start by defining a potential
function ˆ that is 0 immediately after an expansion but builds to the table size by
the time the table is full, so that we can pay for the next expansion by the potential.
The function

ˆ.T / D 2 � T:num � T:size (17.5)

is one possibility. Immediately after an expansion, we have T:num D T:size=2,
and thus ˆ.T / D 0, as desired. Immediately before an expansion, we have
T:num D T:size, and thus ˆ.T / D T:num, as desired. The initial value of the
potential is 0, and since the table is always at least half full, T:num � T:size=2,
which implies that ˆ.T / is always nonnegative. Thus, the sum of the amortized
costs of n TABLE-INSERT operations gives an upper bound on the sum of the actual
costs.

To analyze the amortized cost of the i th TABLE-INSERT operation, we let numi

denote the number of items stored in the table after the i th operation, sizei denote
the total size of the table after the i th operation, and ˆi denote the potential after
the i th operation. Initially, we have num0 D 0, size0 D 0, and ˆ0 D 0.

If the i th TABLE-INSERT operation does not trigger an expansion, then we have
sizei D sizei�1 and the amortized cost of the operation is

yci D ci Cˆi �ˆi�1

D 1C .2 � numi � sizei / � .2 � numi�1 � sizei�1/

D 1C .2 � numi � sizei / � .2.numi � 1/ � sizei /

D 3 :

If the i th operation does trigger an expansion, then we have sizei D 2 � sizei�1 and
sizei�1 D numi�1 D numi � 1, which implies that sizei D 2 � .numi � 1/. Thus,
the amortized cost of the operation is

yci D ci Cˆi �ˆi�1

D numi C .2 � numi � sizei/ � .2 � numi�1 � sizei�1/

D numi C .2 � numi � 2 � .numi � 1// � .2.numi � 1/ � .numi � 1//

D numi C 2 � .numi � 1/

D 3 :

17.4 Dynamic tables 467

Φi

numisizei

0 8 16 24 32
0

8

16

24

32

i

Figure 17.3 The effect of a sequence of n TABLE-INSERT operations on the number numi of items
in the table, the number sizei of slots in the table, and the potential ˆi D 2 � numi � sizei , each
being measured after the i th operation. The thin line shows numi , the dashed line shows sizei , and
the thick line shows ˆi . Notice that immediately before an expansion, the potential has built up to
the number of items in the table, and therefore it can pay for moving all the items to the new table.
Afterwards, the potential drops to 0, but it is immediately increased by 2 upon inserting the item that
caused the expansion.

Figure 17.3 plots the values of numi , sizei , and ˆi against i . Notice how the
potential builds to pay for expanding the table.

17.4.2 Table expansion and contraction

To implement a TABLE-DELETE operation, it is simple enough to remove the spec-
ified item from the table. In order to limit the amount of wasted space, however,
we might wish to contract the table when the load factor becomes too small. Table
contraction is analogous to table expansion: when the number of items in the table
drops too low, we allocate a new, smaller table and then copy the items from the
old table into the new one. We can then free the storage for the old table by return-
ing it to the memory-management system. Ideally, we would like to preserve two
properties:

� the load factor of the dynamic table is bounded below by a positive constant,
and

� the amortized cost of a table operation is bounded above by a constant.

468 Chapter 17 Amortized Analysis

We assume that we measure the cost in terms of elementary insertions and dele-
tions.

You might think that we should double the table size upon inserting an item into
a full table and halve the size when a deleting an item would cause the table to
become less than half full. This strategy would guarantee that the load factor of
the table never drops below 1=2, but unfortunately, it can cause the amortized cost
of an operation to be quite large. Consider the following scenario. We perform n

operations on a table T , where n is an exact power of 2. The first n=2 operations are
insertions, which by our previous analysis cost a total of ‚.n/. At the end of this
sequence of insertions, T:num D T:size D n=2. For the second n=2 operations,
we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,

The first insertion causes the table to expand to size n. The two following deletions
cause the table to contract back to size n=2. Two further insertions cause another
expansion, and so forth. The cost of each expansion and contraction is ‚.n/, and
there are ‚.n/ of them. Thus, the total cost of the n operations is ‚.n2/, making
the amortized cost of an operation ‚.n/.

The downside of this strategy is obvious: after expanding the table, we do not
delete enough items to pay for a contraction. Likewise, after contracting the table,
we do not insert enough items to pay for an expansion.

We can improve upon this strategy by allowing the load factor of the table to
drop below 1=2. Specifically, we continue to double the table size upon inserting
an item into a full table, but we halve the table size when deleting an item causes
the table to become less than 1=4 full, rather than 1=2 full as before. The load
factor of the table is therefore bounded below by the constant 1=4.

Intuitively, we would consider a load factor of 1=2 to be ideal, and the table’s
potential would then be 0. As the load factor deviates from 1=2, the potential
increases so that by the time we expand or contract the table, the table has garnered
sufficient potential to pay for copying all the items into the newly allocated table.
Thus, we will need a potential function that has grown to T:num by the time that
the load factor has either increased to 1 or decreased to 1=4. After either expanding
or contracting the table, the load factor goes back to 1=2 and the table’s potential
reduces back to 0.

We omit the code for TABLE-DELETE, since it is analogous to TABLE-INSERT.
For our analysis, we shall assume that whenever the number of items in the table
drops to 0, we free the storage for the table. That is, if T:num D 0, then T:size D 0.

We can now use the potential method to analyze the cost of a sequence of n

TABLE-INSERT and TABLE-DELETE operations. We start by defining a poten-
tial function ˆ that is 0 immediately after an expansion or contraction and builds
as the load factor increases to 1 or decreases to 1=4. Let us denote the load fac-

17.4 Dynamic tables 469

numi

Φi

sizei

0 8 16 24 32 40 48
0

8

16

24

32

i

Figure 17.4 The effect of a sequence of n TABLE-INSERT and TABLE-DELETE operations on the
number numi of items in the table, the number sizei of slots in the table, and the potential

ˆi D
�

2 � numi � sizei if ˛i � 1=2 ;

sizei =2 � numi if ˛i < 1=2 ;

each measured after the i th operation. The thin line shows numi , the dashed line shows sizei , and
the thick line shows ˆi . Notice that immediately before an expansion, the potential has built up to
the number of items in the table, and therefore it can pay for moving all the items to the new table.
Likewise, immediately before a contraction, the potential has built up to the number of items in the
table.

tor of a nonempty table T by ˛.T / D T:num=T:size. Since for an empty table,
T:num D T:size D 0 and ˛.T / D 1, we always have T:num D ˛.T / � T:size,
whether the table is empty or not. We shall use as our potential function

ˆ.T / D
(

2 � T:num � T:size if ˛.T / � 1=2 ;

T:size=2 � T:num if ˛.T / < 1=2 :
(17.6)

Observe that the potential of an empty table is 0 and that the potential is never
negative. Thus, the total amortized cost of a sequence of operations with respect
to ˆ provides an upper bound on the actual cost of the sequence.

Before proceeding with a precise analysis, we pause to observe some properties
of the potential function, as illustrated in Figure 17.4. Notice that when the load
factor is 1=2, the potential is 0. When the load factor is 1, we have T:size D T:num,
which implies ˆ.T / D T:num, and thus the potential can pay for an expansion if
an item is inserted. When the load factor is 1=4, we have T:size D 4 �T:num, which

470 Chapter 17 Amortized Analysis

implies ˆ.T / D T:num, and thus the potential can pay for a contraction if an item
is deleted.

To analyze a sequence of n TABLE-INSERT and TABLE-DELETE operations,
we let ci denote the actual cost of the i th operation, yci denote its amortized cost
with respect to ˆ, numi denote the number of items stored in the table after the i th
operation, sizei denote the total size of the table after the i th operation, ˛i denote
the load factor of the table after the i th operation, and ˆi denote the potential after
the i th operation. Initially, num0 D 0, size0 D 0, ˛0 D 1, and ˆ0 D 0.

We start with the case in which the i th operation is TABLE-INSERT. The analy-
sis is identical to that for table expansion in Section 17.4.1 if ˛i�1 � 1=2. Whether
the table expands or not, the amortized cost yci of the operation is at most 3.
If ˛i�1 < 1=2, the table cannot expand as a result of the operation, since the ta-
ble expands only when ˛i�1 D 1. If ˛i < 1=2 as well, then the amortized cost of
the i th operation is

yci D ci Cˆi �ˆi�1

D 1C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

D 1C .sizei=2 � numi/ � .sizei=2 � .numi � 1//

D 0 :

If ˛i�1 < 1=2 but ˛i � 1=2, then

yci D ci Cˆi �ˆi�1

D 1C .2 � numi � sizei / � .sizei�1=2 � numi�1/

D 1C .2.numi�1 C 1/ � sizei�1/ � .sizei�1=2 � numi�1/

D 3 � numi�1 � 3

2
sizei�1 C 3

D 3˛i�1sizei�1 � 3

2
sizei�1 C 3

<
3

2
sizei�1 �

3

2
sizei�1 C 3

D 3 :

Thus, the amortized cost of a TABLE-INSERT operation is at most 3.
We now turn to the case in which the i th operation is TABLE-DELETE. In this

case, numi D numi�1 � 1. If ˛i�1 < 1=2, then we must consider whether the
operation causes the table to contract. If it does not, then sizei D sizei�1 and the
amortized cost of the operation is

yci D ci Cˆi �ˆi�1

D 1C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

D 1C .sizei=2 � numi/ � .sizei=2 � .numi C 1//

D 2 :

17.4 Dynamic tables 471

If ˛i�1 < 1=2 and the i th operation does trigger a contraction, then the actual cost
of the operation is ci D numi C 1, since we delete one item and move numi items.
We have sizei=2 D sizei�1=4 D numi�1 D numi C 1, and the amortized cost of
the operation is

yci D ci Cˆi �ˆi�1

D .numi C 1/C .sizei=2 � numi/ � .sizei�1=2 � numi�1/

D .numi C 1/C ..numi C 1/ � numi/ � ..2 � numi C 2/ � .numi C 1//

D 1 :

When the i th operation is a TABLE-DELETE and ˛i�1 � 1=2, the amortized cost
is also bounded above by a constant. We leave the analysis as Exercise 17.4-2.

In summary, since the amortized cost of each operation is bounded above by
a constant, the actual time for any sequence of n operations on a dynamic table
is O.n/.

Exercises

17.4-1
Suppose that we wish to implement a dynamic, open-address hash table. Why
might we consider the table to be full when its load factor reaches some value ˛

that is strictly less than 1? Describe briefly how to make insertion into a dynamic,
open-address hash table run in such a way that the expected value of the amortized
cost per insertion is O.1/. Why is the expected value of the actual cost per insertion
not necessarily O.1/ for all insertions?

17.4-2
Show that if ˛i�1 � 1=2 and the i th operation on a dynamic table is TABLE-
DELETE, then the amortized cost of the operation with respect to the potential
function (17.6) is bounded above by a constant.

17.4-3
Suppose that instead of contracting a table by halving its size when its load factor
drops below 1=4, we contract it by multiplying its size by 2=3 when its load factor
drops below 1=3. Using the potential function

ˆ.T / D j2 � T:num � T:sizej ;

show that the amortized cost of a TABLE-DELETE that uses this strategy is bounded
above by a constant.

472 Chapter 17 Amortized Analysis

Problems

17-1 Bit-reversed binary counter
Chapter 30 examines an important algorithm called the fast Fourier transform,
or FFT. The first step of the FFT algorithm performs a bit-reversal permutation on
an input array AŒ0 : : n�1� whose length is n D 2k for some nonnegative integer k.
This permutation swaps elements whose indices have binary representations that
are the reverse of each other.

We can express each index a as a k-bit sequence hak�1; ak�2; : : : ; a0i, where
a DPk�1

iD0 ai 2i . We define

revk.hak�1; ak�2; : : : ; a0i/ D ha0; a1; : : : ; ak�1i I
thus,

revk.a/ D
k�1X
iD0

ak�i�12i :

For example, if n D 16 (or, equivalently, k D 4), then revk.3/ D 12, since
the 4-bit representation of 3 is 0011, which when reversed gives 1100, the 4-bit
representation of 12.

a. Given a function revk that runs in ‚.k/ time, write an algorithm to perform the
bit-reversal permutation on an array of length n D 2k in O.nk/ time.

We can use an algorithm based on an amortized analysis to improve the running
time of the bit-reversal permutation. We maintain a “bit-reversed counter” and a
procedure BIT-REVERSED-INCREMENT that, when given a bit-reversed-counter
value a, produces revk.revk.a/C 1/. If k D 4, for example, and the bit-reversed
counter starts at 0, then successive calls to BIT-REVERSED-INCREMENT produce
the sequence

0000; 1000; 0100; 1100; 0010; 1010; : : : D 0; 8; 4; 12; 2; 10; : : : :

b. Assume that the words in your computer store k-bit values and that in unit time,
your computer can manipulate the binary values with operations such as shifting
left or right by arbitrary amounts, bitwise-AND, bitwise-OR, etc. Describe
an implementation of the BIT-REVERSED-INCREMENT procedure that allows
the bit-reversal permutation on an n-element array to be performed in a total
of O.n/ time.

c. Suppose that you can shift a word left or right by only one bit in unit time. Is it
still possible to implement an O.n/-time bit-reversal permutation?

Problems for Chapter 17 473

17-2 Making binary search dynamic
Binary search of a sorted array takes logarithmic search time, but the time to insert
a new element is linear in the size of the array. We can improve the time for
insertion by keeping several sorted arrays.

Specifically, suppose that we wish to support SEARCH and INSERT on a set
of n elements. Let k D dlg.nC 1/e, and let the binary representation of n

be hnk�1; nk�2; : : : ; n0i. We have k sorted arrays A0; A1; : : : ; Ak�1, where for
i D 0; 1; : : : ; k � 1, the length of array Ai is 2i . Each array is either full or empty,
depending on whether ni D 1 or ni D 0, respectively. The total number of ele-
ments held in all k arrays is therefore

Pk�1

iD0 ni 2i D n. Although each individual
array is sorted, elements in different arrays bear no particular relationship to each
other.

a. Describe how to perform the SEARCH operation for this data structure. Analyze
its worst-case running time.

b. Describe how to perform the INSERT operation. Analyze its worst-case and
amortized running times.

c. Discuss how to implement DELETE.

17-3 Amortized weight-balanced trees
Consider an ordinary binary search tree augmented by adding to each node x the
attribute x:size giving the number of keys stored in the subtree rooted at x. Let ˛

be a constant in the range 1=2 � ˛ < 1. We say that a given node x is ˛-balanced
if x: left:size � ˛ � x:size and x:right:size � ˛ � x:size. The tree as a whole
is ˛-balanced if every node in the tree is ˛-balanced. The following amortized
approach to maintaining weight-balanced trees was suggested by G. Varghese.

a. A 1=2-balanced tree is, in a sense, as balanced as it can be. Given a node x

in an arbitrary binary search tree, show how to rebuild the subtree rooted at x

so that it becomes 1=2-balanced. Your algorithm should run in time ‚.x:size/,
and it can use O.x:size/ auxiliary storage.

b. Show that performing a search in an n-node ˛-balanced binary search tree
takes O.lg n/ worst-case time.

For the remainder of this problem, assume that the constant ˛ is strictly greater
than 1=2. Suppose that we implement INSERT and DELETE as usual for an n-node
binary search tree, except that after every such operation, if any node in the tree
is no longer ˛-balanced, then we “rebuild” the subtree rooted at the highest such
node in the tree so that it becomes 1=2-balanced.

474 Chapter 17 Amortized Analysis

We shall analyze this rebuilding scheme using the potential method. For a node x

in a binary search tree T , we define

�.x/ D jx: left:size � x:right:sizej ;

and we define the potential of T as

ˆ.T / D c
X

x2T W�.x/�2

�.x/ ;

where c is a sufficiently large constant that depends on ˛.

c. Argue that any binary search tree has nonnegative potential and that a 1=2-
balanced tree has potential 0.

d. Suppose that m units of potential can pay for rebuilding an m-node subtree.
How large must c be in terms of ˛ in order for it to take O.1/ amortized time
to rebuild a subtree that is not ˛-balanced?

e. Show that inserting a node into or deleting a node from an n-node ˛-balanced
tree costs O.lg n/ amortized time.

17-4 The cost of restructuring red-black trees
There are four basic operations on red-black trees that perform structural modi-
fications: node insertions, node deletions, rotations, and color changes. We have
seen that RB-INSERT and RB-DELETE use only O.1/ rotations, node insertions,
and node deletions to maintain the red-black properties, but they may make many
more color changes.

a. Describe a legal red-black tree with n nodes such that calling RB-INSERT to
add the .n C 1/st node causes �.lg n/ color changes. Then describe a legal
red-black tree with n nodes for which calling RB-DELETE on a particular node
causes �.lg n/ color changes.

Although the worst-case number of color changes per operation can be logarithmic,
we shall prove that any sequence of m RB-INSERT and RB-DELETE operations on
an initially empty red-black tree causes O.m/ structural modifications in the worst
case. Note that we count each color change as a structural modification.

b. Some of the cases handled by the main loop of the code of both RB-INSERT-
FIXUP and RB-DELETE-FIXUP are terminating: once encountered, they cause
the loop to terminate after a constant number of additional operations. For each
of the cases of RB-INSERT-FIXUP and RB-DELETE-FIXUP, specify which are
terminating and which are not. (Hint: Look at Figures 13.5, 13.6, and 13.7.)

Problems for Chapter 17 475

We shall first analyze the structural modifications when only insertions are per-
formed. Let T be a red-black tree, and define ˆ.T / to be the number of red nodes
in T . Assume that 1 unit of potential can pay for the structural modifications per-
formed by any of the three cases of RB-INSERT-FIXUP.

c. Let T 0 be the result of applying Case 1 of RB-INSERT-FIXUP to T . Argue that
ˆ.T 0/ D ˆ.T / � 1.

d. When we insert a node into a red-black tree using RB-INSERT, we can break
the operation into three parts. List the structural modifications and potential
changes resulting from lines 1–16 of RB-INSERT, from nonterminating cases
of RB-INSERT-FIXUP, and from terminating cases of RB-INSERT-FIXUP.

e. Using part (d), argue that the amortized number of structural modifications per-
formed by any call of RB-INSERT is O.1/.

We now wish to prove that there are O.m/ structural modifications when there are
both insertions and deletions. Let us define, for each node x,

w.x/ D

„
0 if x is red ;

1 if x is black and has no red children ;

0 if x is black and has one red child ;

2 if x is black and has two red children :

Now we redefine the potential of a red-black tree T as

ˆ.T / D
X
x2T

w.x/ ;

and let T 0 be the tree that results from applying any nonterminating case of RB-
INSERT-FIXUP or RB-DELETE-FIXUP to T .

f. Show that ˆ.T 0/ � ˆ.T / � 1 for all nonterminating cases of RB-INSERT-
FIXUP. Argue that the amortized number of structural modifications performed
by any call of RB-INSERT-FIXUP is O.1/.

g. Show that ˆ.T 0/ � ˆ.T / � 1 for all nonterminating cases of RB-DELETE-
FIXUP. Argue that the amortized number of structural modifications performed
by any call of RB-DELETE-FIXUP is O.1/.

h. Complete the proof that in the worst case, any sequence of m RB-INSERT and
RB-DELETE operations performs O.m/ structural modifications.

476 Chapter 17 Amortized Analysis

17-5 Competitive analysis of self-organizing lists with move-to-front
A self-organizing list is a linked list of n elements, in which each element has a
unique key. When we search for an element in the list, we are given a key, and we
want to find an element with that key.

A self-organizing list has two important properties:

1. To find an element in the list, given its key, we must traverse the list from the
beginning until we encounter the element with the given key. If that element is
the kth element from the start of the list, then the cost to find the element is k.

2. We may reorder the list elements after any operation, according to a given rule
with a given cost. We may choose any heuristic we like to decide how to reorder
the list.

Assume that we start with a given list of n elements, and we are given an access
sequence 	 D h	1; 	2; : : : ; 	mi of keys to find, in order. The cost of the sequence
is the sum of the costs of the individual accesses in the sequence.

Out of the various possible ways to reorder the list after an operation, this prob-
lem focuses on transposing adjacent list elements—switching their positions in the
list—with a unit cost for each transpose operation. You will show, by means of a
potential function, that a particular heuristic for reordering the list, move-to-front,
entails a total cost no worse than 4 times that of any other heuristic for maintaining
the list order—even if the other heuristic knows the access sequence in advance!
We call this type of analysis a competitive analysis.

For a heuristic H and a given initial ordering of the list, denote the access cost of
sequence 	 by CH .	/. Let m be the number of accesses in 	 .

a. Argue that if heuristic H does not know the access sequence in advance, then
the worst-case cost for H on an access sequence 	 is CH .	/ D �.mn/.

With the move-to-front heuristic, immediately after searching for an element x,
we move x to the first position on the list (i.e., the front of the list).

Let rankL.x/ denote the rank of element x in list L, that is, the position of x in
list L. For example, if x is the fourth element in L, then rankL.x/ D 4. Let ci

denote the cost of access 	i using the move-to-front heuristic, which includes the
cost of finding the element in the list and the cost of moving it to the front of the
list by a series of transpositions of adjacent list elements.

b. Show that if 	i accesses element x in list L using the move-to-front heuristic,
then ci D 2 � rankL.x/� 1.

Now we compare move-to-front with any other heuristic H that processes an
access sequence according to the two properties above. Heuristic H may transpose

Problems for Chapter 17 477

elements in the list in any way it wants, and it might even know the entire access
sequence in advance.

Let Li be the list after access 	i using move-to-front, and let L�
i be the list after

access 	i using heuristic H. We denote the cost of access 	i by ci for move-to-
front and by c�

i for heuristic H. Suppose that heuristic H performs t�
i transpositions

during access 	i .

c. In part (b), you showed that ci D 2 � rankLi�1
.x/ � 1. Now show that c�

i D
rankL�

i�1
.x/C t�

i .

We define an inversion in list Li as a pair of elements y and ´ such that y

precedes ´ in Li and ´ precedes y in list L�
i . Suppose that list Li has qi inversions

after processing the access sequence h	1; 	2; : : : ; 	ii. Then, we define a potential
function ˆ that maps Li to a real number by ˆ.Li / D 2qi . For example, if Li has
the elements he; c; a; d; bi and L�

i has the elements hc; a; b; d; ei, then Li has 5
inversions (.e; c/; .e; a/; .e; d/; .e; b/; .d; b/), and so ˆ.Li / D 10. Observe that
ˆ.Li / � 0 for all i and that, if move-to-front and heuristic H start with the same
list L0, then ˆ.L0/ D 0.

d. Argue that a transposition either increases the potential by 2 or decreases the
potential by 2.

Suppose that access 	i finds the element x. To understand how the potential
changes due to 	i , let us partition the elements other than x into four sets, depend-
ing on where they are in the lists just before the i th access:
� Set A consists of elements that precede x in both Li�1 and L�

i�1.
� Set B consists of elements that precede x in Li�1 and follow x in L�

i�1.
� Set C consists of elements that follow x in Li�1 and precede x in L�

i�1.
� Set D consists of elements that follow x in both Li�1 and L�

i�1.

e. Argue that rankLi�1
.x/ D jAj C jBj C 1 and rankL�

i�1
.x/ D jAj C jC j C 1.

f. Show that access 	i causes a change in potential of

ˆ.Li / �ˆ.Li�1/ � 2.jAj � jBj C t�
i / ;

where, as before, heuristic H performs t�
i transpositions during access 	i .

Define the amortized cost yci of access 	i by yci D ci Cˆ.Li / �ˆ.Li�1/.

g. Show that the amortized cost yci of access 	i is bounded from above by 4c�
i .

h. Conclude that the cost CMTF.	/ of access sequence 	 with move-to-front is at
most 4 times the cost CH .	/ of 	 with any other heuristic H, assuming that
both heuristics start with the same list.

478 Chapter 17 Amortized Analysis

Chapter notes

Aho, Hopcroft, and Ullman [5] used aggregate analysis to determine the running
time of operations on a disjoint-set forest; we shall analyze this data structure us-
ing the potential method in Chapter 21. Tarjan [331] surveys the accounting and
potential methods of amortized analysis and presents several applications. He at-
tributes the accounting method to several authors, including M. R. Brown, R. E.
Tarjan, S. Huddleston, and K. Mehlhorn. He attributes the potential method to
D. D. Sleator. The term “amortized” is due to D. D. Sleator and R. E. Tarjan.

Potential functions are also useful for proving lower bounds for certain types of
problems. For each configuration of the problem, we define a potential function
that maps the configuration to a real number. Then we determine the potential ˆinit

of the initial configuration, the potential ˆfinal of the final configuration, and the
maximum change in potential �ˆmax due to any step. The number of steps must
therefore be at least jˆfinal �ˆinitj = j�ˆmaxj. Examples of potential functions to
prove lower bounds in I/O complexity appear in works by Cormen, Sundquist, and
Wisniewski [79]; Floyd [107]; and Aggarwal and Vitter [3]. Krumme, Cybenko,
and Venkataraman [221] applied potential functions to prove lower bounds on gos-
siping: communicating a unique item from each vertex in a graph to every other
vertex.

The move-to-front heuristic from Problem 17-5 works quite well in practice.
Moreover, if we recognize that when we find an element, we can splice it out of its
position in the list and relocate it to the front of the list in constant time, we can
show that the cost of move-to-front is at most twice the cost of any other heuristic
including, again, one that knows the entire access sequence in advance.

V Advanced Data Structures

Introduction

This part returns to studying data structures that support operations on dynamic
sets, but at a more advanced level than Part III. Two of the chapters, for example,
make extensive use of the amortized analysis techniques we saw in Chapter 17.

Chapter 18 presents B-trees, which are balanced search trees specifically de-
signed to be stored on disks. Because disks operate much more slowly than
random-access memory, we measure the performance of B-trees not only by how
much computing time the dynamic-set operations consume but also by how many
disk accesses they perform. For each B-tree operation, the number of disk accesses
increases with the height of the B-tree, but B-tree operations keep the height low.

Chapter 19 gives an implementation of a mergeable heap, which supports the
operations INSERT, MINIMUM, EXTRACT-MIN, and UNION.1 The UNION oper-
ation unites, or merges, two heaps. Fibonacci heaps—the data structure in Chap-
ter 19—also support the operations DELETE and DECREASE-KEY. We use amor-
tized time bounds to measure the performance of Fibonacci heaps. The opera-
tions INSERT, MINIMUM, and UNION take only O.1/ actual and amortized time
on Fibonacci heaps, and the operations EXTRACT-MIN and DELETE take O.lg n/

amortized time. The most significant advantage of Fibonacci heaps, however, is
that DECREASE-KEY takes only O.1/ amortized time. Because the DECREASE-

1As in Problem 10-2, we have defined a mergeable heap to support MINIMUM and EXTRACT-MIN,
and so we can also refer to it as a mergeable min-heap. Alternatively, if it supported MAXIMUM

and EXTRACT-MAX, it would be a mergeable max-heap. Unless we specify otherwise, mergeable
heaps will be by default mergeable min-heaps.

482 Part V Advanced Data Structures

KEY operation takes constant amortized time, Fibonacci heaps are key components
of some of the asymptotically fastest algorithms to date for graph problems.

Noting that we can beat the �.n lg n/ lower bound for sorting when the keys
are integers in a restricted range, Chapter 20 asks whether we can design a data
structure that supports the dynamic-set operations SEARCH, INSERT, DELETE,
MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in o.lg n/ time when
the keys are integers in a restricted range. The answer turns out to be that we can,
by using a recursive data structure known as a van Emde Boas tree. If the keys are
unique integers drawn from the set f0; 1; 2; : : : ; u � 1g, where u is an exact power
of 2, then van Emde Boas trees support each of the above operations in O.lg lg u/

time.
Finally, Chapter 21 presents data structures for disjoint sets. We have a universe

of n elements that are partitioned into dynamic sets. Initially, each element belongs
to its own singleton set. The operation UNION unites two sets, and the query FIND-
SET identifies the unique set that contains a given element at the moment. By
representing each set as a simple rooted tree, we obtain surprisingly fast operations:
a sequence of m operations runs in O.m ˛.n// time, where ˛.n/ is an incredibly
slowly growing function—˛.n/ is at most 4 in any conceivable application. The
amortized analysis that proves this time bound is as complex as the data structure
is simple.

The topics covered in this part are by no means the only examples of “advanced”
data structures. Other advanced data structures include the following:

� Dynamic trees, introduced by Sleator and Tarjan [319] and discussed by Tarjan
[330], maintain a forest of disjoint rooted trees. Each edge in each tree has
a real-valued cost. Dynamic trees support queries to find parents, roots, edge
costs, and the minimum edge cost on a simple path from a node up to a root.
Trees may be manipulated by cutting edges, updating all edge costs on a simple
path from a node up to a root, linking a root into another tree, and making a
node the root of the tree it appears in. One implementation of dynamic trees
gives an O.lg n/ amortized time bound for each operation; a more complicated
implementation yields O.lg n/ worst-case time bounds. Dynamic trees are used
in some of the asymptotically fastest network-flow algorithms.

� Splay trees, developed by Sleator and Tarjan [320] and, again, discussed by
Tarjan [330], are a form of binary search tree on which the standard search-
tree operations run in O.lg n/ amortized time. One application of splay trees
simplifies dynamic trees.

� Persistent data structures allow queries, and sometimes updates as well, on past
versions of a data structure. Driscoll, Sarnak, Sleator, and Tarjan [97] present
techniques for making linked data structures persistent with only a small time

Part V Advanced Data Structures 483

and space cost. Problem 13-1 gives a simple example of a persistent dynamic
set.

� As in Chapter 20, several data structures allow a faster implementation of dic-
tionary operations (INSERT, DELETE, and SEARCH) for a restricted universe
of keys. By taking advantage of these restrictions, they are able to achieve bet-
ter worst-case asymptotic running times than comparison-based data structures.
Fredman and Willard introduced fusion trees [115], which were the first data
structure to allow faster dictionary operations when the universe is restricted to
integers. They showed how to implement these operations in O.lg n= lg lg n/

time. Several subsequent data structures, including exponential search trees
[16], have also given improved bounds on some or all of the dictionary opera-
tions and are mentioned in the chapter notes throughout this book.

� Dynamic graph data structures support various queries while allowing the
structure of a graph to change through operations that insert or delete vertices
or edges. Examples of the queries that they support include vertex connectivity
[166], edge connectivity, minimum spanning trees [165], biconnectivity, and
transitive closure [164].

Chapter notes throughout this book mention additional data structures.

18 B-Trees

B-trees are balanced search trees designed to work well on disks or other direct-
access secondary storage devices. B-trees are similar to red-black trees (Chap-
ter 13), but they are better at minimizing disk I/O operations. Many database sys-
tems use B-trees, or variants of B-trees, to store information.

B-trees differ from red-black trees in that B-tree nodes may have many children,
from a few to thousands. That is, the “branching factor” of a B-tree can be quite
large, although it usually depends on characteristics of the disk unit used. B-trees
are similar to red-black trees in that every n-node B-tree has height O.lg n/. The
exact height of a B-tree can be considerably less than that of a red-black tree,
however, because its branching factor, and hence the base of the logarithm that
expresses its height, can be much larger. Therefore, we can also use B-trees to
implement many dynamic-set operations in time O.lg n/.

B-trees generalize binary search trees in a natural manner. Figure 18.1 shows a
simple B-tree. If an internal B-tree node x contains x:n keys, then x has x:nC 1

children. The keys in node x serve as dividing points separating the range of keys
handled by x into x:n C 1 subranges, each handled by one child of x. When
searching for a key in a B-tree, we make an .x:n C 1/-way decision based on
comparisons with the x:n keys stored at node x. The structure of leaf nodes differs
from that of internal nodes; we will examine these differences in Section 18.1.

Section 18.1 gives a precise definition of B-trees and proves that the height of
a B-tree grows only logarithmically with the number of nodes it contains. Sec-
tion 18.2 describes how to search for a key and insert a key into a B-tree, and
Section 18.3 discusses deletion. Before proceeding, however, we need to ask why
we evaluate data structures designed to work on a disk differently from data struc-
tures designed to work in main random-access memory.

Data structures on secondary storage

Computer systems take advantage of various technologies that provide memory
capacity. The primary memory (or main memory) of a computer system normally

Chapter 18 B-Trees 485

B C F G J K L

D H

N P R S V W Y Z

Q T X

M

T:root

Figure 18.1 A B-tree whose keys are the consonants of English. An internal node x containing
x:n keys has x:nC 1 children. All leaves are at the same depth in the tree. The lightly shaded nodes
are examined in a search for the letter R.

platter track

arms

read/write
head

spindle

Figure 18.2 A typical disk drive. It comprises one or more platters (two platters are shown here)
that rotate around a spindle. Each platter is read and written with a head at the end of an arm. Arms
rotate around a common pivot axis. A track is the surface that passes beneath the read/write head
when the head is stationary.

consists of silicon memory chips. This technology is typically more than an order
of magnitude more expensive per bit stored than magnetic storage technology, such
as tapes or disks. Most computer systems also have secondary storage based on
magnetic disks; the amount of such secondary storage often exceeds the amount of
primary memory by at least two orders of magnitude.

Figure 18.2 shows a typical disk drive. The drive consists of one or more plat-
ters, which rotate at a constant speed around a common spindle. A magnetizable
material covers the surface of each platter. The drive reads and writes each platter
by a head at the end of an arm. The arms can move their heads toward or away

486 Chapter 18 B-Trees

from the spindle. When a given head is stationary, the surface that passes under-
neath it is called a track. Multiple platters increase only the disk drive’s capacity
and not its performance.

Although disks are cheaper and have higher capacity than main memory, they are
much, much slower because they have moving mechanical parts.1 The mechanical
motion has two components: platter rotation and arm movement. As of this writing,
commodity disks rotate at speeds of 5400–15,000 revolutions per minute (RPM).
We typically see 15,000 RPM speeds in server-grade drives, 7200 RPM speeds
in drives for desktops, and 5400 RPM speeds in drives for laptops. Although
7200 RPM may seem fast, one rotation takes 8.33 milliseconds, which is over 5
orders of magnitude longer than the 50 nanosecond access times (more or less)
commonly found for silicon memory. In other words, if we have to wait a full rota-
tion for a particular item to come under the read/write head, we could access main
memory more than 100,000 times during that span. On average we have to wait
for only half a rotation, but still, the difference in access times for silicon memory
compared with disks is enormous. Moving the arms also takes some time. As of
this writing, average access times for commodity disks are in the range of 8 to 11
milliseconds.

In order to amortize the time spent waiting for mechanical movements, disks
access not just one item but several at a time. Information is divided into a number
of equal-sized pages of bits that appear consecutively within tracks, and each disk
read or write is of one or more entire pages. For a typical disk, a page might be 211

to 214 bytes in length. Once the read/write head is positioned correctly and the disk
has rotated to the beginning of the desired page, reading or writing a magnetic disk
is entirely electronic (aside from the rotation of the disk), and the disk can quickly
read or write large amounts of data.

Often, accessing a page of information and reading it from a disk takes longer
than examining all the information read. For this reason, in this chapter we shall
look separately at the two principal components of the running time:

� the number of disk accesses, and

� the CPU (computing) time.

We measure the number of disk accesses in terms of the number of pages of infor-
mation that need to be read from or written to the disk. We note that disk-access
time is not constant—it depends on the distance between the current track and
the desired track and also on the initial rotational position of the disk. We shall

1As of this writing, solid-state drives have recently come onto the consumer market. Although they
are faster than mechanical disk drives, they cost more per gigabyte and have lower capacities than
mechanical disk drives.

Chapter 18 B-Trees 487

nonetheless use the number of pages read or written as a first-order approximation
of the total time spent accessing the disk.

In a typical B-tree application, the amount of data handled is so large that all
the data do not fit into main memory at once. The B-tree algorithms copy selected
pages from disk into main memory as needed and write back onto disk the pages
that have changed. B-tree algorithms keep only a constant number of pages in
main memory at any time; thus, the size of main memory does not limit the size of
B-trees that can be handled.

We model disk operations in our pseudocode as follows. Let x be a pointer to an
object. If the object is currently in the computer’s main memory, then we can refer
to the attributes of the object as usual: x:key, for example. If the object referred to
by x resides on disk, however, then we must perform the operation DISK-READ.x/

to read object x into main memory before we can refer to its attributes. (We as-
sume that if x is already in main memory, then DISK-READ.x/ requires no disk
accesses; it is a “no-op.”) Similarly, the operation DISK-WRITE.x/ is used to save
any changes that have been made to the attributes of object x. That is, the typical
pattern for working with an object is as follows:

x D a pointer to some object
DISK-READ.x/

operations that access and/or modify the attributes of x

DISK-WRITE.x/ // omitted if no attributes of x were changed
other operations that access but do not modify attributes of x

The system can keep only a limited number of pages in main memory at any one
time. We shall assume that the system flushes from main memory pages no longer
in use; our B-tree algorithms will ignore this issue.

Since in most systems the running time of a B-tree algorithm depends primar-
ily on the number of DISK-READ and DISK-WRITE operations it performs, we
typically want each of these operations to read or write as much information as
possible. Thus, a B-tree node is usually as large as a whole disk page, and this size
limits the number of children a B-tree node can have.

For a large B-tree stored on a disk, we often see branching factors between 50

and 2000, depending on the size of a key relative to the size of a page. A large
branching factor dramatically reduces both the height of the tree and the number of
disk accesses required to find any key. Figure 18.3 shows a B-tree with a branching
factor of 1001 and height 2 that can store over one billion keys; nevertheless, since
we can keep the root node permanently in main memory, we can find any key in
this tree by making at most only two disk accesses.

488 Chapter 18 B-Trees

1000

1001

1000

1001

1000

1001

1000

1001

100010001000

…

1 node,
 1000 keys

1001 nodes,
 1,001,000 keys

1,002,001 nodes,
 1,002,001,000 keys

…

T:root

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x

is x:n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has
1001 nodes at depth 1 and over one million leaves at depth 2.

18.1 Definition of B-trees

To keep things simple, we assume, as we have for binary search trees and red-black
trees, that any “satellite information” associated with a key resides in the same
node as the key. In practice, one might actually store with each key just a pointer to
another disk page containing the satellite information for that key. The pseudocode
in this chapter implicitly assumes that the satellite information associated with a
key, or the pointer to such satellite information, travels with the key whenever the
key is moved from node to node. A common variant on a B-tree, known as a
BC-tree, stores all the satellite information in the leaves and stores only keys and
child pointers in the internal nodes, thus maximizing the branching factor of the
internal nodes.

A B-tree T is a rooted tree (whose root is T:root) having the following proper-
ties:

1. Every node x has the following attributes:

a. x:n, the number of keys currently stored in node x,

b. the x:n keys themselves, x:key1; x:key2; : : : ; x:keyx: n, stored in nondecreas-
ing order, so that x:key1 � x:key2 � � � � � x:keyx: n,

c. x: leaf , a boolean value that is TRUE if x is a leaf and FALSE if x is an internal
node.

2. Each internal node x also contains x:nC 1 pointers x:c1; x:c2; : : : ; x:cx: nC1 to
its children. Leaf nodes have no children, and so their ci attributes are unde-
fined.

18.1 Definition of B-trees 489

3. The keys x:keyi separate the ranges of keys stored in each subtree: if ki is any
key stored in the subtree with root x:ci , then

k1 � x:key1 � k2 � x:key2 � � � � � x:keyx: n � kx: nC1 :

4. All leaves have the same depth, which is the tree’s height h.

5. Nodes have lower and upper bounds on the number of keys they can contain.
We express these bounds in terms of a fixed integer t � 2 called the minimum
degree of the B-tree:

a. Every node other than the root must have at least t � 1 keys. Every internal
node other than the root thus has at least t children. If the tree is nonempty,
the root must have at least one key.

b. Every node may contain at most 2t � 1 keys. Therefore, an internal node
may have at most 2t children. We say that a node is full if it contains exactly
2t � 1 keys.2

The simplest B-tree occurs when t D 2. Every internal node then has either 2,
3, or 4 children, and we have a 2-3-4 tree. In practice, however, much larger values
of t yield B-trees with smaller height.

The height of a B-tree

The number of disk accesses required for most operations on a B-tree is propor-
tional to the height of the B-tree. We now analyze the worst-case height of a B-tree.

Theorem 18.1
If n � 1, then for any n-key B-tree T of height h and minimum degree t � 2,

h � logt

nC 1

2
:

Proof The root of a B-tree T contains at least one key, and all other nodes contain
at least t � 1 keys. Thus, T , whose height is h, has at least 2 nodes at depth 1, at
least 2t nodes at depth 2, at least 2t2 nodes at depth 3, and so on, until at depth h

it has at least 2th�1 nodes. Figure 18.4 illustrates such a tree for h D 3. Thus, the

2Another common variant on a B-tree, known as a B�-tree, requires each internal node to be at
least 2=3 full, rather than at least half full, as a B-tree requires.

490 Chapter 18 B-Trees

t – 1

t – 1 t – 1…
t

t – 1

t

…

1

t – 1

t – 1 t – 1…
t

t – 1

t – 1 t – 1…
t

t – 1

t

… t – 1

t – 1 t – 1…
t

depth
number
of nodes

3 2t2

1

2

0 1

2

2t

T:root

Figure 18.4 A B-tree of height 3 containing a minimum possible number of keys. Shown inside
each node x is x:n.

number n of keys satisfies the inequality

n � 1C .t � 1/

hX
iD1

2t i�1

D 1C 2.t � 1/

�
th � 1

t � 1

�
D 2th � 1 :

By simple algebra, we get th � .nC 1/=2. Taking base-t logarithms of both sides
proves the theorem.

Here we see the power of B-trees, as compared with red-black trees. Although
the height of the tree grows as O.lg n/ in both cases (recall that t is a constant), for
B-trees the base of the logarithm can be many times larger. Thus, B-trees save a
factor of about lg t over red-black trees in the number of nodes examined for most
tree operations. Because we usually have to access the disk to examine an arbitrary
node in a tree, B-trees avoid a substantial number of disk accesses.

Exercises

18.1-1
Why don’t we allow a minimum degree of t D 1?

18.1-2
For what values of t is the tree of Figure 18.1 a legal B-tree?

18.2 Basic operations on B-trees 491

18.1-3
Show all legal B-trees of minimum degree 2 that represent f1; 2; 3; 4; 5g.
18.1-4
As a function of the minimum degree t , what is the maximum number of keys that
can be stored in a B-tree of height h?

18.1-5
Describe the data structure that would result if each black node in a red-black tree
were to absorb its red children, incorporating their children with its own.

18.2 Basic operations on B-trees

In this section, we present the details of the operations B-TREE-SEARCH, B-
TREE-CREATE, and B-TREE-INSERT. In these procedures, we adopt two con-
ventions:

� The root of the B-tree is always in main memory, so that we never need to
perform a DISK-READ on the root; we do have to perform a DISK-WRITE of
the root, however, whenever the root node is changed.

� Any nodes that are passed as parameters must already have had a DISK-READ

operation performed on them.

The procedures we present are all “one-pass” algorithms that proceed downward
from the root of the tree, without having to back up.

Searching a B-tree

Searching a B-tree is much like searching a binary search tree, except that instead
of making a binary, or “two-way,” branching decision at each node, we make a
multiway branching decision according to the number of the node’s children. More
precisely, at each internal node x, we make an .x:nC 1/-way branching decision.

B-TREE-SEARCH is a straightforward generalization of the TREE-SEARCH pro-
cedure defined for binary search trees. B-TREE-SEARCH takes as input a pointer
to the root node x of a subtree and a key k to be searched for in that subtree. The
top-level call is thus of the form B-TREE-SEARCH.T:root; k/. If k is in the B-tree,
B-TREE-SEARCH returns the ordered pair .y; i/ consisting of a node y and an
index i such that y:keyi D k. Otherwise, the procedure returns NIL.

492 Chapter 18 B-Trees

B-TREE-SEARCH.x; k/

1 i D 1

2 while i � x:n and k > x:keyi

3 i D i C 1

4 if i � x:n and k == x:keyi

5 return .x; i/

6 elseif x: leaf
7 return NIL

8 else DISK-READ.x:ci/

9 return B-TREE-SEARCH.x:ci ; k/

Using a linear-search procedure, lines 1–3 find the smallest index i such that
k � x:keyi , or else they set i to x:n C 1. Lines 4–5 check to see whether we
have now discovered the key, returning if we have. Otherwise, lines 6–9 either ter-
minate the search unsuccessfully (if x is a leaf) or recurse to search the appropriate
subtree of x, after performing the necessary DISK-READ on that child.

Figure 18.1 illustrates the operation of B-TREE-SEARCH. The procedure exam-
ines the lightly shaded nodes during a search for the key R.

As in the TREE-SEARCH procedure for binary search trees, the nodes encoun-
tered during the recursion form a simple path downward from the root of the
tree. The B-TREE-SEARCH procedure therefore accesses O.h/ D O.logt n/ disk
pages, where h is the height of the B-tree and n is the number of keys in the B-tree.
Since x:n < 2t , the while loop of lines 2–3 takes O.t/ time within each node, and
the total CPU time is O.th/ D O.t logt n/.

Creating an empty B-tree

To build a B-tree T , we first use B-TREE-CREATE to create an empty root node
and then call B-TREE-INSERT to add new keys. Both of these procedures use an
auxiliary procedure ALLOCATE-NODE, which allocates one disk page to be used
as a new node in O.1/ time. We can assume that a node created by ALLOCATE-
NODE requires no DISK-READ, since there is as yet no useful information stored
on the disk for that node.

B-TREE-CREATE.T /

1 x D ALLOCATE-NODE./

2 x: leaf D TRUE

3 x:n D 0

4 DISK-WRITE.x/

5 T:root D x

B-TREE-CREATE requires O.1/ disk operations and O.1/ CPU time.

18.2 Basic operations on B-trees 493

Inserting a key into a B-tree

Inserting a key into a B-tree is significantly more complicated than inserting a key
into a binary search tree. As with binary search trees, we search for the leaf position
at which to insert the new key. With a B-tree, however, we cannot simply create
a new leaf node and insert it, as the resulting tree would fail to be a valid B-tree.
Instead, we insert the new key into an existing leaf node. Since we cannot insert a
key into a leaf node that is full, we introduce an operation that splits a full node y

(having 2t�1 keys) around itsmedian key y:keyt into two nodes having only t�1

keys each. The median key moves up into y’s parent to identify the dividing point
between the two new trees. But if y’s parent is also full, we must split it before we
can insert the new key, and thus we could end up splitting full nodes all the way up
the tree.

As with a binary search tree, we can insert a key into a B-tree in a single pass
down the tree from the root to a leaf. To do so, we do not wait to find out whether
we will actually need to split a full node in order to do the insertion. Instead, as we
travel down the tree searching for the position where the new key belongs, we split
each full node we come to along the way (including the leaf itself). Thus whenever
we want to split a full node y, we are assured that its parent is not full.

Splitting a node in a B-tree
The procedure B-TREE-SPLIT-CHILD takes as input a nonfull internal node x (as-
sumed to be in main memory) and an index i such that x:ci (also assumed to be in
main memory) is a full child of x. The procedure then splits this child in two and
adjusts x so that it has an additional child. To split a full root, we will first make the
root a child of a new empty root node, so that we can use B-TREE-SPLIT-CHILD.
The tree thus grows in height by one; splitting is the only means by which the tree
grows.

Figure 18.5 illustrates this process. We split the full node y D x:ci about its
median key S , which moves up into y’s parent node x. Those keys in y that are
greater than the median key move into a new node ´, which becomes a new child
of x.

494 Chapter 18 B-Trees

R S TQP U V

N W… …

RQP T U V

N WS… …
xx

T1T1 T2T2 T3T3 T4T4 T5T5 T6T6 T7T7 T8T8

y D x:ciy D x:ci ´ D x:ciC1

x:k
ey i�1

x:k
ey i�1

x:k
ey i

x:k
ey i

x:k
ey iC

1

Figure 18.5 Splitting a node with t D 4. Node y D x:ci splits into two nodes, y and ´, and the
median key S of y moves up into y’s parent.

B-TREE-SPLIT-CHILD.x; i/

1 ´ D ALLOCATE-NODE./

2 y D x:ci

3 ´: leaf D y: leaf
4 ´:n D t � 1

5 for j D 1 to t � 1

6 ´:keyj D y:keyj Ct

7 if not y: leaf
8 for j D 1 to t

9 ´:cj D y:cj Ct

10 y:n D t � 1

11 for j D x:n C 1 downto i C 1

12 x:cj C1 D x:cj

13 x:ciC1 D ´

14 for j D x:n downto i

15 x:keyj C1 D x:keyj

16 x:keyi D y:keyt

17 x:n D x:n C 1

18 DISK-WRITE.y/

19 DISK-WRITE.´/

20 DISK-WRITE.x/

B-TREE-SPLIT-CHILD works by straightforward “cutting and pasting.” Here, x

is the node being split, and y is x’s i th child (set in line 2). Node y originally has 2t

children (2t � 1 keys) but is reduced to t children (t � 1 keys) by this operation.
Node ´ takes the t largest children (t � 1 keys) from y, and ´ becomes a new child

18.2 Basic operations on B-trees 495

of x, positioned just after y in x’s table of children. The median key of y moves
up to become the key in x that separates y and ´.

Lines 1–9 create node ´ and give it the largest t � 1 keys and corresponding t

children of y. Line 10 adjusts the key count for y. Finally, lines 11–17 insert ´ as
a child of x, move the median key from y up to x in order to separate y from ´,
and adjust x’s key count. Lines 18–20 write out all modified disk pages. The
CPU time used by B-TREE-SPLIT-CHILD is ‚.t/, due to the loops on lines 5–6
and 8–9. (The other loops run for O.t/ iterations.) The procedure performs O.1/

disk operations.

Inserting a key into a B-tree in a single pass down the tree
We insert a key k into a B-tree T of height h in a single pass down the tree, re-
quiring O.h/ disk accesses. The CPU time required is O.th/ D O.t logt n/. The
B-TREE-INSERT procedure uses B-TREE-SPLIT-CHILD to guarantee that the re-
cursion never descends to a full node.

B-TREE-INSERT.T; k/

1 r D T:root
2 if r:n == 2t � 1

3 s D ALLOCATE-NODE./

4 T:root D s

5 s: leaf D FALSE

6 s:n D 0

7 s:c1 D r

8 B-TREE-SPLIT-CHILD.s; 1/

9 B-TREE-INSERT-NONFULL.s; k/

10 else B-TREE-INSERT-NONFULL.r; k/

Lines 3–9 handle the case in which the root node r is full: the root splits and a
new node s (having two children) becomes the root. Splitting the root is the only
way to increase the height of a B-tree. Figure 18.6 illustrates this case. Unlike a
binary search tree, a B-tree increases in height at the top instead of at the bottom.
The procedure finishes by calling B-TREE-INSERT-NONFULL to insert key k into
the tree rooted at the nonfull root node. B-TREE-INSERT-NONFULL recurses as
necessary down the tree, at all times guaranteeing that the node to which it recurses
is not full by calling B-TREE-SPLIT-CHILD as necessary.

The auxiliary recursive procedure B-TREE-INSERT-NONFULL inserts key k into
node x, which is assumed to be nonfull when the procedure is called. The operation
of B-TREE-INSERT and the recursive operation of B-TREE-INSERT-NONFULL

guarantee that this assumption is true.

496 Chapter 18 B-Trees

T8T7T6T5T4T3T2T1T8T7T6T5T4T3T2T1

F H LDA N P FDA L N P

s

H

r r

T:root

T:root

Figure 18.6 Splitting the root with t D 4. Root node r splits in two, and a new root node s is
created. The new root contains the median key of r and has the two halves of r as children. The
B-tree grows in height by one when the root is split.

B-TREE-INSERT-NONFULL.x; k/

1 i D x:n
2 if x: leaf
3 while i � 1 and k < x:keyi

4 x:keyiC1 D x:keyi

5 i D i � 1

6 x:keyiC1 D k

7 x:n D x:nC 1

8 DISK-WRITE.x/

9 else while i � 1 and k < x:keyi

10 i D i � 1

11 i D i C 1

12 DISK-READ.x:ci/

13 if x:ci :n == 2t � 1

14 B-TREE-SPLIT-CHILD.x; i/

15 if k > x:keyi

16 i D i C 1

17 B-TREE-INSERT-NONFULL.x:ci ; k/

The B-TREE-INSERT-NONFULL procedure works as follows. Lines 3–8 handle
the case in which x is a leaf node by inserting key k into x. If x is not a leaf
node, then we must insert k into the appropriate leaf node in the subtree rooted
at internal node x. In this case, lines 9–11 determine the child of x to which the
recursion descends. Line 13 detects whether the recursion would descend to a full
child, in which case line 14 uses B-TREE-SPLIT-CHILD to split that child into two
nonfull children, and lines 15–16 determine which of the two children is now the

18.2 Basic operations on B-trees 497

correct one to descend to. (Note that there is no need for a DISK-READ.x:ci/ after
line 16 increments i , since the recursion will descend in this case to a child that
was just created by B-TREE-SPLIT-CHILD.) The net effect of lines 13–16 is thus
to guarantee that the procedure never recurses to a full node. Line 17 then recurses
to insert k into the appropriate subtree. Figure 18.7 illustrates the various cases of
inserting into a B-tree.

For a B-tree of height h, B-TREE-INSERT performs O.h/ disk accesses, since
only O.1/ DISK-READ and DISK-WRITE operations occur between calls to
B-TREE-INSERT-NONFULL. The total CPU time used is O.th/ D O.t logt n/.
Since B-TREE-INSERT-NONFULL is tail-recursive, we can alternatively imple-
ment it as a while loop, thereby demonstrating that the number of pages that need
to be in main memory at any time is O.1/.

Exercises

18.2-1
Show the results of inserting the keys

F; S; Q; K; C; L; H; T; V; W; M; R; N; P; A; B; X; Y; D; Z; E

in order into an empty B-tree with minimum degree 2. Draw only the configura-
tions of the tree just before some node must split, and also draw the final configu-
ration.

18.2-2
Explain under what circumstances, if any, redundant DISK-READ or DISK-WRITE

operations occur during the course of executing a call to B-TREE-INSERT. (A
redundant DISK-READ is a DISK-READ for a page that is already in memory.
A redundant DISK-WRITE writes to disk a page of information that is identical to
what is already stored there.)

18.2-3
Explain how to find the minimum key stored in a B-tree and how to find the prede-
cessor of a given key stored in a B-tree.

18.2-4 ?

Suppose that we insert the keys f1; 2; : : : ; ng into an empty B-tree with minimum
degree 2. How many nodes does the final B-tree have?

18.2-5
Since leaf nodes require no pointers to children, they could conceivably use a dif-
ferent (larger) t value than internal nodes for the same disk page size. Show how
to modify the procedures for creating and inserting into a B-tree to handle this
variation.

498 Chapter 18 B-Trees

J K N O R S TD ECA U V Y Z

P XMG(a)

J K N O R S TD EBA U V Y Z

P XMG(b)

C

J K N OD EBA U V Y Z

P XMG(c)

C R SQ

T

J K N OD EBA U V Y Z

MG

(d)

C R SQL

P

XT

J K N OD EBA U V Y Z

MG

(e)

C

R SQL

P

XT

F

Q inserted

L inserted

F inserted

initial tree

B inserted

Figure 18.7 Inserting keys into a B-tree. The minimum degree t for this B-tree is 3, so a node can
hold at most 5 keys. Nodes that are modified by the insertion process are lightly shaded. (a) The
initial tree for this example. (b) The result of inserting B into the initial tree; this is a simple insertion
into a leaf node. (c) The result of inserting Q into the previous tree. The node RST U V splits into
two nodes containing RS and U V , the key T moves up to the root, and Q is inserted in the leftmost
of the two halves (the RS node). (d) The result of inserting L into the previous tree. The root
splits right away, since it is full, and the B-tree grows in height by one. Then L is inserted into the
leaf containing JK. (e) The result of inserting F into the previous tree. The node ABCDE splits
before F is inserted into the rightmost of the two halves (the DE node).

18.3 Deleting a key from a B-tree 499

18.2-6
Suppose that we were to implement B-TREE-SEARCH to use binary search rather
than linear search within each node. Show that this change makes the CPU time
required O.lg n/, independently of how t might be chosen as a function of n.

18.2-7
Suppose that disk hardware allows us to choose the size of a disk page arbitrarily,
but that the time it takes to read the disk page is aCbt , where a and b are specified
constants and t is the minimum degree for a B-tree using pages of the selected size.
Describe how to choose t so as to minimize (approximately) the B-tree search time.
Suggest an optimal value of t for the case in which a D 5 milliseconds and b D 10

microseconds.

18.3 Deleting a key from a B-tree

Deletion from a B-tree is analogous to insertion but a little more complicated, be-
cause we can delete a key from any node—not just a leaf—and when we delete a
key from an internal node, we will have to rearrange the node’s children. As in
insertion, we must guard against deletion producing a tree whose structure violates
the B-tree properties. Just as we had to ensure that a node didn’t get too big due to
insertion, we must ensure that a node doesn’t get too small during deletion (except
that the root is allowed to have fewer than the minimum number t � 1 of keys).
Just as a simple insertion algorithm might have to back up if a node on the path
to where the key was to be inserted was full, a simple approach to deletion might
have to back up if a node (other than the root) along the path to where the key is to
be deleted has the minimum number of keys.

The procedure B-TREE-DELETE deletes the key k from the subtree rooted at x.
We design this procedure to guarantee that whenever it calls itself recursively on a
node x, the number of keys in x is at least the minimum degree t . Note that this
condition requires one more key than the minimum required by the usual B-tree
conditions, so that sometimes a key may have to be moved into a child node before
recursion descends to that child. This strengthened condition allows us to delete a
key from the tree in one downward pass without having to “back up” (with one ex-
ception, which we’ll explain). You should interpret the following specification for
deletion from a B-tree with the understanding that if the root node x ever becomes
an internal node having no keys (this situation can occur in cases 2c and 3b on
pages 501–502), then we delete x, and x’s only child x:c1 becomes the new root
of the tree, decreasing the height of the tree by one and preserving the property that
the root of the tree contains at least one key (unless the tree is empty).

500 Chapter 18 B-Trees

J K N OD EBA U V Y Z

MG

(a)

C

R SQL

P

XT

F

initial tree

J K N OD EBA U V Y Z

MG

(b)

C

R SQL

P

XT

F deleted: case 1

J K N OD EBA U V Y Z

G

(c)

C

R SQ

L

P

XT

M deleted: case 2a

J K N OD EBA U V Y Z

(d)

C

R SQ

L

P

XT

G deleted: case 2c

Figure 18.8 Deleting keys from a B-tree. The minimum degree for this B-tree is t D 3, so a node
(other than the root) cannot have fewer than 2 keys. Nodes that are modified are lightly shaded.
(a) The B-tree of Figure 18.7(e). (b) Deletion of F . This is case 1: simple deletion from a leaf.
(c) Deletion of M . This is case 2a: the predecessor L of M moves up to take M ’s position. (d)Dele-
tion of G. This is case 2c: we push G down to make node DEGJK and then delete G from this leaf
(case 1).

We sketch how deletion works instead of presenting the pseudocode. Figure 18.8
illustrates the various cases of deleting keys from a B-tree.

1. If the key k is in node x and x is a leaf, delete the key k from x.

2. If the key k is in node x and x is an internal node, do the following:

18.3 Deleting a key from a B-tree 501

J K N OEBA U V Y Z

(e)

C

R SQ

L P XT

D deleted: case 3b

J K N OEBA U V Y Z

C

R SQ

L P XT

J K N OA U V Y ZC R SQ

L P XT(f) B deleted: case 3a E

(e′) tree shrinks
in height

Figure 18.8, continued (e) Deletion of D. This is case 3b: the recursion cannot descend to
node CL because it has only 2 keys, so we push P down and merge it with CL and TX to form
CLP TX ; then we delete D from a leaf (case 1). (e0)After (e), we delete the root and the tree shrinks
in height by one. (f) Deletion of B . This is case 3a: C moves to fill B’s position and E moves to
fill C ’s position.

a. If the child y that precedes k in node x has at least t keys, then find the
predecessor k0 of k in the subtree rooted at y. Recursively delete k0, and
replace k by k0 in x. (We can find k0 and delete it in a single downward
pass.)

b. If y has fewer than t keys, then, symmetrically, examine the child ´ that
follows k in node x. If ´ has at least t keys, then find the successor k0 of k in
the subtree rooted at ´. Recursively delete k0, and replace k by k0 in x. (We
can find k0 and delete it in a single downward pass.)

c. Otherwise, if both y and ´ have only t � 1 keys, merge k and all of ´ into y,
so that x loses both k and the pointer to ´, and y now contains 2t � 1 keys.
Then free ´ and recursively delete k from y.

3. If the key k is not present in internal node x, determine the root x:ci of the
appropriate subtree that must contain k, if k is in the tree at all. If x:ci has
only t �1 keys, execute step 3a or 3b as necessary to guarantee that we descend
to a node containing at least t keys. Then finish by recursing on the appropriate
child of x.

502 Chapter 18 B-Trees

a. If x:ci has only t � 1 keys but has an immediate sibling with at least t keys,
give x:ci an extra key by moving a key from x down into x:ci , moving a
key from x:ci ’s immediate left or right sibling up into x, and moving the
appropriate child pointer from the sibling into x:ci .

b. If x:ci and both of x:ci ’s immediate siblings have t � 1 keys, merge x:ci

with one sibling, which involves moving a key from x down into the new
merged node to become the median key for that node.

Since most of the keys in a B-tree are in the leaves, we may expect that in
practice, deletion operations are most often used to delete keys from leaves. The
B-TREE-DELETE procedure then acts in one downward pass through the tree,
without having to back up. When deleting a key in an internal node, however,
the procedure makes a downward pass through the tree but may have to return to
the node from which the key was deleted to replace the key with its predecessor or
successor (cases 2a and 2b).

Although this procedure seems complicated, it involves only O.h/ disk oper-
ations for a B-tree of height h, since only O.1/ calls to DISK-READ and DISK-
WRITE are made between recursive invocations of the procedure. The CPU time
required is O.th/ D O.t logt n/.

Exercises

18.3-1
Show the results of deleting C , P , and V , in order, from the tree of Figure 18.8(f).

18.3-2
Write pseudocode for B-TREE-DELETE.

Problems

18-1 Stacks on secondary storage
Consider implementing a stack in a computer that has a relatively small amount
of fast primary memory and a relatively large amount of slower disk storage. The
operations PUSH and POP work on single-word values. The stack we wish to
support can grow to be much larger than can fit in memory, and thus most of it
must be stored on disk.

A simple, but inefficient, stack implementation keeps the entire stack on disk.
We maintain in memory a stack pointer, which is the disk address of the top element
on the stack. If the pointer has value p, the top element is the .p mod m/th word
on page bp=mc of the disk, where m is the number of words per page.

Problems for Chapter 18 503

To implement the PUSH operation, we increment the stack pointer, read the ap-
propriate page into memory from disk, copy the element to be pushed to the ap-
propriate word on the page, and write the page back to disk. A POP operation is
similar. We decrement the stack pointer, read in the appropriate page from disk,
and return the top of the stack. We need not write back the page, since it was not
modified.

Because disk operations are relatively expensive, we count two costs for any
implementation: the total number of disk accesses and the total CPU time. Any
disk access to a page of m words incurs charges of one disk access and ‚.m/ CPU
time.

a. Asymptotically, what is the worst-case number of disk accesses for n stack
operations using this simple implementation? What is the CPU time for n stack
operations? (Express your answer in terms of m and n for this and subsequent
parts.)

Now consider a stack implementation in which we keep one page of the stack in
memory. (We also maintain a small amount of memory to keep track of which page
is currently in memory.) We can perform a stack operation only if the relevant disk
page resides in memory. If necessary, we can write the page currently in memory
to the disk and read in the new page from the disk to memory. If the relevant disk
page is already in memory, then no disk accesses are required.

b. What is the worst-case number of disk accesses required for n PUSH opera-
tions? What is the CPU time?

c. What is the worst-case number of disk accesses required for n stack operations?
What is the CPU time?

Suppose that we now implement the stack by keeping two pages in memory (in
addition to a small number of words for bookkeeping).

d. Describe how to manage the stack pages so that the amortized number of disk
accesses for any stack operation is O.1=m/ and the amortized CPU time for
any stack operation is O.1/.

18-2 Joining and splitting 2-3-4 trees
The join operation takes two dynamic sets S 0 and S 00 and an element x such that
for any x 0 2 S 0 and x 00 2 S 00, we have x 0:key < x:key < x 00:key. It returns a set
S D S 0 [fxg [S 00. The split operation is like an “inverse” join: given a dynamic
set S and an element x 2 S , it creates a set S 0 that consists of all elements in
S � fxg whose keys are less than x:key and a set S 00 that consists of all elements
in S � fxg whose keys are greater than x:key. In this problem, we investigate

504 Chapter 18 B-Trees

how to implement these operations on 2-3-4 trees. We assume for convenience that
elements consist only of keys and that all key values are distinct.

a. Show how to maintain, for every node x of a 2-3-4 tree, the height of the subtree
rooted at x as an attribute x:height. Make sure that your implementation does
not affect the asymptotic running times of searching, insertion, and deletion.

b. Show how to implement the join operation. Given two 2-3-4 trees T 0 and T 00

and a key k, the join operation should run in O.1 C jh0 � h00j/ time, where h0

and h00 are the heights of T 0 and T 00, respectively.

c. Consider the simple path p from the root of a 2-3-4 tree T to a given key k,
the set S 0 of keys in T that are less than k, and the set S 00 of keys in T that are
greater than k. Show that p breaks S 0 into a set of trees fT 0

0; T 0
1; : : : ; T 0

mg and a
set of keys fk0

1; k0
2; : : : ; k0

mg, where, for i D 1; 2; : : : ; m, we have y < k0
i < ´

for any keys y 2 T 0
i�1 and ´ 2 T 0

i . What is the relationship between the heights
of T 0

i�1 and T 0
i ? Describe how p breaks S 00 into sets of trees and keys.

d. Show how to implement the split operation on T . Use the join operation to
assemble the keys in S 0 into a single 2-3-4 tree T 0 and the keys in S 00 into a
single 2-3-4 tree T 00. The running time of the split operation should be O.lg n/,
where n is the number of keys in T . (Hint: The costs for joining should tele-
scope.)

Chapter notes

Knuth [211], Aho, Hopcroft, and Ullman [5], and Sedgewick [306] give further
discussions of balanced-tree schemes and B-trees. Comer [74] provides a compre-
hensive survey of B-trees. Guibas and Sedgewick [155] discuss the relationships
among various kinds of balanced-tree schemes, including red-black trees and 2-3-4
trees.

In 1970, J. E. Hopcroft invented 2-3 trees, a precursor to B-trees and 2-3-4
trees, in which every internal node has either two or three children. Bayer and
McCreight [35] introduced B-trees in 1972; they did not explain their choice of
name.

Bender, Demaine, and Farach-Colton [40] studied how to make B-trees perform
well in the presence of memory-hierarchy effects. Their cache-oblivious algo-
rithms work efficiently without explicitly knowing the data transfer sizes within
the memory hierarchy.

19 Fibonacci Heaps

The Fibonacci heap data structure serves a dual purpose. First, it supports a set of
operations that constitutes what is known as a “mergeable heap.” Second, several
Fibonacci-heap operations run in constant amortized time, which makes this data
structure well suited for applications that invoke these operations frequently.

Mergeable heaps

Amergeable heap is any data structure that supports the following five operations,
in which each element has a key:

MAKE-HEAP./ creates and returns a new heap containing no elements.

INSERT.H; x/ inserts element x, whose key has already been filled in, into heap H .

MINIMUM.H/ returns a pointer to the element in heap H whose key is minimum.

EXTRACT-MIN.H/ deletes the element from heap H whose key is minimum, re-
turning a pointer to the element.

UNION.H1; H2/ creates and returns a new heap that contains all the elements of
heaps H1 and H2. Heaps H1 and H2 are “destroyed” by this operation.

In addition to the mergeable-heap operations above, Fibonacci heaps also support
the following two operations:

DECREASE-KEY.H; x; k/ assigns to element x within heap H the new key
value k, which we assume to be no greater than its current key value.1

DELETE.H; x/ deletes element x from heap H .

1As mentioned in the introduction to Part V, our default mergeable heaps are mergeable min-
heaps, and so the operations MINIMUM, EXTRACT-MIN, and DECREASE-KEY apply. Alterna-
tively, we could define a mergeable max-heap with the operations MAXIMUM, EXTRACT-MAX,
and INCREASE-KEY.

506 Chapter 19 Fibonacci Heaps

Binary heap Fibonacci heap
Procedure (worst-case) (amortized)

MAKE-HEAP ‚.1/ ‚.1/

INSERT ‚.lg n/ ‚.1/

MINIMUM ‚.1/ ‚.1/

EXTRACT-MIN ‚.lg n/ O.lg n/

UNION ‚.n/ ‚.1/

DECREASE-KEY ‚.lg n/ ‚.1/

DELETE ‚.lg n/ O.lg n/

Figure 19.1 Running times for operations on two implementations of mergeable heaps. The num-
ber of items in the heap(s) at the time of an operation is denoted by n.

As the table in Figure 19.1 shows, if we don’t need the UNION operation, ordi-
nary binary heaps, as used in heapsort (Chapter 6), work fairly well. Operations
other than UNION run in worst-case time O.lg n/ on a binary heap. If we need
to support the UNION operation, however, binary heaps perform poorly. By con-
catenating the two arrays that hold the binary heaps to be merged and then running
BUILD-MIN-HEAP (see Section 6.3), the UNION operation takes ‚.n/ time in the
worst case.

Fibonacci heaps, on the other hand, have better asymptotic time bounds than
binary heaps for the INSERT, UNION, and DECREASE-KEY operations, and they
have the same asymptotic running times for the remaining operations. Note, how-
ever, that the running times for Fibonacci heaps in Figure 19.1 are amortized time
bounds, not worst-case per-operation time bounds. The UNION operation takes
only constant amortized time in a Fibonacci heap, which is significantly better
than the linear worst-case time required in a binary heap (assuming, of course, that
an amortized time bound suffices).

Fibonacci heaps in theory and practice

From a theoretical standpoint, Fibonacci heaps are especially desirable when the
number of EXTRACT-MIN and DELETE operations is small relative to the number
of other operations performed. This situation arises in many applications. For
example, some algorithms for graph problems may call DECREASE-KEY once per
edge. For dense graphs, which have many edges, the ‚.1/ amortized time of each
call of DECREASE-KEY adds up to a big improvement over the ‚.lg n/ worst-case
time of binary heaps. Fast algorithms for problems such as computing minimum
spanning trees (Chapter 23) and finding single-source shortest paths (Chapter 24)
make essential use of Fibonacci heaps.

19.1 Structure of Fibonacci heaps 507

From a practical point of view, however, the constant factors and program-
ming complexity of Fibonacci heaps make them less desirable than ordinary binary
(or k-ary) heaps for most applications, except for certain applications that manage
large amounts of data. Thus, Fibonacci heaps are predominantly of theoretical in-
terest. If a much simpler data structure with the same amortized time bounds as
Fibonacci heaps were developed, it would be of practical use as well.

Both binary heaps and Fibonacci heaps are inefficient in how they support the
operation SEARCH; it can take a while to find an element with a given key. For this
reason, operations such as DECREASE-KEY and DELETE that refer to a given ele-
ment require a pointer to that element as part of their input. As in our discussion of
priority queues in Section 6.5, when we use a mergeable heap in an application, we
often store a handle to the corresponding application object in each mergeable-heap
element, as well as a handle to the corresponding mergeable-heap element in each
application object. The exact nature of these handles depends on the application
and its implementation.

Like several other data structures that we have seen, Fibonacci heaps are based
on rooted trees. We represent each element by a node within a tree, and each
node has a key attribute. For the remainder of this chapter, we shall use the term
“node” instead of “element.” We shall also ignore issues of allocating nodes prior
to insertion and freeing nodes following deletion, assuming instead that the code
calling the heap procedures deals with these details.

Section 19.1 defines Fibonacci heaps, discusses how we represent them, and
presents the potential function used for their amortized analysis. Section 19.2
shows how to implement the mergeable-heap operations and achieve the amortized
time bounds shown in Figure 19.1. The remaining two operations, DECREASE-
KEY and DELETE, form the focus of Section 19.3. Finally, Section 19.4 finishes a
key part of the analysis and also explains the curious name of the data structure.

19.1 Structure of Fibonacci heaps

A Fibonacci heap is a collection of rooted trees that are min-heap ordered. That
is, each tree obeys themin-heap property: the key of a node is greater than or equal
to the key of its parent. Figure 19.2(a) shows an example of a Fibonacci heap.

As Figure 19.2(b) shows, each node x contains a pointer x:p to its parent and
a pointer x:child to any one of its children. The children of x are linked together
in a circular, doubly linked list, which we call the child list of x. Each child y in
a child list has pointers y: left and y:right that point to y’s left and right siblings,
respectively. If node y is an only child, then y: left D y:right D y. Siblings may
appear in a child list in any order.

508 Chapter 19 Fibonacci Heaps

17

30 26 46

35

24

18 52 38

3

39 41

23 7

17

30 26 46

35

24

18 52 38

3

39 41

23 7

(a)

(b)

H:min

H:min

Figure 19.2 (a) A Fibonacci heap consisting of five min-heap-ordered trees and 14 nodes. The
dashed line indicates the root list. The minimum node of the heap is the node containing the key 3.
Black nodes are marked. The potential of this particular Fibonacci heap is 5C2 �3 D 11. (b)A more
complete representation showing pointers p (up arrows), child (down arrows), and left and right
(sideways arrows). The remaining figures in this chapter omit these details, since all the information
shown here can be determined from what appears in part (a).

Circular, doubly linked lists (see Section 10.2) have two advantages for use in
Fibonacci heaps. First, we can insert a node into any location or remove a node
from anywhere in a circular, doubly linked list in O.1/ time. Second, given two
such lists, we can concatenate them (or “splice” them together) into one circular,
doubly linked list in O.1/ time. In the descriptions of Fibonacci heap operations,
we shall refer to these operations informally, letting you fill in the details of their
implementations if you wish.

Each node has two other attributes. We store the number of children in the child
list of node x in x:degree. The boolean-valued attribute x:mark indicates whether
node x has lost a child since the last time x was made the child of another node.
Newly created nodes are unmarked, and a node x becomes unmarked whenever it
is made the child of another node. Until we look at the DECREASE-KEY operation
in Section 19.3, we will just set all mark attributes to FALSE.

We access a given Fibonacci heap H by a pointer H:min to the root of a tree
containing the minimum key; we call this node theminimum node of the Fibonacci

19.1 Structure of Fibonacci heaps 509

heap. If more than one root has a key with the minimum value, then any such root
may serve as the minimum node. When a Fibonacci heap H is empty, H:min
is NIL.

The roots of all the trees in a Fibonacci heap are linked together using their
left and right pointers into a circular, doubly linked list called the root list of the
Fibonacci heap. The pointer H:min thus points to the node in the root list whose
key is minimum. Trees may appear in any order within a root list.

We rely on one other attribute for a Fibonacci heap H : H:n, the number of
nodes currently in H .

Potential function

As mentioned, we shall use the potential method of Section 17.3 to analyze the
performance of Fibonacci heap operations. For a given Fibonacci heap H , we
indicate by t.H/ the number of trees in the root list of H and by m.H/ the number
of marked nodes in H . We then define the potential ˆ.H/ of Fibonacci heap H

by

ˆ.H/ D t.H/C 2 m.H/ : (19.1)

(We will gain some intuition for this potential function in Section 19.3.) For exam-
ple, the potential of the Fibonacci heap shown in Figure 19.2 is 5C2 �3 D 11. The
potential of a set of Fibonacci heaps is the sum of the potentials of its constituent
Fibonacci heaps. We shall assume that a unit of potential can pay for a constant
amount of work, where the constant is sufficiently large to cover the cost of any of
the specific constant-time pieces of work that we might encounter.

We assume that a Fibonacci heap application begins with no heaps. The initial
potential, therefore, is 0, and by equation (19.1), the potential is nonnegative at
all subsequent times. From equation (17.3), an upper bound on the total amortized
cost provides an upper bound on the total actual cost for the sequence of operations.

Maximum degree

The amortized analyses we shall perform in the remaining sections of this chapter
assume that we know an upper bound D.n/ on the maximum degree of any node
in an n-node Fibonacci heap. We won’t prove it, but when only the mergeable-
heap operations are supported, D.n/ � blg nc. (Problem 19-2(d) asks you to prove
this property.) In Sections 19.3 and 19.4, we shall show that when we support
DECREASE-KEY and DELETE as well, D.n/ D O.lg n/.

510 Chapter 19 Fibonacci Heaps

19.2 Mergeable-heap operations

The mergeable-heap operations on Fibonacci heaps delay work as long as possible.
The various operations have performance trade-offs. For example, we insert a node
by adding it to the root list, which takes just constant time. If we were to start
with an empty Fibonacci heap and then insert k nodes, the Fibonacci heap would
consist of just a root list of k nodes. The trade-off is that if we then perform
an EXTRACT-MIN operation on Fibonacci heap H , after removing the node that
H:min points to, we would have to look through each of the remaining k�1 nodes
in the root list to find the new minimum node. As long as we have to go through
the entire root list during the EXTRACT-MIN operation, we also consolidate nodes
into min-heap-ordered trees to reduce the size of the root list. We shall see that, no
matter what the root list looks like before a EXTRACT-MIN operation, afterward
each node in the root list has a degree that is unique within the root list, which leads
to a root list of size at most D.n/C 1.

Creating a new Fibonacci heap

To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure allocates and
returns the Fibonacci heap object H , where H:n D 0 and H:min D NIL; there
are no trees in H . Because t.H/ D 0 and m.H/ D 0, the potential of the empty
Fibonacci heap is ˆ.H/ D 0. The amortized cost of MAKE-FIB-HEAP is thus
equal to its O.1/ actual cost.

Inserting a node

The following procedure inserts node x into Fibonacci heap H , assuming that the
node has already been allocated and that x:key has already been filled in.

FIB-HEAP-INSERT.H; x/

1 x:degree D 0

2 x:p D NIL

3 x:child D NIL

4 x:mark D FALSE

5 ifH:min == NIL

6 create a root list for H containing just x

7 H:min D x

8 else insert x into H ’s root list
9 if x:key < H:min:key

10 H:min D x

11 n D nC 1H:H:

19.2 Mergeable-heap operations 511

(a) (b)

17

30

2423

26

35

46

7 21

18 52 38

39 41

317

30

2423

26

35

46

7

18 52 38

39 41

3

H:min H:min

Figure 19.3 Inserting a node into a Fibonacci heap. (a)A Fibonacci heap H . (b) Fibonacci heap H

after inserting the node with key 21. The node becomes its own min-heap-ordered tree and is then
added to the root list, becoming the left sibling of the root.

Lines 1–4 initialize some of the structural attributes of node x. Line 5 tests to see
whether Fibonacci heap H is empty. If it is, then lines 6–7 make x be the only
node in H ’s root list and set H:min to point to x. Otherwise, lines 8–10 insert x

into H ’s root list and update H:min if necessary. Finally, line 11 increments H:n
to reflect the addition of the new node. Figure 19.3 shows a node with key 21

inserted into the Fibonacci heap of Figure 19.2.
To determine the amortized cost of FIB-HEAP-INSERT, let H be the input Fi-

bonacci heap and H 0 be the resulting Fibonacci heap. Then, t.H 0/ D t.H/ C 1

and m.H 0/ D m.H/, and the increase in potential is

..t.H/C 1/C 2 m.H// � .t.H/C 2 m.H// D 1 :

Since the actual cost is O.1/, the amortized cost is O.1/C 1 D O.1/.

Finding the minimum node

The minimum node of a Fibonacci heap H is given by the pointer H:min, so we
can find the minimum node in O.1/ actual time. Because the potential of H does
not change, the amortized cost of this operation is equal to its O.1/ actual cost.

Uniting two Fibonacci heaps

The following procedure unites Fibonacci heaps H1 and H2, destroying H1 and H2

in the process. It simply concatenates the root lists of H1 and H2 and then deter-
mines the new minimum node. Afterward, the objects representing H1 and H2 will
never be used again.

512 Chapter 19 Fibonacci Heaps

FIB-HEAP-UNION.H1; H2/

1 H D MAKE-FIB-HEAP./

2 H:min D H1:min
3 concatenate the root list of H2 with the root list of H

4 if .H1:min == NIL/ or .H2:min ¤ NIL and H2:min:key < H1:min:key/

5 H:min D H2:min
6 H:n D H1:nCH2:n
7 return H

Lines 1–3 concatenate the root lists of H1 and H2 into a new root list H . Lines
2, 4, and 5 set the minimum node of H , and line 6 sets H:n to the total number
of nodes. Line 7 returns the resulting Fibonacci heap H . As in the FIB-HEAP-
INSERT procedure, all roots remain roots.

The change in potential is

ˆ.H/ � .ˆ.H1/Cˆ.H2//

D .t.H/C 2 m.H// � ..t.H1/C 2 m.H1//C .t.H2/C 2 m.H2///

D 0 ;

because t.H/ D t.H1/ C t.H2/ and m.H/ D m.H1/ C m.H2/. The amortized
cost of FIB-HEAP-UNION is therefore equal to its O.1/ actual cost.

Extracting the minimum node

The process of extracting the minimum node is the most complicated of the oper-
ations presented in this section. It is also where the delayed work of consolidating
trees in the root list finally occurs. The following pseudocode extracts the mini-
mum node. The code assumes for convenience that when a node is removed from
a linked list, pointers remaining in the list are updated, but pointers in the extracted
node are left unchanged. It also calls the auxiliary procedure CONSOLIDATE,
which we shall see shortly.

19.2 Mergeable-heap operations 513

FIB-HEAP-EXTRACT-MIN.H/

1 ´ D H:min
2 if ´ ¤ NIL

3 for each child x of ´

4 add x to the root list of H

5 x:p D NIL

6 remove ´ from the root list of H

7 if ´ == ´:right
8 H:min D NIL

9 else H:min D ´:right
10 CONSOLIDATE.H/

11 H:n D H:n � 1

12 return ´

As Figure 19.4 illustrates, FIB-HEAP-EXTRACT-MIN works by first making a root
out of each of the minimum node’s children and removing the minimum node from
the root list. It then consolidates the root list by linking roots of equal degree until
at most one root remains of each degree.

We start in line 1 by saving a pointer ´ to the minimum node; the procedure
returns this pointer at the end. If ´ is NIL, then Fibonacci heap H is already empty
and we are done. Otherwise, we delete node ´ from H by making all of ´’s chil-
dren roots of H in lines 3–5 (putting them into the root list) and removing ´ from
the root list in line 6. If ´ is its own right sibling after line 6, then ´ was the
only node on the root list and it had no children, so all that remains is to make
the Fibonacci heap empty in line 8 before returning ´. Otherwise, we set the
pointer H:min into the root list to point to a root other than ´ (in this case, ´’s
right sibling), which is not necessarily going to be the new minimum node when
FIB-HEAP-EXTRACT-MIN is done. Figure 19.4(b) shows the Fibonacci heap of
Figure 19.4(a) after executing line 9.

The next step, in which we reduce the number of trees in the Fibonacci heap, is
consolidating the root list of H , which the call CONSOLIDATE.H/ accomplishes.
Consolidating the root list consists of repeatedly executing the following steps until
every root in the root list has a distinct degree value:

1. Find two roots x and y in the root list with the same degree. Without loss of
generality, let x:key � y:key.

2. Link y to x: remove y from the root list, and make y a child of x by calling the
FIB-HEAP-LINK procedure. This procedure increments the attribute x:degree
and clears the mark on y.

514 Chapter 19 Fibonacci Heaps

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

(c) (d)

(e)

17

30

24 23

26

35

46

7

17

30

2423

26

35

46

7 21

18 52 38

39 41

(a) 3 (b)

(f)

(g) 21 18 52 38

39 41

(h)

17

30

2423

26

35

46

7 21 18 52 38

39 41

17

30

2423

26

35

46

7 21 18 52 38

39 41

17

30

2423

26

35

46

7 21 18 52 38

39 41

17

30

2423

26

35

46

7 21 18 52 38

39 41

17

30

24

23 26

35

46

7 21 18 52 38

39 41

17

30

24

23 26

35

46

7 21 18 52 38

39 41

w,x w,x

w,x w,x

w,x w,x

H:minH:min

Figure 19.4 The action of FIB-HEAP-EXTRACT-MIN. (a) A Fibonacci heap H . (b) The situa-
tion after removing the minimum node ´ from the root list and adding its children to the root list.
(c)–(e) The array A and the trees after each of the first three iterations of the for loop of lines 4–14 of
the procedure CONSOLIDATE. The procedure processes the root list by starting at the node pointed
to by H:min and following right pointers. Each part shows the values of w and x at the end of an
iteration. (f)–(h) The next iteration of the for loop, with the values of w and x shown at the end of
each iteration of the while loop of lines 7–13. Part (f) shows the situation after the first time through
the while loop. The node with key 23 has been linked to the node with key 7, which x now points to.
In part (g), the node with key 17 has been linked to the node with key 7, which x still points to. In
part (h), the node with key 24 has been linked to the node with key 7. Since no node was previously
pointed to by AŒ3�, at the end of the for loop iteration, AŒ3� is set to point to the root of the resulting
tree.

19.2 Mergeable-heap operations 515

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

17

30

24 23

26

35

46

7 21 18 52 38

39 41

(i)

17

30

24 23

26

35

46

7 21 18 52 38

39 41

(j)

17

30

24 23

26

35

46

7 38

41

(k)

21

18

52

39 17

30

24 23

26

35

46

7 38

41

(l)

21

18

52

39

17

30

24 23

26

35

46

7 38

41

(m)

21

18

52

39

w,x w,x

x w,x

w

H:min

Figure 19.4, continued (i)–(l) The situation after each of the next four iterations of the for loop.
(m) Fibonacci heap H after reconstructing the root list from the array A and determining the new
H:min pointer.

The procedure CONSOLIDATE uses an auxiliary array AŒ0 : : D.H:n/� to keep
track of roots according to their degrees. If AŒi� D y, then y is currently a root
with y:degree D i . Of course, in order to allocate the array we have to know how
to calculate the upper bound D.H:n/ on the maximum degree, but we will see how
to do so in Section 19.4.

516 Chapter 19 Fibonacci Heaps

CONSOLIDATE.H/

1 let AŒ0 : : D.H:n/� be a new array
2 for i D 0 toD.H:n/

3 AŒi� D NIL

4 for each node w in the root list of H

5 x D w

6 d D x:degree
7 while AŒd� ¤ NIL

8 y D AŒd� // another node with the same degree as x

9 if x:key > y:key
10 exchange x with y

11 FIB-HEAP-LINK.H; y; x/

12 AŒd� D NIL

13 d D d C 1

14 AŒd� D x

15 H:min D NIL

16 for i D 0 toD.H:n/

17 if AŒi� ¤ NIL

18 if H:min == NIL

19 create a root list for H containing just AŒi�

20 H:min D AŒi�

21 else insert AŒi� into H ’s root list
22 if AŒi�:key < H:min:key
23 H:min D AŒi�

FIB-HEAP-LINK.H; y; x/

1 remove y from the root list of H

2 make y a child of x, incrementing x:degree
3 y:mark D FALSE

In detail, the CONSOLIDATE procedure works as follows. Lines 1–3 allocate
and initialize the array A by making each entry NIL. The for loop of lines 4–14
processes each root w in the root list. As we link roots together, w may be linked
to some other node and no longer be a root. Nevertheless, w is always in a tree
rooted at some node x, which may or may not be w itself. Because we want at
most one root with each degree, we look in the array A to see whether it contains
a root y with the same degree as x. If it does, then we link the roots x and y but
guaranteeing that x remains a root after linking. That is, we link y to x after first
exchanging the pointers to the two roots if y’s key is smaller than x’s key. After
we link y to x, the degree of x has increased by 1, and so we continue this process,
linking x and another root whose degree equals x’s new degree, until no other root

19.2 Mergeable-heap operations 517

that we have processed has the same degree as x. We then set the appropriate entry
of A to point to x, so that as we process roots later on, we have recorded that x is
the unique root of its degree that we have already processed. When this for loop
terminates, at most one root of each degree will remain, and the array A will point
to each remaining root.

The while loop of lines 7–13 repeatedly links the root x of the tree containing
node w to another tree whose root has the same degree as x, until no other root has
the same degree. This while loop maintains the following invariant:

At the start of each iteration of the while loop, d D x:degree.

We use this loop invariant as follows:

Initialization: Line 6 ensures that the loop invariant holds the first time we enter
the loop.

Maintenance: In each iteration of the while loop, AŒd� points to some root y.
Because d D x:degree D y:degree, we want to link x and y. Whichever of
x and y has the smaller key becomes the parent of the other as a result of the
link operation, and so lines 9–10 exchange the pointers to x and y if necessary.
Next, we link y to x by the call FIB-HEAP-LINK.H; y; x/ in line 11. This
call increments x:degree but leaves y:degree as d . Node y is no longer a root,
and so line 12 removes the pointer to it in array A. Because the call of FIB-
HEAP-LINK increments the value of x:degree, line 13 restores the invariant
that d D x:degree.

Termination: We repeat the while loop until AŒd� D NIL, in which case there is
no other root with the same degree as x.

After the while loop terminates, we set AŒd� to x in line 14 and perform the next
iteration of the for loop.

Figures 19.4(c)–(e) show the array A and the resulting trees after the first three
iterations of the for loop of lines 4–14. In the next iteration of the for loop, three
links occur; their results are shown in Figures 19.4(f)–(h). Figures 19.4(i)–(l) show
the result of the next four iterations of the for loop.

All that remains is to clean up. Once the for loop of lines 4–14 completes,
line 15 empties the root list, and lines 16–23 reconstruct it from the array A. The
resulting Fibonacci heap appears in Figure 19.4(m). After consolidating the root
list, FIB-HEAP-EXTRACT-MIN finishes up by decrementing H:n in line 11 and
returning a pointer to the deleted node ´ in line 12.

We are now ready to show that the amortized cost of extracting the minimum
node of an n-node Fibonacci heap is O.D.n//. Let H denote the Fibonacci heap
just prior to the FIB-HEAP-EXTRACT-MIN operation.

We start by accounting for the actual cost of extracting the minimum node.
An O.D.n// contribution comes from FIB-HEAP-EXTRACT-MIN processing at

518 Chapter 19 Fibonacci Heaps

most D.n/ children of the minimum node and from the work in lines 2–3 and
16–23 of CONSOLIDATE. It remains to analyze the contribution from the for loop
of lines 4–14 in CONSOLIDATE, for which we use an aggregate analysis. The size
of the root list upon calling CONSOLIDATE is at most D.n/ C t.H/ � 1, since it
consists of the original t.H/ root-list nodes, minus the extracted root node, plus
the children of the extracted node, which number at most D.n/. Within a given
iteration of the for loop of lines 4–14, the number of iterations of the while loop of
lines 7–13 depends on the root list. But we know that every time through the while
loop, one of the roots is linked to another, and thus the total number of iterations
of the while loop over all iterations of the for loop is at most the number of roots
in the root list. Hence, the total amount of work performed in the for loop is at
most proportional to D.n/ C t.H/. Thus, the total actual work in extracting the
minimum node is O.D.n/C t.H//.

The potential before extracting the minimum node is t.H/ C 2 m.H/, and the
potential afterward is at most .D.n/C 1/C 2 m.H/, since at most D.n/C 1 roots
remain and no nodes become marked during the operation. The amortized cost is
thus at most

O.D.n/C t.H//C ..D.n/C 1/C 2 m.H// � .t.H/C 2 m.H//

D O.D.n//CO.t.H// � t.H/

D O.D.n// ;

since we can scale up the units of potential to dominate the constant hidden
in O.t.H//. Intuitively, the cost of performing each link is paid for by the re-
duction in potential due to the link’s reducing the number of roots by one. We shall
see in Section 19.4 that D.n/ D O.lg n/, so that the amortized cost of extracting
the minimum node is O.lg n/.

Exercises

19.2-1
Show the Fibonacci heap that results from calling FIB-HEAP-EXTRACT-MIN on
the Fibonacci heap shown in Figure 19.4(m).

19.3 Decreasing a key and deleting a node

In this section, we show how to decrease the key of a node in a Fibonacci heap
in O.1/ amortized time and how to delete any node from an n-node Fibonacci
heap in O.D.n// amortized time. In Section 19.4, we will show that the maxi-

19.3 Decreasing a key and deleting a node 519

mum degree D.n/ is O.lg n/, which will imply that FIB-HEAP-EXTRACT-MIN

and FIB-HEAP-DELETE run in O.lg n/ amortized time.

Decreasing a key

In the following pseudocode for the operation FIB-HEAP-DECREASE-KEY, we
assume as before that removing a node from a linked list does not change any of
the structural attributes in the removed node.

FIB-HEAP-DECREASE-KEY.H; x; k/

1 if k > x:key
2 error “new key is greater than current key”
3 x:key D k

4 y D x:p
5 if y ¤ NIL and x:key < y:key
6 CUT.H; x; y/

7 CASCADING-CUT.H; y/

8 if x:key < H:min:key
9 H:min D x

CUT.H; x; y/

1 remove x from the child list of y, decrementing y:degree
2 add x to the root list of H

3 x:p D NIL

4 x:mark D FALSE

CASCADING-CUT.H; y/

1 ´ D y:p
2 if ´ ¤ NIL

3 if y:mark == FALSE

4 y:mark D TRUE

5 else CUT.H; y; ´/

6 CASCADING-CUT.H; ´/

The FIB-HEAP-DECREASE-KEY procedure works as follows. Lines 1–3 ensure
that the new key is no greater than the current key of x and then assign the new key
to x. If x is a root or if x:key � y:key, where y is x’s parent, then no structural
changes need occur, since min-heap order has not been violated. Lines 4–5 test for
this condition.

If min-heap order has been violated, many changes may occur. We start by
cutting x in line 6. The CUT procedure “cuts” the link between x and its parent y,
making x a root.

520 Chapter 19 Fibonacci Heaps

We use the mark attributes to obtain the desired time bounds. They record a little
piece of the history of each node. Suppose that the following events have happened
to node x:

1. at some time, x was a root,

2. then x was linked to (made the child of) another node,

3. then two children of x were removed by cuts.

As soon as the second child has been lost, we cut x from its parent, making it a new
root. The attribute x:mark is TRUE if steps 1 and 2 have occurred and one child
of x has been cut. The CUT procedure, therefore, clears x:mark in line 4, since it
performs step 1. (We can now see why line 3 of FIB-HEAP-LINK clears y:mark:
node y is being linked to another node, and so step 2 is being performed. The next
time a child of y is cut, y:mark will be set to TRUE.)

We are not yet done, because x might be the second child cut from its parent y

since the time that y was linked to another node. Therefore, line 7 of FIB-HEAP-
DECREASE-KEY attempts to perform a cascading-cut operation on y. If y is a
root, then the test in line 2 of CASCADING-CUT causes the procedure to just return.
If y is unmarked, the procedure marks it in line 4, since its first child has just been
cut, and returns. If y is marked, however, it has just lost its second child; y is cut
in line 5, and CASCADING-CUT calls itself recursively in line 6 on y’s parent ´.
The CASCADING-CUT procedure recurses its way up the tree until it finds either a
root or an unmarked node.

Once all the cascading cuts have occurred, lines 8–9 of FIB-HEAP-DECREASE-
KEY finish up by updating H:min if necessary. The only node whose key changed
was the node x whose key decreased. Thus, the new minimum node is either the
original minimum node or node x.

Figure 19.5 shows the execution of two calls of FIB-HEAP-DECREASE-KEY,
starting with the Fibonacci heap shown in Figure 19.5(a). The first call, shown
in Figure 19.5(b), involves no cascading cuts. The second call, shown in Fig-
ures 19.5(c)–(e), invokes two cascading cuts.

We shall now show that the amortized cost of FIB-HEAP-DECREASE-KEY is
only O.1/. We start by determining its actual cost. The FIB-HEAP-DECREASE-
KEY procedure takes O.1/ time, plus the time to perform the cascading cuts. Sup-
pose that a given invocation of FIB-HEAP-DECREASE-KEY results in c calls of
CASCADING-CUT (the call made from line 7 of FIB-HEAP-DECREASE-KEY fol-
lowed by c � 1 recursive calls of CASCADING-CUT). Each call of CASCADING-
CUT takes O.1/ time exclusive of recursive calls. Thus, the actual cost of FIB-
HEAP-DECREASE-KEY, including all recursive calls, is O.c/.

We next compute the change in potential. Let H denote the Fibonacci heap just
prior to the FIB-HEAP-DECREASE-KEY operation. The call to CUT in line 6 of

19.3 Decreasing a key and deleting a node 521

17

30

24 23

26

35

15 7

21

18

52

38

39 41

(b)

17

30

24 23

26

515 7

21

18

52

38

39 41

(c)

17

30

24 23

26515 7

21

18

52

38

39 41

(d)

17

30

24

23

26515 7

21

18

52

38

39 41

(e)

17

30

24 23

26

35

46

7

21

18

52

38

39 41

(a)

H:min

H:min

H:minH:min

H:min

Figure 19.5 Two calls of FIB-HEAP-DECREASE-KEY. (a) The initial Fibonacci heap. (b) The
node with key 46 has its key decreased to 15. The node becomes a root, and its parent (with key 24),
which had previously been unmarked, becomes marked. (c)–(e) The node with key 35 has its key
decreased to 5. In part (c), the node, now with key 5, becomes a root. Its parent, with key 26,
is marked, so a cascading cut occurs. The node with key 26 is cut from its parent and made an
unmarked root in (d). Another cascading cut occurs, since the node with key 24 is marked as well.
This node is cut from its parent and made an unmarked root in part (e). The cascading cuts stop
at this point, since the node with key 7 is a root. (Even if this node were not a root, the cascading
cuts would stop, since it is unmarked.) Part (e) shows the result of the FIB-HEAP-DECREASE-KEY

operation, with H:min pointing to the new minimum node.

FIB-HEAP-DECREASE-KEY creates a new tree rooted at node x and clears x’s
mark bit (which may have already been FALSE). Each call of CASCADING-CUT,
except for the last one, cuts a marked node and clears the mark bit. Afterward, the
Fibonacci heap contains t.H/Cc trees (the original t.H/ trees, c�1 trees produced
by cascading cuts, and the tree rooted at x) and at most m.H/�cC2 marked nodes
(c�1 were unmarked by cascading cuts and the last call of CASCADING-CUT may
have marked a node). The change in potential is therefore at most

..t.H/C c/C 2.m.H/ � c C 2// � .t.H/C 2 m.H// D 4 � c :

522 Chapter 19 Fibonacci Heaps

Thus, the amortized cost of FIB-HEAP-DECREASE-KEY is at most

O.c/C 4� c D O.1/ ;

since we can scale up the units of potential to dominate the constant hidden in O.c/.
You can now see why we defined the potential function to include a term that is

twice the number of marked nodes. When a marked node y is cut by a cascading
cut, its mark bit is cleared, which reduces the potential by 2. One unit of potential
pays for the cut and the clearing of the mark bit, and the other unit compensates
for the unit increase in potential due to node y becoming a root.

Deleting a node

The following pseudocode deletes a node from an n-node Fibonacci heap in
O.D.n// amortized time. We assume that there is no key value of �1 currently
in the Fibonacci heap.

FIB-HEAP-DELETE.H; x/

1 FIB-HEAP-DECREASE-KEY.H; x;�1/

2 FIB-HEAP-EXTRACT-MIN.H/

FIB-HEAP-DELETE makes x become the minimum node in the Fibonacci heap by
giving it a uniquely small key of �1. The FIB-HEAP-EXTRACT-MIN procedure
then removes node x from the Fibonacci heap. The amortized time of FIB-HEAP-
DELETE is the sum of the O.1/ amortized time of FIB-HEAP-DECREASE-KEY

and the O.D.n// amortized time of FIB-HEAP-EXTRACT-MIN. Since we shall see
in Section 19.4 that D.n/ D O.lg n/, the amortized time of FIB-HEAP-DELETE

is O.lg n/.

Exercises

19.3-1
Suppose that a root x in a Fibonacci heap is marked. Explain how x came to be
a marked root. Argue that it doesn’t matter to the analysis that x is marked, even
though it is not a root that was first linked to another node and then lost one child.

19.3-2
Justify the O.1/ amortized time of FIB-HEAP-DECREASE-KEY as an average cost
per operation by using aggregate analysis.

19.4 Bounding the maximum degree 523

19.4 Bounding the maximum degree

To prove that the amortized time of FIB-HEAP-EXTRACT-MIN and FIB-HEAP-
DELETE is O.lg n/, we must show that the upper bound D.n/ on the degree of
any node of an n-node Fibonacci heap is O.lg n/. In particular, we shall show that
D.n/ �
log� n

˘
, where � is the golden ratio, defined in equation (3.24) as

� D .1C
p

5/=2 D 1:61803 : : : :

The key to the analysis is as follows. For each node x within a Fibonacci heap,
define size.x/ to be the number of nodes, including x itself, in the subtree rooted
at x. (Note that x need not be in the root list—it can be any node at all.) We shall
show that size.x/ is exponential in x:degree. Bear in mind that x:degree is always
maintained as an accurate count of the degree of x.

Lemma 19.1
Let x be any node in a Fibonacci heap, and suppose that x:degree D k. Let
y1; y2; : : : ; yk denote the children of x in the order in which they were linked to x,
from the earliest to the latest. Then, y1:degree � 0 and yi :degree � i � 2 for
i D 2; 3; : : : ; k.

Proof Obviously, y1:degree � 0.
For i � 2, we note that when yi was linked to x, all of y1; y2; : : : ; yi�1 were

children of x, and so we must have had x:degree � i � 1. Because node yi is
linked to x (by CONSOLIDATE) only if x:degree D yi :degree, we must have also
had yi :degree � i � 1 at that time. Since then, node yi has lost at most one
child, since it would have been cut from x (by CASCADING-CUT) if it had lost
two children. We conclude that yi :degree � i � 2.

We finally come to the part of the analysis that explains the name “Fibonacci
heaps.” Recall from Section 3.2 that for k D 0; 1; 2; : : :, the kth Fibonacci number
is defined by the recurrence

Fk D

�
0 if k D 0 ;

1 if k D 1 ;

Fk�1 C Fk�2 if k � 2 :

The following lemma gives another way to express Fk .

524 Chapter 19 Fibonacci Heaps

Lemma 19.2
For all integers k � 0,

FkC2 D 1C
kX

iD0

Fi :

Proof The proof is by induction on k. When k D 0,

1C
0X

iD0

Fi D 1C F0

D 1C 0

D F2 :

We now assume the inductive hypothesis that FkC1 D 1 CPk�1

iD0 Fi , and we
have

FkC2 D Fk C FkC1

D Fk C

1C
k�1X
iD0

Fi

!

D 1C
kX

iD0

Fi :

Lemma 19.3
For all integers k � 0, the .k C 2/nd Fibonacci number satisfies FkC2 � �k .

Proof The proof is by induction on k. The base cases are for k D 0 and k D 1.
When k D 0 we have F2 D 1 D �0, and when k D 1 we have F3 D 2 >

1:619 > �1. The inductive step is for k � 2, and we assume that FiC2 > �i for
i D 0; 1; : : : ; k�1. Recall that � is the positive root of equation (3.23), x2 D xC1.
Thus, we have

FkC2 D FkC1 C Fk

� �k�1 C �k�2 (by the inductive hypothesis)

D �k�2.� C 1/

D �k�2 � �2 (by equation (3.23))

D �k :

The following lemma and its corollary complete the analysis.

19.4 Bounding the maximum degree 525

Lemma 19.4
Let x be any node in a Fibonacci heap, and let k D x:degree. Then size.x/ �
FkC2 � �k , where � D .1Cp5/=2.

Proof Let sk denote the minimum possible size of any node of degree k in any
Fibonacci heap. Trivially, s0 D 1 and s1 D 2. The number sk is at most size.x/

and, because adding children to a node cannot decrease the node’s size, the value
of sk increases monotonically with k. Consider some node ´, in any Fibonacci
heap, such that ´:degree D k and size.´/ D sk. Because sk � size.x/, we
compute a lower bound on size.x/ by computing a lower bound on sk . As in
Lemma 19.1, let y1; y2; : : : ; yk denote the children of ´ in the order in which they
were linked to ´. To bound sk , we count one for ´ itself and one for the first child y1

(for which size.y1/ � 1), giving

size.x/ � sk

� 2C
kX

iD2

syi : degree

� 2C
kX

iD2

si�2 ;

where the last line follows from Lemma 19.1 (so that yi :degree � i � 2) and the
monotonicity of sk (so that syi : degree � si�2).

We now show by induction on k that sk � FkC2 for all nonnegative integers k.
The bases, for k D 0 and k D 1, are trivial. For the inductive step, we assume that
k � 2 and that si � FiC2 for i D 0; 1; : : : ; k � 1. We have

sk � 2C
kX

iD2

si�2

� 2C
kX

iD2

Fi

D 1C
kX

iD0

Fi

D FkC2 (by Lemma 19.2)

� �k (by Lemma 19.3) .

Thus, we have shown that size.x/ � sk � FkC2 � �k .

526 Chapter 19 Fibonacci Heaps

Corollary 19.5
The maximum degree D.n/ of any node in an n-node Fibonacci heap is O.lg n/.

Proof Let x be any node in an n-node Fibonacci heap, and let k D x:degree.
By Lemma 19.4, we have n � size.x/ � �k . Taking base-� logarithms gives
us k � log� n. (In fact, because k is an integer, k �
log� n

˘
.) The maximum

degree D.n/ of any node is thus O.lg n/.

Exercises

19.4-1
Professor Pinocchio claims that the height of an n-node Fibonacci heap is O.lg n/.
Show that the professor is mistaken by exhibiting, for any positive integer n, a
sequence of Fibonacci-heap operations that creates a Fibonacci heap consisting of
just one tree that is a linear chain of n nodes.

19.4-2
Suppose we generalize the cascading-cut rule to cut a node x from its parent as
soon as it loses its kth child, for some integer constant k. (The rule in Section 19.3
uses k D 2.) For what values of k is D.n/ D O.lg n/?

Problems

19-1 Alternative implementation of deletion
Professor Pisano has proposed the following variant of the FIB-HEAP-DELETE

procedure, claiming that it runs faster when the node being deleted is not the node
pointed to by H:min.

PISANO-DELETE.H; x/

1 if x == H:min
2 FIB-HEAP-EXTRACT-MIN.H/

3 else y D x:p
4 if y ¤ NIL

5 CUT.H; x; y/

6 CASCADING-CUT.H; y/

7 add x’s child list to the root list of H

8 remove x from the root list of H

Problems for Chapter 19 527

a. The professor’s claim that this procedure runs faster is based partly on the as-
sumption that line 7 can be performed in O.1/ actual time. What is wrong with
this assumption?

b. Give a good upper bound on the actual time of PISANO-DELETE when x is
not H:min. Your bound should be in terms of x:degree and the number c of
calls to the CASCADING-CUT procedure.

c. Suppose that we call PISANO-DELETE.H; x/, and let H 0 be the Fibonacci heap
that results. Assuming that node x is not a root, bound the potential of H 0 in
terms of x:degree, c, t.H/, and m.H/.

d. Conclude that the amortized time for PISANO-DELETE is asymptotically no
better than for FIB-HEAP-DELETE, even when x ¤ H:min.

19-2 Binomial trees and binomial heaps
The binomial tree Bk is an ordered tree (see Section B.5.2) defined recursively.
As shown in Figure 19.6(a), the binomial tree B0 consists of a single node. The
binomial tree Bk consists of two binomial trees Bk�1 that are linked together so
that the root of one is the leftmost child of the root of the other. Figure 19.6(b)
shows the binomial trees B0 through B4.

a. Show that for the binomial tree Bk ,

1. there are 2k nodes,

2. the height of the tree is k,

3. there are exactly
�

k

i

�
nodes at depth i for i D 0; 1; : : : ; k, and

4. the root has degree k, which is greater than that of any other node; moreover,
as Figure 19.6(c) shows, if we number the children of the root from left to
right by k � 1; k � 2; : : : ; 0, then child i is the root of a subtree Bi .

A binomial heapH is a set of binomial trees that satisfies the following proper-
ties:

1. Each node has a key (like a Fibonacci heap).

2. Each binomial tree in H obeys the min-heap property.

3. For any nonnegative integer k, there is at most one binomial tree in H whose
root has degree k.

b. Suppose that a binomial heap H has a total of n nodes. Discuss the relationship
between the binomial trees that H contains and the binary representation of n.
Conclude that H consists of at most blg nc C 1 binomial trees.

528 Chapter 19 Fibonacci Heaps

B4

Bk–1
Bk–2

Bk

B2
B1

B0

B3B2B1B0

Bk

Bk–1
Bk–1

B0

(a)

depth

0

1

2

3

4

(b)

(c)

Figure 19.6 (a) The recursive definition of the binomial tree Bk . Triangles represent rooted sub-
trees. (b) The binomial trees B0 through B4. Node depths in B4 are shown. (c) Another way of
looking at the binomial tree Bk .

Suppose that we represent a binomial heap as follows. The left-child, right-
sibling scheme of Section 10.4 represents each binomial tree within a binomial
heap. Each node contains its key; pointers to its parent, to its leftmost child, and
to the sibling immediately to its right (these pointers are NIL when appropriate);
and its degree (as in Fibonacci heaps, how many children it has). The roots form a
singly linked root list, ordered by the degrees of the roots (from low to high), and
we access the binomial heap by a pointer to the first node on the root list.

c. Complete the description of how to represent a binomial heap (i.e., name the
attributes, describe when attributes have the value NIL, and define how the root
list is organized), and show how to implement the same seven operations on
binomial heaps as this chapter implemented on Fibonacci heaps. Each opera-
tion should run in O.lg n/ worst-case time, where n is the number of nodes in

Problems for Chapter 19 529

the binomial heap (or in the case of the UNION operation, in the two binomial
heaps that are being united). The MAKE-HEAP operation should take constant
time.

d. Suppose that we were to implement only the mergeable-heap operations on a
Fibonacci heap (i.e., we do not implement the DECREASE-KEY or DELETE op-
erations). How would the trees in a Fibonacci heap resemble those in a binomial
heap? How would they differ? Show that the maximum degree in an n-node
Fibonacci heap would be at most blg nc.

e. Professor McGee has devised a new data structure based on Fibonacci heaps.
A McGee heap has the same structure as a Fibonacci heap and supports just
the mergeable-heap operations. The implementations of the operations are the
same as for Fibonacci heaps, except that insertion and union consolidate the
root list as their last step. What are the worst-case running times of operations
on McGee heaps?

19-3 More Fibonacci-heap operations
We wish to augment a Fibonacci heap H to support two new operations without
changing the amortized running time of any other Fibonacci-heap operations.

a. The operation FIB-HEAP-CHANGE-KEY.H; x; k/ changes the key of node x

to the value k. Give an efficient implementation of FIB-HEAP-CHANGE-KEY,
and analyze the amortized running time of your implementation for the cases
in which k is greater than, less than, or equal to x:key.

b. Give an efficient implementation of FIB-HEAP-PRUNE.H; r/, which deletes
q D min.r; H:n/ nodes from H . You may choose any q nodes to delete. Ana-
lyze the amortized running time of your implementation. (Hint: You may need
to modify the data structure and potential function.)

19-4 2-3-4 heaps
Chapter 18 introduced the 2-3-4 tree, in which every internal node (other than pos-
sibly the root) has two, three, or four children and all leaves have the same depth. In
this problem, we shall implement 2-3-4 heaps, which support the mergeable-heap
operations.

The 2-3-4 heaps differ from 2-3-4 trees in the following ways. In 2-3-4 heaps,
only leaves store keys, and each leaf x stores exactly one key in the attribute x:key.
The keys in the leaves may appear in any order. Each internal node x contains
a value x:small that is equal to the smallest key stored in any leaf in the subtree
rooted at x. The root r contains an attribute r:height that gives the height of the

530 Chapter 19 Fibonacci Heaps

tree. Finally, 2-3-4 heaps are designed to be kept in main memory, so that disk
reads and writes are not needed.

Implement the following 2-3-4 heap operations. In parts (a)–(e), each operation
should run in O.lg n/ time on a 2-3-4 heap with n elements. The UNION operation
in part (f) should run in O.lg n/ time, where n is the number of elements in the two
input heaps.

a. MINIMUM, which returns a pointer to the leaf with the smallest key.

b. DECREASE-KEY, which decreases the key of a given leaf x to a given value
k � x:key.

c. INSERT, which inserts leaf x with key k.

d. DELETE, which deletes a given leaf x.

e. EXTRACT-MIN, which extracts the leaf with the smallest key.

f. UNION, which unites two 2-3-4 heaps, returning a single 2-3-4 heap and de-
stroying the input heaps.

Chapter notes

Fredman and Tarjan [114] introduced Fibonacci heaps. Their paper also describes
the application of Fibonacci heaps to the problems of single-source shortest paths,
all-pairs shortest paths, weighted bipartite matching, and the minimum-spanning-
tree problem.

Subsequently, Driscoll, Gabow, Shrairman, and Tarjan [96] developed “relaxed
heaps” as an alternative to Fibonacci heaps. They devised two varieties of re-
laxed heaps. One gives the same amortized time bounds as Fibonacci heaps. The
other allows DECREASE-KEY to run in O.1/ worst-case (not amortized) time and
EXTRACT-MIN and DELETE to run in O.lg n/ worst-case time. Relaxed heaps
also have some advantages over Fibonacci heaps in parallel algorithms.

See also the chapter notes for Chapter 6 for other data structures that support fast
DECREASE-KEY operations when the sequence of values returned by EXTRACT-
MIN calls are monotonically increasing over time and the data are integers in a
specific range.

20 van Emde Boas Trees

In previous chapters, we saw data structures that support the operations of a priority
queue—binary heaps in Chapter 6, red-black trees in Chapter 13,1 and Fibonacci
heaps in Chapter 19. In each of these data structures, at least one important op-
eration took O.lg n/ time, either worst case or amortized. In fact, because each
of these data structures bases its decisions on comparing keys, the �.n lg n/ lower
bound for sorting in Section 8.1 tells us that at least one operation will have to
take �.lg n/ time. Why? If we could perform both the INSERT and EXTRACT-MIN

operations in o.lg n/ time, then we could sort n keys in o.n lg n/ time by first per-
forming n INSERT operations, followed by n EXTRACT-MIN operations.

We saw in Chapter 8, however, that sometimes we can exploit additional infor-
mation about the keys to sort in o.n lg n/ time. In particular, with counting sort
we can sort n keys, each an integer in the range 0 to k, in time ‚.n C k/, which
is ‚.n/ when k D O.n/.

Since we can circumvent the �.n lg n/ lower bound for sorting when the keys are
integers in a bounded range, you might wonder whether we can perform each of the
priority-queue operations in o.lg n/ time in a similar scenario. In this chapter, we
shall see that we can: van Emde Boas trees support the priority-queue operations,
and a few others, each in O.lg lg n/ worst-case time. The hitch is that the keys
must be integers in the range 0 to n � 1, with no duplicates allowed.

Specifically, van Emde Boas trees support each of the dynamic set operations
listed on page 230—SEARCH, INSERT, DELETE, MINIMUM, MAXIMUM, SUC-
CESSOR, and PREDECESSOR—in O.lg lg n/ time. In this chapter, we will omit
discussion of satellite data and focus only on storing keys. Because we concentrate
on keys and disallow duplicate keys to be stored, instead of describing the SEARCH

1Chapter 13 does not explicitly discuss how to implement EXTRACT-MIN and DECREASE-KEY, but
we can easily build these operations for any data structure that supports MINIMUM, DELETE, and
INSERT.

532 Chapter 20 van Emde Boas Trees

operation, we will implement the simpler operation MEMBER.S; x/, which returns
a boolean indicating whether the value x is currently in dynamic set S .

So far, we have used the parameter n for two distinct purposes: the number of
elements in the dynamic set, and the range of the possible values. To avoid any
further confusion, from here on we will use n to denote the number of elements
currently in the set and u as the range of possible values, so that each van Emde
Boas tree operation runs in O.lg lg u/ time. We call the set f0; 1; 2; : : : ; u � 1g
the universe of values that can be stored and u the universe size. We assume
throughout this chapter that u is an exact power of 2, i.e., u D 2k for some integer
k � 1.

Section 20.1 starts us out by examining some simple approaches that will get
us going in the right direction. We enhance these approaches in Section 20.2,
introducing proto van Emde Boas structures, which are recursive but do not achieve
our goal of O.lg lg u/-time operations. Section 20.3 modifies proto van Emde Boas
structures to develop van Emde Boas trees, and it shows how to implement each
operation in O.lg lg u/ time.

20.1 Preliminary approaches

In this section, we shall examine various approaches for storing a dynamic set.
Although none will achieve the O.lg lg u/ time bounds that we desire, we will gain
insights that will help us understand van Emde Boas trees when we see them later
in this chapter.

Direct addressing

Direct addressing, as we saw in Section 11.1, provides the simplest approach to
storing a dynamic set. Since in this chapter we are concerned only with storing
keys, we can simplify the direct-addressing approach to store the dynamic set as a
bit vector, as discussed in Exercise 11.1-2. To store a dynamic set of values from
the universe f0; 1; 2; : : : ; u � 1g, we maintain an array AŒ0 : : u � 1� of u bits. The
entry AŒx� holds a 1 if the value x is in the dynamic set, and it holds a 0 otherwise.
Although we can perform each of the INSERT, DELETE, and MEMBER operations
in O.1/ time with a bit vector, the remaining operations—MINIMUM, MAXIMUM,
SUCCESSOR, and PREDECESSOR—each take ‚.u/ time in the worst case because

20.1 Preliminary approaches 533

0

0

0

1

1

2

1

3

1

4

1

5

0

6

1

7

0

8

0

9

0

10

0

11

0

12

0

13

1

14

1

15

0 1 1 1 0 0 0 1

1 1 0 1

1 1

1

A

Figure 20.1 A binary tree of bits superimposed on top of a bit vector representing the set
f2; 3; 4; 5; 7; 14; 15g when u D 16. Each internal node contains a 1 if and only if some leaf in
its subtree contains a 1. The arrows show the path followed to determine the predecessor of 14 in the
set.

we might have to scan through ‚.u/ elements.2 For example, if a set contains only
the values 0 and u � 1, then to find the successor of 0, we would have to scan
entries 1 through u � 2 before finding a 1 in AŒu � 1�.

Superimposing a binary tree structure

We can short-cut long scans in the bit vector by superimposing a binary tree of bits
on top of it. Figure 20.1 shows an example. The entries of the bit vector form the
leaves of the binary tree, and each internal node contains a 1 if and only if any leaf
in its subtree contains a 1. In other words, the bit stored in an internal node is the
logical-or of its two children.

The operations that took ‚.u/ worst-case time with an unadorned bit vector now
use the tree structure:

� To find the minimum value in the set, start at the root and head down toward
the leaves, always taking the leftmost node containing a 1.

� To find the maximum value in the set, start at the root and head down toward
the leaves, always taking the rightmost node containing a 1.

2We assume throughout this chapter that MINIMUM and MAXIMUM return NIL if the dynamic set
is empty and that SUCCESSOR and PREDECESSOR return NIL if the element they are given has no
successor or predecessor, respectively.

534 Chapter 20 van Emde Boas Trees

� To find the successor of x, start at the leaf indexed by x, and head up toward the
root until we enter a node from the left and this node has a 1 in its right child ´.
Then head down through node ´, always taking the leftmost node containing
a 1 (i.e., find the minimum value in the subtree rooted at the right child ´).

� To find the predecessor of x, start at the leaf indexed by x, and head up toward
the root until we enter a node from the right and this node has a 1 in its left
child ´. Then head down through node ´, always taking the rightmost node
containing a 1 (i.e., find the maximum value in the subtree rooted at the left
child ´).

Figure 20.1 shows the path taken to find the predecessor, 7, of the value 14.
We also augment the INSERT and DELETE operations appropriately. When in-

serting a value, we store a 1 in each node on the simple path from the appropriate
leaf up to the root. When deleting a value, we go from the appropriate leaf up to
the root, recomputing the bit in each internal node on the path as the logical-or of
its two children.

Since the height of the tree is lg u and each of the above operations makes at
most one pass up the tree and at most one pass down, each operation takes O.lg u/

time in the worst case.
This approach is only marginally better than just using a red-black tree. We can

still perform the MEMBER operation in O.1/ time, whereas searching a red-black
tree takes O.lg n/ time. Then again, if the number n of elements stored is much
smaller than the size u of the universe, a red-black tree would be faster for all the
other operations.

Superimposing a tree of constant height

What happens if we superimpose a tree with greater degree? Let us assume that
the size of the universe is u D 22k for some integer k, so that

p
u is an integer.

Instead of superimposing a binary tree on top of the bit vector, we superimpose a
tree of degree

p
u. Figure 20.2(a) shows such a tree for the same bit vector as in

Figure 20.1. The height of the resulting tree is always 2.
As before, each internal node stores the logical-or of the bits within its sub-

tree, so that the
p

u internal nodes at depth 1 summarize each group of
p

u val-
ues. As Figure 20.2(b) demonstrates, we can think of these nodes as an array
summaryŒ0 : :

p
u � 1�, where summaryŒi � contains a 1 if and only if the subar-

ray AŒi
p

u : : .i C 1/
p

u � 1� contains a 1. We call this
p

u-bit subarray of A

the i th cluster. For a given value of x, the bit AŒx� appears in cluster num-
ber bx=

p
uc. Now INSERT becomes an O.1/-time operation: to insert x, set

both AŒx� and summaryŒbx=
p

uc� to 1. We can use the summary array to perform

20.1 Preliminary approaches 535

0

0

0

1

1

2

1

3

1

4

1

5

0

6

1

7

0

8

0

9

0

10

0

11

0

12

0

13

1

14

1

15

1

1

1 0 1

(a)

0

0

0

1

1

2

1

3

1

4

1

5

0

6

1

7

0

8

0

9

0

10

0

11

0

12

0

13

1

14

1

15

(b)

1

0

1

1

0

2

1

3

AA

summary

p
u bits

p
u bits

Figure 20.2 (a) A tree of degree
p

u superimposed on top of the same bit vector as in Figure 20.1.
Each internal node stores the logical-or of the bits in its subtree. (b) A view of the same structure,
but with the internal nodes at depth 1 treated as an array summaryŒ0 : :

p
u� 1�, where summaryŒi � is

the logical-or of the subarray AŒi
p

u : : .i C 1/
p

u � 1�.

each of the operations MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR, and
DELETE in O.

p
u/ time:

� To find the minimum (maximum) value, find the leftmost (rightmost) entry in
summary that contains a 1, say summaryŒi �, and then do a linear search within
the i th cluster for the leftmost (rightmost) 1.

� To find the successor (predecessor) of x, first search to the right (left) within its
cluster. If we find a 1, that position gives the result. Otherwise, let i D bx=

p
uc

and search to the right (left) within the summary array from index i . The first
position that holds a 1 gives the index of a cluster. Search within that cluster
for the leftmost (rightmost) 1. That position holds the successor (predecessor).

� To delete the value x, let i D bx=
p

uc�. Set AŒx� to 0 and then set summaryŒi �

to the logical-or of the bits in the i th cluster.

In each of the above operations, we search through at most two clusters of
p

u bits
plus the summary array, and so each operation takes O.

p
u/ time.

At first glance, it seems as though we have made negative progress. Superimpos-
ing a binary tree gave us O.lg u/-time operations, which are asymptotically faster
than O.

p
u/ time. Using a tree of degree

p
u will turn out to be a key idea of van

Emde Boas trees, however. We continue down this path in the next section.

Exercises

20.1-1
Modify the data structures in this section to support duplicate keys.

536 Chapter 20 van Emde Boas Trees

20.1-2
Modify the data structures in this section to support keys that have associated satel-
lite data.

20.1-3
Observe that, using the structures in this section, the way we find the successor and
predecessor of a value x does not depend on whether x is in the set at the time.
Show how to find the successor of x in a binary search tree when x is not stored in
the tree.

20.1-4
Suppose that instead of superimposing a tree of degree

p
u, we were to superim-

pose a tree of degree u1=k , where k > 1 is a constant. What would be the height of
such a tree, and how long would each of the operations take?

20.2 A recursive structure

In this section, we modify the idea of superimposing a tree of degree
p

u on top of
a bit vector. In the previous section, we used a summary structure of size

p
u, with

each entry pointing to another stucture of size
p

u. Now, we make the structure
recursive, shrinking the universe size by the square root at each level of recursion.
Starting with a universe of size u, we make structures holding

p
u D u1=2 items,

which themselves hold structures of u1=4 items, which hold structures of u1=8 items,
and so on, down to a base size of 2.

For simplicity, in this section, we assume that u D 22k

for some integer k, so
that u; u1=2; u1=4; : : : are integers. This restriction would be quite severe in practice,
allowing only values of u in the sequence 2; 4; 16; 256; 65536; : : :. We shall see in
the next section how to relax this assumption and assume only that u D 2k for
some integer k. Since the structure we examine in this section is only a precursor
to the true van Emde Boas tree structure, we tolerate this restriction in favor of
aiding our understanding.

Recalling that our goal is to achieve running times of O.lg lg u/ for the oper-
ations, let’s think about how we might obtain such running times. At the end of
Section 4.3, we saw that by changing variables, we could show that the recurrence

T .n/ D 2T
�
p

n
˘�C lg n (20.1)

has the solution T .n/ D O.lg n lg lg n/. Let’s consider a similar, but simpler,
recurrence:

T .u/ D T .
p

u/CO.1/ : (20.2)

20.2 A recursive structure 537

If we use the same technique, changing variables, we can show that recur-
rence (20.2) has the solution T .u/ D O.lg lg u/. Let m D lg u, so that u D 2m

and we have

T .2m/ D T .2m=2/CO.1/ :

Now we rename S.m/ D T .2m/, giving the new recurrence

S.m/ D S.m=2/CO.1/ :

By case 2 of the master method, this recurrence has the solution S.m/ D O.lg m/.
We change back from S.m/ to T .u/, giving T .u/ D T .2m/ D S.m/ D O.lg m/ D
O.lg lg u/.

Recurrence (20.2) will guide our search for a data structure. We will design a
recursive data structure that shrinks by a factor of

p
u in each level of its recursion.

When an operation traverses this data structure, it will spend a constant amount of
time at each level before recursing to the level below. Recurrence (20.2) will then
characterize the running time of the operation.

Here is another way to think of how the term lg lg u ends up in the solution to
recurrence (20.2). As we look at the universe size in each level of the recursive data
structure, we see the sequence u; u1=2; u1=4; u1=8; : : :. If we consider how many bits
we need to store the universe size at each level, we need lg u at the top level, and
each level needs half the bits of the previous level. In general, if we start with b

bits and halve the number of bits at each level, then after lg b levels, we get down
to just one bit. Since b D lg u, we see that after lg lg u levels, we have a universe
size of 2.

Looking back at the data structure in Figure 20.2, a given value x resides in
cluster number bx=

p
uc. If we view x as a lg u-bit binary integer, that cluster

number, bx=
p

uc, is given by the most significant .lg u/=2 bits of x. Within its
cluster, x appears in position x mod

p
u, which is given by the least significant

.lg u/=2 bits of x. We will need to index in this way, and so let us define some
functions that will help us do so:

high.x/ D

x=
p

u
˘

;

low.x/ D x mod
p

u ;

index.x; y/ D x
p

uC y :

The function high.x/ gives the most significant .lg u/=2 bits of x, producing the
number of x’s cluster. The function low.x/ gives the least significant .lg u/=2 bits
of x and provides x’s position within its cluster. The function index.x; y/ builds an
element number from x and y, treating x as the most significant .lg u/=2 bits of the
element number and y as the least significant .lg u/=2 bits. We have the identity
x D index.high.x/; low.x//. The value of u used by each of these functions will

538 Chapter 20 van Emde Boas Trees

…0 1 2 3
p

u � 1proto-�EB.u/

u summary cluster

proto-�EB.
p

u/ structure p
u proto-�EB.

p
u/ structures

Figure 20.3 The information in a proto-�EB.u/ structure when u � 4. The structure contains the
universe size u, a pointer summary to a proto-�EB.

p
u/ structure, and an array clusterŒ0 : :

p
u � 1�

of
p

u pointers to proto-�EB.
p

u/ structures.

always be the universe size of the data structure in which we call the function,
which changes as we descend into the recursive structure.

20.2.1 Proto van Emde Boas structures

Taking our cue from recurrence (20.2), let us design a recursive data structure to
support the operations. Although this data structure will fail to achieve our goal of
O.lg lg u/ time for some operations, it serves as a basis for the van Emde Boas tree
structure that we will see in Section 20.3.

For the universe f0; 1; 2; : : : ; u � 1g, we define a proto van Emde Boas struc-
ture, or proto-vEB structure, which we denote as proto-�EB.u/, recursively as
follows. Each proto-�EB.u/ structure contains an attribute u giving its universe
size. In addition, it contains the following:

� If u D 2, then it is the base size, and it contains an array AŒ0 : : 1� of two bits.

� Otherwise, u D 22k

for some integer k � 1, so that u � 4. In addition
to the universe size u, the data structure proto-�EB.u/ contains the following
attributes, illustrated in Figure 20.3:

� a pointer named summary to a proto-�EB.
p

u/ structure and
� an array clusterŒ0 : :

p
u�1� of

p
u pointers, each to a proto-�EB.

p
u/ struc-

ture.

The element x, where 0 � x < u, is recursively stored in the cluster numbered
high.x/ as element low.x/ within that cluster.

In the two-level structure of the previous section, each node stores a summary
array of size

p
u, in which each entry contains a bit. From the index of each

entry, we can compute the starting index of the subarray of size
p

u that the bit
summarizes. In the proto-vEB structure, we use explicit pointers rather than index

20.2 A recursive structure 539

0 1 2 3

clusteru 16 summary

proto-vEB(16)

0 1
cluster

u
4

summary
proto-vEB(4)

0

1

A

pr
ot
o-
vE
B
(2
)

1

1

0 1
cluster

u
4

summary
proto-vEB(4)

0 1
cluster

u
4

summary
proto-vEB(4)

0 1
cluster

u
4

summary
proto-vEB(4)

0 1
cluster

u
4

summary
proto-vEB(4)

elements 0,1 elements 2,3clusters 0,1 clusters 2,3 elements 4,5 elements 6,7

elements 8,9 elements 10,11 elements 12,13 elements 14,15

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

1

1

u
2

0

1

A
pr

ot
o-

vE
B

(2
)

0

0

u
2

0

1

A

pr
ot
o-
vE
B
(2
)

0

1

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

0

0

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

0

0

u
2

0

1

A

pr
ot
o-
vE
B
(2
)

0

0

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

0

1

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

1

1

u
2

0

1

A

pr
ot
o-
vE
B
(2
)

1

1

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

1

1

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

0

0

u
2

0

1

A

pr
ot
o-
vE
B
(2
)

0

1

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

0

1

u
2

0

1

A

pr
ot

o-
vE

B
(2

)

1

1

u
2

Figure 20.4 A proto-�EB.16/ structure representing the set f2; 3; 4; 5; 7; 14; 15g. It points to four
proto-�EB.4/ structures in clusterŒ0 : : 3�, and to a summary structure, which is also a proto-�EB.4/.
Each proto-�EB.4/ structure points to two proto-�EB.2/ structures in clusterŒ0 : : 1�, and to a
proto-�EB.2/ summary. Each proto-�EB.2/ structure contains just an array AŒ0 : : 1� of two bits.
The proto-�EB.2/ structures above “elements i ,j ” store bits i and j of the actual dynamic set, and
the proto-�EB.2/ structures above “clusters i ,j ” store the summary bits for clusters i and j in the
top-level proto-�EB.16/ structure. For clarity, heavy shading indicates the top level of a proto-vEB
structure that stores summary information for its parent structure; such a proto-vEB structure is
otherwise identical to any other proto-vEB structure with the same universe size.

540 Chapter 20 van Emde Boas Trees

calculations. The array summary contains the summary bits stored recursively in a
proto-vEB structure, and the array cluster contains

p
u pointers.

Figure 20.4 shows a fully expanded proto-�EB.16/ structure representing the
set f2; 3; 4; 5; 7; 14; 15g. If the value i is in the proto-vEB structure pointed to by
summary, then the i th cluster contains some value in the set being represented.
As in the tree of constant height, clusterŒi � represents the values i

p
u through

.i C 1/
p

u � 1, which form the i th cluster.
At the base level, the elements of the actual dynamic sets are stored in some

of the proto-�EB.2/ structures, and the remaining proto-�EB.2/ structures store
summary bits. Beneath each of the non-summary base structures, the figure in-
dicates which bits it stores. For example, the proto-�EB.2/ structure labeled
“elements 6,7” stores bit 6 (0, since element 6 is not in the set) in its AŒ0� and
bit 7 (1, since element 7 is in the set) in its AŒ1�.

Like the clusters, each summary is just a dynamic set with universe size
p

u ,
and so we represent each summary as a proto-�EB.

p
u/ structure. The four sum-

mary bits for the main proto-�EB.16/ structure are in the leftmost proto-�EB.4/

structure, and they ultimately appear in two proto-�EB.2/ structures. For exam-
ple, the proto-�EB.2/ structure labeled “clusters 2,3” has AŒ0� D 0, indicating that
cluster 2 of the proto-�EB.16/ structure (containing elements 8; 9; 10; 11) is all 0,
and AŒ1� D 1, telling us that cluster 3 (containing elements 12; 13; 14; 15) has at
least one 1. Each proto-�EB.4/ structure points to its own summary, which is itself
stored as a proto-�EB.2/ structure. For example, look at the proto-�EB.2/ struc-
ture just to the left of the one labeled “elements 0,1.” Because its AŒ0� is 0, it tells
us that the “elements 0,1” structure is all 0, and because its AŒ1� is 1, we know that
the “elements 2,3” structure contains at least one 1.

20.2.2 Operations on a proto van Emde Boas structure

We shall now describe how to perform operations on a proto-vEB structure.
We first examine the query operations—MEMBER, MINIMUM, MAXIMUM, and
SUCCESSOR—which do not change the proto-vEB structure. We then discuss
INSERT and DELETE. We leave MAXIMUM and PREDECESSOR, which are sym-
metric to MINIMUM and SUCCESSOR, respectively, as Exercise 20.2-1.

Each of the MEMBER, SUCCESSOR, PREDECESSOR, INSERT, and DELETE op-
erations takes a parameter x, along with a proto-vEB structure V . Each of these
operations assumes that 0 � x < V:u.

Determining whether a value is in the set

To perform MEMBER.x/, we need to find the bit corresponding to x within the
appropriate proto-�EB.2/ structure. We can do so in O.lg lg u/ time, bypassing

20.2 A recursive structure 541

the summary structures altogether. The following procedure takes a proto-�EB
structure V and a value x, and it returns a bit indicating whether x is in the dynamic
set held by V .

PROTO-VEB-MEMBER.V; x/

1 if V:u == 2

2 return V:AŒx�

3 else return PROTO-VEB-MEMBER.V:clusterŒhigh.x/�; low.x//

The PROTO-VEB-MEMBER procedure works as follows. Line 1 tests whether
we are in a base case, where V is a proto-�EB.2/ structure. Line 2 handles the
base case, simply returning the appropriate bit of array A. Line 3 deals with the
recursive case, “drilling down” into the appropriate smaller proto-vEB structure.
The value high.x/ says which proto-�EB.

p
u/ structure we visit, and low.x/ de-

termines which element within that proto-�EB.
p

u/ structure we are querying.
Let’s see what happens when we call PROTO-VEB-MEMBER.V; 6/ on the

proto-�EB.16/ structure in Figure 20.4. Since high.6/ D 1 when u D 16, we
recurse into the proto-�EB.4/ structure in the upper right, and we ask about ele-
ment low.6/ D 2 of that structure. In this recursive call, u D 4, and so we recurse
again. With u D 4, we have high.2/ D 1 and low.2/ D 0, and so we ask about
element 0 of the proto-�EB.2/ structure in the upper right. This recursive call turns
out to be a base case, and so it returns AŒ0� D 0 back up through the chain of re-
cursive calls. Thus, we get the result that PROTO-VEB-MEMBER.V; 6/ returns 0,
indicating that 6 is not in the set.

To determine the running time of PROTO-VEB-MEMBER, let T .u/ denote
its running time on a proto-�EB.u/ structure. Each recursive call takes con-
stant time, not including the time taken by the recursive calls that it makes.
When PROTO-VEB-MEMBER makes a recursive call, it makes a call on a
proto-�EB.

p
u/ structure. Thus, we can characterize the running time by the recur-

rence T .u/ D T .
p

u/CO.1/, which we have already seen as recurrence (20.2).
Its solution is T .u/ D O.lg lg u/, and so we conclude that PROTO-VEB-MEMBER

runs in time O.lg lg u/.

Finding the minimum element

Now we examine how to perform the MINIMUM operation. The procedure
PROTO-VEB-MINIMUM.V / returns the minimum element in the proto-vEB struc-
ture V , or NIL if V represents an empty set.

542 Chapter 20 van Emde Boas Trees

PROTO-VEB-MINIMUM.V /

1 if V:u == 2

2 if V:AŒ0� == 1

3 return 0

4 elseif V:AŒ1� == 1

5 return 1

6 else return NIL

7 else min-cluster D PROTO-VEB-MINIMUM.V:summary/

8 if min-cluster == NIL

9 return NIL

10 else offset D PROTO-VEB-MINIMUM.V:clusterŒmin-cluster�/

11 return index.min-cluster; offset/

This procedure works as follows. Line 1 tests for the base case, which lines 2–6
handle by brute force. Lines 7–11 handle the recursive case. First, line 7 finds the
number of the first cluster that contains an element of the set. It does so by recur-
sively calling PROTO-VEB-MINIMUM on V:summary, which is a proto-�EB.

p
u/

structure. Line 7 assigns this cluster number to the variable min-cluster. If the set
is empty, then the recursive call returned NIL, and line 9 returns NIL. Otherwise,
the minimum element of the set is somewhere in cluster number min-cluster. The
recursive call in line 10 finds the offset within the cluster of the minimum element
in this cluster. Finally, line 11 constructs the value of the minimum element from
the cluster number and offset, and it returns this value.

Although querying the summary information allows us to quickly find the clus-
ter containing the minimum element, because this procedure makes two recursive
calls on proto-�EB.

p
u/ structures, it does not run in O.lg lg u/ time in the worst

case. Letting T .u/ denote the worst-case time for PROTO-VEB-MINIMUM on a
proto-�EB.u/ structure, we have the recurrence

T .u/ D 2T .
p

u/CO.1/ : (20.3)

Again, we use a change of variables to solve this recurrence, letting m D lg u,
which gives

T .2m/ D 2T .2m=2/CO.1/ :

Renaming S.m/ D T .2m/ gives

S.m/ D 2S.m=2/CO.1/ ;

which, by case 1 of the master method, has the solution S.m/ D ‚.m/. By chang-
ing back from S.m/ to T .u/, we have that T .u/ D T .2m/ D S.m/ D ‚.m/ D
‚.lg u/. Thus, we see that because of the second recursive call, PROTO-VEB-
MINIMUM runs in ‚.lg u/ time rather than the desired O.lg lg u/ time.

20.2 A recursive structure 543

Finding the successor

The SUCCESSOR operation is even worse. In the worst case, it makes two recursive
calls, along with a call to PROTO-VEB-MINIMUM. The procedure PROTO-VEB-
SUCCESSOR.V; x/ returns the smallest element in the proto-vEB structure V that
is greater than x, or NIL if no element in V is greater than x. It does not require x

to be a member of the set, but it does assume that 0 � x < V:u.

PROTO-VEB-SUCCESSOR.V; x/

1 if V:u == 2

2 if x == 0 and V:AŒ1� == 1

3 return 1

4 else return NIL

5 else offset D PROTO-VEB-SUCCESSOR.V:clusterŒhigh.x/�; low.x//

6 if offset ¤ NIL

7 return index.high.x/; offset/
8 else succ-cluster D PROTO-VEB-SUCCESSOR.V:summary; high.x//

9 if succ-cluster == NIL

10 return NIL

11 else offset D PROTO-VEB-MINIMUM.V:clusterŒsucc-cluster�/

12 return index.succ-cluster; offset/

The PROTO-VEB-SUCCESSOR procedure works as follows. As usual, line 1
tests for the base case, which lines 2–4 handle by brute force: the only way that x

can have a successor within a proto-�EB.2/ structure is when x D 0 and AŒ1�

is 1. Lines 5–12 handle the recursive case. Line 5 searches for a successor to x

within x’s cluster, assigning the result to offset. Line 6 determines whether x has
a successor within its cluster; if it does, then line 7 computes and returns the value
of this successor. Otherwise, we have to search in other clusters. Line 8 assigns to
succ-cluster the number of the next nonempty cluster, using the summary informa-
tion to find it. Line 9 tests whether succ-cluster is NIL, with line 10 returning NIL

if all succeeding clusters are empty. If succ-cluster is non-NIL, line 11 assigns
the first element within that cluster to offset, and line 12 computes and returns the
minimum element in that cluster.

In the worst case, PROTO-VEB-SUCCESSOR calls itself recursively twice on
proto-�EB.

p
u/ structures, and it makes one call to PROTO-VEB-MINIMUM on

a proto-�EB.
p

u/ structure. Thus, the recurrence for the worst-case running
time T .u/ of PROTO-VEB-SUCCESSOR is

T .u/ D 2T .
p

u/C‚.lg
p

u/

D 2T .
p

u/C‚.lg u/ :

544 Chapter 20 van Emde Boas Trees

We can employ the same technique that we used for recurrence (20.1) to show
that this recurrence has the solution T .u/ D ‚.lg u lg lg u/. Thus, PROTO-VEB-
SUCCESSOR is asymptotically slower than PROTO-VEB-MINIMUM.

Inserting an element

To insert an element, we need to insert it into the appropriate cluster and also set
the summary bit for that cluster to 1. The procedure PROTO-VEB-INSERT.V; x/

inserts the value x into the proto-vEB structure V .

PROTO-VEB-INSERT.V; x/

1 if V:u == 2

2 V:AŒx� D 1

3 else PROTO-VEB-INSERT.V:clusterŒhigh.x/�; low.x//

4 PROTO-VEB-INSERT.V:summary; high.x//

In the base case, line 2 sets the appropriate bit in the array A to 1. In the recursive
case, the recursive call in line 3 inserts x into the appropriate cluster, and line 4
sets the summary bit for that cluster to 1.

Because PROTO-VEB-INSERT makes two recursive calls in the worst case, re-
currence (20.3) characterizes its running time. Hence, PROTO-VEB-INSERT runs
in ‚.lg u/ time.

Deleting an element

The DELETE operation is more complicated than insertion. Whereas we can always
set a summary bit to 1 when inserting, we cannot always reset the same summary
bit to 0 when deleting. We need to determine whether any bit in the appropriate
cluster is 1. As we have defined proto-vEB structures, we would have to examine
all
p

u bits within a cluster to determine whether any of them are 1. Alternatively,
we could add an attribute n to the proto-vEB structure, counting how many el-
ements it has. We leave implementation of PROTO-VEB-DELETE as Exercises
20.2-2 and 20.2-3.

Clearly, we need to modify the proto-vEB structure to get each operation down
to making at most one recursive call. We will see in the next section how to do so.

Exercises

20.2-1
Write pseudocode for the procedures PROTO-VEB-MAXIMUM and PROTO-VEB-
PREDECESSOR.

20.3 The van Emde Boas tree 545

20.2-2
Write pseudocode for PROTO-VEB-DELETE. It should update the appropriate
summary bit by scanning the related bits within the cluster. What is the worst-
case running time of your procedure?

20.2-3
Add the attribute n to each proto-vEB structure, giving the number of elements
currently in the set it represents, and write pseudocode for PROTO-VEB-DELETE

that uses the attribute n to decide when to reset summary bits to 0. What is the
worst-case running time of your procedure? What other procedures need to change
because of the new attribute? Do these changes affect their running times?

20.2-4
Modify the proto-vEB structure to support duplicate keys.

20.2-5
Modify the proto-vEB structure to support keys that have associated satellite data.

20.2-6
Write pseudocode for a procedure that creates a proto-�EB.u/ structure.

20.2-7
Argue that if line 9 of PROTO-VEB-MINIMUM is executed, then the proto-vEB
structure is empty.

20.2-8
Suppose that we designed a proto-vEB structure in which each cluster array had
only u1=4 elements. What would the running times of each operation be?

20.3 The van Emde Boas tree

The proto-vEB structure of the previous section is close to what we need to achieve
O.lg lg u/ running times. It falls short because we have to recurse too many times
in most of the operations. In this section, we shall design a data structure that
is similar to the proto-vEB structure but stores a little more information, thereby
removing the need for some of the recursion.

In Section 20.2, we observed that the assumption that we made about the uni-
verse size—that u D 22k

for some integer k—is unduly restrictive, confining the
possible values of u an overly sparse set. From this point on, therefore, we will
allow the universe size u to be any exact power of 2, and when

p
u is not an inte-

546 Chapter 20 van Emde Boas Trees

…0 1 2 3 "
p

u � 1

�EB.u/ u min max

summary cluster

�EB. "
p

u/
"
p

u �EB. #
p

u/ trees

Figure 20.5 The information in a �EB.u/ tree when u > 2. The structure contains the uni-
verse size u, elements min and max, a pointer summary to a �EB. "

p
u/ tree, and an array

clusterŒ0 : : "
p

u � 1� of "
p

u pointers to �EB. #
p

u/ trees.

ger—that is, if u is an odd power of 2 (u D 22kC1 for some integer k � 0)—then
we will divide the lg u bits of a number into the most significant d.lg u/=2e bits and
the least significant b.lg u/=2c bits. For convenience, we denote 2d.lg u/=2e (the “up-
per square root” of u) by "

p
u and 2b.lg u/=2c (the “lower square root” of u) by #

p
u,

so that u D "
p

u � #
p

u and, when u is an even power of 2 (u D 22k for some
integer k), "

p
u D #

p
u D pu. Because we now allow u to be an odd power of 2,

we must redefine our helpful functions from Section 20.2:

high.x/ D

x= #
p

u
˘

;

low.x/ D x mod #
p

u ;

index.x; y/ D x #
p

uC y :

20.3.1 van Emde Boas trees

The van Emde Boas tree, or vEB tree, modifies the proto-vEB structure. We
denote a vEB tree with a universe size of u as �EB.u/ and, unless u equals the
base size of 2, the attribute summary points to a �EB. "

p
u/ tree and the array

clusterŒ0 : : "
p

u � 1� points to "
p

u �EB. #
p

u/ trees. As Figure 20.5 illustrates, a
vEB tree contains two attributes not found in a proto-vEB structure:

� min stores the minimum element in the vEB tree, and

� max stores the maximum element in the vEB tree.

Furthermore, the element stored in min does not appear in any of the recur-
sive �EB. #

p
u/ trees that the cluster array points to. The elements stored in a

�EB.u/ tree V , therefore, are V:min plus all the elements recursively stored in
the �EB. #

p
u/ trees pointed to by V:clusterŒ0 : : "

p
u � 1�. Note that when a vEB

tree contains two or more elements, we treat min and max differently: the element

20.3 The van Emde Boas tree 547

stored in min does not appear in any of the clusters, but the element stored in max
does.

Since the base size is 2, a �EB.2/ tree does not need the array A that the cor-
responding proto-�EB.2/ structure has. Instead, we can determine its elements
from its min and max attributes. In a vEB tree with no elements, regardless of its
universe size u, both min and max are NIL.

Figure 20.6 shows a �EB.16/ tree V holding the set f2; 3; 4; 5; 7; 14; 15g. Be-
cause the smallest element is 2, V:min equals 2, and even though high.2/ D 0, the
element 2 does not appear in the �EB.4/ tree pointed to by V:clusterŒ0�: notice
that V:clusterŒ0�:min equals 3, and so 2 is not in this vEB tree. Similarly, since
V:clusterŒ0�:min equals 3, and 2 and 3 are the only elements in V:clusterŒ0�, the
�EB.2/ clusters within V:clusterŒ0� are empty.

The min and max attributes will turn out to be key to reducing the number of
recursive calls within the operations on vEB trees. These attributes will help us in
four ways:

1. The MINIMUM and MAXIMUM operations do not even need to recurse, for they
can just return the values of min or max.

2. The SUCCESSOR operation can avoid making a recursive call to determine
whether the successor of a value x lies within high.x/. That is because x’s
successor lies within its cluster if and only if x is strictly less than the max
attribute of its cluster. A symmetric argument holds for PREDECESSOR and
min.

3. We can tell whether a vEB tree has no elements, exactly one element, or at least
two elements in constant time from its min and max values. This ability will
help in the INSERT and DELETE operations. If min and max are both NIL, then
the vEB tree has no elements. If min and max are non-NIL but are equal to each
other, then the vEB tree has exactly one element. Otherwise, both min and max
are non-NIL but are unequal, and the vEB tree has two or more elements.

4. If we know that a vEB tree is empty, we can insert an element into it by updating
only its min and max attributes. Hence, we can insert into an empty vEB tree in
constant time. Similarly, if we know that a vEB tree has only one element, we
can delete that element in constant time by updating only min and max. These
properties will allow us to cut short the chain of recursive calls.

Even if the universe size u is an odd power of 2, the difference in the sizes
of the summary vEB tree and the clusters will not turn out to affect the asymptotic
running times of the vEB-tree operations. The recursive procedures that implement
the vEB-tree operations will all have running times characterized by the recurrence

T .u/ � T . "
p

u/CO.1/ : (20.4)

548 Chapter 20 van Emde Boas Trees

0 1 2 3

cluster

u 16

summary

vEB(16) min 2 max 15

0 1

cluster

u 4

summary

vEB(4) min 0 max 3

u 2

min 0

max 1

vEB(2)

u 2

min 1

max 1

vEB(2)

u 2

min 1

max 1

vEB(2)

0 1

clustersummary

u 2

min

max

vEB(2)

u 2

min

max

vEB(2)

u 2

min

max

vEB(2)

0 1

clustersummary

u 2

min 0

max 1

vEB(2)

u 2

min 1

max 1

vEB(2)

u 2

min 1

max 1

vEB(2)

0 1

clustersummary

u 2

min

max

vEB(2)

u 2

min

max

vEB(2)

u 2

min

max

vEB(2)

0 1

clustersummary

u 2

min 1

max 1

vEB(2)

u 2

min

max

vEB(2)

u 2

min 1

max 1

vEB(2)

u 4vEB(4) min 3 max 3 u 4vEB(4) min 0 max 3

u 4vEB(4) min max u 4vEB(4) min 2 max 3

Figure 20.6 A �EB.16/ tree corresponding to the proto-vEB tree in Figure 20.4. It stores the set
f2; 3; 4; 5; 7; 14; 15g. Slashes indicate NIL values. The value stored in the min attribute of a vEB tree
does not appear in any of its clusters. Heavy shading serves the same purpose here as in Figure 20.4.

20.3 The van Emde Boas tree 549

This recurrence looks similar to recurrence (20.2), and we will solve it in a similar
fashion. Letting m D lg u, we rewrite it as

T .2m/ � T .2dm=2e/CO.1/ :

Noting that dm=2e � 2m=3 for all m � 2, we have

T .2m/ � T .22m=3/CO.1/ :

Letting S.m/ D T .2m/, we rewrite this last recurrence as

S.m/ � S.2m=3/CO.1/ ;

which, by case 2 of the master method, has the solution S.m/ D O.lg m/. (In
terms of the asymptotic solution, the fraction 2=3 does not make any difference
compared with the fraction 1=2, because when we apply the master method, we
find that log3=2 1 D log2 1 D 0:) Thus, we have T .u/ D T .2m/ D S.m/ D
O.lg m/ D O.lg lg u/.

Before using a van Emde Boas tree, we must know the universe size u, so that
we can create a van Emde Boas tree of the appropriate size that initially represents
an empty set. As Problem 20-1 asks you to show, the total space requirement of
a van Emde Boas tree is O.u/, and it is straightforward to create an empty tree
in O.u/ time. In contrast, we can create an empty red-black tree in constant time.
Therefore, we might not want to use a van Emde Boas tree when we perform only
a small number of operations, since the time to create the data structure would
exceed the time saved in the individual operations. This drawback is usually not
significant, since we typically use a simple data structure, such as an array or linked
list, to represent a set with only a few elements.

20.3.2 Operations on a van Emde Boas tree

We are now ready to see how to perform operations on a van Emde Boas tree. As
we did for the proto van Emde Boas structure, we will consider the querying oper-
ations first, and then INSERT and DELETE. Due to the slight asymmetry between
the minimum and maximum elements in a vEB tree—when a vEB tree contains
at least two elements, the minumum element does not appear within a cluster but
the maximum element does—we will provide pseudocode for all five querying op-
erations. As in the operations on proto van Emde Boas structures, the operations
here that take parameters V and x, where V is a van Emde Boas tree and x is an
element, assume that 0 � x < V:u.

Finding the minimum and maximum elements

Because we store the minimum and maximum in the attributes min and max, two
of the operations are one-liners, taking constant time:

550 Chapter 20 van Emde Boas Trees

VEB-TREE-MINIMUM.V /

1 return V:min

VEB-TREE-MAXIMUM.V /

1 return V:max

Determining whether a value is in the set

The procedure VEB-TREE-MEMBER.V; x/ has a recursive case like that of
PROTO-VEB-MEMBER, but the base case is a little different. We also check di-
rectly whether x equals the minimum or maximum element. Since a vEB tree
doesn’t store bits as a proto-vEB structure does, we design VEB-TREE-MEMBER

to return TRUE or FALSE rather than 1 or 0.

VEB-TREE-MEMBER.V; x/

1 if x == V:min or x == V:max
2 return TRUE

3 elseif V:u == 2

4 return FALSE

5 else return VEB-TREE-MEMBER.V:clusterŒhigh.x/�; low.x//

Line 1 checks to see whether x equals either the minimum or maximum element.
If it does, line 2 returns TRUE. Otherwise, line 3 tests for the base case. Since
a �EB.2/ tree has no elements other than those in min and max, if it is the base
case, line 4 returns FALSE. The other possibility—it is not a base case and x equals
neither min nor max—is handled by the recursive call in line 5.

Recurrence (20.4) characterizes the running time of the VEB-TREE-MEMBER

procedure, and so this procedure takes O.lg lg u/ time.

Finding the successor and predecessor

Next we see how to implement the SUCCESSOR operation. Recall that the pro-
cedure PROTO-VEB-SUCCESSOR.V; x/ could make two recursive calls: one to
determine whether x’s successor resides in the same cluster as x and, if it does
not, one to find the cluster containing x’s successor. Because we can access the
maximum value in a vEB tree quickly, we can avoid making two recursive calls,
and instead make one recursive call on either a cluster or on the summary, but not
on both.

20.3 The van Emde Boas tree 551

VEB-TREE-SUCCESSOR.V; x/

1 if V:u == 2

2 if x == 0 and V:max == 1

3 return 1

4 else return NIL

5 elseif V:min ¤ NIL and x < V:min
6 return V:min
7 else max-low D VEB-TREE-MAXIMUM.V:clusterŒhigh.x/�/

8 if max-low ¤ NIL and low.x/ < max-low
9 offset D VEB-TREE-SUCCESSOR.V:clusterŒhigh.x/�; low.x//

10 return index.high.x/; offset/
11 else succ-cluster D VEB-TREE-SUCCESSOR.V:summary; high.x//

12 if succ-cluster == NIL

13 return NIL

14 else offset D VEB-TREE-MINIMUM.V:clusterŒsucc-cluster�/

15 return index.succ-cluster; offset/

This procedure has six return statements and several cases. We start with the
base case in lines 2–4, which returns 1 in line 3 if we are trying to find the successor
of 0 and 1 is in the 2-element set; otherwise, the base case returns NIL in line 4.

If we are not in the base case, we next check in line 5 whether x is strictly less
than the minimum element. If so, then we simply return the minimum element in
line 6.

If we get to line 7, then we know that we are not in a base case and that x is
greater than or equal to the minimum value in the vEB tree V . Line 7 assigns to
max-low the maximum element in x’s cluster. If x’s cluster contains some element
that is greater than x, then we know that x’s successor lies somewhere within x’s
cluster. Line 8 tests for this condition. If x’s successor is within x’s cluster, then
line 9 determines where in the cluster it is, and line 10 returns the successor in the
same way as line 7 of PROTO-VEB-SUCCESSOR.

We get to line 11 if x is greater than or equal to the greatest element in its
cluster. In this case, lines 11–15 find x’s successor in the same way as lines 8–12
of PROTO-VEB-SUCCESSOR.

It is easy to see how recurrence (20.4) characterizes the running time of VEB-
TREE-SUCCESSOR. Depending on the result of the test in line 7, the procedure
calls itself recursively in either line 9 (on a vEB tree with universe size #

p
u) or

line 11 (on a vEB tree with universe size "
p

u). In either case, the one recursive
call is on a vEB tree with universe size at most "

p
u. The remainder of the proce-

dure, including the calls to VEB-TREE-MINIMUM and VEB-TREE-MAXIMUM,
takes O.1/ time. Hence, VEB-TREE-SUCCESSOR runs in O.lg lg u/ worst-case
time.

552 Chapter 20 van Emde Boas Trees

The VEB-TREE-PREDECESSOR procedure is symmetric to the VEB-TREE-
SUCCESSOR procedure, but with one additional case:

VEB-TREE-PREDECESSOR.V; x/

1 if V:u == 2

2 if x == 1 and V:min == 0

3 return 0

4 else return NIL

5 elseif V:max ¤ NIL and x > V:max
6 return V:max
7 else min-low D VEB-TREE-MINIMUM.V:clusterŒhigh.x/�/

8 if min-low ¤ NIL and low.x/ > min-low
9 offset D VEB-TREE-PREDECESSOR.V:clusterŒhigh.x/�; low.x//

10 return index.high.x/; offset/
11 else pred-cluster D VEB-TREE-PREDECESSOR.V:summary; high.x//

12 if pred-cluster == NIL

13 if V:min ¤ NIL and x > V:min
14 return V:min
15 else return NIL

16 else offset D VEB-TREE-MAXIMUM.V:clusterŒpred-cluster�/

17 return index.pred-cluster; offset/

Lines 13–14 form the additional case. This case occurs when x’s predecessor,
if it exists, does not reside in x’s cluster. In VEB-TREE-SUCCESSOR, we were
assured that if x’s successor resides outside of x’s cluster, then it must reside in
a higher-numbered cluster. But if x’s predecessor is the minimum value in vEB
tree V , then the successor resides in no cluster at all. Line 13 checks for this
condition, and line 14 returns the minimum value as appropriate.

This extra case does not affect the asymptotic running time of VEB-TREE-
PREDECESSOR when compared with VEB-TREE-SUCCESSOR, and so VEB-
TREE-PREDECESSOR runs in O.lg lg u/ worst-case time.

Inserting an element

Now we examine how to insert an element into a vEB tree. Recall that PROTO-
VEB-INSERT made two recursive calls: one to insert the element and one to insert
the element’s cluster number into the summary. The VEB-TREE-INSERT proce-
dure will make only one recursive call. How can we get away with just one? When
we insert an element, either the cluster that it goes into already has another element
or it does not. If the cluster already has another element, then the cluster number
is already in the summary, and so we do not need to make that recursive call. If

20.3 The van Emde Boas tree 553

the cluster does not already have another element, then the element being inserted
becomes the only element in the cluster, and we do not need to recurse to insert an
element into an empty vEB tree:

VEB-EMPTY-TREE-INSERT.V; x/

1 V:min D x

2 V:max D x

With this procedure in hand, here is the pseudocode for VEB-TREE-INSERT.V; x/,
which assumes that x is not already an element in the set represented by vEB
tree V :

VEB-TREE-INSERT.V; x/

1 if V:min == NIL

2 VEB-EMPTY-TREE-INSERT.V; x/

3 else if x < V:min
4 exchange x with V:min
5 if V:u > 2

6 if VEB-TREE-MINIMUM.V:clusterŒhigh.x/�/ == NIL

7 VEB-TREE-INSERT.V:summary; high.x//

8 VEB-EMPTY-TREE-INSERT.V:clusterŒhigh.x/�; low.x//

9 else VEB-TREE-INSERT.V:clusterŒhigh.x/�; low.x//

10 if x > V:max
11 V:max D x

This procedure works as follows. Line 1 tests whether V is an empty vEB tree
and, if it is, then line 2 handles this easy case. Lines 3–11 assume that V is not
empty, and therefore some element will be inserted into one of V ’s clusters. But
that element might not necessarily be the element x passed to VEB-TREE-INSERT.
If x < min, as tested in line 3, then x needs to become the new min. We don’t
want to lose the original min, however, and so we need to insert it into one of V ’s
clusters. In this case, line 4 exchanges x with min, so that we insert the original
min into one of V ’s clusters.

We execute lines 6–9 only if V is not a base-case vEB tree. Line 6 determines
whether the cluster that x will go into is currently empty. If so, then line 7 in-
serts x’s cluster number into the summary and line 8 handles the easy case of
inserting x into an empty cluster. If x’s cluster is not currently empty, then line 9
inserts x into its cluster. In this case, we do not need to update the summary,
since x’s cluster number is already a member of the summary.

Finally, lines 10–11 take care of updating max if x > max. Note that if V is a
base-case vEB tree that is not empty, then lines 3–4 and 10–11 update min and max
properly.

554 Chapter 20 van Emde Boas Trees

Once again, we can easily see how recurrence (20.4) characterizes the running
time. Depending on the result of the test in line 6, either the recursive call in line 7
(run on a vEB tree with universe size "

p
u) or the recursive call in line 9 (run on

a vEB with universe size #
p

u) executes. In either case, the one recursive call is
on a vEB tree with universe size at most "

p
u. Because the remainder of VEB-

TREE-INSERT takes O.1/ time, recurrence (20.4) applies, and so the running time
is O.lg lg u/.

Deleting an element

Finally, we look at how to delete an element from a vEB tree. The procedure
VEB-TREE-DELETE.V; x/ assumes that x is currently an element in the set repre-
sented by the vEB tree V .

VEB-TREE-DELETE.V; x/

1 if V:min == V:max
2 V:min D NIL

3 V:max D NIL

4 elseif V:u == 2

5 if x == 0

6 V:min D 1

7 else V:min D 0

8 V:max D V:min
9 else if x == V:min

10 first-cluster D VEB-TREE-MINIMUM.V:summary/

11 x D index.first-cluster;

VEB-TREE-MINIMUM.V:clusterŒfirst-cluster�//

12 V:min D x

13 VEB-TREE-DELETE.V:clusterŒhigh.x/�; low.x//

14 if VEB-TREE-MINIMUM.V:clusterŒhigh.x/�/ == NIL

15 VEB-TREE-DELETE.V:summary; high.x//

16 if x == V:max
17 summary-max D VEB-TREE-MAXIMUM.V:summary/

18 if summary-max == NIL

19 V:max D V:min
20 else V:max D index.summary-max;

VEB-TREE-MAXIMUM.V:clusterŒsummary-max�//

21 elseif x == V:max
22 V:max D index.high.x/;

VEB-TREE-MAXIMUM.V:clusterŒhigh.x/�//

20.3 The van Emde Boas tree 555

The VEB-TREE-DELETE procedure works as follows. If the vEB tree V con-
tains only one element, then it’s just as easy to delete it as it was to insert an element
into an empty vEB tree: just set min and max to NIL. Lines 1–3 handle this case.
Otherwise, V has at least two elements. Line 4 tests whether V is a base-case vEB
tree and, if so, lines 5–8 set min and max to the one remaining element.

Lines 9–22 assume that V has two or more elements and that u � 4. In this
case, we will have to delete an element from a cluster. The element we delete from
a cluster might not be x, however, because if x equals min, then once we have
deleted x, some other element within one of V ’s clusters becomes the new min,
and we have to delete that other element from its cluster. If the test in line 9 reveals
that we are in this case, then line 10 sets first-cluster to the number of the cluster
that contains the lowest element other than min, and line 11 sets x to the value of
the lowest element in that cluster. This element becomes the new min in line 12
and, because we set x to its value, it is the element that will be deleted from its
cluster.

When we reach line 13, we know that we need to delete element x from its
cluster, whether x was the value originally passed to VEB-TREE-DELETE or x

is the element becoming the new minimum. Line 13 deletes x from its cluster.
That cluster might now become empty, which line 14 tests, and if it does, then
we need to remove x’s cluster number from the summary, which line 15 handles.
After updating the summary, we might need to update max. Line 16 checks to see
whether we are deleting the maximum element in V and, if we are, then line 17 sets
summary-max to the number of the highest-numbered nonempty cluster. (The call
VEB-TREE-MAXIMUM.V:summary/ works because we have already recursively
called VEB-TREE-DELETE on V:summary, and therefore V:summary:max has al-
ready been updated as necessary.) If all of V ’s clusters are empty, then the only
remaining element in V is min; line 18 checks for this case, and line 19 updates
max appropriately. Otherwise, line 20 sets max to the maximum element in the
highest-numbered cluster. (If this cluster is where the element has been deleted,
we again rely on the recursive call in line 13 having already corrected that cluster’s
max attribute.)

Finally, we have to handle the case in which x’s cluster did not become empty
due to x being deleted. Although we do not have to update the summary in this
case, we might have to update max. Line 21 tests for this case, and if we have to
update max, line 22 does so (again relying on the recursive call to have corrected
max in the cluster).

Now we show that VEB-TREE-DELETE runs in O.lg lg u/ time in the worst
case. At first glance, you might think that recurrence (20.4) does not always apply,
because a single call of VEB-TREE-DELETE can make two recursive calls: one
on line 13 and one on line 15. Although the procedure can make both recursive
calls, let’s think about what happens when it does. In order for the recursive call on

556 Chapter 20 van Emde Boas Trees

line 15 to occur, the test on line 14 must show that x’s cluster is empty. The only
way that x’s cluster can be empty is if x was the only element in its cluster when
we made the recursive call on line 13. But if x was the only element in its cluster,
then that recursive call took O.1/ time, because it executed only lines 1–3. Thus,
we have two mutually exclusive possibilities:

� The recursive call on line 13 took constant time.

� The recursive call on line 15 did not occur.

In either case, recurrence (20.4) characterizes the running time of VEB-TREE-
DELETE, and hence its worst-case running time is O.lg lg u/.

Exercises

20.3-1
Modify vEB trees to support duplicate keys.

20.3-2
Modify vEB trees to support keys that have associated satellite data.

20.3-3
Write pseudocode for a procedure that creates an empty van Emde Boas tree.

20.3-4
What happens if you call VEB-TREE-INSERT with an element that is already in
the vEB tree? What happens if you call VEB-TREE-DELETE with an element that
is not in the vEB tree? Explain why the procedures exhibit the behavior that they
do. Show how to modify vEB trees and their operations so that we can check in
constant time whether an element is present.

20.3-5
Suppose that instead of "

p
u clusters, each with universe size #

p
u, we constructed

vEB trees to have u1=k clusters, each with universe size u1�1=k , where k > 1 is a
constant. If we were to modify the operations appropriately, what would be their
running times? For the purpose of analysis, assume that u1=k and u1�1=k are always
integers.

20.3-6
Creating a vEB tree with universe size u requires O.u/ time. Suppose we wish to
explicitly account for that time. What is the smallest number of operations n for
which the amortized time of each operation in a vEB tree is O.lg lg u/?

Problems for Chapter 20 557

Problems

20-1 Space requirements for van Emde Boas trees
This problem explores the space requirements for van Emde Boas trees and sug-
gests a way to modify the data structure to make its space requirement depend on
the number n of elements actually stored in the tree, rather than on the universe
size u. For simplicity, assume that

p
u is always an integer.

a. Explain why the following recurrence characterizes the space requirement P.u/

of a van Emde Boas tree with universe size u:

P.u/ D .
p

uC 1/P.
p

u/C‚.
p

u/ : (20.5)

b. Prove that recurrence (20.5) has the solution P.u/ D O.u/.

In order to reduce the space requirements, let us define a reduced-space van Emde
Boas tree, or RS-vEB tree, as a vEB tree V but with the following changes:
� The attribute V:cluster, rather than being stored as a simple array of pointers to

vEB trees with universe size
p

u, is a hash table (see Chapter 11) stored as a dy-
namic table (see Section 17.4). Corresponding to the array version of V:cluster,
the hash table stores pointers to RS-vEB trees with universe size

p
u. To find

the i th cluster, we look up the key i in the hash table, so that we can find the
i th cluster by a single search in the hash table.

� The hash table stores only pointers to nonempty clusters. A search in the hash
table for an empty cluster returns NIL, indicating that the cluster is empty.

� The attribute V:summary is NIL if all clusters are empty. Otherwise, V:summary
points to an RS-vEB tree with universe size

p
u.

Because the hash table is implemented with a dynamic table, the space it requires
is proportional to the number of nonempty clusters.

When we need to insert an element into an empty RS-vEB tree, we create the RS-
vEB tree by calling the following procedure, where the parameter u is the universe
size of the RS-vEB tree:

CREATE-NEW-RS-VEB-TREE.u/

1 allocate a new vEB tree V

2 V:u D u

3 V:min D NIL

4 V:max D NIL

5 V:summary D NIL

6 create V:cluster as an empty dynamic hash table
7 return V

558 Chapter 20 van Emde Boas Trees

c. Modify the VEB-TREE-INSERT procedure to produce pseudocode for the pro-
cedure RS-VEB-TREE-INSERT.V; x/, which inserts x into the RS-vEB tree V ,
calling CREATE-NEW-RS-VEB-TREE as appropriate.

d. Modify the VEB-TREE-SUCCESSOR procedure to produce pseudocode for
the procedure RS-VEB-TREE-SUCCESSOR.V; x/, which returns the successor
of x in RS-vEB tree V , or NIL if x has no successor in V .

e. Prove that, under the assumption of simple uniform hashing, your RS-VEB-
TREE-INSERT and RS-VEB-TREE-SUCCESSOR procedures run in O.lg lg u/

expected time.

f. Assuming that elements are never deleted from a vEB tree, prove that the space
requirement for the RS-vEB tree structure is O.n/, where n is the number of
elements actually stored in the RS-vEB tree.

g. RS-vEB trees have another advantage over vEB trees: they require less time to
create. How long does it take to create an empty RS-vEB tree?

20-2 y-fast tries
This problem investigates D. Willard’s “y-fast tries” which, like van Emde Boas
trees, perform each of the operations MEMBER, MINIMUM, MAXIMUM, PRE-
DECESSOR, and SUCCESSOR on elements drawn from a universe with size u in
O.lg lg u/ worst-case time. The INSERT and DELETE operations take O.lg lg u/

amortized time. Like reduced-space van Emde Boas trees (see Problem 20-1), y-
fast tries use only O.n/ space to store n elements. The design of y-fast tries relies
on perfect hashing (see Section 11.5).

As a preliminary structure, suppose that we create a perfect hash table containing
not only every element in the dynamic set, but every prefix of the binary represen-
tation of every element in the set. For example, if u D 16, so that lg u D 4, and
x D 13 is in the set, then because the binary representation of 13 is 1101, the
perfect hash table would contain the strings 1, 11, 110, and 1101. In addition to
the hash table, we create a doubly linked list of the elements currently in the set, in
increasing order.

a. How much space does this structure require?

b. Show how to perform the MINIMUM and MAXIMUM operations in O.1/ time;
the MEMBER, PREDECESSOR, and SUCCESSOR operations in O.lg lg u/ time;
and the INSERT and DELETE operations in O.lg u/ time.

To reduce the space requirement to O.n/, we make the following changes to the
data structure:

Notes for Chapter 20 559

� We cluster the n elements into n= lg u groups of size lg u. (Assume for now
that lg u divides n.) The first group consists of the lg u smallest elements in the
set, the second group consists of the next lg u smallest elements, and so on.

� We designate a “representative” value for each group. The representative of
the i th group is at least as large as the largest element in the i th group, and it is
smaller than every element of the .iC1/st group. (The representative of the last
group can be the maximum possible element u � 1.) Note that a representative
might be a value not currently in the set.

� We store the lg u elements of each group in a balanced binary search tree, such
as a red-black tree. Each representative points to the balanced binary search
tree for its group, and each balanced binary search tree points to its group’s
representative.

� The perfect hash table stores only the representatives, which are also stored in
a doubly linked list in increasing order.

We call this structure a y-fast trie.

c. Show that a y-fast trie requires only O.n/ space to store n elements.

d. Show how to perform the MINIMUM and MAXIMUM operations in O.lg lg u/

time with a y-fast trie.

e. Show how to perform the MEMBER operation in O.lg lg u/ time.

f. Show how to perform the PREDECESSOR and SUCCESSOR operations in
O.lg lg u/ time.

g. Explain why the INSERT and DELETE operations take �.lg lg u/ time.

h. Show how to relax the requirement that each group in a y-fast trie has exactly
lg u elements to allow INSERT and DELETE to run in O.lg lg u/ amortized time
without affecting the asymptotic running times of the other operations.

Chapter notes

The data structure in this chapter is named after P. van Emde Boas, who described
an early form of the idea in 1975 [339]. Later papers by van Emde Boas [340]
and van Emde Boas, Kaas, and Zijlstra [341] refined the idea and the exposition.
Mehlhorn and Näher [252] subsequently extended the ideas to apply to universe

560 Chapter 20 van Emde Boas Trees

sizes that are prime. Mehlhorn’s book [249] contains a slightly different treatment
of van Emde Boas trees than the one in this chapter.

Using the ideas behind van Emde Boas trees, Dementiev et al. [83] developed
a nonrecursive, three-level search tree that ran faster than van Emde Boas trees in
their own experiments.

Wang and Lin [347] designed a hardware-pipelined version of van Emde Boas
trees, which achieves constant amortized time per operation and uses O.lg lg u/

stages in the pipeline.
A lower bound by Pǎtraşcu and Thorup [273, 274] for finding the predecessor

shows that van Emde Boas trees are optimal for this operation, even if randomiza-
tion is allowed.

21 Data Structures for Disjoint Sets

Some applications involve grouping n distinct elements into a collection of disjoint
sets. These applications often need to perform two operations in particular: finding
the unique set that contains a given element and uniting two sets. This chapter
explores methods for maintaining a data structure that supports these operations.

Section 21.1 describes the operations supported by a disjoint-set data structure
and presents a simple application. In Section 21.2, we look at a simple linked-list
implementation for disjoint sets. Section 21.3 presents a more efficient represen-
tation using rooted trees. The running time using the tree representation is theo-
retically superlinear, but for all practical purposes it is linear. Section 21.4 defines
and discusses a very quickly growing function and its very slowly growing inverse,
which appears in the running time of operations on the tree-based implementation,
and then, by a complex amortized analysis, proves an upper bound on the running
time that is just barely superlinear.

21.1 Disjoint-set operations

A disjoint-set data structure maintains a collection S D fS1; S2; : : : ; Skg of dis-
joint dynamic sets. We identify each set by a representative, which is some mem-
ber of the set. In some applications, it doesn’t matter which member is used as the
representative; we care only that if we ask for the representative of a dynamic set
twice without modifying the set between the requests, we get the same answer both
times. Other applications may require a prespecified rule for choosing the repre-
sentative, such as choosing the smallest member in the set (assuming, of course,
that the elements can be ordered).

As in the other dynamic-set implementations we have studied, we represent each
element of a set by an object. Letting x denote an object, we wish to support the
following operations:

562 Chapter 21 Data Structures for Disjoint Sets

MAKE-SET.x/ creates a new set whose only member (and thus representative)
is x. Since the sets are disjoint, we require that x not already be in some other
set.

UNION.x; y/ unites the dynamic sets that contain x and y, say Sx and Sy , into a
new set that is the union of these two sets. We assume that the two sets are dis-
joint prior to the operation. The representative of the resulting set is any member
of Sx [Sy , although many implementations of UNION specifically choose the
representative of either Sx or Sy as the new representative. Since we require
the sets in the collection to be disjoint, conceptually we destroy sets Sx and Sy ,
removing them from the collection S . In practice, we often absorb the elements
of one of the sets into the other set.

FIND-SET.x/ returns a pointer to the representative of the (unique) set contain-
ing x.

Throughout this chapter, we shall analyze the running times of disjoint-set data
structures in terms of two parameters: n, the number of MAKE-SET operations,
and m, the total number of MAKE-SET, UNION, and FIND-SET operations. Since
the sets are disjoint, each UNION operation reduces the number of sets by one.
After n � 1 UNION operations, therefore, only one set remains. The number of
UNION operations is thus at most n � 1. Note also that since the MAKE-SET

operations are included in the total number of operations m, we have m � n. We
assume that the n MAKE-SET operations are the first n operations performed.

An application of disjoint-set data structures

One of the many applications of disjoint-set data structures arises in determin-
ing the connected components of an undirected graph (see Section B.4). Fig-
ure 21.1(a), for example, shows a graph with four connected components.

The procedure CONNECTED-COMPONENTS that follows uses the disjoint-set
operations to compute the connected components of a graph. Once CONNECTED-
COMPONENTS has preprocessed the graph, the procedure SAME-COMPONENT

answers queries about whether two vertices are in the same connected component.1

(In pseudocode, we denote the set of vertices of a graph G by G:V and the set of
edges by G:E.)

1When the edges of the graph are static—not changing over time—we can compute the connected
components faster by using depth-first search (Exercise 22.3-12). Sometimes, however, the edges
are added dynamically and we need to maintain the connected components as each edge is added. In
this case, the implementation given here can be more efficient than running a new depth-first search
for each new edge.

21.1 Disjoint-set operations 563

a b

c d

e f

g

h

i

j

Edge processed

initial sets

(b,d)

(e,g)

(a,c)

(h,i)

(a,b)

(e, f)

(b,c)

{a,b,c,d}

{a,b,c,d}

{a,c}

{a,c}

{a}

{a}

{a}

{a,b,c,d}

{b,d}

{b,d}

{b,d}

{b,d}

{b}

{c}

{c}

{c} {d}

{e, f,g}

{e, f,g}

{e,g}

{e,g}

{e,g}

{e,g}

{e}

{e} {f}

{f}

{f}

{f}

{f}

{f}

{g}

{g}

{h,i}

{h,i}

{h,i}

{h,i}

{h}

{h}

{h}

{h} {i}

{i}

{i}

{i}

{j}

{j}

{j}

{j}

{j}

{j}

{j}

{j}

Collection of disjoint sets

(a)

(b)

Figure 21.1 (a) A graph with four connected components: fa; b; c; dg, fe; f; gg, fh; ig, and fj g.
(b) The collection of disjoint sets after processing each edge.

CONNECTED-COMPONENTS.G/

1 for each vertex � 2 G:V
2 MAKE-SET.�/

3 for each edge .u; �/ 2 G:E
4 if FIND-SET.u/ ¤ FIND-SET.�/

5 UNION.u; �/

SAME-COMPONENT.u; �/

1 if FIND-SET.u/ == FIND-SET.�/

2 return TRUE

3 else return FALSE

The procedure CONNECTED-COMPONENTS initially places each vertex � in its
own set. Then, for each edge .u; �/, it unites the sets containing u and �. By
Exercise 21.1-2, after processing all the edges, two vertices are in the same con-
nected component if and only if the corresponding objects are in the same set.
Thus, CONNECTED-COMPONENTS computes sets in such a way that the proce-
dure SAME-COMPONENT can determine whether two vertices are in the same con-

564 Chapter 21 Data Structures for Disjoint Sets

nected component. Figure 21.1(b) illustrates how CONNECTED-COMPONENTS

computes the disjoint sets.
In an actual implementation of this connected-components algorithm, the repre-

sentations of the graph and the disjoint-set data structure would need to reference
each other. That is, an object representing a vertex would contain a pointer to
the corresponding disjoint-set object, and vice versa. These programming details
depend on the implementation language, and we do not address them further here.

Exercises

21.1-1
Suppose that CONNECTED-COMPONENTS is run on the undirected graph G D
.V; E/, where V D fa; b; c; d; e; f; g; h; i; j; kg and the edges of E are pro-
cessed in the order .d; i/; .f; k/; .g; i/; .b; g/; .a; h/; .i; j /; .d; k/; .b; j /; .d; f /;

.g; j /; .a; e/. List the vertices in each connected component after each iteration of
lines 3–5.

21.1-2
Show that after all edges are processed by CONNECTED-COMPONENTS, two ver-
tices are in the same connected component if and only if they are in the same set.

21.1-3
During the execution of CONNECTED-COMPONENTS on an undirected graph G D
.V; E/ with k connected components, how many times is FIND-SET called? How
many times is UNION called? Express your answers in terms of jV j, jEj, and k.

21.2 Linked-list representation of disjoint sets

Figure 21.2(a) shows a simple way to implement a disjoint-set data structure: each
set is represented by its own linked list. The object for each set has attributes head,
pointing to the first object in the list, and tail, pointing to the last object. Each
object in the list contains a set member, a pointer to the next object in the list, and
a pointer back to the set object. Within each linked list, the objects may appear in
any order. The representative is the set member in the first object in the list.

With this linked-list representation, both MAKE-SET and FIND-SET are easy,
requiring O.1/ time. To carry out MAKE-SET.x/, we create a new linked list
whose only object is x. For FIND-SET.x/, we just follow the pointer from x back
to its set object and then return the member in the object that head points to. For
example, in Figure 21.2(a), the call FIND-SET.g/ would return f .

21.2 Linked-list representation of disjoint sets 565

f g d c h e b

(a)

(b)

head

tail
S1

c h e

head

tail
S2

bf g d

head

tail
S1

Figure 21.2 (a) Linked-list representations of two sets. Set S1 contains members d , f , and g, with
representative f , and set S2 contains members b, c, e, and h, with representative c. Each object in
the list contains a set member, a pointer to the next object in the list, and a pointer back to the set
object. Each set object has pointers head and tail to the first and last objects, respectively. (b) The
result of UNION.g; e/, which appends the linked list containing e to the linked list containing g. The
representative of the resulting set is f . The set object for e’s list, S2, is destroyed.

A simple implementation of union

The simplest implementation of the UNION operation using the linked-list set rep-
resentation takes significantly more time than MAKE-SET or FIND-SET. As Fig-
ure 21.2(b) shows, we perform UNION.x; y/ by appending y’s list onto the end
of x’s list. The representative of x’s list becomes the representative of the resulting
set. We use the tail pointer for x’s list to quickly find where to append y’s list. Be-
cause all members of y’s list join x’s list, we can destroy the set object for y’s list.
Unfortunately, we must update the pointer to the set object for each object origi-
nally on y’s list, which takes time linear in the length of y’s list. In Figure 21.2, for
example, the operation UNION.g; e/ causes pointers to be updated in the objects
for b, c, e, and h.

In fact, we can easily construct a sequence of m operations on n objects that
requires ‚.n2/ time. Suppose that we have objects x1; x2; : : : ; xn. We execute
the sequence of n MAKE-SET operations followed by n � 1 UNION operations
shown in Figure 21.3, so that m D 2n � 1. We spend ‚.n/ time performing the n

MAKE-SET operations. Because the i th UNION operation updates i objects, the
total number of objects updated by all n � 1 UNION operations is

566 Chapter 21 Data Structures for Disjoint Sets

Operation Number of objects updated
MAKE-SET.x1/ 1
MAKE-SET.x2/ 1

:::
:::

MAKE-SET.xn/ 1
UNION.x2; x1/ 1
UNION.x3; x2/ 2
UNION.x4; x3/ 3

:::
:::

UNION.xn; xn�1/ n � 1

Figure 21.3 A sequence of 2n � 1 operations on n objects that takes ‚.n2/ time, or ‚.n/ time
per operation on average, using the linked-list set representation and the simple implementation of
UNION.

n�1X
iD1

i D ‚.n2/ :

The total number of operations is 2n�1, and so each operation on average requires
‚.n/ time. That is, the amortized time of an operation is ‚.n/.

A weighted-union heuristic

In the worst case, the above implementation of the UNION procedure requires an
average of ‚.n/ time per call because we may be appending a longer list onto
a shorter list; we must update the pointer to the set object for each member of
the longer list. Suppose instead that each list also includes the length of the list
(which we can easily maintain) and that we always append the shorter list onto the
longer, breaking ties arbitrarily. With this simple weighted-union heuristic, a sin-
gle UNION operation can still take �.n/ time if both sets have �.n/ members. As
the following theorem shows, however, a sequence of m MAKE-SET, UNION, and
FIND-SET operations, n of which are MAKE-SET operations, takes O.mC n lg n/

time.

Theorem 21.1
Using the linked-list representation of disjoint sets and the weighted-union heuris-
tic, a sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which
are MAKE-SET operations, takes O.mC n lg n/ time.

21.2 Linked-list representation of disjoint sets 567

Proof Because each UNION operation unites two disjoint sets, we perform at
most n�1 UNION operations over all. We now bound the total time taken by these
UNION operations. We start by determining, for each object, an upper bound on the
number of times the object’s pointer back to its set object is updated. Consider a
particular object x. We know that each time x’s pointer was updated, x must have
started in the smaller set. The first time x’s pointer was updated, therefore, the
resulting set must have had at least 2 members. Similarly, the next time x’s pointer
was updated, the resulting set must have had at least 4 members. Continuing on,
we observe that for any k � n, after x’s pointer has been updated dlg ke times,
the resulting set must have at least k members. Since the largest set has at most n

members, each object’s pointer is updated at most dlg ne times over all the UNION

operations. Thus the total time spent updating object pointers over all UNION

operations is O.n lg n/. We must also account for updating the tail pointers and
the list lengths, which take only ‚.1/ time per UNION operation. The total time
spent in all UNION operations is thus O.n lg n/.

The time for the entire sequence of m operations follows easily. Each MAKE-
SET and FIND-SET operation takes O.1/ time, and there are O.m/ of them. The
total time for the entire sequence is thus O.mC n lg n/.

Exercises

21.2-1
Write pseudocode for MAKE-SET, FIND-SET, and UNION using the linked-list
representation and the weighted-union heuristic. Make sure to specify the attributes
that you assume for set objects and list objects.

21.2-2
Show the data structure that results and the answers returned by the FIND-SET

operations in the following program. Use the linked-list representation with the
weighted-union heuristic.

1 for i D 1 to 16

2 MAKE-SET.xi/

3 for i D 1 to 15 by 2

4 UNION.xi ; xiC1/

5 for i D 1 to 13 by 4

6 UNION.xi ; xiC2/

7 UNION.x1; x5/

8 UNION.x11; x13/

9 UNION.x1; x10/

10 FIND-SET.x2/

11 FIND-SET.x9/

568 Chapter 21 Data Structures for Disjoint Sets

Assume that if the sets containing xi and xj have the same size, then the operation
UNION.xi ; xj / appends xj ’s list onto xi ’s list.

21.2-3
Adapt the aggregate proof of Theorem 21.1 to obtain amortized time bounds
of O.1/ for MAKE-SET and FIND-SET and O.lg n/ for UNION using the linked-
list representation and the weighted-union heuristic.

21.2-4
Give a tight asymptotic bound on the running time of the sequence of operations in
Figure 21.3 assuming the linked-list representation and the weighted-union heuris-
tic.

21.2-5
Professor Gompers suspects that it might be possible to keep just one pointer in
each set object, rather than two (head and tail), while keeping the number of point-
ers in each list element at two. Show that the professor’s suspicion is well founded
by describing how to represent each set by a linked list such that each operation
has the same running time as the operations described in this section. Describe
also how the operations work. Your scheme should allow for the weighted-union
heuristic, with the same effect as described in this section. (Hint: Use the tail of a
linked list as its set’s representative.)

21.2-6
Suggest a simple change to the UNION procedure for the linked-list representation
that removes the need to keep the tail pointer to the last object in each list. Whether
or not the weighted-union heuristic is used, your change should not change the
asymptotic running time of the UNION procedure. (Hint: Rather than appending
one list to another, splice them together.)

21.3 Disjoint-set forests

In a faster implementation of disjoint sets, we represent sets by rooted trees, with
each node containing one member and each tree representing one set. In a disjoint-
set forest, illustrated in Figure 21.4(a), each member points only to its parent. The
root of each tree contains the representative and is its own parent. As we shall
see, although the straightforward algorithms that use this representation are no
faster than ones that use the linked-list representation, by introducing two heuris-
tics—“union by rank” and “path compression”—we can achieve an asymptotically
optimal disjoint-set data structure.

21.3 Disjoint-set forests 569

c

h e

b

f

d

g

(a)

f

c

h e

b

d

g

(b)

Figure 21.4 A disjoint-set forest. (a) Two trees representing the two sets of Figure 21.2. The
tree on the left represents the set fb; c; e; hg, with c as the representative, and the tree on the right
represents the set fd; f; gg, with f as the representative. (b) The result of UNION.e; g/.

We perform the three disjoint-set operations as follows. A MAKE-SET operation
simply creates a tree with just one node. We perform a FIND-SET operation by
following parent pointers until we find the root of the tree. The nodes visited on
this simple path toward the root constitute the find path. A UNION operation,
shown in Figure 21.4(b), causes the root of one tree to point to the root of the other.

Heuristics to improve the running time

So far, we have not improved on the linked-list implementation. A sequence of
n� 1 UNION operations may create a tree that is just a linear chain of n nodes. By
using two heuristics, however, we can achieve a running time that is almost linear
in the total number of operations m.

The first heuristic, union by rank, is similar to the weighted-union heuristic we
used with the linked-list representation. The obvious approach would be to make
the root of the tree with fewer nodes point to the root of the tree with more nodes.
Rather than explicitly keeping track of the size of the subtree rooted at each node,
we shall use an approach that eases the analysis. For each node, we maintain a
rank, which is an upper bound on the height of the node. In union by rank, we
make the root with smaller rank point to the root with larger rank during a UNION

operation.
The second heuristic, path compression, is also quite simple and highly effec-

tive. As shown in Figure 21.5, we use it during FIND-SET operations to make each
node on the find path point directly to the root. Path compression does not change
any ranks.

570 Chapter 21 Data Structures for Disjoint Sets

a

b

c

d

e

f

a b c d e

f

(a) (b)

Figure 21.5 Path compression during the operation FIND-SET. Arrows and self-loops at roots are
omitted. (a) A tree representing a set prior to executing FIND-SET.a/. Triangles represent subtrees
whose roots are the nodes shown. Each node has a pointer to its parent. (b) The same set after
executing FIND-SET.a/. Each node on the find path now points directly to the root.

Pseudocode for disjoint-set forests

To implement a disjoint-set forest with the union-by-rank heuristic, we must keep
track of ranks. With each node x, we maintain the integer value x:rank, which is
an upper bound on the height of x (the number of edges in the longest simple path
between x and a descendant leaf). When MAKE-SET creates a singleton set, the
single node in the corresponding tree has an initial rank of 0. Each FIND-SET oper-
ation leaves all ranks unchanged. The UNION operation has two cases, depending
on whether the roots of the trees have equal rank. If the roots have unequal rank,
we make the root with higher rank the parent of the root with lower rank, but the
ranks themselves remain unchanged. If, instead, the roots have equal ranks, we
arbitrarily choose one of the roots as the parent and increment its rank.

Let us put this method into pseudocode. We designate the parent of node x

by x:p. The LINK procedure, a subroutine called by UNION, takes pointers to two
roots as inputs.

21.3 Disjoint-set forests 571

MAKE-SET.x/

1 x:p D x

2 x:rank D 0

UNION.x; y/

1 LINK.FIND-SET.x/; FIND-SET.y//

LINK.x; y/

1 if x:rank > y:rank
2 y:p D x

3 else x:p D y

4 if x:rank == y:rank
5 y:rank D y:rankC 1

The FIND-SET procedure with path compression is quite simple:

FIND-SET.x/

1 if x ¤ x:p
2 x:p D FIND-SET.x:p/

3 return x:p

The FIND-SET procedure is a two-pass method: as it recurses, it makes one pass
up the find path to find the root, and as the recursion unwinds, it makes a second
pass back down the find path to update each node to point directly to the root. Each
call of FIND-SET.x/ returns x:p in line 3. If x is the root, then FIND-SET skips
line 2 and instead returns x:p, which is x; this is the case in which the recursion
bottoms out. Otherwise, line 2 executes, and the recursive call with parameter x:p
returns a pointer to the root. Line 2 updates node x to point directly to the root,
and line 3 returns this pointer.

Effect of the heuristics on the running time

Separately, either union by rank or path compression improves the running time of
the operations on disjoint-set forests, and the improvement is even greater when
we use the two heuristics together. Alone, union by rank yields a running time
of O.m lg n/ (see Exercise 21.4-4), and this bound is tight (see Exercise 21.3-3).
Although we shall not prove it here, for a sequence of n MAKE-SET opera-
tions (and hence at most n � 1 UNION operations) and f FIND-SET opera-
tions, the path-compression heuristic alone gives a worst-case running time of
‚.nC f � .1C log2Cf=n n//.

572 Chapter 21 Data Structures for Disjoint Sets

When we use both union by rank and path compression, the worst-case running
time is O.m ˛.n//, where ˛.n/ is a very slowly growing function, which we de-
fine in Section 21.4. In any conceivable application of a disjoint-set data structure,
˛.n/ � 4; thus, we can view the running time as linear in m in all practical situa-
tions. Strictly speaking, however, it is superlinear. In Section 21.4, we prove this
upper bound.

Exercises

21.3-1
Redo Exercise 21.2-2 using a disjoint-set forest with union by rank and path com-
pression.

21.3-2
Write a nonrecursive version of FIND-SET with path compression.

21.3-3
Give a sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which
are MAKE-SET operations, that takes �.m lg n/ time when we use union by rank
only.

21.3-4
Suppose that we wish to add the operation PRINT-SET.x/, which is given a node x

and prints all the members of x’s set, in any order. Show how we can add just
a single attribute to each node in a disjoint-set forest so that PRINT-SET.x/ takes
time linear in the number of members of x’s set and the asymptotic running times
of the other operations are unchanged. Assume that we can print each member of
the set in O.1/ time.

21.3-5 ?

Show that any sequence of m MAKE-SET, FIND-SET, and LINK operations, where
all the LINK operations appear before any of the FIND-SET operations, takes only
O.m/ time if we use both path compression and union by rank. What happens in
the same situation if we use only the path-compression heuristic?

21.4 Analysis of union by rank with path compression 573

? 21.4 Analysis of union by rank with path compression

As noted in Section 21.3, the combined union-by-rank and path-compression heu-
ristic runs in time O.m ˛.n// for m disjoint-set operations on n elements. In this
section, we shall examine the function ˛ to see just how slowly it grows. Then we
prove this running time using the potential method of amortized analysis.

A very quickly growing function and its very slowly growing inverse

For integers k � 0 and j � 1, we define the function Ak.j / as

Ak.j / D
(

j C 1 if k D 0 ;

A
.j C1/

k�1
.j / if k � 1 ;

where the expression A
.j C1/

k�1
.j / uses the functional-iteration notation given in Sec-

tion 3.2. Specifically, A
.0/

k�1
.j / D j and A

.i/

k�1
.j / D Ak�1.A

.i�1/

k�1
.j // for i � 1.

We will refer to the parameter k as the level of the function A.
The function Ak.j / strictly increases with both j and k. To see just how quickly

this function grows, we first obtain closed-form expressions for A1.j / and A2.j /.

Lemma 21.2
For any integer j � 1, we have A1.j / D 2j C 1.

Proof We first use induction on i to show that A
.i/
0 .j / D jCi . For the base case,

we have A
.0/
0 .j / D j D j C 0. For the inductive step, assume that A

.i�1/
0 .j / D

j C .i � 1/. Then A
.i/
0 .j / D A0.A

.i�1/
0 .j // D .j C .i � 1//C 1 D j C i . Finally,

we note that A1.j / D A
.j C1/
0 .j / D j C .j C 1/ D 2j C 1.

Lemma 21.3
For any integer j � 1, we have A2.j / D 2j C1.j C 1/ � 1.

Proof We first use induction on i to show that A
.i/
1 .j / D 2i .j C 1/ � 1. For

the base case, we have A
.0/
1 .j / D j D 20.j C 1/ � 1. For the inductive step,

assume that A
.i�1/
1 .j / D 2i�1.j C 1/ � 1. Then A

.i/
1 .j / D A1.A

.i�1/
1 .j // D

A1.2i�1.j C 1/ � 1/ D 2�.2i�1.jC1/�1/C1 D 2i .jC1/�2C1 D 2i .jC1/�1.
Finally, we note that A2.j / D A

.j C1/
1 .j / D 2j C1.j C 1/ � 1.

Now we can see how quickly Ak.j / grows by simply examining Ak.1/ for levels
k D 0; 1; 2; 3; 4. From the definition of A0.k/ and the above lemmas, we have
A0.1/ D 1C 1 D 2, A1.1/ D 2 � 1C 1 D 3, and A2.1/ D 21C1 � .1C 1/ � 1 D 7.

574 Chapter 21 Data Structures for Disjoint Sets

We also have

A3.1/ D A
.2/
2 .1/

D A2.A2.1//

D A2.7/

D 28 � 8 � 1

D 211 � 1

D 2047

and

A4.1/ D A
.2/
3 .1/

D A3.A3.1//

D A3.2047/

D A
.2048/
2 .2047/

� A2.2047/

D 22048 � 2048 � 1

> 22048

D .24/512

D 16512

� 1080 ;

which is the estimated number of atoms in the observable universe. (The symbol
“�” denotes the “much-greater-than” relation.)

We define the inverse of the function Ak.n/, for integer n � 0, by

˛.n/ D min fk W Ak.1/ � ng :

In words, ˛.n/ is the lowest level k for which Ak.1/ is at least n. From the above
values of Ak.1/, we see that

˛.n/ D

˚
0 for 0 � n � 2 ;

1 for n D 3 ;

2 for 4 � n � 7 ;

3 for 8 � n � 2047 ;

4 for 2048 � n � A4.1/ :

It is only for values of n so large that the term “astronomical” understates them
(greater than A4.1/, a huge number) that ˛.n/ > 4, and so ˛.n/ � 4 for all
practical purposes.

21.4 Analysis of union by rank with path compression 575

Properties of ranks

In the remainder of this section, we prove an O.m˛.n// bound on the running time
of the disjoint-set operations with union by rank and path compression. In order to
prove this bound, we first prove some simple properties of ranks.

Lemma 21.4
For all nodes x, we have x:rank � x:p:rank, with strict inequality if x ¤ x:p.
The value of x:rank is initially 0 and increases through time until x ¤ x:p; from
then on, x:rank does not change. The value of x:p:rank monotonically increases
over time.

Proof The proof is a straightforward induction on the number of operations, us-
ing the implementations of MAKE-SET, UNION, and FIND-SET that appear in
Section 21.3. We leave it as Exercise 21.4-1.

Corollary 21.5
As we follow the simple path from any node toward a root, the node ranks strictly
increase.

Lemma 21.6
Every node has rank at most n � 1.

Proof Each node’s rank starts at 0, and it increases only upon LINK operations.
Because there are at most n � 1 UNION operations, there are also at most n � 1

LINK operations. Because each LINK operation either leaves all ranks alone or
increases some node’s rank by 1, all ranks are at most n � 1.

Lemma 21.6 provides a weak bound on ranks. In fact, every node has rank at
most blg nc (see Exercise 21.4-2). The looser bound of Lemma 21.6 will suffice
for our purposes, however.

Proving the time bound

We shall use the potential method of amortized analysis (see Section 17.3) to prove
the O.m ˛.n// time bound. In performing the amortized analysis, we will find it
convenient to assume that we invoke the LINK operation rather than the UNION

operation. That is, since the parameters of the LINK procedure are pointers to two
roots, we act as though we perform the appropriate FIND-SET operations sepa-
rately. The following lemma shows that even if we count the extra FIND-SET op-
erations induced by UNION calls, the asymptotic running time remains unchanged.

576 Chapter 21 Data Structures for Disjoint Sets

Lemma 21.7
Suppose we convert a sequence S 0 of m0 MAKE-SET, UNION, and FIND-SET op-
erations into a sequence S of m MAKE-SET, LINK, and FIND-SET operations by
turning each UNION into two FIND-SET operations followed by a LINK. Then, if
sequence S runs in O.m ˛.n// time, sequence S 0 runs in O.m0 ˛.n// time.

Proof Since each UNION operation in sequence S 0 is converted into three opera-
tions in S , we have m0 � m � 3m0. Since m D O.m0/, an O.m ˛.n// time bound
for the converted sequence S implies an O.m0 ˛.n// time bound for the original
sequence S 0.

In the remainder of this section, we shall assume that the initial sequence of m0

MAKE-SET, UNION, and FIND-SET operations has been converted to a sequence
of m MAKE-SET, LINK, and FIND-SET operations. We now prove an O.m ˛.n//

time bound for the converted sequence and appeal to Lemma 21.7 to prove the
O.m0 ˛.n// running time of the original sequence of m0 operations.

Potential function

The potential function we use assigns a potential �q.x/ to each node x in the
disjoint-set forest after q operations. We sum the node potentials for the poten-
tial of the entire forest: ˆq D

P
x �q.x/, where ˆq denotes the potential of the

forest after q operations. The forest is empty prior to the first operation, and we
arbitrarily set ˆ0 D 0. No potential ˆq will ever be negative.

The value of �q.x/ depends on whether x is a tree root after the qth operation.
If it is, or if x:rank D 0, then �q.x/ D ˛.n/ � x:rank.

Now suppose that after the qth operation, x is not a root and that x:rank � 1.
We need to define two auxiliary functions on x before we can define �q.x/. First
we define

level.x/ D max fk W x:p:rank � Ak.x:rank/g :

That is, level.x/ is the greatest level k for which Ak, applied to x’s rank, is no
greater than x’s parent’s rank.

We claim that

0 � level.x/ < ˛.n/ ; (21.1)

which we see as follows. We have

x:p:rank � x:rankC 1 (by Lemma 21.4)

D A0.x:rank/ (by definition of A0.j /) ,

which implies that level.x/ � 0, and we have

21.4 Analysis of union by rank with path compression 577

A˛.n/.x:rank/ � A˛.n/.1/ (because Ak.j / is strictly increasing)

� n (by the definition of ˛.n/)

> x:p:rank (by Lemma 21.6) ,

which implies that level.x/ < ˛.n/. Note that because x:p:rank monotonically
increases over time, so does level.x/.

The second auxiliary function applies when x:rank � 1:

iter.x/ D max
˚
i W x:p:rank � A

.i/

level.x/
.x:rank/

:

That is, iter.x/ is the largest number of times we can iteratively apply Alevel.x/,
applied initially to x’s rank, before we get a value greater than x’s parent’s rank.

We claim that when x:rank � 1, we have

1 � iter.x/ � x:rank ; (21.2)

which we see as follows. We have

x:p:rank � Alevel.x/.x:rank/ (by definition of level.x/)

D A
.1/

level.x/
.x:rank/ (by definition of functional iteration) ,

which implies that iter.x/ � 1, and we have

A
.x: rankC1/

level.x/
.x:rank/ D Alevel.x/C1.x:rank/ (by definition of Ak.j /)

> x:p:rank (by definition of level.x/) ,

which implies that iter.x/ � x:rank. Note that because x:p:rank monotonically
increases over time, in order for iter.x/ to decrease, level.x/ must increase. As long
as level.x/ remains unchanged, iter.x/ must either increase or remain unchanged.

With these auxiliary functions in place, we are ready to define the potential of
node x after q operations:

�q.x/ D
(

˛.n/ � x:rank if x is a root or x:rank D 0 ;

.˛.n/ � level.x//�x:rank � iter.x/ if x is not a root and x:rank � 1 :

We next investigate some useful properties of node potentials.

Lemma 21.8
For every node x, and for all operation counts q, we have

0 � �q.x/ � ˛.n/ � x:rank :

578 Chapter 21 Data Structures for Disjoint Sets

Proof If x is a root or x:rank D 0, then �q.x/ D ˛.n/�x:rank by definition. Now
suppose that x is not a root and that x:rank � 1. We obtain a lower bound on �q.x/

by maximizing level.x/ and iter.x/. By the bound (21.1), level.x/ � ˛.n/�1, and
by the bound (21.2), iter.x/ � x:rank. Thus,

�q.x/ D .˛.n/ � level.x// � x:rank � iter.x/

� .˛.n/ � .˛.n/� 1// � x:rank � x:rank

D x:rank � x:rank

D 0 :

Similarly, we obtain an upper bound on �q.x/ by minimizing level.x/ and iter.x/.
By the bound (21.1), level.x/ � 0, and by the bound (21.2), iter.x/ � 1. Thus,

�q.x/ � .˛.n/ � 0/ � x:rank � 1

D ˛.n/ � x:rank � 1

< ˛.n/ � x:rank :

Corollary 21.9
If node x is not a root and x:rank > 0, then �q.x/ < ˛.n/ � x:rank.

Potential changes and amortized costs of operations

We are now ready to examine how the disjoint-set operations affect node potentials.
With an understanding of the change in potential due to each operation, we can
determine each operation’s amortized cost.

Lemma 21.10
Let x be a node that is not a root, and suppose that the qth operation is either a
LINK or FIND-SET. Then after the qth operation, �q.x/ � �q�1.x/. Moreover, if
x:rank � 1 and either level.x/ or iter.x/ changes due to the qth operation, then
�q.x/ � �q�1.x/ � 1. That is, x’s potential cannot increase, and if it has positive
rank and either level.x/ or iter.x/ changes, then x’s potential drops by at least 1.

Proof Because x is not a root, the qth operation does not change x:rank, and
because n does not change after the initial n MAKE-SET operations, ˛.n/ remains
unchanged as well. Hence, these components of the formula for x’s potential re-
main the same after the qth operation. If x:rank D 0, then �q.x/ D �q�1.x/ D 0.
Now assume that x:rank � 1.

Recall that level.x/ monotonically increases over time. If the qth operation
leaves level.x/ unchanged, then iter.x/ either increases or remains unchanged.
If both level.x/ and iter.x/ are unchanged, then �q.x/ D �q�1.x/. If level.x/

21.4 Analysis of union by rank with path compression 579

is unchanged and iter.x/ increases, then it increases by at least 1, and so
�q.x/ � �q�1.x/� 1.

Finally, if the qth operation increases level.x/, it increases by at least 1, so that
the value of the term .˛.n/ � level.x// � x:rank drops by at least x:rank. Be-
cause level.x/ increased, the value of iter.x/ might drop, but according to the
bound (21.2), the drop is by at most x:rank � 1. Thus, the increase in poten-
tial due to the change in iter.x/ is less than the decrease in potential due to the
change in level.x/, and we conclude that �q.x/ � �q�1.x/� 1.

Our final three lemmas show that the amortized cost of each MAKE-SET, LINK,
and FIND-SET operation is O.˛.n//. Recall from equation (17.2) that the amor-
tized cost of each operation is its actual cost plus the increase in potential due to
the operation.

Lemma 21.11
The amortized cost of each MAKE-SET operation is O.1/.

Proof Suppose that the qth operation is MAKE-SET.x/. This operation creates
node x with rank 0, so that �q.x/ D 0. No other ranks or potentials change, and
so ˆq D ˆq�1. Noting that the actual cost of the MAKE-SET operation is O.1/

completes the proof.

Lemma 21.12
The amortized cost of each LINK operation is O.˛.n//.

Proof Suppose that the qth operation is LINK.x; y/. The actual cost of the LINK

operation is O.1/. Without loss of generality, suppose that the LINK makes y the
parent of x.

To determine the change in potential due to the LINK, we note that the only
nodes whose potentials may change are x, y, and the children of y just prior to the
operation. We shall show that the only node whose potential can increase due to
the LINK is y, and that its increase is at most ˛.n/:

� By Lemma 21.10, any node that is y’s child just before the LINK cannot have
its potential increase due to the LINK.

� From the definition of �q.x/, we see that, since x was a root just before the qth
operation, �q�1.x/ D ˛.n/�x:rank. If x:rank D 0, then �q.x/ D �q�1.x/ D 0.
Otherwise,

�q.x/ < ˛.n/ � x:rank (by Corollary 21.9)

D �q�1.x/ ;

and so x’s potential decreases.

580 Chapter 21 Data Structures for Disjoint Sets

� Because y is a root prior to the LINK, �q�1.y/ D ˛.n/ � y:rank. The LINK

operation leaves y as a root, and it either leaves y’s rank alone or it increases y’s
rank by 1. Therefore, either �q.y/ D �q�1.y/ or �q.y/ D �q�1.y/C ˛.n/.

The increase in potential due to the LINK operation, therefore, is at most ˛.n/.
The amortized cost of the LINK operation is O.1/C ˛.n/ D O.˛.n//.

Lemma 21.13
The amortized cost of each FIND-SET operation is O.˛.n//.

Proof Suppose that the qth operation is a FIND-SET and that the find path con-
tains s nodes. The actual cost of the FIND-SET operation is O.s/. We shall
show that no node’s potential increases due to the FIND-SET and that at least
max.0; s � .˛.n/ C 2// nodes on the find path have their potential decrease by
at least 1.

To see that no node’s potential increases, we first appeal to Lemma 21.10 for all
nodes other than the root. If x is the root, then its potential is ˛.n/ � x:rank, which
does not change.

Now we show that at least max.0; s � .˛.n/ C 2// nodes have their potential
decrease by at least 1. Let x be a node on the find path such that x:rank > 0

and x is followed somewhere on the find path by another node y that is not a root,
where level.y/ D level.x/ just before the FIND-SET operation. (Node y need not
immediately follow x on the find path.) All but at most ˛.n/C 2 nodes on the find
path satisfy these constraints on x. Those that do not satisfy them are the first node
on the find path (if it has rank 0), the last node on the path (i.e., the root), and the
last node w on the path for which level.w/ D k, for each k D 0; 1; 2; : : : ; ˛.n/�1.

Let us fix such a node x, and we shall show that x’s potential decreases by at
least 1. Let k D level.x/ D level.y/. Just prior to the path compression caused by
the FIND-SET, we have

x:p:rank � A
.iter.x//

k
.x:rank/ (by definition of iter.x/) ,

y:p:rank � Ak.y:rank/ (by definition of level.y/) ,

y:rank � x:p:rank (by Corollary 21.5 and because
y follows x on the find path) .

Putting these inequalities together and letting i be the value of iter.x/ before path
compression, we have

y:p:rank � Ak.y:rank/

� Ak.x:p:rank/ (because Ak.j / is strictly increasing)

� Ak.A
.iter.x//

k
.x:rank//

D A
.iC1/

k
.x:rank/ :

21.4 Analysis of union by rank with path compression 581

Because path compression will make x and y have the same parent, we know
that after path compression, x:p:rank D y:p:rank and that the path compression
does not decrease y:p:rank. Since x:rank does not change, after path compression
we have that x:p:rank � A

.iC1/

k
.x:rank/. Thus, path compression will cause ei-

ther iter.x/ to increase (to at least i C 1) or level.x/ to increase (which occurs if
iter.x/ increases to at least x:rankC 1). In either case, by Lemma 21.10, we have
�q.x/ � �q�1.x/� 1. Hence, x’s potential decreases by at least 1.

The amortized cost of the FIND-SET operation is the actual cost plus the change
in potential. The actual cost is O.s/, and we have shown that the total potential
decreases by at least max.0; s � .˛.n/C 2//. The amortized cost, therefore, is at
most O.s/ � .s � .˛.n/C 2// D O.s/ � s C O.˛.n// D O.˛.n//, since we can
scale up the units of potential to dominate the constant hidden in O.s/.

Putting the preceding lemmas together yields the following theorem.

Theorem 21.14
A sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which are
MAKE-SET operations, can be performed on a disjoint-set forest with union by
rank and path compression in worst-case time O.m ˛.n//.

Proof Immediate from Lemmas 21.7, 21.11, 21.12, and 21.13.

Exercises

21.4-1
Prove Lemma 21.4.

21.4-2
Prove that every node has rank at most blg nc.
21.4-3
In light of Exercise 21.4-2, how many bits are necessary to store x:rank for each
node x?

21.4-4
Using Exercise 21.4-2, give a simple proof that operations on a disjoint-set forest
with union by rank but without path compression run in O.m lg n/ time.

21.4-5
Professor Dante reasons that because node ranks increase strictly along a simple
path to the root, node levels must monotonically increase along the path. In other

582 Chapter 21 Data Structures for Disjoint Sets

words, if x:rank > 0 and x:p is not a root, then level.x/ � level.x:p/. Is the
professor correct?

21.4-6 ?

Consider the function ˛0.n/ D min fk W Ak.1/ � lg.nC 1/g. Show that ˛0.n/ � 3

for all practical values of n and, using Exercise 21.4-2, show how to modify the
potential-function argument to prove that we can perform a sequence of m MAKE-
SET, UNION, and FIND-SET operations, n of which are MAKE-SET operations, on
a disjoint-set forest with union by rank and path compression in worst-case time
O.m ˛0.n//.

Problems

21-1 Off-line minimum
The off-line minimum problem asks us to maintain a dynamic set T of elements
from the domain f1; 2; : : : ; ng under the operations INSERT and EXTRACT-MIN.
We are given a sequence S of n INSERT and m EXTRACT-MIN calls, where each
key in f1; 2; : : : ; ng is inserted exactly once. We wish to determine which key
is returned by each EXTRACT-MIN call. Specifically, we wish to fill in an array
extractedŒ1 : : m�, where for i D 1; 2; : : : ; m, extractedŒi � is the key returned by
the i th EXTRACT-MIN call. The problem is “off-line” in the sense that we are
allowed to process the entire sequence S before determining any of the returned
keys.

a. In the following instance of the off-line minimum problem, each operation
INSERT.i/ is represented by the value of i and each EXTRACT-MIN is rep-
resented by the letter E:

4; 8; E; 3; E; 9; 2; 6; E; E; E; 1; 7; E; 5 :

Fill in the correct values in the extracted array.

To develop an algorithm for this problem, we break the sequence S into homoge-
neous subsequences. That is, we represent S by

I1; E; I2; E; I3; : : : ; Im; E; ImC1 ;

where each E represents a single EXTRACT-MIN call and each Ij represents a (pos-
sibly empty) sequence of INSERT calls. For each subsequence Ij , we initially place
the keys inserted by these operations into a set Kj , which is empty if Ij is empty.
We then do the following:

Problems for Chapter 21 583

OFF-LINE-MINIMUM.m; n/

1 for i D 1 to n

2 determine j such that i 2 Kj

3 if j ¤ mC 1

4 extractedŒj � D i

5 let l be the smallest value greater than j

for which set Kl exists
6 Kl D Kj [Kl , destroying Kj

7 return extracted

b. Argue that the array extracted returned by OFF-LINE-MINIMUM is correct.

c. Describe how to implement OFF-LINE-MINIMUM efficiently with a disjoint-
set data structure. Give a tight bound on the worst-case running time of your
implementation.

21-2 Depth determination
In the depth-determination problem, we maintain a forest F D fTig of rooted
trees under three operations:

MAKE-TREE.�/ creates a tree whose only node is �.

FIND-DEPTH.�/ returns the depth of node � within its tree.

GRAFT.r; �/ makes node r , which is assumed to be the root of a tree, become the
child of node �, which is assumed to be in a different tree than r but may or may
not itself be a root.

a. Suppose that we use a tree representation similar to a disjoint-set forest: �:p
is the parent of node �, except that �:p D � if � is a root. Suppose further
that we implement GRAFT.r; �/ by setting r:p D � and FIND-DEPTH.�/ by
following the find path up to the root, returning a count of all nodes other than �

encountered. Show that the worst-case running time of a sequence of m MAKE-
TREE, FIND-DEPTH, and GRAFT operations is ‚.m2/.

By using the union-by-rank and path-compression heuristics, we can reduce the
worst-case running time. We use the disjoint-set forest S D fSig, where each
set Si (which is itself a tree) corresponds to a tree Ti in the forest F . The tree
structure within a set Si , however, does not necessarily correspond to that of Ti . In
fact, the implementation of Si does not record the exact parent-child relationships
but nevertheless allows us to determine any node’s depth in Ti .

The key idea is to maintain in each node � a “pseudodistance” �:d, which is
defined so that the sum of the pseudodistances along the simple path from � to the

584 Chapter 21 Data Structures for Disjoint Sets

root of its set Si equals the depth of � in Ti . That is, if the simple path from � to its
root in Si is �0; �1; : : : ; �k, where �0 D � and �k is Si ’s root, then the depth of �

in Ti is
Pk

j D0 �j :d.

b. Give an implementation of MAKE-TREE.

c. Show how to modify FIND-SET to implement FIND-DEPTH. Your implemen-
tation should perform path compression, and its running time should be linear
in the length of the find path. Make sure that your implementation updates
pseudodistances correctly.

d. Show how to implement GRAFT.r; �/, which combines the sets containing r

and �, by modifying the UNION and LINK procedures. Make sure that your
implementation updates pseudodistances correctly. Note that the root of a set Si

is not necessarily the root of the corresponding tree Ti .

e. Give a tight bound on the worst-case running time of a sequence of m MAKE-
TREE, FIND-DEPTH, and GRAFT operations, n of which are MAKE-TREE op-
erations.

21-3 Tarjan’s off-line least-common-ancestors algorithm
The least common ancestor of two nodes u and � in a rooted tree T is the node w

that is an ancestor of both u and � and that has the greatest depth in T . In the
off-line least-common-ancestors problem, we are given a rooted tree T and an
arbitrary set P D ffu; �gg of unordered pairs of nodes in T , and we wish to deter-
mine the least common ancestor of each pair in P .

To solve the off-line least-common-ancestors problem, the following procedure
performs a tree walk of T with the initial call LCA.T:root/. We assume that each
node is colored WHITE prior to the walk.

LCA.u/

1 MAKE-SET.u/

2 FIND-SET.u/:ancestor D u

3 for each child � of u in T

4 LCA.�/

5 UNION.u; �/

6 FIND-SET.u/:ancestor D u

7 u:color D BLACK

8 for each node � such that fu; �g 2 P

9 if �:color == BLACK

10 print “The least common ancestor of”
u “and” � “is” FIND-SET.�/:ancestor

Notes for Chapter 21 585

a. Argue that line 10 executes exactly once for each pair fu; �g 2 P .

b. Argue that at the time of the call LCA.u/, the number of sets in the disjoint-set
data structure equals the depth of u in T .

c. Prove that LCA correctly prints the least common ancestor of u and � for each
pair fu; �g 2 P .

d. Analyze the running time of LCA, assuming that we use the implementation of
the disjoint-set data structure in Section 21.3.

Chapter notes

Many of the important results for disjoint-set data structures are due at least in part
to R. E. Tarjan. Using aggregate analysis, Tarjan [328, 330] gave the first tight
upper bound in terms of the very slowly growing inverse y̨.m; n/ of Ackermann’s
function. (The function Ak.j / given in Section 21.4 is similar to Ackermann’s
function, and the function ˛.n/ is similar to the inverse. Both ˛.n/ and y̨.m; n/

are at most 4 for all conceivable values of m and n.) An O.m lg� n/ upper bound
was proven earlier by Hopcroft and Ullman [5, 179]. The treatment in Section 21.4
is adapted from a later analysis by Tarjan [332], which is in turn based on an anal-
ysis by Kozen [220]. Harfst and Reingold [161] give a potential-based version of
Tarjan’s earlier bound.

Tarjan and van Leeuwen [333] discuss variants on the path-compression heuris-
tic, including “one-pass methods,” which sometimes offer better constant factors
in their performance than do two-pass methods. As with Tarjan’s earlier analyses
of the basic path-compression heuristic, the analyses by Tarjan and van Leeuwen
are aggregate. Harfst and Reingold [161] later showed how to make a small change
to the potential function to adapt their path-compression analysis to these one-pass
variants. Gabow and Tarjan [121] show that in certain applications, the disjoint-set
operations can be made to run in O.m/ time.

Tarjan [329] showed that a lower bound of �.m y̨.m; n// time is required for
operations on any disjoint-set data structure satisfying certain technical conditions.
This lower bound was later generalized by Fredman and Saks [113], who showed
that in the worst case, �.m y̨.m; n// .lg n/-bit words of memory must be accessed.

VI Graph Algorithms

Introduction

Graph problems pervade computer science, and algorithms for working with them
are fundamental to the field. Hundreds of interesting computational problems are
couched in terms of graphs. In this part, we touch on a few of the more significant
ones.

Chapter 22 shows how we can represent a graph in a computer and then discusses
algorithms based on searching a graph using either breadth-first search or depth-
first search. The chapter gives two applications of depth-first search: topologically
sorting a directed acyclic graph and decomposing a directed graph into its strongly
connected components.

Chapter 23 describes how to compute a minimum-weight spanning tree of a
graph: the least-weight way of connecting all of the vertices together when each
edge has an associated weight. The algorithms for computing minimum spanning
trees serve as good examples of greedy algorithms (see Chapter 16).

Chapters 24 and 25 consider how to compute shortest paths between vertices
when each edge has an associated length or “weight.” Chapter 24 shows how to
find shortest paths from a given source vertex to all other vertices, and Chapter 25
examines methods to compute shortest paths between every pair of vertices.

Finally, Chapter 26 shows how to compute a maximum flow of material in a flow
network, which is a directed graph having a specified source vertex of material, a
specified sink vertex, and specified capacities for the amount of material that can
traverse each directed edge. This general problem arises in many forms, and a
good algorithm for computing maximum flows can help solve a variety of related
problems efficiently.

588 Part VI Graph Algorithms

When we characterize the running time of a graph algorithm on a given graph
G D .V; E/, we usually measure the size of the input in terms of the number of
vertices jV j and the number of edges jEj of the graph. That is, we describe the
size of the input with two parameters, not just one. We adopt a common notational
convention for these parameters. Inside asymptotic notation (such as O-notation
or ‚-notation), and only inside such notation, the symbol V denotes jV j and
the symbol E denotes jEj. For example, we might say, “the algorithm runs in
time O.VE/,” meaning that the algorithm runs in time O.jV j jEj/. This conven-
tion makes the running-time formulas easier to read, without risk of ambiguity.

Another convention we adopt appears in pseudocode. We denote the vertex set
of a graph G by G:V and its edge set by G:E. That is, the pseudocode views vertex
and edge sets as attributes of a graph.

22 Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching a graph.
Searching a graph means systematically following the edges of the graph so as to
visit the vertices of the graph. A graph-searching algorithm can discover much
about the structure of a graph. Many algorithms begin by searching their input
graph to obtain this structural information. Several other graph algorithms elabo-
rate on basic graph searching. Techniques for searching a graph lie at the heart of
the field of graph algorithms.

Section 22.1 discusses the two most common computational representations of
graphs: as adjacency lists and as adjacency matrices. Section 22.2 presents a sim-
ple graph-searching algorithm called breadth-first search and shows how to cre-
ate a breadth-first tree. Section 22.3 presents depth-first search and proves some
standard results about the order in which depth-first search visits vertices. Sec-
tion 22.4 provides our first real application of depth-first search: topologically sort-
ing a directed acyclic graph. A second application of depth-first search, finding the
strongly connected components of a directed graph, is the topic of Section 22.5.

22.1 Representations of graphs

We can choose between two standard ways to represent a graph G D .V; E/:
as a collection of adjacency lists or as an adjacency matrix. Either way applies
to both directed and undirected graphs. Because the adjacency-list representation
provides a compact way to represent sparse graphs—those for which jEj is much
less than jV j2—it is usually the method of choice. Most of the graph algorithms
presented in this book assume that an input graph is represented in adjacency-
list form. We may prefer an adjacency-matrix representation, however, when the
graph is dense—jEj is close to jV j2—or when we need to be able to tell quickly
if there is an edge connecting two given vertices. For example, two of the all-pairs

590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1

2

3

4

5

2 5

1

2

2

4 1 2

5 3

4

45 3

1 0 0 1

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

0

1

0

0

1

1 2 3 4 5

1

2

3

4

5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

54

1

2

3

4

5

2 4

5

6

2

4

6

5

1 0 1 0

0 0 0 1

0 0 0 1

1 0 0 0

0 0 1 0

0

0

0

0

0

1 2 3 4 5

1

2

3

4

5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1

0

0

1

0

0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu� contains all the vertices � such that there is an edge .u; �/ 2 E. That is,
AdjŒu� consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu�.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; �/ is represented by having � appear in AdjŒu�. If G is

22.1 Representations of graphs 591

an undirected graph, the sum of the lengths of all the adjacency lists is 2 jEj, since
if .u; �/ is an undirected edge, then u appears in �’s adjacency list and vice versa.
For both directed and undirected graphs, the adjacency-list representation has the
desirable property that the amount of memory it requires is ‚.V CE/.

We can readily adapt adjacency lists to represent weighted graphs, that is, graphs
for which each edge has an associated weight, typically given by a weight function
w W E ! R. For example, let G D .V; E/ be a weighted graph with weight
function w. We simply store the weight w.u; �/ of the edge .u; �/ 2 E with
vertex � in u’s adjacency list. The adjacency-list representation is quite robust in
that we can modify it to support many other graph variants.

A potential disadvantage of the adjacency-list representation is that it provides
no quicker way to determine whether a given edge .u; �/ is present in the graph
than to search for � in the adjacency list AdjŒu�. An adjacency-matrix representa-
tion of the graph remedies this disadvantage, but at the cost of using asymptotically
more memory. (See Exercise 22.1-8 for suggestions of variations on adjacency lists
that permit faster edge lookup.)

For the adjacency-matrix representation of a graph G D .V; E/, we assume
that the vertices are numbered 1; 2; : : : ; jV j in some arbitrary manner. Then the
adjacency-matrix representation of a graph G consists of a jV j 	 jV j matrix
A D .aij / such that

aij D
(

1 if .i; j / 2 E ;

0 otherwise :

Figures 22.1(c) and 22.2(c) are the adjacency matrices of the undirected and di-
rected graphs in Figures 22.1(a) and 22.2(a), respectively. The adjacency matrix of
a graph requires ‚.V 2/ memory, independent of the number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix in Fig-
ure 22.1(c). Since in an undirected graph, .u; �/ and .�; u/ represent the same
edge, the adjacency matrix A of an undirected graph is its own transpose: A D AT.
In some applications, it pays to store only the entries on and above the diagonal of
the adjacency matrix, thereby cutting the memory needed to store the graph almost
in half.

Like the adjacency-list representation of a graph, an adjacency matrix can repre-
sent a weighted graph. For example, if G D .V; E/ is a weighted graph with edge-
weight function w, we can simply store the weight w.u; �/ of the edge .u; �/ 2 E

as the entry in row u and column � of the adjacency matrix. If an edge does not
exist, we can store a NIL value as its corresponding matrix entry, though for many
problems it is convenient to use a value such as 0 or1.

Although the adjacency-list representation is asymptotically at least as space-
efficient as the adjacency-matrix representation, adjacency matrices are simpler,
and so we may prefer them when graphs are reasonably small. Moreover, adja-

592 Chapter 22 Elementary Graph Algorithms

cency matrices carry a further advantage for unweighted graphs: they require only
one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for vertices
and/or edges. We indicate these attributes using our usual notation, such as �:d
for an attribute d of a vertex �. When we indicate edges as pairs of vertices, we
use the same style of notation. For example, if edges have an attribute f , then we
denote this attribute for edge .u; �/ by .u; �/: f . For the purpose of presenting and
understanding algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be another story
entirely. There is no one best way to store and access vertex and edge attributes.
For a given situation, your decision will likely depend on the programming lan-
guage you are using, the algorithm you are implementing, and how the rest of your
program uses the graph. If you represent a graph using adjacency lists, one design
represents vertex attributes in additional arrays, such as an array dŒ1 : : jV j� that
parallels the Adj array. If the vertices adjacent to u are in AdjŒu�, then what we call
the attribute u:d would actually be stored in the array entry dŒu�. Many other ways
of implementing attributes are possible. For example, in an object-oriented pro-
gramming language, vertex attributes might be represented as instance variables
within a subclass of a Vertex class.

Exercises

22.1-1
Given an adjacency-list representation of a directed graph, how long does it take
to compute the out-degree of every vertex? How long does it take to compute the
in-degrees?

22.1-2
Give an adjacency-list representation for a complete binary tree on 7 vertices. Give
an equivalent adjacency-matrix representation. Assume that vertices are numbered
from 1 to 7 as in a binary heap.

22.1-3
The transpose of a directed graph G D .V; E/ is the graph GT D .V; ET/, where
ET D f.�; u/ 2 V 	 V W .u; �/ 2 Eg. Thus, GT is G with all its edges reversed.
Describe efficient algorithms for computing GT from G, for both the adjacency-
list and adjacency-matrix representations of G. Analyze the running times of your
algorithms.

22.1 Representations of graphs 593

22.1-4
Given an adjacency-list representation of a multigraph G D .V; E/, describe an
O.V C E/-time algorithm to compute the adjacency-list representation of the
“equivalent” undirected graph G0 D .V; E 0/, where E 0 consists of the edges in E

with all multiple edges between two vertices replaced by a single edge and with all
self-loops removed.

22.1-5
The square of a directed graph G D .V; E/ is the graph G2 D .V; E2/ such that
.u; �/ 2 E2 if and only G contains a path with at most two edges between u and �.
Describe efficient algorithms for computing G2 from G for both the adjacency-
list and adjacency-matrix representations of G. Analyze the running times of your
algorithms.

22.1-6
Most graph algorithms that take an adjacency-matrix representation as input re-
quire time �.V 2/, but there are some exceptions. Show how to determine whether
a directed graph G contains a universal sink—a vertex with in-degree jV j � 1 and
out-degree 0—in time O.V /, given an adjacency matrix for G.

22.1-7
The incidence matrix of a directed graph G D .V; E/ with no self-loops is a
jV j 	 jEj matrix B D .bij / such that

bij D

�
�1 if edge j leaves vertex i ;

1 if edge j enters vertex i ;

0 otherwise :

Describe what the entries of the matrix product BBT represent, where BT is the
transpose of B .

22.1-8
Suppose that instead of a linked list, each array entry AdjŒu� is a hash table contain-
ing the vertices � for which .u; �/ 2 E. If all edge lookups are equally likely, what
is the expected time to determine whether an edge is in the graph? What disadvan-
tages does this scheme have? Suggest an alternate data structure for each edge list
that solves these problems. Does your alternative have disadvantages compared to
the hash table?

594 Chapter 22 Elementary Graph Algorithms

22.2 Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a graph and
the archetype for many important graph algorithms. Prim’s minimum-spanning-
tree algorithm (Section 23.2) and Dijkstra’s single-source shortest-paths algorithm
(Section 24.3) use ideas similar to those in breadth-first search.

Given a graph G D .V; E/ and a distinguished source vertex s, breadth-first
search systematically explores the edges of G to “discover” every vertex that is
reachable from s. It computes the distance (smallest number of edges) from s

to each reachable vertex. It also produces a “breadth-first tree” with root s that
contains all reachable vertices. For any vertex � reachable from s, the simple path
in the breadth-first tree from s to � corresponds to a “shortest path” from s to �

in G, that is, a path containing the smallest number of edges. The algorithm works
on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier between discov-
ered and undiscovered vertices uniformly across the breadth of the frontier. That
is, the algorithm discovers all vertices at distance k from s before discovering any
vertices at distance k C 1.

To keep track of progress, breadth-first search colors each vertex white, gray, or
black. All vertices start out white and may later become gray and then black. A
vertex is discovered the first time it is encountered during the search, at which time
it becomes nonwhite. Gray and black vertices, therefore, have been discovered, but
breadth-first search distinguishes between them to ensure that the search proceeds
in a breadth-first manner.1 If .u; �/ 2 E and vertex u is black, then vertex �

is either gray or black; that is, all vertices adjacent to black vertices have been
discovered. Gray vertices may have some adjacent white vertices; they represent
the frontier between discovered and undiscovered vertices.

Breadth-first search constructs a breadth-first tree, initially containing only its
root, which is the source vertex s. Whenever the search discovers a white vertex �

in the course of scanning the adjacency list of an already discovered vertex u, the
vertex � and the edge .u; �/ are added to the tree. We say that u is the predecessor
or parent of � in the breadth-first tree. Since a vertex is discovered at most once, it
has at most one parent. Ancestor and descendant relationships in the breadth-first
tree are defined relative to the root s as usual: if u is on the simple path in the tree
from the root s to vertex �, then u is an ancestor of � and � is a descendant of u.

1We distinguish between gray and black vertices to help us understand how breadth-first search op-
erates. In fact, as Exercise 22.2-3 shows, we would get the same result even if we did not distinguish
between gray and black vertices.

22.2 Breadth-first search 595

The breadth-first-search procedure BFS below assumes that the input graph
G D .V; E/ is represented using adjacency lists. It attaches several additional
attributes to each vertex in the graph. We store the color of each vertex u 2 V

in the attribute u:color and the predecessor of u in the attribute u:� . If u has no
predecessor (for example, if u D s or u has not been discovered), then u:� D NIL.
The attribute u:d holds the distance from the source s to vertex u computed by the
algorithm. The algorithm also uses a first-in, first-out queue Q (see Section 10.1)
to manage the set of gray vertices.

BFS.G; s/

1 for each vertex u 2 G:V � fsg
2 u:color D WHITE

3 u:d D 1
4 u:� D NIL

5 s:color D GRAY

6 s:d D 0

7 s:� D NIL

8 Q D ;
9 ENQUEUE.Q; s/

10 whileQ ¤ ;
11 u D DEQUEUE.Q/

12 for each � 2 G:AdjŒu�

13 if �:color == WHITE

14 �:color D GRAY

15 �:d D u:dC 1

16 �:� D u

17 ENQUEUE.Q; �/

18 u:color D BLACK

Figure 22.3 illustrates the progress of BFS on a sample graph.
The procedure BFS works as follows. With the exception of the source vertex s,

lines 1–4 paint every vertex white, set u:d to be infinity for each vertex u, and set
the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to be
discovered as the procedure begins. Line 6 initializes s:d to 0, and line 7 sets the
predecessor of the source to be NIL. Lines 8–9 initialize Q to the queue containing
just the vertex s.

The while loop of lines 10–18 iterates as long as there remain gray vertices,
which are discovered vertices that have not yet had their adjacency lists fully ex-
amined. This while loop maintains the following invariant:

At the test in line 10, the queue Q consists of the set of gray vertices.

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s

0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1

w

1

Q(b) r

1

t u

v w x y

01 2 ∞

∞2∞ 1

Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t

2

x

2

2

212

t

2

x

2

v

2

t u

v w x y

01

∞
Q

r s

2

212

x

2

v

2

u

3

3

t u

v w x y

01

3

Q

r s

2

212

v

2

u

3

3

y

3

t u

v w x y

01

3

Q

r s

2

21

u

3

3

y

32

t u

v w x y

01

3

Q

r s

2

21

3

y

32

t u

v w x y

01

r s

2

21

3

2 3

;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex � in the adjacency list of u. If � is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex � gray, sets its distance �:d to u:dC1, records u as its parent �:� , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

22.2 Breadth-first search 597

adjacency list, it blackens u in line 18. The loop invariant is maintained because
whenever a vertex is painted gray (in line 14) it is also enqueued (in line 17), and
whenever a vertex is dequeued (in line 11) it is also painted black (in line 18).

The results of breadth-first search may depend upon the order in which the neigh-
bors of a given vertex are visited in line 12: the breadth-first tree may vary, but the
distances d computed by the algorithm will not. (See Exercise 22.2-5.)

Analysis

Before proving the various properties of breadth-first search, we take on the some-
what easier job of analyzing its running time on an input graph G D .V; E/. We
use aggregate analysis, as we saw in Section 17.1. After initialization, breadth-first
search never whitens a vertex, and thus the test in line 13 ensures that each vertex
is enqueued at most once, and hence dequeued at most once. The operations of
enqueuing and dequeuing take O.1/ time, and so the total time devoted to queue
operations is O.V /. Because the procedure scans the adjacency list of each vertex
only when the vertex is dequeued, it scans each adjacency list at most once. Since
the sum of the lengths of all the adjacency lists is ‚.E/, the total time spent in
scanning adjacency lists is O.E/. The overhead for initialization is O.V /, and
thus the total running time of the BFS procedure is O.V CE/. Thus, breadth-first
search runs in time linear in the size of the adjacency-list representation of G.

Shortest paths

At the beginning of this section, we claimed that breadth-first search finds the dis-
tance to each reachable vertex in a graph G D .V; E/ from a given source vertex
s 2 V . Define the shortest-path distance ı.s; �/ from s to � as the minimum num-
ber of edges in any path from vertex s to vertex �; if there is no path from s to �,
then ı.s; �/ D 1. We call a path of length ı.s; �/ from s to � a shortest path2

from s to �. Before showing that breadth-first search correctly computes shortest-
path distances, we investigate an important property of shortest-path distances.

2In Chapters 24 and 25, we shall generalize our study of shortest paths to weighted graphs, in which
every edge has a real-valued weight and the weight of a path is the sum of the weights of its con-
stituent edges. The graphs considered in the present chapter are unweighted or, equivalently, all
edges have unit weight.

598 Chapter 22 Elementary Graph Algorithms

Lemma 22.1
Let G D .V; E/ be a directed or undirected graph, and let s 2 V be an arbitrary
vertex. Then, for any edge .u; �/ 2 E,

ı.s; �/ � ı.s; u/C 1 :

Proof If u is reachable from s, then so is �. In this case, the shortest path from s

to � cannot be longer than the shortest path from s to u followed by the edge .u; �/,
and thus the inequality holds. If u is not reachable from s, then ı.s; u/ D 1, and
the inequality holds.

We want to show that BFS properly computes �:d D ı.s; �/ for each ver-
tex � 2 V . We first show that �:d bounds ı.s; �/ from above.

Lemma 22.2
Let G D .V; E/ be a directed or undirected graph, and suppose that BFS is run
on G from a given source vertex s 2 V . Then upon termination, for each ver-
tex � 2 V , the value �:d computed by BFS satisfies �:d � ı.s; �/.

Proof We use induction on the number of ENQUEUE operations. Our inductive
hypothesis is that �:d � ı.s; �/ for all � 2 V .

The basis of the induction is the situation immediately after enqueuing s in line 9
of BFS. The inductive hypothesis holds here, because s:d D 0 D ı.s; s/ and
�:d D1 � ı.s; �/ for all � 2 V � fsg.

For the inductive step, consider a white vertex � that is discovered during the
search from a vertex u. The inductive hypothesis implies that u:d � ı.s; u/. From
the assignment performed by line 15 and from Lemma 22.1, we obtain

�:d D u:d C 1

� ı.s; u/C 1

� ı.s; �/ :

Vertex � is then enqueued, and it is never enqueued again because it is also grayed
and the then clause of lines 14–17 is executed only for white vertices. Thus, the
value of �:d never changes again, and the inductive hypothesis is maintained.

To prove that �:d D ı.s; �/, we must first show more precisely how the queue Q

operates during the course of BFS. The next lemma shows that at all times, the
queue holds at most two distinct d values.

22.2 Breadth-first search 599

Lemma 22.3
Suppose that during the execution of BFS on a graph G D .V; E/, the queue Q

contains the vertices h�1; �2; : : : ; �ri, where �1 is the head of Q and �r is the tail.
Then, �r :d � �1:dC 1 and �i :d � �iC1:d for i D 1; 2; : : : ; r � 1.

Proof The proof is by induction on the number of queue operations. Initially,
when the queue contains only s, the lemma certainly holds.

For the inductive step, we must prove that the lemma holds after both dequeuing
and enqueuing a vertex. If the head �1 of the queue is dequeued, �2 becomes the
new head. (If the queue becomes empty, then the lemma holds vacuously.) By the
inductive hypothesis, �1:d � �2:d. But then we have �r :d � �1:dC 1 � �2:dC 1,
and the remaining inequalities are unaffected. Thus, the lemma follows with �2 as
the head.

In order to understand what happens upon enqueuing a vertex, we need to ex-
amine the code more closely. When we enqueue a vertex � in line 17 of BFS, it
becomes �rC1. At that time, we have already removed vertex u, whose adjacency
list is currently being scanned, from the queue Q, and by the inductive hypothesis,
the new head �1 has �1:d � u:d. Thus, �rC1:d D �:d D u:dC1 � �1:dC1. From
the inductive hypothesis, we also have �r :d � u:dC 1, and so �r :d � u:d C 1 D
�:d D �rC1:d, and the remaining inequalities are unaffected. Thus, the lemma
follows when � is enqueued.

The following corollary shows that the d values at the time that vertices are
enqueued are monotonically increasing over time.

Corollary 22.4
Suppose that vertices �i and �j are enqueued during the execution of BFS, and
that �i is enqueued before �j . Then �i :d � �j :d at the time that �j is enqueued.

Proof Immediate from Lemma 22.3 and the property that each vertex receives a
finite d value at most once during the course of BFS.

We can now prove that breadth-first search correctly finds shortest-path dis-
tances.

Theorem 22.5 (Correctness of breadth-first search)
Let G D .V; E/ be a directed or undirected graph, and suppose that BFS is run
on G from a given source vertex s 2 V . Then, during its execution, BFS discovers
every vertex � 2 V that is reachable from the source s, and upon termination,
�:d D ı.s; �/ for all � 2 V . Moreover, for any vertex � ¤ s that is reachable

600 Chapter 22 Elementary Graph Algorithms

from s, one of the shortest paths from s to � is a shortest path from s to �:�

followed by the edge .�:�; �/.

Proof Assume, for the purpose of contradiction, that some vertex receives a d

value not equal to its shortest-path distance. Let � be the vertex with min-
imum ı.s; �/ that receives such an incorrect d value; clearly � ¤ s. By
Lemma 22.2, �:d � ı.s; �/, and thus we have that �:d > ı.s; �/. Vertex � must be
reachable from s, for if it is not, then ı.s; �/ D 1 � �:d. Let u be the vertex im-
mediately preceding � on a shortest path from s to �, so that ı.s; �/ D ı.s; u/C 1.
Because ı.s; u/ < ı.s; �/, and because of how we chose �, we have u:d D ı.s; u/.
Putting these properties together, we have

�:d > ı.s; �/ D ı.s; u/C 1 D u:dC 1 : (22.1)

Now consider the time when BFS chooses to dequeue vertex u from Q in
line 11. At this time, vertex � is either white, gray, or black. We shall show
that in each of these cases, we derive a contradiction to inequality (22.1). If � is
white, then line 15 sets �:d D u:d C 1, contradicting inequality (22.1). If � is
black, then it was already removed from the queue and, by Corollary 22.4, we have
�:d � u:d, again contradicting inequality (22.1). If � is gray, then it was painted
gray upon dequeuing some vertex w, which was removed from Q earlier than u

and for which �:d D w:dC 1. By Corollary 22.4, however, w:d � u:d, and so we
have �:d D w:dC 1 � u:dC 1, once again contradicting inequality (22.1).

Thus we conclude that �:d D ı.s; �/ for all � 2 V . All vertices � reachable
from s must be discovered, for otherwise they would have1D �:d > ı.s; �/. To
conclude the proof of the theorem, observe that if �:� D u, then �:d D u:d C 1.
Thus, we can obtain a shortest path from s to � by taking a shortest path from s

to �:� and then traversing the edge .�:�; �/.

Breadth-first trees

The procedure BFS builds a breadth-first tree as it searches the graph, as Fig-
ure 22.3 illustrates. The tree corresponds to the � attributes. More formally, for
a graph G D .V; E/ with source s, we define the predecessor subgraph of G as
G� D .V� ; E�/, where

V� D f� 2 V W �:� ¤ NILg [fsg
and

E� D f.�:�; �/ W � 2 V� � fsgg :

The predecessor subgraph G� is a breadth-first tree if V� consists of the vertices
reachable from s and, for all � 2 V� , the subgraph G� contains a unique simple

22.2 Breadth-first search 601

path from s to � that is also a shortest path from s to � in G. A breadth-first tree
is in fact a tree, since it is connected and jE� j D jV� j � 1 (see Theorem B.2). We
call the edges in E� tree edges.

The following lemma shows that the predecessor subgraph produced by the BFS
procedure is a breadth-first tree.

Lemma 22.6
When applied to a directed or undirected graph G D .V; E/, procedure BFS con-
structs � so that the predecessor subgraph G� D .V� ; E�/ is a breadth-first tree.

Proof Line 16 of BFS sets �:� D u if and only if .u; �/ 2 E and ı.s; �/ <1—
that is, if � is reachable from s—and thus V� consists of the vertices in V reachable
from s. Since G� forms a tree, by Theorem B.2, it contains a unique simple path
from s to each vertex in V� . By applying Theorem 22.5 inductively, we conclude
that every such path is a shortest path in G.

The following procedure prints out the vertices on a shortest path from s to �,
assuming that BFS has already computed a breadth-first tree:

PRINT-PATH.G; s; �/

1 if � == s

2 print s

3 elseif �:� == NIL

4 print “no path from” s “to” � “exists”
5 else PRINT-PATH.G; s; �:�/

6 print �

This procedure runs in time linear in the number of vertices in the path printed,
since each recursive call is for a path one vertex shorter.

Exercises

22.2-1
Show the d and � values that result from running breadth-first search on the di-
rected graph of Figure 22.2(a), using vertex 3 as the source.

22.2-2
Show the d and � values that result from running breadth-first search on the undi-
rected graph of Figure 22.3, using vertex u as the source.

602 Chapter 22 Elementary Graph Algorithms

22.2-3
Show that using a single bit to store each vertex color suffices by arguing that the
BFS procedure would produce the same result if lines 5 and 14 were removed.

22.2-4
What is the running time of BFS if we represent its input graph by an adjacency
matrix and modify the algorithm to handle this form of input?

22.2-5
Argue that in a breadth-first search, the value u:d assigned to a vertex u is inde-
pendent of the order in which the vertices appear in each adjacency list. Using
Figure 22.3 as an example, show that the breadth-first tree computed by BFS can
depend on the ordering within adjacency lists.

22.2-6
Give an example of a directed graph G D .V; E/, a source vertex s 2 V , and a
set of tree edges E� � E such that for each vertex � 2 V , the unique simple path
in the graph .V; E�/ from s to � is a shortest path in G, yet the set of edges E�

cannot be produced by running BFS on G, no matter how the vertices are ordered
in each adjacency list.

22.2-7
There are two types of professional wrestlers: “babyfaces” (“good guys”) and
“heels” (“bad guys”). Between any pair of professional wrestlers, there may or
may not be a rivalry. Suppose we have n professional wrestlers and we have a list
of r pairs of wrestlers for which there are rivalries. Give an O.n C r/-time algo-
rithm that determines whether it is possible to designate some of the wrestlers as
babyfaces and the remainder as heels such that each rivalry is between a babyface
and a heel. If it is possible to perform such a designation, your algorithm should
produce it.

22.2-8 ?

The diameter of a tree T D .V; E/ is defined as maxu;�2V ı.u; �/, that is, the
largest of all shortest-path distances in the tree. Give an efficient algorithm to
compute the diameter of a tree, and analyze the running time of your algorithm.

22.2-9
Let G D .V; E/ be a connected, undirected graph. Give an O.V C E/-time algo-
rithm to compute a path in G that traverses each edge in E exactly once in each
direction. Describe how you can find your way out of a maze if you are given a
large supply of pennies.

22.3 Depth-first search 603

22.3 Depth-first search

The strategy followed by depth-first search is, as its name implies, to search
“deeper” in the graph whenever possible. Depth-first search explores edges out
of the most recently discovered vertex � that still has unexplored edges leaving it.
Once all of �’s edges have been explored, the search “backtracks” to explore edges
leaving the vertex from which � was discovered. This process continues until we
have discovered all the vertices that are reachable from the original source vertex.
If any undiscovered vertices remain, then depth-first search selects one of them as
a new source, and it repeats the search from that source. The algorithm repeats this
entire process until it has discovered every vertex.3

As in breadth-first search, whenever depth-first search discovers a vertex � dur-
ing a scan of the adjacency list of an already discovered vertex u, it records this
event by setting �’s predecessor attribute �:� to u. Unlike breadth-first search,
whose predecessor subgraph forms a tree, the predecessor subgraph produced by
a depth-first search may be composed of several trees, because the search may
repeat from multiple sources. Therefore, we define the predecessor subgraph of
a depth-first search slightly differently from that of a breadth-first search: we let
G� D .V; E�/, where

E� D f.�:�; �/ W � 2 V and �:� ¤ NILg :

The predecessor subgraph of a depth-first search forms a depth-first forest com-
prising several depth-first trees. The edges in E� are tree edges.

As in breadth-first search, depth-first search colors vertices during the search to
indicate their state. Each vertex is initially white, is grayed when it is discovered
in the search, and is blackened when it is finished, that is, when its adjacency list
has been examined completely. This technique guarantees that each vertex ends up
in exactly one depth-first tree, so that these trees are disjoint.

Besides creating a depth-first forest, depth-first search also timestamps each ver-
tex. Each vertex � has two timestamps: the first timestamp �:d records when �

is first discovered (and grayed), and the second timestamp �: f records when the
search finishes examining �’s adjacency list (and blackens �). These timestamps

3It may seem arbitrary that breadth-first search is limited to only one source whereas depth-first
search may search from multiple sources. Although conceptually, breadth-first search could proceed
from multiple sources and depth-first search could be limited to one source, our approach reflects how
the results of these searches are typically used. Breadth-first search usually serves to find shortest-
path distances (and the associated predecessor subgraph) from a given source. Depth-first search is
often a subroutine in another algorithm, as we shall see later in this chapter.

604 Chapter 22 Elementary Graph Algorithms

provide important information about the structure of the graph and are generally
helpful in reasoning about the behavior of depth-first search.

The procedure DFS below records when it discovers vertex u in the attribute u:d
and when it finishes vertex u in the attribute u: f . These timestamps are integers
between 1 and 2 jV j, since there is one discovery event and one finishing event for
each of the jV j vertices. For every vertex u,

u:d < u: f : (22.2)

Vertex u is WHITE before time u:d, GRAY between time u:d and time u: f , and
BLACK thereafter.

The following pseudocode is the basic depth-first-search algorithm. The input
graph G may be undirected or directed. The variable time is a global variable that
we use for timestamping.

DFS.G/

1 for each vertex u 2 G:V
2 u:color D WHITE

3 u:� D NIL

4 time D 0

5 for each vertex u 2 G:V
6 if u:color == WHITE

7 DFS-VISIT.G; u/

DFS-VISIT.G; u/

1 time D timeC 1 // white vertex u has just been discovered
2 u:d D time
3 u:color D GRAY

4 for each � 2 G:AdjŒu� // explore edge .u; �/

5 if �:color == WHITE

6 �:� D u

7 DFS-VISIT.G; �/

8 u:color D BLACK // blacken u; it is finished
9 time D timeC 1

10 u: f D time

Figure 22.4 illustrates the progress of DFS on the graph shown in Figure 22.2.
Procedure DFS works as follows. Lines 1–3 paint all vertices white and ini-

tialize their � attributes to NIL. Line 4 resets the global time counter. Lines 5–7
check each vertex in V in turn and, when a white vertex is found, visit it using
DFS-VISIT. Every time DFS-VISIT.G; u/ is called in line 7, vertex u becomes

22.3 Depth-first search 605

u v w

x y z

1/ 1/ 2/ 1/ 2/

3/

1/ 2/

3/4/

1/ 2/

3/4/

B

1/ 2/

3/

B

4/5

1/ 2/

B

4/5 3/6

1/

B

4/5 3/6

2/7

1/

B

4/5 3/6

2/7

F B

4/5 3/6

2/7

F

1/8

B

4/5 3/6

2/7

F

1/8 9/

B

4/5 3/6

2/7

F

1/8 9/

C

B

4/5 3/6

2/7

F

1/8 9/

C B

4/5 3/6

2/7

F

1/8 9/

C

B

B

4/5 3/6

2/7

F

1/8 9/

C

B
10/11

B

4/5 3/6

2/7

F

1/8

C

B
10/11

9/12

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

(m) (n) (o) (p)

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

10/10/

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

the root of a new tree in the depth-first forest. When DFS returns, every vertex u

has been assigned a discovery time u:d and a finishing time u: f .
In each call DFS-VISIT.G; u/, vertex u is initially white. Line 1 increments

the global variable time, line 2 records the new value of time as the discovery
time u:d, and line 3 paints u gray. Lines 4–7 examine each vertex � adjacent to u

and recursively visit � if it is white. As each vertex � 2 AdjŒu� is considered in
line 4, we say that edge .u; �/ is explored by the depth-first search. Finally, after
every edge leaving u has been explored, lines 8–10 paint u black, increment time,
and record the finishing time in u: f .

Note that the results of depth-first search may depend upon the order in which
line 5 of DFS examines the vertices and upon the order in which line 4 of DFS-
VISIT visits the neighbors of a vertex. These different visitation orders tend not

606 Chapter 22 Elementary Graph Algorithms

to cause problems in practice, as we can usually use any depth-first search result
effectively, with essentially equivalent results.

What is the running time of DFS? The loops on lines 1–3 and lines 5–7 of DFS
take time ‚.V /, exclusive of the time to execute the calls to DFS-VISIT. As we did
for breadth-first search, we use aggregate analysis. The procedure DFS-VISIT is
called exactly once for each vertex � 2 V , since the vertex u on which DFS-VISIT

is invoked must be white and the first thing DFS-VISIT does is paint vertex u gray.
During an execution of DFS-VISIT.G; �/, the loop on lines 4–7 executes jAdjŒ��j
times. SinceX
�2V

jAdjŒ��j D ‚.E/ ;

the total cost of executing lines 4–7 of DFS-VISIT is ‚.E/. The running time of
DFS is therefore ‚.V CE/.

Properties of depth-first search

Depth-first search yields valuable information about the structure of a graph. Per-
haps the most basic property of depth-first search is that the predecessor sub-
graph G� does indeed form a forest of trees, since the structure of the depth-
first trees exactly mirrors the structure of recursive calls of DFS-VISIT. That is,
u D �:� if and only if DFS-VISIT.G; �/ was called during a search of u’s ad-
jacency list. Additionally, vertex � is a descendant of vertex u in the depth-first
forest if and only if � is discovered during the time in which u is gray.

Another important property of depth-first search is that discovery and finishing
times have parenthesis structure. If we represent the discovery of vertex u with
a left parenthesis “.u” and represent its finishing by a right parenthesis “u/”, then
the history of discoveries and finishings makes a well-formed expression in the
sense that the parentheses are properly nested. For example, the depth-first search
of Figure 22.5(a) corresponds to the parenthesization shown in Figure 22.5(b). The
following theorem provides another way to characterize the parenthesis structure.

Theorem 22.7 (Parenthesis theorem)
In any depth-first search of a (directed or undirected) graph G D .V; E/, for any
two vertices u and �, exactly one of the following three conditions holds:
� the intervals Œu:d; u: f � and Œ�:d; �: f � are entirely disjoint, and neither u nor �

is a descendant of the other in the depth-first forest,
� the interval Œu:d; u: f � is contained entirely within the interval Œ�:d; �: f �, and u

is a descendant of � in a depth-first tree, or
� the interval Œ�:d; �: f � is contained entirely within the interval Œu:d; u: f �, and �

is a descendant of u in a depth-first tree.

22.3 Depth-first search 607

3/6 2/9 1/10 11/16

14/1512/137/84/5

y z s t

uvwx

B

C

F

C

C

C

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s t

z

y w

x

v u

s

z

y w

x

t

v u

C

F
B

C

C

B

C

(a)

(b)

(c)

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

Figure 22.5 Properties of depth-first search. (a) The result of a depth-first search of a directed
graph. Vertices are timestamped and edge types are indicated as in Figure 22.4. (b) Intervals for
the discovery time and finishing time of each vertex correspond to the parenthesization shown. Each
rectangle spans the interval given by the discovery and finishing times of the corresponding vertex.
Only tree edges are shown. If two intervals overlap, then one is nested within the other, and the
vertex corresponding to the smaller interval is a descendant of the vertex corresponding to the larger.
(c) The graph of part (a) redrawn with all tree and forward edges going down within a depth-first tree
and all back edges going up from a descendant to an ancestor.

608 Chapter 22 Elementary Graph Algorithms

Proof We begin with the case in which u:d < �:d. We consider two subcases,
according to whether �:d < u: f or not. The first subcase occurs when �:d < u: f ,
so � was discovered while u was still gray, which implies that � is a descendant
of u. Moreover, since � was discovered more recently than u, all of its outgo-
ing edges are explored, and � is finished, before the search returns to and fin-
ishes u. In this case, therefore, the interval Œ�:d; �: f � is entirely contained within
the interval Œu:d; u: f �. In the other subcase, u: f < �:d, and by inequality (22.2),
u:d < u: f < �:d < �: f ; thus the intervals Œu:d; u: f � and Œ�:d; �: f � are disjoint.
Because the intervals are disjoint, neither vertex was discovered while the other
was gray, and so neither vertex is a descendant of the other.

The case in which �:d < u:d is similar, with the roles of u and � reversed in the
above argument.

Corollary 22.8 (Nesting of descendants’ intervals)
Vertex � is a proper descendant of vertex u in the depth-first forest for a (directed
or undirected) graph G if and only if u:d < �:d < �: f < u: f .

Proof Immediate from Theorem 22.7.

The next theorem gives another important characterization of when one vertex
is a descendant of another in the depth-first forest.

Theorem 22.9 (White-path theorem)
In a depth-first forest of a (directed or undirected) graph G D .V; E/, vertex � is
a descendant of vertex u if and only if at the time u:d that the search discovers u,
there is a path from u to � consisting entirely of white vertices.

Proof): If � D u, then the path from u to � contains just vertex u, which is still
white when we set the value of u:d. Now, suppose that � is a proper descendant
of u in the depth-first forest. By Corollary 22.8, u:d < �:d, and so � is white at
time u:d. Since � can be any descendant of u, all vertices on the unique simple
path from u to � in the depth-first forest are white at time u:d.
(: Suppose that there is a path of white vertices from u to � at time u:d, but �

does not become a descendant of u in the depth-first tree. Without loss of general-
ity, assume that every vertex other than � along the path becomes a descendant of u.
(Otherwise, let � be the closest vertex to u along the path that doesn’t become a de-
scendant of u.) Let w be the predecessor of � in the path, so that w is a descendant
of u (w and u may in fact be the same vertex). By Corollary 22.8, w: f � u: f . Be-
cause � must be discovered after u is discovered, but before w is finished, we have
u:d < �:d < w: f � u: f . Theorem 22.7 then implies that the interval Œ�:d; �: f �

22.3 Depth-first search 609

is contained entirely within the interval Œu:d; u: f �. By Corollary 22.8, � must after
all be a descendant of u.

Classification of edges

Another interesting property of depth-first search is that the search can be used
to classify the edges of the input graph G D .V; E/. The type of each edge can
provide important information about a graph. For example, in the next section, we
shall see that a directed graph is acyclic if and only if a depth-first search yields no
“back” edges (Lemma 22.11).

We can define four edge types in terms of the depth-first forest G� produced by
a depth-first search on G:

1. Tree edges are edges in the depth-first forest G� . Edge .u; �/ is a tree edge if �

was first discovered by exploring edge .u; �/.

2. Back edges are those edges .u; �/ connecting a vertex u to an ancestor � in a
depth-first tree. We consider self-loops, which may occur in directed graphs, to
be back edges.

3. Forward edges are those nontree edges .u; �/ connecting a vertex u to a de-
scendant � in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other, or they can
go between vertices in different depth-first trees.

In Figures 22.4 and 22.5, edge labels indicate edge types. Figure 22.5(c) also shows
how to redraw the graph of Figure 22.5(a) so that all tree and forward edges head
downward in a depth-first tree and all back edges go up. We can redraw any graph
in this fashion.

The DFS algorithm has enough information to classify some edges as it encoun-
ters them. The key idea is that when we first explore an edge .u; �/, the color of
vertex � tells us something about the edge:

1. WHITE indicates a tree edge,

2. GRAY indicates a back edge, and

3. BLACK indicates a forward or cross edge.

The first case is immediate from the specification of the algorithm. For the sec-
ond case, observe that the gray vertices always form a linear chain of descendants
corresponding to the stack of active DFS-VISIT invocations; the number of gray
vertices is one more than the depth in the depth-first forest of the vertex most re-
cently discovered. Exploration always proceeds from the deepest gray vertex, so

610 Chapter 22 Elementary Graph Algorithms

an edge that reaches another gray vertex has reached an ancestor. The third case
handles the remaining possibility; Exercise 22.3-5 asks you to show that such an
edge .u; �/ is a forward edge if u:d < �:d and a cross edge if u:d > �:d.

An undirected graph may entail some ambiguity in how we classify edges,
since .u; �/ and .�; u/ are really the same edge. In such a case, we classify the
edge as the first type in the classification list that applies. Equivalently (see Ex-
ercise 22.3-6), we classify the edge according to whichever of .u; �/ or .�; u/ the
search encounters first.

We now show that forward and cross edges never occur in a depth-first search of
an undirected graph.

Theorem 22.10
In a depth-first search of an undirected graph G, every edge of G is either a tree
edge or a back edge.

Proof Let .u; �/ be an arbitrary edge of G, and suppose without loss of generality
that u:d < �:d. Then the search must discover and finish � before it finishes u

(while u is gray), since � is on u’s adjacency list. If the first time that the search
explores edge .u; �/, it is in the direction from u to �, then � is undiscovered
(white) until that time, for otherwise the search would have explored this edge
already in the direction from � to u. Thus, .u; �/ becomes a tree edge. If the
search explores .u; �/ first in the direction from � to u, then .u; �/ is a back edge,
since u is still gray at the time the edge is first explored.

We shall see several applications of these theorems in the following sections.

Exercises

22.3-1
Make a 3-by-3 chart with row and column labels WHITE, GRAY, and BLACK. In
each cell .i; j /, indicate whether, at any point during a depth-first search of a di-
rected graph, there can be an edge from a vertex of color i to a vertex of color j .
For each possible edge, indicate what edge types it can be. Make a second such
chart for depth-first search of an undirected graph.

22.3-2
Show how depth-first search works on the graph of Figure 22.6. Assume that the
for loop of lines 5–7 of the DFS procedure considers the vertices in alphabetical
order, and assume that each adjacency list is ordered alphabetically. Show the
discovery and finishing times for each vertex, and show the classification of each
edge.

22.3 Depth-first search 611

q r

s t u

v w x y

z

Figure 22.6 A directed graph for use in Exercises 22.3-2 and 22.5-2.

22.3-3
Show the parenthesis structure of the depth-first search of Figure 22.4.

22.3-4
Show that using a single bit to store each vertex color suffices by arguing that
the DFS procedure would produce the same result if line 3 of DFS-VISIT was
removed.

22.3-5
Show that edge .u; �/ is

a. a tree edge or forward edge if and only if u:d < �:d < �: f < u: f ,

b. a back edge if and only if �:d � u:d < u: f � �: f , and

c. a cross edge if and only if �:d < �: f < u:d < u: f .

22.3-6
Show that in an undirected graph, classifying an edge .u; �/ as a tree edge or a back
edge according to whether .u; �/ or .�; u/ is encountered first during the depth-first
search is equivalent to classifying it according to the ordering of the four types in
the classification scheme.

22.3-7
Rewrite the procedure DFS, using a stack to eliminate recursion.

22.3-8
Give a counterexample to the conjecture that if a directed graph G contains a path
from u to �, and if u:d < �:d in a depth-first search of G, then � is a descendant
of u in the depth-first forest produced.

612 Chapter 22 Elementary Graph Algorithms

22.3-9
Give a counterexample to the conjecture that if a directed graph G contains a path
from u to �, then any depth-first search must result in �:d � u: f .

22.3-10
Modify the pseudocode for depth-first search so that it prints out every edge in the
directed graph G, together with its type. Show what modifications, if any, you need
to make if G is undirected.

22.3-11
Explain how a vertex u of a directed graph can end up in a depth-first tree contain-
ing only u, even though u has both incoming and outgoing edges in G.

22.3-12
Show that we can use a depth-first search of an undirected graph G to identify the
connected components of G, and that the depth-first forest contains as many trees
as G has connected components. More precisely, show how to modify depth-first
search so that it assigns to each vertex � an integer label �:cc between 1 and k,
where k is the number of connected components of G, such that u:cc D �:cc if
and only if u and � are in the same connected component.

22.3-13 ?

A directed graph G D .V; E/ is singly connected if u � � implies that G contains
at most one simple path from u to � for all vertices u; � 2 V . Give an efficient
algorithm to determine whether or not a directed graph is singly connected.

22.4 Topological sort

This section shows how we can use depth-first search to perform a topological sort
of a directed acyclic graph, or a “dag” as it is sometimes called. A topological sort
of a dag G D .V; E/ is a linear ordering of all its vertices such that if G contains an
edge .u; �/, then u appears before � in the ordering. (If the graph contains a cycle,
then no linear ordering is possible.) We can view a topological sort of a graph as
an ordering of its vertices along a horizontal line so that all directed edges go from
left to right. Topological sorting is thus different from the usual kind of “sorting”
studied in Part II.

Many applications use directed acyclic graphs to indicate precedences among
events. Figure 22.7 gives an example that arises when Professor Bumstead gets
dressed in the morning. The professor must don certain garments before others
(e.g., socks before shoes). Other items may be put on in any order (e.g., socks and

22.4 Topological sort 613

11/16

12/15

6/7

1/8

2/5

3/4

17/18

13/14

9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt

shirt

tie

jacket

socks

shoes

watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; �/ means that garment u must be put on before garment �. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; �/ in the dag of Figure 22.7(a) indicates that garment u

must be donned before garment �. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times �: f for each vertex �

2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

614 Chapter 22 Elementary Graph Algorithms

Lemma 22.11
A directed graph G is acyclic if and only if a depth-first search of G yields no back
edges.

Proof): Suppose that a depth-first search produces a back edge .u; �/. Then
vertex � is an ancestor of vertex u in the depth-first forest. Thus, G contains a path
from � to u, and the back edge .u; �/ completes a cycle.
(: Suppose that G contains a cycle c. We show that a depth-first search of G

yields a back edge. Let � be the first vertex to be discovered in c, and let .u; �/ be
the preceding edge in c. At time �:d, the vertices of c form a path of white vertices
from � to u. By the white-path theorem, vertex u becomes a descendant of � in the
depth-first forest. Therefore, .u; �/ is a back edge.

Theorem 22.12
TOPOLOGICAL-SORT produces a topological sort of the directed acyclic graph
provided as its input.

Proof Suppose that DFS is run on a given dag G D .V; E/ to determine fin-
ishing times for its vertices. It suffices to show that for any pair of distinct ver-
tices u; � 2 V , if G contains an edge from u to �, then �: f < u: f . Consider any
edge .u; �/ explored by DFS.G/. When this edge is explored, � cannot be gray,
since then � would be an ancestor of u and .u; �/ would be a back edge, contra-
dicting Lemma 22.11. Therefore, � must be either white or black. If � is white,
it becomes a descendant of u, and so �: f < u: f . If � is black, it has already been
finished, so that �: f has already been set. Because we are still exploring from u, we
have yet to assign a timestamp to u: f , and so once we do, we will have �: f < u: f
as well. Thus, for any edge .u; �/ in the dag, we have �: f < u: f , proving the
theorem.

Exercises

22.4-1
Show the ordering of vertices produced by TOPOLOGICAL-SORT when it is run on
the dag of Figure 22.8, under the assumption of Exercise 22.3-2.

22.4-2
Give a linear-time algorithm that takes as input a directed acyclic graph G D
.V; E/ and two vertices s and t , and returns the number of simple paths from s

to t in G. For example, the directed acyclic graph of Figure 22.8 contains exactly
four simple paths from vertex p to vertex �: po�, pory�, posry�, and psry�.
(Your algorithm needs only to count the simple paths, not list them.)

22.5 Strongly connected components 615

zyx

wvut

srq

ponm

Figure 22.8 A dag for topological sorting.

22.4-3
Give an algorithm that determines whether or not a given undirected graph G D
.V; E/ contains a cycle. Your algorithm should run in O.V / time, independent
of jEj.
22.4-4
Prove or disprove: If a directed graph G contains cycles, then TOPOLOGICAL-
SORT.G/ produces a vertex ordering that minimizes the number of “bad” edges
that are inconsistent with the ordering produced.

22.4-5
Another way to perform topological sorting on a directed acyclic graph G D
.V; E/ is to repeatedly find a vertex of in-degree 0, output it, and remove it and
all of its outgoing edges from the graph. Explain how to implement this idea so
that it runs in time O.V CE/. What happens to this algorithm if G has cycles?

22.5 Strongly connected components

We now consider a classic application of depth-first search: decomposing a di-
rected graph into its strongly connected components. This section shows how to do
so using two depth-first searches. Many algorithms that work with directed graphs
begin with such a decomposition. After decomposing the graph into strongly con-
nected components, such algorithms run separately on each one and then combine
the solutions according to the structure of connections among components.

Recall from Appendix B that a strongly connected component of a directed
graph G D .V; E/ is a maximal set of vertices C � V such that for every pair
of vertices u and � in C , we have both u � � and � � u; that is, vertices u and �

are reachable from each other. Figure 22.9 shows an example.

616 Chapter 22 Elementary Graph Algorithms

13/14 11/16

12/15 3/4

1/10

2/7

8/9

5/6

a b c d

e f g h

a b c d

e f g h

abe

cd

fg h

(c)

(b)

(a)

Figure 22.9 (a) A directed graph G. Each shaded region is a strongly connected component of G.
Each vertex is labeled with its discovery and finishing times in a depth-first search, and tree edges
are shaded. (b) The graph GT, the transpose of G, with the depth-first forest computed in line 3
of STRONGLY-CONNECTED-COMPONENTS shown and tree edges shaded. Each strongly connected
component corresponds to one depth-first tree. Vertices b, c, g, and h, which are heavily shaded, are
the roots of the depth-first trees produced by the depth-first search of GT. (c) The acyclic component
graph GSCC obtained by contracting all edges within each strongly connected component of G so
that only a single vertex remains in each component.

Our algorithm for finding strongly connected components of a graph G D
.V; E/ uses the transpose of G, which we defined in Exercise 22.1-3 to be the
graph GT D .V; ET/, where ET D f.u; �/ W .�; u/ 2 Eg. That is, ET consists of
the edges of G with their directions reversed. Given an adjacency-list representa-
tion of G, the time to create GT is O.V C E/. It is interesting to observe that G

and GT have exactly the same strongly connected components: u and � are reach-
able from each other in G if and only if they are reachable from each other in GT.
Figure 22.9(b) shows the transpose of the graph in Figure 22.9(a), with the strongly
connected components shaded.

22.5 Strongly connected components 617

The following linear-time (i.e., ‚.VCE/-time) algorithm computes the strongly
connected components of a directed graph G D .V; E/ using two depth-first
searches, one on G and one on GT.

STRONGLY-CONNECTED-COMPONENTS.G/

1 call DFS.G/ to compute finishing times u: f for each vertex u

2 compute GT

3 call DFS.GT/, but in the main loop of DFS, consider the vertices
in order of decreasing u: f (as computed in line 1)

4 output the vertices of each tree in the depth-first forest formed in line 3 as a
separate strongly connected component

The idea behind this algorithm comes from a key property of the component
graph GSCC D .V SCC; ESCC/, which we define as follows. Suppose that G

has strongly connected components C1; C2; : : : ; Ck . The vertex set V SCC is
f�1; �2; : : : ; �kg, and it contains a vertex �i for each strongly connected compo-
nent Ci of G. There is an edge .�i ; �j / 2 ESCC if G contains a directed edge .x; y/

for some x 2 Ci and some y 2 Cj . Looked at another way, by contracting all
edges whose incident vertices are within the same strongly connected component
of G, the resulting graph is GSCC. Figure 22.9(c) shows the component graph of
the graph in Figure 22.9(a).

The key property is that the component graph is a dag, which the following
lemma implies.

Lemma 22.13
Let C and C 0 be distinct strongly connected components in directed graph G D
.V; E/, let u; � 2 C , let u0; � 0 2 C 0, and suppose that G contains a path u � u0.
Then G cannot also contain a path � 0

� �.

Proof If G contains a path � 0
� �, then it contains paths u � u0

� � 0 and
� 0

� � � u. Thus, u and � 0 are reachable from each other, thereby contradicting
the assumption that C and C 0 are distinct strongly connected components.

We shall see that by considering vertices in the second depth-first search in de-
creasing order of the finishing times that were computed in the first depth-first
search, we are, in essence, visiting the vertices of the component graph (each of
which corresponds to a strongly connected component of G) in topologically sorted
order.

Because the STRONGLY-CONNECTED-COMPONENTS procedure performs two
depth-first searches, there is the potential for ambiguity when we discuss u:d
or u: f . In this section, these values always refer to the discovery and finishing
times as computed by the first call of DFS, in line 1.

618 Chapter 22 Elementary Graph Algorithms

We extend the notation for discovery and finishing times to sets of vertices.
If U � V , then we define d.U / D minu2U fu:dg and f .U / D maxu2U fu: f g.
That is, d.U / and f .U / are the earliest discovery time and latest finishing time,
respectively, of any vertex in U .

The following lemma and its corollary give a key property relating strongly con-
nected components and finishing times in the first depth-first search.

Lemma 22.14
Let C and C 0 be distinct strongly connected components in directed graph G D
.V; E/. Suppose that there is an edge .u; �/ 2 E, where u 2 C and � 2 C 0. Then
f .C / > f .C 0/.

Proof We consider two cases, depending on which strongly connected compo-
nent, C or C 0, had the first discovered vertex during the depth-first search.

If d.C / < d.C 0/, let x be the first vertex discovered in C . At time x:d, all ver-
tices in C and C 0 are white. At that time, G contains a path from x to each vertex
in C consisting only of white vertices. Because .u; �/ 2 E, for any vertex w 2 C 0,
there is also a path in G at time x:d from x to w consisting only of white vertices:
x � u ! � � w. By the white-path theorem, all vertices in C and C 0 become
descendants of x in the depth-first tree. By Corollary 22.8, x has the latest finishing
time of any of its descendants, and so x: f D f .C / > f .C 0/.

If instead we have d.C / > d.C 0/, let y be the first vertex discovered in C 0.
At time y:d, all vertices in C 0 are white and G contains a path from y to each
vertex in C 0 consisting only of white vertices. By the white-path theorem, all ver-
tices in C 0 become descendants of y in the depth-first tree, and by Corollary 22.8,
y: f D f .C 0/. At time y:d, all vertices in C are white. Since there is an edge .u; �/

from C to C 0, Lemma 22.13 implies that there cannot be a path from C 0 to C .
Hence, no vertex in C is reachable from y. At time y: f , therefore, all vertices in C

are still white. Thus, for any vertex w 2 C , we have w: f > y: f , which implies
that f .C / > f .C 0/.

The following corollary tells us that each edge in GT that goes between different
strongly connected components goes from a component with an earlier finishing
time (in the first depth-first search) to a component with a later finishing time.

Corollary 22.15
Let C and C 0 be distinct strongly connected components in directed graph G D
.V; E/. Suppose that there is an edge .u; �/ 2 ET, where u 2 C and � 2 C 0. Then
f .C / < f .C 0/.

22.5 Strongly connected components 619

Proof Since .u; �/ 2 ET, we have .�; u/ 2 E. Because the strongly con-
nected components of G and GT are the same, Lemma 22.14 implies that
f .C / < f .C 0/.

Corollary 22.15 provides the key to understanding why the strongly connected
components algorithm works. Let us examine what happens when we perform the
second depth-first search, which is on GT. We start with the strongly connected
component C whose finishing time f .C / is maximum. The search starts from
some vertex x 2 C , and it visits all vertices in C . By Corollary 22.15, GT contains
no edges from C to any other strongly connected component, and so the search
from x will not visit vertices in any other component. Thus, the tree rooted at x

contains exactly the vertices of C . Having completed visiting all vertices in C ,
the search in line 3 selects as a root a vertex from some other strongly connected
component C 0 whose finishing time f .C 0/ is maximum over all components other
than C . Again, the search will visit all vertices in C 0, but by Corollary 22.15,
the only edges in GT from C 0 to any other component must be to C , which we
have already visited. In general, when the depth-first search of GT in line 3 visits
any strongly connected component, any edges out of that component must be to
components that the search already visited. Each depth-first tree, therefore, will be
exactly one strongly connected component. The following theorem formalizes this
argument.

Theorem 22.16
The STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the
strongly connected components of the directed graph G provided as its input.

Proof We argue by induction on the number of depth-first trees found in the
depth-first search of GT in line 3 that the vertices of each tree form a strongly
connected component. The inductive hypothesis is that the first k trees produced
in line 3 are strongly connected components. The basis for the induction, when
k D 0, is trivial.

In the inductive step, we assume that each of the first k depth-first trees produced
in line 3 is a strongly connected component, and we consider the .k C 1/st tree
produced. Let the root of this tree be vertex u, and let u be in strongly connected
component C . Because of how we choose roots in the depth-first search in line 3,
u: f D f .C / > f .C 0/ for any strongly connected component C 0 other than C

that has yet to be visited. By the inductive hypothesis, at the time that the search
visits u, all other vertices of C are white. By the white-path theorem, therefore, all
other vertices of C are descendants of u in its depth-first tree. Moreover, by the
inductive hypothesis and by Corollary 22.15, any edges in GT that leave C must be
to strongly connected components that have already been visited. Thus, no vertex

620 Chapter 22 Elementary Graph Algorithms

in any strongly connected component other than C will be a descendant of u during
the depth-first search of GT. Thus, the vertices of the depth-first tree in GT that is
rooted at u form exactly one strongly connected component, which completes the
inductive step and the proof.

Here is another way to look at how the second depth-first search operates. Con-
sider the component graph .GT/SCC of GT. If we map each strongly connected
component visited in the second depth-first search to a vertex of .GT/SCC, the sec-
ond depth-first search visits vertices of .GT/SCC in the reverse of a topologically
sorted order. If we reverse the edges of .GT/SCC, we get the graph ..GT/SCC/T.
Because ..GT/SCC/T D GSCC (see Exercise 22.5-4), the second depth-first search
visits the vertices of GSCC in topologically sorted order.

Exercises

22.5-1
How can the number of strongly connected components of a graph change if a new
edge is added?

22.5-2
Show how the procedure STRONGLY-CONNECTED-COMPONENTS works on the
graph of Figure 22.6. Specifically, show the finishing times computed in line 1 and
the forest produced in line 3. Assume that the loop of lines 5–7 of DFS considers
vertices in alphabetical order and that the adjacency lists are in alphabetical order.

22.5-3
Professor Bacon claims that the algorithm for strongly connected components
would be simpler if it used the original (instead of the transpose) graph in the
second depth-first search and scanned the vertices in order of increasing finishing
times. Does this simpler algorithm always produce correct results?

22.5-4
Prove that for any directed graph G, we have ..GT/SCC/T D GSCC. That is, the
transpose of the component graph of GT is the same as the component graph of G.

22.5-5
Give an O.V C E/-time algorithm to compute the component graph of a directed
graph G D .V; E/. Make sure that there is at most one edge between two vertices
in the component graph your algorithm produces.

Problems for Chapter 22 621

22.5-6
Given a directed graph G D .V; E/, explain how to create another graph G0 D
.V; E 0/ such that (a) G0 has the same strongly connected components as G, (b) G0

has the same component graph as G, and (c) E 0 is as small as possible. Describe a
fast algorithm to compute G0.

22.5-7
A directed graph G D .V; E/ is semiconnected if, for all pairs of vertices u; � 2 V ,
we have u � � or � � u. Give an efficient algorithm to determine whether
or not G is semiconnected. Prove that your algorithm is correct, and analyze its
running time.

Problems

22-1 Classifying edges by breadth-first search
A depth-first forest classifies the edges of a graph into tree, back, forward, and
cross edges. A breadth-first tree can also be used to classify the edges reachable
from the source of the search into the same four categories.

a. Prove that in a breadth-first search of an undirected graph, the following prop-
erties hold:

1. There are no back edges and no forward edges.

2. For each tree edge .u; �/, we have �:d D u:d C 1.

3. For each cross edge .u; �/, we have �:d D u:d or �:d D u:dC 1.

b. Prove that in a breadth-first search of a directed graph, the following properties
hold:

1. There are no forward edges.

2. For each tree edge .u; �/, we have �:d D u:d C 1.

3. For each cross edge .u; �/, we have �:d � u:d C 1.

4. For each back edge .u; �/, we have 0 � �:d � u:d.

22-2 Articulation points, bridges, and biconnected components
Let G D .V; E/ be a connected, undirected graph. An articulation point of G is
a vertex whose removal disconnects G. A bridge of G is an edge whose removal
disconnects G. A biconnected component of G is a maximal set of edges such
that any two edges in the set lie on a common simple cycle. Figure 22.10 illustrates

622 Chapter 22 Elementary Graph Algorithms

1
2

3

4

5

6

Figure 22.10 The articulation points, bridges, and biconnected components of a connected, undi-
rected graph for use in Problem 22-2. The articulation points are the heavily shaded vertices, the
bridges are the heavily shaded edges, and the biconnected components are the edges in the shaded
regions, with a bcc numbering shown.

these definitions. We can determine articulation points, bridges, and biconnected
components using depth-first search. Let G� D .V; E�/ be a depth-first tree of G.

a. Prove that the root of G� is an articulation point of G if and only if it has at
least two children in G� .

b. Let � be a nonroot vertex of G� . Prove that � is an articulation point of G if and
only if � has a child s such that there is no back edge from s or any descendant
of s to a proper ancestor of �.

c. Let

�: low D min

(
�:d ;

w:d W .u; w/ is a back edge for some descendant u of � :

Show how to compute �: low for all vertices � 2 V in O.E/ time.

d. Show how to compute all articulation points in O.E/ time.

e. Prove that an edge of G is a bridge if and only if it does not lie on any simple
cycle of G.

f. Show how to compute all the bridges of G in O.E/ time.

g. Prove that the biconnected components of G partition the nonbridge edges of G.

h. Give an O.E/-time algorithm to label each edge e of G with a positive in-
teger e:bcc such that e:bcc D e0:bcc if and only if e and e0 are in the same
biconnected component.

Notes for Chapter 22 623

22-3 Euler tour
An Euler tour of a strongly connected, directed graph G D .V; E/ is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than
once.

a. Show that G has an Euler tour if and only if in-degree.�/ D out-degree.�/ for
each vertex � 2 V .

b. Describe an O.E/-time algorithm to find an Euler tour of G if one exists. (Hint:
Merge edge-disjoint cycles.)

22-4 Reachability
Let G D .V; E/ be a directed graph in which each vertex u 2 V is labeled with
a unique integer L.u/ from the set f1; 2; : : : ; jV jg. For each vertex u 2 V , let
R.u/ D f� 2 V W u � �g be the set of vertices that are reachable from u. Define
min.u/ to be the vertex in R.u/ whose label is minimum, i.e., min.u/ is the vertex �

such that L.�/ D min fL.w/ W w 2 R.u/g. Give an O.V CE/-time algorithm that
computes min.u/ for all vertices u 2 V .

Chapter notes

Even [103] and Tarjan [330] are excellent references for graph algorithms.
Breadth-first search was discovered by Moore [260] in the context of finding

paths through mazes. Lee [226] independently discovered the same algorithm in
the context of routing wires on circuit boards.

Hopcroft and Tarjan [178] advocated the use of the adjacency-list representation
over the adjacency-matrix representation for sparse graphs and were the first to
recognize the algorithmic importance of depth-first search. Depth-first search has
been widely used since the late 1950s, especially in artificial intelligence programs.

Tarjan [327] gave a linear-time algorithm for finding strongly connected compo-
nents. The algorithm for strongly connected components in Section 22.5 is adapted
from Aho, Hopcroft, and Ullman [6], who credit it to S. R. Kosaraju (unpublished)
and M. Sharir [314]. Gabow [119] also developed an algorithm for strongly con-
nected components that is based on contracting cycles and uses two stacks to make
it run in linear time. Knuth [209] was the first to give a linear-time algorithm for
topological sorting.

23 Minimum Spanning Trees

Electronic circuit designs often need to make the pins of several components elec-
trically equivalent by wiring them together. To interconnect a set of n pins, we can
use an arrangement of n� 1 wires, each connecting two pins. Of all such arrange-
ments, the one that uses the least amount of wire is usually the most desirable.

We can model this wiring problem with a connected, undirected graph G D
.V; E/, where V is the set of pins, E is the set of possible interconnections between
pairs of pins, and for each edge .u; �/ 2 E, we have a weight w.u; �/ specifying
the cost (amount of wire needed) to connect u and �. We then wish to find an
acyclic subset T � E that connects all of the vertices and whose total weight

w.T / D
X

.u;�/2T

w.u; �/

is minimized. Since T is acyclic and connects all of the vertices, it must form a tree,
which we call a spanning tree since it “spans” the graph G. We call the problem of
determining the tree T the minimum-spanning-tree problem.1 Figure 23.1 shows
an example of a connected graph and a minimum spanning tree.

In this chapter, we shall examine two algorithms for solving the minimum-
spanning-tree problem: Kruskal’s algorithm and Prim’s algorithm. We can easily
make each of them run in time O.E lg V / using ordinary binary heaps. By using
Fibonacci heaps, Prim’s algorithm runs in time O.E C V lg V /, which improves
over the binary-heap implementation if jV j is much smaller than jEj.

The two algorithms are greedy algorithms, as described in Chapter 16. Each
step of a greedy algorithm must make one of several possible choices. The greedy
strategy advocates making the choice that is the best at the moment. Such a strat-
egy does not generally guarantee that it will always find globally optimal solutions

1The phrase “minimum spanning tree” is a shortened form of the phrase “minimum-weight spanning
tree.” We are not, for example, minimizing the number of edges in T , since all spanning trees have
exactly jV j � 1 edges by Theorem B.2.

23.1 Growing a minimum spanning tree 625

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

2

7 6

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge .b; c/ and replacing it with the edge .a; h/

yields another spanning tree with weight 37.

to problems. For the minimum-spanning-tree problem, however, we can prove that
certain greedy strategies do yield a spanning tree with minimum weight. Although
you can read this chapter independently of Chapter 16, the greedy methods pre-
sented here are a classic application of the theoretical notions introduced there.

Section 23.1 introduces a “generic” minimum-spanning-tree method that grows
a spanning tree by adding one edge at a time. Section 23.2 gives two algorithms
that implement the generic method. The first algorithm, due to Kruskal, is similar
to the connected-components algorithm from Section 21.1. The second, due to
Prim, resembles Dijkstra’s shortest-paths algorithm (Section 24.3).

Because a tree is a type of graph, in order to be precise we must define a tree in
terms of not just its edges, but its vertices as well. Although this chapter focuses
on trees in terms of their edges, we shall operate with the understanding that the
vertices of a tree T are those that some edge of T is incident on.

23.1 Growing a minimum spanning tree

Assume that we have a connected, undirected graph G D .V; E/ with a weight
function w W E ! R, and we wish to find a minimum spanning tree for G. The
two algorithms we consider in this chapter use a greedy approach to the problem,
although they differ in how they apply this approach.

This greedy strategy is captured by the following generic method, which grows
the minimum spanning tree one edge at a time. The generic method manages a set
of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.

At each step, we determine an edge .u; �/ that we can add to A without violating
this invariant, in the sense that A[f.u; �/g is also a subset of a minimum spanning

626 Chapter 23 Minimum Spanning Trees

tree. We call such an edge a safe edge for A, since we can add it safely to A while
maintaining the invariant.

GENERIC-MST.G; w/

1 A D ;
2 while A does not form a spanning tree
3 find an edge .u; �/ that is safe for A

4 A D A [f.u; �/g
5 return A

We use the loop invariant as follows:

Initialization: After line 1, the set A trivially satisfies the loop invariant.

Maintenance: The loop in lines 2–4 maintains the invariant by adding only safe
edges.

Termination: All edges added to A are in a minimum spanning tree, and so the
set A returned in line 5 must be a minimum spanning tree.

The tricky part is, of course, finding a safe edge in line 3. One must exist, since
when line 3 is executed, the invariant dictates that there is a spanning tree T such
that A � T . Within the while loop body, A must be a proper subset of T , and
therefore there must be an edge .u; �/ 2 T such that .u; �/ 62 A and .u; �/ is safe
for A.

In the remainder of this section, we provide a rule (Theorem 23.1) for recogniz-
ing safe edges. The next section describes two algorithms that use this rule to find
safe edges efficiently.

We first need some definitions. A cut .S; V � S/ of an undirected graph G D
.V; E/ is a partition of V . Figure 23.2 illustrates this notion. We say that an edge
.u; �/ 2 E crosses the cut .S; V � S/ if one of its endpoints is in S and the other
is in V � S . We say that a cut respects a set A of edges if no edge in A crosses the
cut. An edge is a light edge crossing a cut if its weight is the minimum of any edge
crossing the cut. Note that there can be more than one light edge crossing a cut in
the case of ties. More generally, we say that an edge is a light edge satisfying a
given property if its weight is the minimum of any edge satisfying the property.

Our rule for recognizing safe edges is given by the following theorem.

Theorem 23.1
Let G D .V; E/ be a connected, undirected graph with a real-valued weight func-
tion w defined on E. Let A be a subset of E that is included in some minimum
spanning tree for G, let .S; V � S/ be any cut of G that respects A, and let .u; �/

be a light edge crossing .S; V � S/. Then, edge .u; �/ is safe for A.

23.1 Growing a minimum spanning tree 627

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

2

7 6

a

b

d

e

h

i

g

c

f

8

11

8

7

14

10

4

6

7

4

9

2

1

2

S

(a) (b)

V – S

S

V – S

S

V – S

Figure 23.2 Two ways of viewing a cut .S; V � S/ of the graph from Figure 23.1. (a) Black
vertices are in the set S , and white vertices are in V � S . The edges crossing the cut are those
connecting white vertices with black vertices. The edge .d; c/ is the unique light edge crossing the
cut. A subset A of the edges is shaded; note that the cut .S; V � S/ respects A, since no edge of A

crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in the
set V � S on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on the
right.

Proof Let T be a minimum spanning tree that includes A, and assume that T

does not contain the light edge .u; �/, since if it does, we are done. We shall
construct another minimum spanning tree T 0 that includes A [f.u; �/g by using a
cut-and-paste technique, thereby showing that .u; �/ is a safe edge for A.

The edge .u; �/ forms a cycle with the edges on the simple path p from u

to � in T , as Figure 23.3 illustrates. Since u and � are on opposite sides of the
cut .S; V � S/, at least one edge in T lies on the simple path p and also crosses
the cut. Let .x; y/ be any such edge. The edge .x; y/ is not in A, because the cut
respects A. Since .x; y/ is on the unique simple path from u to � in T , remov-
ing .x; y/ breaks T into two components. Adding .u; �/ reconnects them to form
a new spanning tree T 0 D T � f.x; y/g [f.u; �/g.

We next show that T 0 is a minimum spanning tree. Since .u; �/ is a light edge
crossing .S; V �S/ and .x; y/ also crosses this cut, w.u; �/ � w.x; y/. Therefore,

w.T 0/ D w.T / � w.x; y/Cw.u; �/

� w.T / :

628 Chapter 23 Minimum Spanning Trees

y

v

u

x

p

Figure 23.3 The proof of Theorem 23.1. Black vertices are in S , and white vertices are in V � S .
The edges in the minimum spanning tree T are shown, but the edges in the graph G are not. The
edges in A are shaded, and .u; �/ is a light edge crossing the cut .S; V � S/. The edge .x; y/ is
an edge on the unique simple path p from u to � in T . To form a minimum spanning tree T 0 that
contains .u; �/, remove the edge .x; y/ from T and add the edge .u; �/.

But T is a minimum spanning tree, so that w.T / � w.T 0/; thus, T 0 must be a
minimum spanning tree also.

It remains to show that .u; �/ is actually a safe edge for A. We have A � T 0,
since A � T and .x; y/ 62 A; thus, A [f.u; �/g � T 0. Consequently, since T 0 is a
minimum spanning tree, .u; �/ is safe for A.

Theorem 23.1 gives us a better understanding of the workings of the GENERIC-
MST method on a connected graph G D .V; E/. As the method proceeds, the
set A is always acyclic; otherwise, a minimum spanning tree including A would
contain a cycle, which is a contradiction. At any point in the execution, the graph
GA D .V; A/ is a forest, and each of the connected components of GA is a tree.
(Some of the trees may contain just one vertex, as is the case, for example, when
the method begins: A is empty and the forest contains jV j trees, one for each
vertex.) Moreover, any safe edge .u; �/ for A connects distinct components of GA,
since A [f.u; �/g must be acyclic.

The while loop in lines 2–4 of GENERIC-MST executes jV j � 1 times because
it finds one of the jV j � 1 edges of a minimum spanning tree in each iteration.
Initially, when A D ;, there are jV j trees in GA, and each iteration reduces that
number by 1. When the forest contains only a single tree, the method terminates.

The two algorithms in Section 23.2 use the following corollary to Theorem 23.1.

23.1 Growing a minimum spanning tree 629

Corollary 23.2
Let G D .V; E/ be a connected, undirected graph with a real-valued weight func-
tion w defined on E. Let A be a subset of E that is included in some minimum
spanning tree for G, and let C D .VC ; EC / be a connected component (tree) in the
forest GA D .V; A/. If .u; �/ is a light edge connecting C to some other component
in GA, then .u; �/ is safe for A.

Proof The cut .VC ; V � VC / respects A, and .u; �/ is a light edge for this cut.
Therefore, .u; �/ is safe for A.

Exercises

23.1-1
Let .u; �/ be a minimum-weight edge in a connected graph G. Show that .u; �/

belongs to some minimum spanning tree of G.

23.1-2
Professor Sabatier conjectures the following converse of Theorem 23.1. Let G D
.V; E/ be a connected, undirected graph with a real-valued weight function w de-
fined on E. Let A be a subset of E that is included in some minimum spanning
tree for G, let .S; V � S/ be any cut of G that respects A, and let .u; �/ be a safe
edge for A crossing .S; V � S/. Then, .u; �/ is a light edge for the cut. Show that
the professor’s conjecture is incorrect by giving a counterexample.

23.1-3
Show that if an edge .u; �/ is contained in some minimum spanning tree, then it is
a light edge crossing some cut of the graph.

23.1-4
Give a simple example of a connected graph such that the set of edges f.u; �/ W
there exists a cut .S; V � S/ such that .u; �/ is a light edge crossing .S; V � S/g
does not form a minimum spanning tree.

23.1-5
Let e be a maximum-weight edge on some cycle of connected graph G D .V; E/.
Prove that there is a minimum spanning tree of G0 D .V; E � feg/ that is also a
minimum spanning tree of G. That is, there is a minimum spanning tree of G that
does not include e.

630 Chapter 23 Minimum Spanning Trees

23.1-6
Show that a graph has a unique minimum spanning tree if, for every cut of the
graph, there is a unique light edge crossing the cut. Show that the converse is not
true by giving a counterexample.

23.1-7
Argue that if all edge weights of a graph are positive, then any subset of edges that
connects all vertices and has minimum total weight must be a tree. Give an example
to show that the same conclusion does not follow if we allow some weights to be
nonpositive.

23.1-8
Let T be a minimum spanning tree of a graph G, and let L be the sorted list of the
edge weights of T . Show that for any other minimum spanning tree T 0 of G, the
list L is also the sorted list of edge weights of T 0.

23.1-9
Let T be a minimum spanning tree of a graph G D .V; E/, and let V 0 be a subset
of V . Let T 0 be the subgraph of T induced by V 0, and let G0 be the subgraph of G

induced by V 0. Show that if T 0 is connected, then T 0 is a minimum spanning tree
of G0.

23.1-10
Given a graph G and a minimum spanning tree T , suppose that we decrease the
weight of one of the edges in T . Show that T is still a minimum spanning tree
for G. More formally, let T be a minimum spanning tree for G with edge weights
given by weight function w. Choose one edge .x; y/ 2 T and a positive number k,
and define the weight function w0 by

w0.u; �/ D
(

w.u; �/ if .u; �/ ¤ .x; y/ ;

w.x; y/ � k if .u; �/ D .x; y/ :

Show that T is a minimum spanning tree for G with edge weights given by w0.

23.1-11 ?

Given a graph G and a minimum spanning tree T , suppose that we decrease the
weight of one of the edges not in T . Give an algorithm for finding the minimum
spanning tree in the modified graph.

23.2 The algorithms of Kruskal and Prim 631

23.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section elaborate on
the generic method. They each use a specific rule to determine a safe edge in line 3
of GENERIC-MST. In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph. The safe edge added to A is always a least-weight
edge in the graph that connects two distinct components. In Prim’s algorithm, the
set A forms a single tree. The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

Kruskal’s algorithm

Kruskal’s algorithm finds a safe edge to add to the growing forest by finding, of all
the edges that connect any two trees in the forest, an edge .u; �/ of least weight.
Let C1 and C2 denote the two trees that are connected by .u; �/. Since .u; �/ must
be a light edge connecting C1 to some other tree, Corollary 23.2 implies that .u; �/

is a safe edge for C1. Kruskal’s algorithm qualifies as a greedy algorithm because
at each step it adds to the forest an edge of least possible weight.

Our implementation of Kruskal’s algorithm is like the algorithm to compute
connected components from Section 21.1. It uses a disjoint-set data structure to
maintain several disjoint sets of elements. Each set contains the vertices in one tree
of the current forest. The operation FIND-SET.u/ returns a representative element
from the set that contains u. Thus, we can determine whether two vertices u and �

belong to the same tree by testing whether FIND-SET.u/ equals FIND-SET.�/. To
combine trees, Kruskal’s algorithm calls the UNION procedure.

MST-KRUSKAL.G; w/

1 A D ;
2 for each vertex � 2 G:V
3 MAKE-SET.�/

4 sort the edges of G:E into nondecreasing order by weight w

5 for each edge .u; �/ 2 G:E, taken in nondecreasing order by weight
6 if FIND-SET.u/ ¤ FIND-SET.�/

7 A D A [f.u; �/g
8 UNION.u; �/

9 return A

Figure 23.4 shows how Kruskal’s algorithm works. Lines 1–3 initialize the set A

to the empty set and create jV j trees, one containing each vertex. The for loop in
lines 5–8 examines edges in order of weight, from lowest to highest. The loop

632 Chapter 23 Minimum Spanning Trees

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

2

7 6
(a) (b)

(c) (d)

(e)

(g)

(f)

(h)

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

checks, for each edge .u; �/, whether the endpoints u and � belong to the same
tree. If they do, then the edge .u; �/ cannot be added to the forest without creating
a cycle, and the edge is discarded. Otherwise, the two vertices belong to different
trees. In this case, line 7 adds the edge .u; �/ to A, and line 8 merges the vertices
in the two trees.

23.2 The algorithms of Kruskal and Prim 633

(i) (j)

(k) (l)

(n)(m)

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

22

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

2

2

Figure 23.4, continued Further steps in the execution of Kruskal’s algorithm.

The running time of Kruskal’s algorithm for a graph G D .V; E/ depends
on how we implement the disjoint-set data structure. We assume that we use
the disjoint-set-forest implementation of Section 21.3 with the union-by-rank and
path-compression heuristics, since it is the asymptotically fastest implementation
known. Initializing the set A in line 1 takes O.1/ time, and the time to sort the
edges in line 4 is O.E lg E/. (We will account for the cost of the jV j MAKE-SET

operations in the for loop of lines 2–3 in a moment.) The for loop of lines 5–8
performs O.E/ FIND-SET and UNION operations on the disjoint-set forest. Along
with the jV j MAKE-SET operations, these take a total of O..V CE/ ˛.V // time,
where ˛ is the very slowly growing function defined in Section 21.4. Because we
assume that G is connected, we have jEj � jV j � 1, and so the disjoint-set opera-
tions take O.E˛.V // time. Moreover, since ˛.jV j/ D O.lg V / D O.lg E/, the to-
tal running time of Kruskal’s algorithm is O.E lg E/. Observing that jEj < jV j2,
we have lg jEj D O.lg V /, and so we can restate the running time of Kruskal’s
algorithm as O.E lg V /.

634 Chapter 23 Minimum Spanning Trees

Prim’s algorithm

Like Kruskal’s algorithm, Prim’s algorithm is a special case of the generic min-
imum-spanning-tree method from Section 23.1. Prim’s algorithm operates much
like Dijkstra’s algorithm for finding shortest paths in a graph, which we shall see in
Section 24.3. Prim’s algorithm has the property that the edges in the set A always
form a single tree. As Figure 23.5 shows, the tree starts from an arbitrary root
vertex r and grows until the tree spans all the vertices in V . Each step adds to the
tree A a light edge that connects A to an isolated vertex—one on which no edge
of A is incident. By Corollary 23.2, this rule adds only edges that are safe for A;
therefore, when the algorithm terminates, the edges in A form a minimum spanning
tree. This strategy qualifies as greedy since at each step it adds to the tree an edge
that contributes the minimum amount possible to the tree’s weight.

In order to implement Prim’s algorithm efficiently, we need a fast way to select
a new edge to add to the tree formed by the edges in A. In the pseudocode below,
the connected graph G and the root r of the minimum spanning tree to be grown
are inputs to the algorithm. During execution of the algorithm, all vertices that
are not in the tree reside in a min-priority queue Q based on a key attribute. For
each vertex �, the attribute �:key is the minimum weight of any edge connecting �

to a vertex in the tree; by convention, �:key D 1 if there is no such edge. The
attribute �:� names the parent of � in the tree. The algorithm implicitly maintains
the set A from GENERIC-MST as

A D f.�; �:�/ W � 2 V � frg �Qg :

When the algorithm terminates, the min-priority queue Q is empty; the minimum
spanning tree A for G is thus

A D f.�; �:�/ W � 2 V � frgg :

MST-PRIM.G; w; r/

1 for each u 2 G:V
2 u:key D 1
3 u:� D NIL

4 r:key D 0

5 Q D G:V
6 whileQ ¤ ;
7 u D EXTRACT-MIN.Q/

8 for each � 2 G:AdjŒu�

9 if � 2 Q and w.u; �/ < �:key
10 �:� D u

11 �:key D w.u; �/

23.2 The algorithms of Kruskal and Prim 635

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

2

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

2

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

2

7 6

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

b

a

h

c

g

i

d

f

e

4

8

11

8 7

9

10

144

21

7 6

2

Figure 23.5 The execution of Prim’s algorithm on the graph from Figure 23.1. The root vertex
is a. Shaded edges are in the tree being grown, and black vertices are in the tree. At each step of
the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing the cut
is added to the tree. In the second step, for example, the algorithm has a choice of adding either
edge .b; c/ or edge .a; h/ to the tree since both are light edges crossing the cut.

636 Chapter 23 Minimum Spanning Trees

Figure 23.5 shows how Prim’s algorithm works. Lines 1–5 set the key of each
vertex to 1 (except for the root r , whose key is set to 0 so that it will be the
first vertex processed), set the parent of each vertex to NIL, and initialize the min-
priority queue Q to contain all the vertices. The algorithm maintains the following
three-part loop invariant:

Prior to each iteration of the while loop of lines 6–11,

1. A D f.�; �:�/ W � 2 V � frg �Qg.
2. The vertices already placed into the minimum spanning tree are those in

V �Q.

3. For all vertices � 2 Q, if �:� ¤ NIL, then �:key < 1 and �:key is
the weight of a light edge .�; �:�/ connecting � to some vertex already
placed into the minimum spanning tree.

Line 7 identifies a vertex u 2 Q incident on a light edge that crosses the cut
.V �Q; Q/ (with the exception of the first iteration, in which u D r due to line 4).
Removing u from the set Q adds it to the set V �Q of vertices in the tree, thus
adding .u; u:�/ to A. The for loop of lines 8–11 updates the key and � attributes
of every vertex � adjacent to u but not in the tree, thereby maintaining the third
part of the loop invariant.

The running time of Prim’s algorithm depends on how we implement the min-
priority queue Q. If we implement Q as a binary min-heap (see Chapter 6), we
can use the BUILD-MIN-HEAP procedure to perform lines 1–5 in O.V / time. The
body of the while loop executes jV j times, and since each EXTRACT-MIN opera-
tion takes O.lg V / time, the total time for all calls to EXTRACT-MIN is O.V lg V /.
The for loop in lines 8–11 executes O.E/ times altogether, since the sum of the
lengths of all adjacency lists is 2 jEj. Within the for loop, we can implement the
test for membership in Q in line 9 in constant time by keeping a bit for each vertex
that tells whether or not it is in Q, and updating the bit when the vertex is removed
from Q. The assignment in line 11 involves an implicit DECREASE-KEY opera-
tion on the min-heap, which a binary min-heap supports in O.lg V / time. Thus,
the total time for Prim’s algorithm is O.V lg V C E lg V / D O.E lg V /, which is
asymptotically the same as for our implementation of Kruskal’s algorithm.

We can improve the asymptotic running time of Prim’s algorithm by using Fi-
bonacci heaps. Chapter 19 shows that if a Fibonacci heap holds jV j elements, an
EXTRACT-MIN operation takes O.lg V / amortized time and a DECREASE-KEY

operation (to implement line 11) takes O.1/ amortized time. Therefore, if we use a
Fibonacci heap to implement the min-priority queue Q, the running time of Prim’s
algorithm improves to O.E C V lg V /.

23.2 The algorithms of Kruskal and Prim 637

Exercises

23.2-1
Kruskal’s algorithm can return different spanning trees for the same input graph G,
depending on how it breaks ties when the edges are sorted into order. Show that
for each minimum spanning tree T of G, there is a way to sort the edges of G in
Kruskal’s algorithm so that the algorithm returns T .

23.2-2
Suppose that we represent the graph G D .V; E/ as an adjacency matrix. Give a
simple implementation of Prim’s algorithm for this case that runs in O.V 2/ time.

23.2-3
For a sparse graph G D .V; E/, where jEj D ‚.V /, is the implementation of
Prim’s algorithm with a Fibonacci heap asymptotically faster than the binary-heap
implementation? What about for a dense graph, where jEj D ‚.V 2/? How
must the sizes jEj and jV j be related for the Fibonacci-heap implementation to
be asymptotically faster than the binary-heap implementation?

23.2-4
Suppose that all edge weights in a graph are integers in the range from 1 to jV j.
How fast can you make Kruskal’s algorithm run? What if the edge weights are
integers in the range from 1 to W for some constant W ?

23.2-5
Suppose that all edge weights in a graph are integers in the range from 1 to jV j.
How fast can you make Prim’s algorithm run? What if the edge weights are integers
in the range from 1 to W for some constant W ?

23.2-6 ?

Suppose that the edge weights in a graph are uniformly distributed over the half-
open interval Œ0; 1/. Which algorithm, Kruskal’s or Prim’s, can you make run
faster?

23.2-7 ?

Suppose that a graph G has a minimum spanning tree already computed. How
quickly can we update the minimum spanning tree if we add a new vertex and
incident edges to G?

23.2-8
Professor Borden proposes a new divide-and-conquer algorithm for computing
minimum spanning trees, which goes as follows. Given a graph G D .V; E/,
partition the set V of vertices into two sets V1 and V2 such that jV1j and jV2j differ

638 Chapter 23 Minimum Spanning Trees

by at most 1. Let E1 be the set of edges that are incident only on vertices in V1, and
let E2 be the set of edges that are incident only on vertices in V2. Recursively solve
a minimum-spanning-tree problem on each of the two subgraphs G1 D .V1; E1/

and G2 D .V2; E2/. Finally, select the minimum-weight edge in E that crosses the
cut .V1; V2/, and use this edge to unite the resulting two minimum spanning trees
into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree
of G, or provide an example for which the algorithm fails.

Problems

23-1 Second-best minimum spanning tree
Let G D .V; E/ be an undirected, connected graph whose weight function is
w W E ! R, and suppose that jEj � jV j and all edge weights are distinct.

We define a second-best minimum spanning tree as follows. Let T be the set
of all spanning trees of G, and let T 0 be a minimum spanning tree of G. Then
a second-best minimum spanning tree is a spanning tree T such that w.T / D
minT 002T �fT 0g fw.T 00/g.
a. Show that the minimum spanning tree is unique, but that the second-best mini-

mum spanning tree need not be unique.

b. Let T be the minimum spanning tree of G. Prove that G contains edges
.u; �/ 2 T and .x; y/ 62 T such that T � f.u; �/g [f.x; y/g is a second-best
minimum spanning tree of G.

c. Let T be a spanning tree of G and, for any two vertices u; � 2 V , let maxŒu; ��

denote an edge of maximum weight on the unique simple path between u and �

in T . Describe an O.V 2/-time algorithm that, given T , computes maxŒu; �� for
all u; � 2 V .

d. Give an efficient algorithm to compute the second-best minimum spanning tree
of G.

23-2 Minimum spanning tree in sparse graphs
For a very sparse connected graph G D .V; E/, we can further improve upon the
O.E C V lg V / running time of Prim’s algorithm with Fibonacci heaps by prepro-
cessing G to decrease the number of vertices before running Prim’s algorithm. In
particular, we choose, for each vertex u, the minimum-weight edge .u; �/ incident
on u, and we put .u; �/ into the minimum spanning tree under construction. We

Problems for Chapter 23 639

then contract all chosen edges (see Section B.4). Rather than contracting these
edges one at a time, we first identify sets of vertices that are united into the same
new vertex. Then we create the graph that would have resulted from contracting
these edges one at a time, but we do so by “renaming” edges according to the sets
into which their endpoints were placed. Several edges from the original graph may
be renamed the same as each other. In such a case, only one edge results, and its
weight is the minimum of the weights of the corresponding original edges.

Initially, we set the minimum spanning tree T being constructed to be empty,
and for each edge .u; �/ 2 E, we initialize the attributes .u; �/:orig D .u; �/

and .u; �/:c D w.u; �/. We use the orig attribute to reference the edge from the
initial graph that is associated with an edge in the contracted graph. The c attribute
holds the weight of an edge, and as edges are contracted, we update it according to
the above scheme for choosing edge weights. The procedure MST-REDUCE takes
inputs G and T , and it returns a contracted graph G0 with updated attributes orig0

and c 0. The procedure also accumulates edges of G into the minimum spanning
tree T .

MST-REDUCE.G; T /

1 for each � 2 G:V
2 �:mark D FALSE

3 MAKE-SET.�/

4 for each u 2 G:V
5 if u:mark == FALSE

6 choose � 2 G:AdjŒu� such that .u; �/:c is minimized
7 UNION.u; �/

8 T D T [f.u; �/:origg
9 u:mark D �:mark D TRUE

10 G0:V D fFIND-SET.�/ W � 2 G:Vg
11 G0:E D ;
12 for each .x; y/ 2 G:E
13 u D FIND-SET.x/

14 � D FIND-SET.y/

15 if .u; �/ 62 G0:E
16 G0:E D G0:E [f.u; �/g
17 .u; �/:orig0 D .x; y/:orig
18 .u; �/:c 0 D .x; y/:c
19 else if .x; y/:c < .u; �/:c 0

20 .u; �/:orig0 D .x; y/:orig
21 .u; �/:c 0 D .x; y/:c
22 construct adjacency lists G0:Adj for G0

23 return G0 and T

640 Chapter 23 Minimum Spanning Trees

a. Let T be the set of edges returned by MST-REDUCE, and let A be the minimum
spanning tree of the graph G0 formed by the call MST-PRIM.G0; c 0; r/, where c 0

is the weight attribute on the edges of G0:E and r is any vertex in G0:V . Prove
that T [f.x; y/:orig0 W .x; y/ 2 Ag is a minimum spanning tree of G.

b. Argue that jG0:Vj � jV j =2.

c. Show how to implement MST-REDUCE so that it runs in O.E/ time. (Hint:
Use simple data structures.)

d. Suppose that we run k phases of MST-REDUCE, using the output G0 produced
by one phase as the input G to the next phase and accumulating edges in T .
Argue that the overall running time of the k phases is O.kE/.

e. Suppose that after running k phases of MST-REDUCE, as in part (d), we run
Prim’s algorithm by calling MST-PRIM.G0; c 0; r/, where G0, with weight at-
tribute c 0, is returned by the last phase and r is any vertex in G0:V . Show how
to pick k so that the overall running time is O.E lg lg V /. Argue that your
choice of k minimizes the overall asymptotic running time.

f. For what values of jEj (in terms of jV j) does Prim’s algorithm with preprocess-
ing asymptotically beat Prim’s algorithm without preprocessing?

23-3 Bottleneck spanning tree
A bottleneck spanning tree T of an undirected graph G is a spanning tree of G

whose largest edge weight is minimum over all spanning trees of G. We say that
the value of the bottleneck spanning tree is the weight of the maximum-weight
edge in T .

a. Argue that a minimum spanning tree is a bottleneck spanning tree.

Part (a) shows that finding a bottleneck spanning tree is no harder than finding
a minimum spanning tree. In the remaining parts, we will show how to find a
bottleneck spanning tree in linear time.

b. Give a linear-time algorithm that given a graph G and an integer b, determines
whether the value of the bottleneck spanning tree is at most b.

c. Use your algorithm for part (b) as a subroutine in a linear-time algorithm for
the bottleneck-spanning-tree problem. (Hint: You may want to use a subroutine
that contracts sets of edges, as in the MST-REDUCE procedure described in
Problem 23-2.)

Notes for Chapter 23 641

23-4 Alternative minimum-spanning-tree algorithms
In this problem, we give pseudocode for three different algorithms. Each one takes
a connected graph and a weight function as input and returns a set of edges T . For
each algorithm, either prove that T is a minimum spanning tree or prove that T is
not a minimum spanning tree. Also describe the most efficient implementation of
each algorithm, whether or not it computes a minimum spanning tree.

a. MAYBE-MST-A.G; w/

1 sort the edges into nonincreasing order of edge weights w

2 T D E

3 for each edge e, taken in nonincreasing order by weight
4 if T � feg is a connected graph
5 T D T � feg
6 return T

b. MAYBE-MST-B.G; w/

1 T D ;
2 for each edge e, taken in arbitrary order
3 if T [feg has no cycles
4 T D T [feg
5 return T

c. MAYBE-MST-C.G; w/

1 T D ;
2 for each edge e, taken in arbitrary order
3 T D T [feg
4 if T has a cycle c

5 let e0 be a maximum-weight edge on c

6 T D T � fe0g
7 return T

Chapter notes

Tarjan [330] surveys the minimum-spanning-tree problem and provides excellent
advanced material. Graham and Hell [151] compiled a history of the minimum-
spanning-tree problem.

Tarjan attributes the first minimum-spanning-tree algorithm to a 1926 paper by
O. Boru̇vka. Boru̇vka’s algorithm consists of running O.lg V / iterations of the

642 Chapter 23 Minimum Spanning Trees

procedure MST-REDUCE described in Problem 23-2. Kruskal’s algorithm was
reported by Kruskal [222] in 1956. The algorithm commonly known as Prim’s
algorithm was indeed invented by Prim [285], but it was also invented earlier by
V. Jarnı́k in 1930.

The reason underlying why greedy algorithms are effective at finding minimum
spanning trees is that the set of forests of a graph forms a graphic matroid. (See
Section 16.4.)

When jEj D �.V lg V /, Prim’s algorithm, implemented with Fibonacci heaps,
runs in O.E/ time. For sparser graphs, using a combination of the ideas from
Prim’s algorithm, Kruskal’s algorithm, and Boru̇vka’s algorithm, together with ad-
vanced data structures, Fredman and Tarjan [114] give an algorithm that runs in
O.E lg� V / time. Gabow, Galil, Spencer, and Tarjan [120] improved this algo-
rithm to run in O.E lg lg� V / time. Chazelle [60] gives an algorithm that runs
in O.E y̨.E; V // time, where y̨.E; V / is the functional inverse of Ackermann’s
function. (See the chapter notes for Chapter 21 for a brief discussion of Acker-
mann’s function and its inverse.) Unlike previous minimum-spanning-tree algo-
rithms, Chazelle’s algorithm does not follow the greedy method.

A related problem is spanning-tree verification, in which we are given a graph
G D .V; E/ and a tree T � E, and we wish to determine whether T is a minimum
spanning tree of G. King [203] gives a linear-time algorithm to verify a spanning
tree, building on earlier work of Komlós [215] and Dixon, Rauch, and Tarjan [90].

The above algorithms are all deterministic and fall into the comparison-based
model described in Chapter 8. Karger, Klein, and Tarjan [195] give a randomized
minimum-spanning-tree algorithm that runs in O.V C E/ expected time. This
algorithm uses recursion in a manner similar to the linear-time selection algorithm
in Section 9.3: a recursive call on an auxiliary problem identifies a subset of the
edges E 0 that cannot be in any minimum spanning tree. Another recursive call
on E � E 0 then finds the minimum spanning tree. The algorithm also uses ideas
from Boru̇vka’s algorithm and King’s algorithm for spanning-tree verification.

Fredman and Willard [116] showed how to find a minimum spanning tree in
O.V CE/ time using a deterministic algorithm that is not comparison based. Their
algorithm assumes that the data are b-bit integers and that the computer memory
consists of addressable b-bit words.

24 Single-Source Shortest Paths

Professor Patrick wishes to find the shortest possible route from Phoenix to Indi-
anapolis. Given a road map of the United States on which the distance between
each pair of adjacent intersections is marked, how can she determine this shortest
route?

One possible way would be to enumerate all the routes from Phoenix to Indi-
anapolis, add up the distances on each route, and select the shortest. It is easy to
see, however, that even disallowing routes that contain cycles, Professor Patrick
would have to examine an enormous number of possibilities, most of which are
simply not worth considering. For example, a route from Phoenix to Indianapolis
that passes through Seattle is obviously a poor choice, because Seattle is several
hundred miles out of the way.

In this chapter and in Chapter 25, we show how to solve such problems ef-
ficiently. In a shortest-paths problem, we are given a weighted, directed graph
G D .V; E/, with weight function w W E ! R mapping edges to real-valued
weights. The weight w.p/ of path p D h�0; �1; : : : ; �ki is the sum of the weights
of its constituent edges:

w.p/ D
kX

iD1

w.�i�1; �i / :

We define the shortest-path weight ı.u; �/ from u to � by

ı.u; �/ D
(

minfw.p/ W u p
� �g if there is a path from u to � ;

1 otherwise :

A shortest path from vertex u to vertex � is then defined as any path p with weight
w.p/ D ı.u; �/.

In the Phoenix-to-Indianapolis example, we can model the road map as a graph:
vertices represent intersections, edges represent road segments between intersec-
tions, and edge weights represent road distances. Our goal is to find a shortest path
from a given intersection in Phoenix to a given intersection in Indianapolis.

644 Chapter 24 Single-Source Shortest Paths

Edge weights can represent metrics other than distances, such as time, cost,
penalties, loss, or any other quantity that accumulates linearly along a path and
that we would want to minimize.

The breadth-first-search algorithm from Section 22.2 is a shortest-paths algo-
rithm that works on unweighted graphs, that is, graphs in which each edge has unit
weight. Because many of the concepts from breadth-first search arise in the study
of shortest paths in weighted graphs, you might want to review Section 22.2 before
proceeding.

Variants

In this chapter, we shall focus on the single-source shortest-paths problem: given
a graph G D .V; E/, we want to find a shortest path from a given source vertex
s 2 V to each vertex � 2 V . The algorithm for the single-source problem can
solve many other problems, including the following variants.

Single-destination shortest-paths problem: Find a shortest path to a given des-
tination vertex t from each vertex �. By reversing the direction of each edge in
the graph, we can reduce this problem to a single-source problem.

Single-pair shortest-path problem: Find a shortest path from u to � for given
vertices u and �. If we solve the single-source problem with source vertex u,
we solve this problem also. Moreover, all known algorithms for this problem
have the same worst-case asymptotic running time as the best single-source
algorithms.

All-pairs shortest-paths problem: Find a shortest path from u to � for every pair
of vertices u and �. Although we can solve this problem by running a single-
source algorithm once from each vertex, we usually can solve it faster. Addi-
tionally, its structure is interesting in its own right. Chapter 25 addresses the
all-pairs problem in detail.

Optimal substructure of a shortest path

Shortest-paths algorithms typically rely on the property that a shortest path be-
tween two vertices contains other shortest paths within it. (The Edmonds-Karp
maximum-flow algorithm in Chapter 26 also relies on this property.) Recall
that optimal substructure is one of the key indicators that dynamic programming
(Chapter 15) and the greedy method (Chapter 16) might apply. Dijkstra’s algo-
rithm, which we shall see in Section 24.3, is a greedy algorithm, and the Floyd-
Warshall algorithm, which finds shortest paths between all pairs of vertices (see
Section 25.2), is a dynamic-programming algorithm. The following lemma states
the optimal-substructure property of shortest paths more precisely.

Chapter 24 Single-Source Shortest Paths 645

Lemma 24.1 (Subpaths of shortest paths are shortest paths)
Given a weighted, directed graph G D .V; E/ with weight function w W E ! R,
let p D h�0; �1; : : : ; �ki be a shortest path from vertex �0 to vertex �k and, for any
i and j such that 0 � i � j � k, let pij D h�i ; �iC1; : : : ; �j i be the subpath of p

from vertex �i to vertex �j . Then, pij is a shortest path from �i to �j .

Proof If we decompose path p into �0

p0i
� �i

pij
� �j

pjk
� �k, then we have that

w.p/ D w.p0i/Cw.pij /Cw.pjk/. Now, assume that there is a path p0
ij from �i

to �j with weight w.p0
ij / < w.pij /. Then, �0

p0i
� �i

p0
ij

� �j

pjk
� �k is a path from �0

to �k whose weight w.p0i/Cw.p0
ij /Cw.pjk/ is less than w.p/, which contradicts

the assumption that p is a shortest path from �0 to �k.

Negative-weight edges

Some instances of the single-source shortest-paths problem may include edges
whose weights are negative. If the graph G D .V; E/ contains no negative-
weight cycles reachable from the source s, then for all � 2 V , the shortest-path
weight ı.s; �/ remains well defined, even if it has a negative value. If the graph
contains a negative-weight cycle reachable from s, however, shortest-path weights
are not well defined. No path from s to a vertex on the cycle can be a short-
est path—we can always find a path with lower weight by following the proposed
“shortest” path and then traversing the negative-weight cycle. If there is a negative-
weight cycle on some path from s to �, we define ı.s; �/ D �1.

Figure 24.1 illustrates the effect of negative weights and negative-weight cy-
cles on shortest-path weights. Because there is only one path from s to a (the
path hs; ai), we have ı.s; a/ D w.s; a/ D 3. Similarly, there is only one path
from s to b, and so ı.s; b/ D w.s; a/ C w.a; b/ D 3 C .�4/ D �1. There are
infinitely many paths from s to c: hs; ci, hs; c; d; ci, hs; c; d; c; d; ci, and so on.
Because the cycle hc; d; ci has weight 6C .�3/ D 3 > 0, the shortest path from s

to c is hs; ci, with weight ı.s; c/ D w.s; c/ D 5. Similarly, the shortest path from s

to d is hs; c;d i, with weight ı.s; d/ D w.s; c/Cw.c; d/ D 11. Analogously, there
are infinitely many paths from s to e: hs; ei, hs; e; f; ei, hs; e; f; e; f; ei, and so
on. Because the cycle he; f; ei has weight 3 C .�6/ D �3 < 0, however, there
is no shortest path from s to e. By traversing the negative-weight cycle he; f; ei
arbitrarily many times, we can find paths from s to e with arbitrarily large negative
weights, and so ı.s; e/ D �1. Similarly, ı.s; f / D �1. Because g is reachable
from f , we can also find paths with arbitrarily large negative weights from s to g,
and so ı.s; g/ D �1. Vertices h, i , and j also form a negative-weight cycle. They
are not reachable from s, however, and so ı.s; h/ D ı.s; i/ D ı.s; j / D1.

646 Chapter 24 Single-Source Shortest Paths

5

c

11

d6

–3

–∞
e

–∞
f3

–6

3

a

–1

b

0

s

–∞
g

–4

5

3

2

8

4

7

∞
h

∞
i

2

∞
j

–8 3

Figure 24.1 Negative edge weights in a directed graph. The shortest-path weight from source s

appears within each vertex. Because vertices e and f form a negative-weight cycle reachable from s,
they have shortest-path weights of �1. Because vertex g is reachable from a vertex whose shortest-
path weight is �1, it, too, has a shortest-path weight of �1. Vertices such as h, i , and j are not
reachable from s, and so their shortest-path weights are1, even though they lie on a negative-weight
cycle.

Some shortest-paths algorithms, such as Dijkstra’s algorithm, assume that all
edge weights in the input graph are nonnegative, as in the road-map example. Oth-
ers, such as the Bellman-Ford algorithm, allow negative-weight edges in the in-
put graph and produce a correct answer as long as no negative-weight cycles are
reachable from the source. Typically, if there is such a negative-weight cycle, the
algorithm can detect and report its existence.

Cycles

Can a shortest path contain a cycle? As we have just seen, it cannot contain a
negative-weight cycle. Nor can it contain a positive-weight cycle, since remov-
ing the cycle from the path produces a path with the same source and destination
vertices and a lower path weight. That is, if p D h�0; �1; : : : ; �ki is a path and
c D h�i ; �iC1; : : : ; �j i is a positive-weight cycle on this path (so that �i D �j and
w.c/ > 0), then the path p0 D h�0; �1; : : : ; �i ; �j C1; �j C2; : : : ; �ki has weight
w.p0/ D w.p/� w.c/ < w.p/, and so p cannot be a shortest path from �0 to �k.

That leaves only 0-weight cycles. We can remove a 0-weight cycle from any
path to produce another path whose weight is the same. Thus, if there is a shortest
path from a source vertex s to a destination vertex � that contains a 0-weight cycle,
then there is another shortest path from s to � without this cycle. As long as a
shortest path has 0-weight cycles, we can repeatedly remove these cycles from the
path until we have a shortest path that is cycle-free. Therefore, without loss of
generality we can assume that when we are finding shortest paths, they have no
cycles, i.e., they are simple paths. Since any acyclic path in a graph G D .V; E/

Chapter 24 Single-Source Shortest Paths 647

contains at most jV j distinct vertices, it also contains at most jV j � 1 edges. Thus,
we can restrict our attention to shortest paths of at most jV j � 1 edges.

Representing shortest paths

We often wish to compute not only shortest-path weights, but the vertices on short-
est paths as well. We represent shortest paths similarly to how we represented
breadth-first trees in Section 22.2. Given a graph G D .V; E/, we maintain for
each vertex � 2 V a predecessor �:� that is either another vertex or NIL. The
shortest-paths algorithms in this chapter set the � attributes so that the chain of pre-
decessors originating at a vertex � runs backwards along a shortest path from s to �.
Thus, given a vertex � for which �:� ¤ NIL, the procedure PRINT-PATH.G; s; �/

from Section 22.2 will print a shortest path from s to �.
In the midst of executing a shortest-paths algorithm, however, the � values might

not indicate shortest paths. As in breadth-first search, we shall be interested in the
predecessor subgraph G� D .V� ; E�/ induced by the � values. Here again, we
define the vertex set V� to be the set of vertices of G with non-NIL predecessors,
plus the source s:

V� D f� 2 V W �:� ¤ NILg [fsg :

The directed edge set E� is the set of edges induced by the � values for vertices
in V� :

E� D f.�:�; �/ 2 E W � 2 V� � fsgg :

We shall prove that the � values produced by the algorithms in this chapter have
the property that at termination G� is a “shortest-paths tree”—informally, a rooted
tree containing a shortest path from the source s to every vertex that is reachable
from s. A shortest-paths tree is like the breadth-first tree from Section 22.2, but it
contains shortest paths from the source defined in terms of edge weights instead of
numbers of edges. To be precise, let G D .V; E/ be a weighted, directed graph
with weight function w W E ! R, and assume that G contains no negative-weight
cycles reachable from the source vertex s 2 V , so that shortest paths are well
defined. A shortest-paths tree rooted at s is a directed subgraph G0 D .V 0; E 0/,
where V 0 � V and E 0 � E, such that

1. V 0 is the set of vertices reachable from s in G,

2. G0 forms a rooted tree with root s, and

3. for all � 2 V 0, the unique simple path from s to � in G0 is a shortest path from s

to � in G.

648 Chapter 24 Single-Source Shortest Paths

(a) (b) (c)

0

6

6

7212
4

3

5
3

s

t x

y z

3 9

5 11

0

6

6

7212
4

3

5
3

s

t x

y z

3 9

5 11

0

6

6

7212
4

3

5
3

s

t x

y z

3 9

5 11

Figure 24.2 (a) A weighted, directed graph with shortest-path weights from source s. (b) The
shaded edges form a shortest-paths tree rooted at the source s. (c) Another shortest-paths tree with
the same root.

Shortest paths are not necessarily unique, and neither are shortest-paths trees. For
example, Figure 24.2 shows a weighted, directed graph and two shortest-paths trees
with the same root.

Relaxation

The algorithms in this chapter use the technique of relaxation. For each vertex
� 2 V , we maintain an attribute �:d, which is an upper bound on the weight of
a shortest path from source s to �. We call �:d a shortest-path estimate. We
initialize the shortest-path estimates and predecessors by the following ‚.V /-time
procedure:

INITIALIZE-SINGLE-SOURCE.G; s/

1 for each vertex � 2 G:V
2 �:d D 1
3 �:� D NIL

4 s:d D 0

After initialization, we have �:� D NIL for all � 2 V , s:d D 0, and �:d D 1 for
� 2 V � fsg.

The process of relaxing an edge .u; �/ consists of testing whether we can im-
prove the shortest path to � found so far by going through u and, if so, updat-
ing �:d and �:� . A relaxation step1 may decrease the value of the shortest-path

1

The use of the term is historical. The outcome of a relaxation step can be viewed as a relaxation
of the constraint �:d � u:d C w.u; �/, which, by the triangle inequality (Lemma 24.10), must be
satisfied if u:d D ı.s; u/ and �:d D ı.s; �/. That is, if �:d � u:d C w.u; �/, there is no “pressure”

It may seem strange that the term “relaxation” is used for an operation that tightens an upper bound.

so the constraint is “relaxed.”to satisfy this constraint,

Chapter 24 Single-Source Shortest Paths 649

u v

5 9
2

u v

5 7
2

RELAX(u,v,w)

(a) (b)

u v

5 6
2

u v

5 6
2

RELAX(u,v,w)

Figure 24.3 Relaxing an edge .u; �/ with weight w.u; �/ D 2. The shortest-path estimate of each
vertex appears within the vertex. (a) Because �:d > u:d C w.u; �/ prior to relaxation, the value
of �:d decreases. (b) Here, �:d � u:dCw.u; �/ before relaxing the edge, and so the relaxation step
leaves �:d unchanged.

estimate �:d and update �’s predecessor attribute �:� . The following code per-
forms a relaxation step on edge .u; �/ in O.1/ time:

RELAX.u; �; w/

1 if �:d > u:dCw.u; �/

2 �:d D u:d Cw.u; �/

3 �:� D u

Figure 24.3 shows two examples of relaxing an edge, one in which a shortest-path
estimate decreases and one in which no estimate changes.

Each algorithm in this chapter calls INITIALIZE-SINGLE-SOURCE and then re-
peatedly relaxes edges. Moreover, relaxation is the only means by which shortest-
path estimates and predecessors change. The algorithms in this chapter differ in
how many times they relax each edge and the order in which they relax edges. Dijk-
stra’s algorithm and the shortest-paths algorithm for directed acyclic graphs relax
each edge exactly once. The Bellman-Ford algorithm relaxes each edge jV j � 1

times.

Properties of shortest paths and relaxation

To prove the algorithms in this chapter correct, we shall appeal to several prop-
erties of shortest paths and relaxation. We state these properties here, and Sec-
tion 24.5 proves them formally. For your reference, each property stated here in-
cludes the appropriate lemma or corollary number from Section 24.5. The latter
five of these properties, which refer to shortest-path estimates or the predecessor
subgraph, implicitly assume that the graph is initialized with a call to INITIALIZE-
SINGLE-SOURCE.G; s/ and that the only way that shortest-path estimates and the
predecessor subgraph change are by some sequence of relaxation steps.

650 Chapter 24 Single-Source Shortest Paths

Triangle inequality (Lemma 24.10)
For any edge .u; �/ 2 E, we have ı.s; �/ � ı.s; u/C w.u; �/.

Upper-bound property (Lemma 24.11)
We always have �:d � ı.s; �/ for all vertices � 2 V , and once �:d achieves the
value ı.s; �/, it never changes.

No-path property (Corollary 24.12)
If there is no path from s to �, then we always have �:d D ı.s; �/ D1.

Convergence property (Lemma 24.14)
If s � u! � is a shortest path in G for some u; � 2 V , and if u:d D ı.s; u/ at
any time prior to relaxing edge .u; �/, then �:d D ı.s; �/ at all times afterward.

Path-relaxation property (Lemma 24.15)
If p D h�0; �1; : : : ; �ki is a shortest path from s D �0 to �k, and we relax the
edges of p in the order .�0; �1/; .�1; �2/; : : : ; .�k�1; �k/, then �k:d D ı.s; �k/.
This property holds regardless of any other relaxation steps that occur, even if
they are intermixed with relaxations of the edges of p.

Predecessor-subgraph property (Lemma 24.17)
Once �:d D ı.s; �/ for all � 2 V , the predecessor subgraph is a shortest-paths
tree rooted at s.

Chapter outline

Section 24.1 presents the Bellman-Ford algorithm, which solves the single-source
shortest-paths problem in the general case in which edges can have negative weight.
The Bellman-Ford algorithm is remarkably simple, and it has the further benefit
of detecting whether a negative-weight cycle is reachable from the source. Sec-
tion 24.2 gives a linear-time algorithm for computing shortest paths from a single
source in a directed acyclic graph. Section 24.3 covers Dijkstra’s algorithm, which
has a lower running time than the Bellman-Ford algorithm but requires the edge
weights to be nonnegative. Section 24.4 shows how we can use the Bellman-Ford
algorithm to solve a special case of linear programming. Finally, Section 24.5
proves the properties of shortest paths and relaxation stated above.

We require some conventions for doing arithmetic with infinities. We shall as-
sume that for any real number a ¤ �1, we have aC1 D1C a D1. Also, to
make our proofs hold in the presence of negative-weight cycles, we shall assume
that for any real number a ¤1, we have aC .�1/ D .�1/C a D �1.

All algorithms in this chapter assume that the directed graph G is stored in the
adjacency-list representation. Additionally, stored with each edge is its weight, so
that as we traverse each adjacency list, we can determine the edge weights in O.1/

time per edge.

24.1 The Bellman-Ford algorithm 651

24.1 The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths problem in
the general case in which edge weights may be negative. Given a weighted, di-
rected graph G D .V; E/ with source s and weight function w W E ! R, the
Bellman-Ford algorithm returns a boolean value indicating whether or not there is
a negative-weight cycle that is reachable from the source. If there is such a cy-
cle, the algorithm indicates that no solution exists. If there is no such cycle, the
algorithm produces the shortest paths and their weights.

The algorithm relaxes edges, progressively decreasing an estimate �:d on the
weight of a shortest path from the source s to each vertex � 2 V until it achieves
the actual shortest-path weight ı.s; �/. The algorithm returns TRUE if and only if
the graph contains no negative-weight cycles that are reachable from the source.

BELLMAN-FORD.G; w; s/

1 INITIALIZE-SINGLE-SOURCE.G; s/

2 for i D 1 to jG:Vj � 1

3 for each edge .u; �/ 2 G:E
4 RELAX.u; �; w/

5 for each edge .u; �/ 2 G:E
6 if �:d > u:dCw.u; �/

7 return FALSE

8 return TRUE

Figure 24.4 shows the execution of the Bellman-Ford algorithm on a graph
with 5 vertices. After initializing the d and � values of all vertices in line 1,
the algorithm makes jV j � 1 passes over the edges of the graph. Each pass is
one iteration of the for loop of lines 2–4 and consists of relaxing each edge of the
graph once. Figures 24.4(b)–(e) show the state of the algorithm after each of the
four passes over the edges. After making jV j � 1 passes, lines 5–8 check for a
negative-weight cycle and return the appropriate boolean value. (We’ll see a little
later why this check works.)

The Bellman-Ford algorithm runs in time O.VE/, since the initialization in
line 1 takes ‚.V / time, each of the jV j � 1 passes over the edges in lines 2–4
takes ‚.E/ time, and the for loop of lines 5–7 takes O.E/ time.

To prove the correctness of the Bellman-Ford algorithm, we start by showing that
if there are no negative-weight cycles, the algorithm computes correct shortest-path
weights for all vertices reachable from the source.

652 Chapter 24 Single-Source Shortest Paths

(a) (b) (c)

(d)

0

5

9

78

6

7

(e)

t x

s

y z

 –4

 –3

 –22

7

4

–2
2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –22

7

4

2
2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –26

7

4

2
2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –26

7

∞

∞
2

0

5

9

78

6

7

t x

s

y z

 –4

 –3

 –2 ∞

∞
2

∞

∞

Figure 24.4 The execution of the Bellman-Ford algorithm. The source is vertex s. The d val-
ues appear within the vertices, and shaded edges indicate predecessor values: if edge .u; �/ is
shaded, then �:� D u. In this particular example, each pass relaxes the edges in the order
.t; x/; .t; y/; .t; ´/; .x; t/; .y; x/; .y; ´/; .´; x/; .´; s/; .s; t/; .s; y/. (a) The situation just before the
first pass over the edges. (b)–(e) The situation after each successive pass over the edges. The d

and � values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this
example.

Lemma 24.2
Let G D .V; E/ be a weighted, directed graph with source s and weight func-
tion w W E ! R, and assume that G contains no negative-weight cycles that are
reachable from s. Then, after the jV j � 1 iterations of the for loop of lines 2–4
of BELLMAN-FORD, we have �:d D ı.s; �/ for all vertices � that are reachable
from s.

Proof We prove the lemma by appealing to the path-relaxation property. Con-
sider any vertex � that is reachable from s, and let p D h�0; �1; : : : ; �ki, where
�0 D s and �k D �, be any shortest path from s to �. Because shortest paths are
simple, p has at most jV j � 1 edges, and so k � jV j � 1. Each of the jV j � 1 itera-
tions of the for loop of lines 2–4 relaxes all jEj edges. Among the edges relaxed in
the i th iteration, for i D 1; 2; : : : ; k, is .�i�1; �i /. By the path-relaxation property,
therefore, �:d D �k :d D ı.s; �k/ D ı.s; �/.

24.1 The Bellman-Ford algorithm 653

Corollary 24.3
Let G D .V; E/ be a weighted, directed graph with source vertex s and weight
function w W E ! R, and assume that G contains no negative-weight cycles that
are reachable from s. Then, for each vertex � 2 V , there is a path from s to � if
and only if BELLMAN-FORD terminates with �:d <1 when it is run on G.

Proof The proof is left as Exercise 24.1-2.

Theorem 24.4 (Correctness of the Bellman-Ford algorithm)
Let BELLMAN-FORD be run on a weighted, directed graph G D .V; E/ with
source s and weight function w W E ! R. If G contains no negative-weight cycles
that are reachable from s, then the algorithm returns TRUE, we have �:d D ı.s; �/

for all vertices � 2 V , and the predecessor subgraph G� is a shortest-paths tree
rooted at s. If G does contain a negative-weight cycle reachable from s, then the
algorithm returns FALSE.

Proof Suppose that graph G contains no negative-weight cycles that are reach-
able from the source s. We first prove the claim that at termination, �:d D ı.s; �/

for all vertices � 2 V . If vertex � is reachable from s, then Lemma 24.2 proves this
claim. If � is not reachable from s, then the claim follows from the no-path prop-
erty. Thus, the claim is proven. The predecessor-subgraph property, along with the
claim, implies that G� is a shortest-paths tree. Now we use the claim to show that
BELLMAN-FORD returns TRUE. At termination, we have for all edges .u; �/ 2 E,

�:d D ı.s; �/

� ı.s; u/C w.u; �/ (by the triangle inequality)

D u:dCw.u; �/ ;

and so none of the tests in line 6 causes BELLMAN-FORD to return FALSE. There-
fore, it returns TRUE.

Now, suppose that graph G contains a negative-weight cycle that is reachable
from the source s; let this cycle be c D h�0; �1; : : : ; �ki, where �0 D �k. Then,

kX
iD1

w.�i�1; �i / < 0 : (24.1)

Assume for the purpose of contradiction that the Bellman-Ford algorithm returns
TRUE. Thus, �i :d � �i�1:d C w.�i�1; �i / for i D 1; 2; : : : ; k. Summing the
inequalities around cycle c gives us

654 Chapter 24 Single-Source Shortest Paths

kX
iD1

�i :d �
kX

iD1

.�i�1:dC w.�i�1; �i//

D
kX

iD1

�i�1:dC
kX

iD1

w.�i�1; �i/ :

Since �0 D �k, each vertex in c appears exactly once in each of the summationsPk

iD1 �i :d and
Pk

iD1 �i�1:d, and so

kX
iD1

�i :d D
kX

iD1

�i�1:d :

Moreover, by Corollary 24.3, �i :d is finite for i D 1; 2; : : : ; k. Thus,

0 �
kX

iD1

w.�i�1; �i/ ;

which contradicts inequality (24.1). We conclude that the Bellman-Ford algorithm
returns TRUE if graph G contains no negative-weight cycles reachable from the
source, and FALSE otherwise.

Exercises

24.1-1
Run the Bellman-Ford algorithm on the directed graph of Figure 24.4, using ver-
tex ´ as the source. In each pass, relax edges in the same order as in the figure, and
show the d and � values after each pass. Now, change the weight of edge .´; x/

to 4 and run the algorithm again, using s as the source.

24.1-2
Prove Corollary 24.3.

24.1-3
Given a weighted, directed graph G D .V; E/ with no negative-weight cycles,
let m be the maximum over all vertices � 2 V of the minimum number of edges
in a shortest path from the source s to �. (Here, the shortest path is by weight, not
the number of edges.) Suggest a simple change to the Bellman-Ford algorithm that
allows it to terminate in mC 1 passes, even if m is not known in advance.

24.1-4
Modify the Bellman-Ford algorithm so that it sets �:d to �1 for all vertices � for
which there is a negative-weight cycle on some path from the source to �.

24.2 Single-source shortest paths in directed acyclic graphs 655

24.1-5 ?

Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R.
Give an O.VE/-time algorithm to find, for each vertex � 2 V , the value ı�.�/ D
minu2V fı.u; �/g.
24.1-6 ?

Suppose that a weighted, directed graph G D .V; E/ has a negative-weight cycle.
Give an efficient algorithm to list the vertices of one such cycle. Prove that your
algorithm is correct.

24.2 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag (directed acyclic graph) G D .V; E/

according to a topological sort of its vertices, we can compute shortest paths from
a single source in ‚.V CE/ time. Shortest paths are always well defined in a dag,
since even if there are negative-weight edges, no negative-weight cycles can exist.

The algorithm starts by topologically sorting the dag (see Section 22.4) to im-
pose a linear ordering on the vertices. If the dag contains a path from vertex u to
vertex �, then u precedes � in the topological sort. We make just one pass over the
vertices in the topologically sorted order. As we process each vertex, we relax each
edge that leaves the vertex.

DAG-SHORTEST-PATHS.G; w; s/

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE.G; s/

3 for each vertex u, taken in topologically sorted order
4 for each vertex � 2 G:AdjŒu�

5 RELAX.u; �; w/

Figure 24.5 shows the execution of this algorithm.
The running time of this algorithm is easy to analyze. As shown in Section 22.4,

the topological sort of line 1 takes ‚.V C E/ time. The call of INITIALIZE-
SINGLE-SOURCE in line 2 takes ‚.V / time. The for loop of lines 3–5 makes one
iteration per vertex. Altogether, the for loop of lines 4–5 relaxes each edge exactly
once. (We have used an aggregate analysis here.) Because each iteration of the
inner for loop takes ‚.1/ time, the total running time is ‚.V CE/, which is linear
in the size of an adjacency-list representation of the graph.

The following theorem shows that the DAG-SHORTEST-PATHS procedure cor-
rectly computes the shortest paths.

656 Chapter 24 Single-Source Shortest Paths

2
∞ ∞0

5

16

3 4

∞ ∞ ∞
7 –1 –2

2

(a)

xtsr y z

25

16

3 4

7 –1 –2

2

(c)

xtsr y z

25

16

3 4

7 –1 –2

2

(e)

xtsr y z

25

16

3 4

7 –1 –2

2

(g)

xtsr y z

25

16

3 4

7 –1 –2

2

(b)

xtsr y z

25

16

3 4

7 –1 –2

2

(d)

xtsr y z

25

16

3 4

7 –1 –2

2

(f)

xtsr y z

∞ 0 ∞ ∞2 6

∞ 0 2 6 5 4

∞ 0 2 6 5 3

∞ 0 2 6 5 3

∞ 0 2 6 6 4

∞ ∞0 ∞ ∞ ∞

Figure 24.5 The execution of the algorithm for shortest paths in a directed acyclic graph. The
vertices are topologically sorted from left to right. The source vertex is s. The d values appear
within the vertices, and shaded edges indicate the � values. (a) The situation before the first iteration
of the for loop of lines 3–5. (b)–(g) The situation after each iteration of the for loop of lines 3–5.
The newly blackened vertex in each iteration was used as u in that iteration. The values shown in
part (g) are the final values.

Theorem 24.5
If a weighted, directed graph G D .V; E/ has source vertex s and no cycles, then
at the termination of the DAG-SHORTEST-PATHS procedure, �:d D ı.s; �/ for all
vertices � 2 V , and the predecessor subgraph G� is a shortest-paths tree.

Proof We first show that �:d D ı.s; �/ for all vertices � 2 V at termina-
tion. If � is not reachable from s, then �:d D ı.s; �/ D 1 by the no-path
property. Now, suppose that � is reachable from s, so that there is a short-
est path p D h�0; �1; : : : ; �ki, where �0 D s and �k D �. Because we pro-

24.2 Single-source shortest paths in directed acyclic graphs 657

cess the vertices in topologically sorted order, we relax the edges on p in the
order .�0; �1/; .�1; �2/; : : : ; .�k�1; �k/. The path-relaxation property implies that
�i :d D ı.s; �i / at termination for i D 0; 1; : : : ; k. Finally, by the predecessor-
subgraph property, G� is a shortest-paths tree.

An interesting application of this algorithm arises in determining critical paths
in PERT chart2 analysis. Edges represent jobs to be performed, and edge weights
represent the times required to perform particular jobs. If edge .u; �/ enters ver-
tex � and edge .�; x/ leaves �, then job .u; �/ must be performed before job .�; x/.
A path through this dag represents a sequence of jobs that must be performed in a
particular order. A critical path is a longest path through the dag, corresponding
to the longest time to perform any sequence of jobs. Thus, the weight of a critical
path provides a lower bound on the total time to perform all the jobs. We can find
a critical path by either

� negating the edge weights and running DAG-SHORTEST-PATHS, or
� running DAG-SHORTEST-PATHS, with the modification that we replace “1”

by “�1” in line 2 of INITIALIZE-SINGLE-SOURCE and “>” by “<” in the
RELAX procedure.

Exercises

24.2-1
Run DAG-SHORTEST-PATHS on the directed graph of Figure 24.5, using vertex r

as the source.

24.2-2
Suppose we change line 3 of DAG-SHORTEST-PATHS to read

3 for the first jV j � 1 vertices, taken in topologically sorted order

Show that the procedure would remain correct.

24.2-3
The PERT chart formulation given above is somewhat unnatural. In a more natu-
ral structure, vertices would represent jobs and edges would represent sequencing
constraints; that is, edge .u; �/ would indicate that job u must be performed before
job �. We would then assign weights to vertices, not edges. Modify the DAG-
SHORTEST-PATHS procedure so that it finds a longest path in a directed acyclic
graph with weighted vertices in linear time.

2“PERT” is an acronym for “program evaluation and review technique.”

658 Chapter 24 Single-Source Shortest Paths

24.2-4
Give an efficient algorithm to count the total number of paths in a directed acyclic
graph. Analyze your algorithm.

24.3 Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted,
directed graph G D .V; E/ for the case in which all edge weights are nonnegative.
In this section, therefore, we assume that w.u; �/ � 0 for each edge .u; �/ 2 E. As
we shall see, with a good implementation, the running time of Dijkstra’s algorithm
is lower than that of the Bellman-Ford algorithm.

Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path
weights from the source s have already been determined. The algorithm repeat-
edly selects the vertex u 2 V �S with the minimum shortest-path estimate, adds u

to S , and relaxes all edges leaving u. In the following implementation, we use a
min-priority queue Q of vertices, keyed by their d values.

DIJKSTRA.G; w; s/

1 INITIALIZE-SINGLE-SOURCE.G; s/

2 S D ;
3 Q D G:V
4 whileQ ¤ ;
5 u D EXTRACT-MIN.Q/

6 S D S [fug
7 for each vertex � 2 G:AdjŒu�

8 RELAX.u; �; w/

Dijkstra’s algorithm relaxes edges as shown in Figure 24.6. Line 1 initializes
the d and � values in the usual way, and line 2 initializes the set S to the empty
set. The algorithm maintains the invariant that Q D V � S at the start of each
iteration of the while loop of lines 4–8. Line 3 initializes the min-priority queue Q

to contain all the vertices in V ; since S D ; at that time, the invariant is true after
line 3. Each time through thewhile loop of lines 4–8, line 5 extracts a vertex u from
Q D V �S and line 6 adds it to set S , thereby maintaining the invariant. (The first
time through this loop, u D s.) Vertex u, therefore, has the smallest shortest-path
estimate of any vertex in V � S . Then, lines 7–8 relax each edge .u; �/ leaving u,
thus updating the estimate �:d and the predecessor �:� if we can improve the
shortest path to � found so far by going through u. Observe that the algorithm
never inserts vertices into Q after line 3 and that each vertex is extracted from Q

24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432
9

7

s

t x

y z

1

2

10

5

(f)

6432
9

7

s

t x

y z

1

2

10

5

(b)

6432
9

7

s

t x

y z

1

2

10

5

(e)

6432
9

7

s

t x

y z

1

2

10

5

(a)

6432
9

7

s

t x

y z

1

2

10

5

(d)

6432
9

7

s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V � S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.

Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex
in V � S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u

to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

660 Chapter 24 Single-Source Shortest Paths

p1

S
p2

u

y

s

x

Figure 24.7 The proof of Theorem 24.6. Set S is nonempty just before vertex u is added to it. We

decompose a shortest path p from source s to vertex u into s
p1
� x ! y

p2
� u, where y is the first

vertex on the path that is not in S and x 2 S immediately precedes y. Vertices x and y are distinct,
but we may have s D x or y D u. Path p2 may or may not reenter set S .

Proof We use the following loop invariant:

At the start of each iteration of the while loop of lines 4–8, �:d D ı.s; �/

for each vertex � 2 S .

It suffices to show for each vertex u 2 V , we have u:d D ı.s; u/ at the time when u

is added to set S . Once we show that u:d D ı.s; u/, we rely on the upper-bound
property to show that the equality holds at all times thereafter.

Initialization: Initially, S D ;, and so the invariant is trivially true.

Maintenance: We wish to show that in each iteration, u:d D ı.s; u/ for the vertex
added to set S . For the purpose of contradiction, let u be the first vertex for
which u:d ¤ ı.s; u/ when it is added to set S . We shall focus our attention
on the situation at the beginning of the iteration of the while loop in which u

is added to S and derive the contradiction that u:d D ı.s; u/ at that time by
examining a shortest path from s to u. We must have u ¤ s because s is the
first vertex added to set S and s:d D ı.s; s/ D 0 at that time. Because u ¤ s,
we also have that S ¤ ; just before u is added to S . There must be some
path from s to u, for otherwise u:d D ı.s; u/ D 1 by the no-path property,
which would violate our assumption that u:d ¤ ı.s; u/. Because there is at
least one path, there is a shortest path p from s to u. Prior to adding u to S ,
path p connects a vertex in S , namely s, to a vertex in V �S , namely u. Let us
consider the first vertex y along p such that y 2 V � S , and let x 2 S be y’s
predecessor along p. Thus, as Figure 24.7 illustrates, we can decompose path p

into s
p1
� x ! y

p2
� u. (Either of paths p1 or p2 may have no edges.)

We claim that y:d D ı.s; y/ when u is added to S . To prove this claim, ob-
serve that x 2 S . Then, because we chose u as the first vertex for which
u:d ¤ ı.s; u/ when it is added to S , we had x:d D ı.s; x/ when x was added

24.3 Dijkstra’s algorithm 661

to S . Edge .x; y/ was relaxed at that time, and the claim follows from the
convergence property.

We can now obtain a contradiction to prove that u:d D ı.s; u/. Because y

appears before u on a shortest path from s to u and all edge weights are non-
negative (notably those on path p2), we have ı.s; y/ � ı.s; u/, and thus

y:d D ı.s; y/

� ı.s; u/ (24.2)

� u:d (by the upper-bound property) .

But because both vertices u and y were in V � S when u was chosen in line 5,
we have u:d � y:d. Thus, the two inequalities in (24.2) are in fact equalities,
giving

y:d D ı.s; y/ D ı.s; u/ D u:d :

Consequently, u:d D ı.s; u/, which contradicts our choice of u. We conclude
that u:d D ı.s; u/ when u is added to S , and that this equality is maintained at
all times thereafter.

Termination: At termination, Q D ; which, along with our earlier invariant that
Q D V �S , implies that S D V . Thus, u:d D ı.s; u/ for all vertices u 2 V .

Corollary 24.7
If we run Dijkstra’s algorithm on a weighted, directed graph G D .V; E/ with
nonnegative weight function w and source s, then at termination, the predecessor
subgraph G� is a shortest-paths tree rooted at s.

Proof Immediate from Theorem 24.6 and the predecessor-subgraph property.

Analysis

How fast is Dijkstra’s algorithm? It maintains the min-priority queue Q by call-
ing three priority-queue operations: INSERT (implicit in line 3), EXTRACT-MIN

(line 5), and DECREASE-KEY (implicit in RELAX, which is called in line 8). The
algorithm calls both INSERT and EXTRACT-MIN once per vertex. Because each
vertex u 2 V is added to set S exactly once, each edge in the adjacency list AdjŒu�

is examined in the for loop of lines 7–8 exactly once during the course of the al-
gorithm. Since the total number of edges in all the adjacency lists is jEj, this for
loop iterates a total of jEj times, and thus the algorithm calls DECREASE-KEY at
most jEj times overall. (Observe once again that we are using aggregate analysis.)

The running time of Dijkstra’s algorithm depends on how we implement the
min-priority queue. Consider first the case in which we maintain the min-priority

662 Chapter 24 Single-Source Shortest Paths

queue by taking advantage of the vertices being numbered 1 to jV j. We simply
store �:d in the �th entry of an array. Each INSERT and DECREASE-KEY operation
takes O.1/ time, and each EXTRACT-MIN operation takes O.V / time (since we
have to search through the entire array), for a total time of O.V 2 C E/ D O.V 2/.

If the graph is sufficiently sparse—in particular, E D o.V 2= lg V /—we can
improve the algorithm by implementing the min-priority queue with a binary min-
heap. (As discussed in Section 6.5, the implementation should make sure that
vertices and corresponding heap elements maintain handles to each other.) Each
EXTRACT-MIN operation then takes time O.lg V /. As before, there are jV j such
operations. The time to build the binary min-heap is O.V /. Each DECREASE-KEY

operation takes time O.lg V /, and there are still at most jEj such operations. The
total running time is therefore O..V CE/ lg V /, which is O.E lg V / if all vertices
are reachable from the source. This running time improves upon the straightfor-
ward O.V 2/-time implementation if E D o.V 2= lg V /.

We can in fact achieve a running time of O.V lg V C E/ by implementing the
min-priority queue with a Fibonacci heap (see Chapter 19). The amortized cost
of each of the jV j EXTRACT-MIN operations is O.lg V /, and each DECREASE-
KEY call, of which there are at most jEj, takes only O.1/ amortized time. His-
torically, the development of Fibonacci heaps was motivated by the observation
that Dijkstra’s algorithm typically makes many more DECREASE-KEY calls than
EXTRACT-MIN calls, so that any method of reducing the amortized time of each
DECREASE-KEY operation to o.lg V / without increasing the amortized time of
EXTRACT-MIN would yield an asymptotically faster implementation than with bi-
nary heaps.

Dijkstra’s algorithm resembles both breadth-first search (see Section 22.2) and
Prim’s algorithm for computing minimum spanning trees (see Section 23.2). It is
like breadth-first search in that set S corresponds to the set of black vertices in a
breadth-first search; just as vertices in S have their final shortest-path weights, so
do black vertices in a breadth-first search have their correct breadth-first distances.
Dijkstra’s algorithm is like Prim’s algorithm in that both algorithms use a min-
priority queue to find the “lightest” vertex outside a given set (the set S in Dijkstra’s
algorithm and the tree being grown in Prim’s algorithm), add this vertex into the
set, and adjust the weights of the remaining vertices outside the set accordingly.

Exercises

24.3-1
Run Dijkstra’s algorithm on the directed graph of Figure 24.2, first using vertex s

as the source and then using vertex ´ as the source. In the style of Figure 24.6,
show the d and � values and the vertices in set S after each iteration of the while
loop.

24.3 Dijkstra’s algorithm 663

24.3-2
Give a simple example of a directed graph with negative-weight edges for which
Dijkstra’s algorithm produces incorrect answers. Why doesn’t the proof of Theo-
rem 24.6 go through when negative-weight edges are allowed?

24.3-3
Suppose we change line 4 of Dijkstra’s algorithm to the following.

4 while jQj > 1

This change causes the while loop to execute jV j � 1 times instead of jV j times. Is
this proposed algorithm correct?

24.3-4
Professor Gaedel has written a program that he claims implements Dijkstra’s al-
gorithm. The program produces �:d and �:� for each vertex � 2 V . Give an
O.V CE/-time algorithm to check the output of the professor’s program. It should
determine whether the d and � attributes match those of some shortest-paths tree.
You may assume that all edge weights are nonnegative.

24.3-5
Professor Newman thinks that he has worked out a simpler proof of correctness
for Dijkstra’s algorithm. He claims that Dijkstra’s algorithm relaxes the edges of
every shortest path in the graph in the order in which they appear on the path, and
therefore the path-relaxation property applies to every vertex reachable from the
source. Show that the professor is mistaken by constructing a directed graph for
which Dijkstra’s algorithm could relax the edges of a shortest path out of order.

24.3-6
We are given a directed graph G D .V; E/ on which each edge .u; �/ 2 E has an
associated value r.u; �/, which is a real number in the range 0 � r.u; �/ � 1 that
represents the reliability of a communication channel from vertex u to vertex �.
We interpret r.u; �/ as the probability that the channel from u to � will not fail,
and we assume that these probabilities are independent. Give an efficient algorithm
to find the most reliable path between two given vertices.

24.3-7
Let G D .V; E/ be a weighted, directed graph with positive weight function
w W E ! f1; 2; : : : ; W g for some positive integer W , and assume that no two ver-
tices have the same shortest-path weights from source vertex s. Now suppose that
we define an unweighted, directed graph G0 D .V [V 0; E 0/ by replacing each
edge .u; �/ 2 E with w.u; �/ unit-weight edges in series. How many vertices
does G0 have? Now suppose that we run a breadth-first search on G0. Show that

664 Chapter 24 Single-Source Shortest Paths

the order in which the breadth-first search of G0 colors vertices in V black is the
same as the order in which Dijkstra’s algorithm extracts the vertices of V from the
priority queue when it runs on G.

24.3-8
Let G D .V; E/ be a weighted, directed graph with nonnegative weight function
w W E ! f0; 1; : : : ; W g for some nonnegative integer W . Modify Dijkstra’s algo-
rithm to compute the shortest paths from a given source vertex s in O.W V C E/

time.

24.3-9
Modify your algorithm from Exercise 24.3-8 to run in O..V C E/ lg W / time.
(Hint: How many distinct shortest-path estimates can there be in V � S at any
point in time?)

24.3-10
Suppose that we are given a weighted, directed graph G D .V; E/ in which edges
that leave the source vertex s may have negative weights, all other edge weights
are nonnegative, and there are no negative-weight cycles. Argue that Dijkstra’s
algorithm correctly finds shortest paths from s in this graph.

24.4 Difference constraints and shortest paths

Chapter 29 studies the general linear-programming problem, in which we wish to
optimize a linear function subject to a set of linear inequalities. In this section, we
investigate a special case of linear programming that we reduce to finding shortest
paths from a single source. We can then solve the single-source shortest-paths
problem that results by running the Bellman-Ford algorithm, thereby also solving
the linear-programming problem.

Linear programming

In the general linear-programming problem, we are given an m 	 n matrix A,
an m-vector b, and an n-vector c. We wish to find a vector x of n elements that
maximizes the objective function

Pn

iD1 cixi subject to the m constraints given by
Ax � b.

Although the simplex algorithm, which is the focus of Chapter 29, does not
always run in time polynomial in the size of its input, there are other linear-
programming algorithms that do run in polynomial time. We offer here two reasons
to understand the setup of linear-programming problems. First, if we know that we

24.4 Difference constraints and shortest paths 665

can cast a given problem as a polynomial-sized linear-programming problem, then
we immediately have a polynomial-time algorithm to solve the problem. Second,
faster algorithms exist for many special cases of linear programming. For exam-
ple, the single-pair shortest-path problem (Exercise 24.4-4) and the maximum-flow
problem (Exercise 26.1-5) are special cases of linear programming.

Sometimes we don’t really care about the objective function; we just wish to find
any feasible solution, that is, any vector x that satisfies Ax � b, or to determine
that no feasible solution exists. We shall focus on one such feasibility problem.

Systems of difference constraints

In a system of difference constraints, each row of the linear-programming matrix A

contains one 1 and one �1, and all other entries of A are 0. Thus, the constraints
given by Ax � b are a set of m difference constraints involving n unknowns, in
which each constraint is a simple linear inequality of the form

xj � xi � bk ;

where 1 � i; j � n, i ¤ j , and 1 � k � m.
For example, consider the problem of finding a 5-vector x D .xi/ that satisfies�

1 �1 0 0 0

1 0 0 0 �1

0 1 0 0 �1

�1 0 1 0 0

�1 0 0 1 0

0 0 �1 1 0

0 0 �1 0 1

0 0 0 �1 1

˘ˇ
x1

x2

x3

x4

x5

�
�

�
0

�1

1

5

4

�1

�3

�3

˘
:

This problem is equivalent to finding values for the unknowns x1; x2; x3; x4; x5,
satisfying the following 8 difference constraints:

x1 � x2 � 0 , (24.3)

x1 � x5 � �1 , (24.4)

x2 � x5 � 1 , (24.5)

x3 � x1 � 5 , (24.6)

x4 � x1 � 4 , (24.7)

x4 � x3 � �1 , (24.8)

x5 � x3 � �3 , (24.9)

x5 � x4 � �3 . (24.10)

666 Chapter 24 Single-Source Shortest Paths

One solution to this problem is x D .�5;�3; 0;�1;�4/, which you can verify di-
rectly by checking each inequality. In fact, this problem has more than one solution.
Another is x 0 D .0; 2; 5; 4; 1/. These two solutions are related: each component
of x 0 is 5 larger than the corresponding component of x. This fact is not mere
coincidence.

Lemma 24.8
Let x D .x1; x2; : : : ; xn/ be a solution to a system Ax � b of difference con-
straints, and let d be any constant. Then x C d D .x1 C d; x2 C d; : : : ; xn C d/

is a solution to Ax � b as well.

Proof For each xi and xj , we have .xj C d/ � .xi C d/ D xj � xi . Thus, if x

satisfies Ax � b, so does x C d .

Systems of difference constraints occur in many different applications. For ex-
ample, the unknowns xi may be times at which events are to occur. Each constraint
states that at least a certain amount of time, or at most a certain amount of time,
must elapse between two events. Perhaps the events are jobs to be performed dur-
ing the assembly of a product. If we apply an adhesive that takes 2 hours to set at
time x1 and we have to wait until it sets to install a part at time x2, then we have the
constraint that x2 � x1 C 2 or, equivalently, that x1 � x2 � �2. Alternatively, we
might require that the part be installed after the adhesive has been applied but no
later than the time that the adhesive has set halfway. In this case, we get the pair of
constraints x2 � x1 and x2 � x1C1 or, equivalently, x1�x2 � 0 and x2�x1 � 1.

Constraint graphs

We can interpret systems of difference constraints from a graph-theoretic point
of view. In a system Ax � b of difference constraints, we view the m 	 n

linear-programming matrix A as the transpose of an incidence matrix (see Exer-
cise 22.1-7) for a graph with n vertices and m edges. Each vertex �i in the graph,
for i D 1; 2; : : : ; n, corresponds to one of the n unknown variables xi . Each di-
rected edge in the graph corresponds to one of the m inequalities involving two
unknowns.

More formally, given a system Ax � b of difference constraints, the correspond-
ing constraint graph is a weighted, directed graph G D .V; E/, where

V D f�0; �1; : : : ; �ng
and

E D f.�i ; �j / W xj � xi � bk is a constraintg
[f.�0; �1/; .�0; �2/; .�0; �3/; : : : ; .�0; �n/g :

24.4 Difference constraints and shortest paths 667

0

0

0

0

0

0–1

1

5
4

–1

–3–3
0

–5

–3

0–1

–4

v3

v2

v1

v5

v0

v4

Figure 24.8 The constraint graph corresponding to the system (24.3)–(24.10) of difference con-
straints. The value of ı.�0; �i / appears in each vertex �i . One feasible solution to the system is
x D .�5;�3; 0;�1;�4/.

The constraint graph contains the additional vertex �0, as we shall see shortly, to
guarantee that the graph has some vertex which can reach all other vertices. Thus,
the vertex set V consists of a vertex �i for each unknown xi , plus an additional
vertex �0. The edge set E contains an edge for each difference constraint, plus
an edge .�0; �i / for each unknown xi . If xj � xi � bk is a difference constraint,
then the weight of edge .�i ; �j / is w.�i ; �j / D bk. The weight of each edge leav-
ing �0 is 0. Figure 24.8 shows the constraint graph for the system (24.3)–(24.10)
of difference constraints.

The following theorem shows that we can find a solution to a system of differ-
ence constraints by finding shortest-path weights in the corresponding constraint
graph.

Theorem 24.9
Given a system Ax � b of difference constraints, let G D .V; E/ be the corre-
sponding constraint graph. If G contains no negative-weight cycles, then

x D .ı.�0; �1/; ı.�0; �2/; ı.�0; �3/; : : : ; ı.�0; �n// (24.11)

is a feasible solution for the system. If G contains a negative-weight cycle, then
there is no feasible solution for the system.

Proof We first show that if the constraint graph contains no negative-weight
cycles, then equation (24.11) gives a feasible solution. Consider any edge
.�i ; �j / 2 E. By the triangle inequality, ı.�0; �j / � ı.�0; �i / C w.�i ; �j / or,
equivalently, ı.�0; �j / � ı.�0; �i / � w.�i ; �j /. Thus, letting xi D ı.�0; �i / and

668 Chapter 24 Single-Source Shortest Paths

xj D ı.�0; �j / satisfies the difference constraint xj � xi � w.�i ; �j / that corre-
sponds to edge .�i ; �j /.

Now we show that if the constraint graph contains a negative-weight cycle, then
the system of difference constraints has no feasible solution. Without loss of gen-
erality, let the negative-weight cycle be c D h�1; �2; : : : ; �ki, where �1 D �k.
(The vertex �0 cannot be on cycle c, because it has no entering edges.) Cycle c

corresponds to the following difference constraints:

x2 � x1 � w.�1; �2/ ;

x3 � x2 � w.�2; �3/ ;

:::

xk�1 � xk�2 � w.�k�2; �k�1/ ;

xk � xk�1 � w.�k�1; �k/ :

We will assume that x has a solution satisfying each of these k inequalities and then
derive a contradiction. The solution must also satisfy the inequality that results
when we sum the k inequalities together. If we sum the left-hand sides, each
unknown xi is added in once and subtracted out once (remember that �1 D �k

implies x1 D xk), so that the left-hand side of the sum is 0. The right-hand side
sums to w.c/, and thus we obtain 0 � w.c/. But since c is a negative-weight cycle,
w.c/ < 0, and we obtain the contradiction that 0 � w.c/ < 0.

Solving systems of difference constraints

Theorem 24.9 tells us that we can use the Bellman-Ford algorithm to solve a
system of difference constraints. Because the constraint graph contains edges
from the source vertex �0 to all other vertices, any negative-weight cycle in the
constraint graph is reachable from �0. If the Bellman-Ford algorithm returns
TRUE, then the shortest-path weights give a feasible solution to the system. In
Figure 24.8, for example, the shortest-path weights provide the feasible solution
x D .�5;�3; 0;�1;�4/, and by Lemma 24.8, x D .d � 5; d � 3; d; d � 1; d � 4/

is also a feasible solution for any constant d . If the Bellman-Ford algorithm returns
FALSE, there is no feasible solution to the system of difference constraints.

A system of difference constraints with m constraints on n unknowns produces
a graph with n C 1 vertices and n C m edges. Thus, using the Bellman-Ford
algorithm, we can solve the system in O..n C 1/.n C m// D O.n2 C nm/ time.
Exercise 24.4-5 asks you to modify the algorithm to run in O.nm/ time, even if m

is much less than n.

24.4 Difference constraints and shortest paths 669

Exercises

24.4-1
Find a feasible solution or determine that no feasible solution exists for the follow-
ing system of difference constraints:

x1 � x2 � 1 ,

x1 � x4 � �4 ,

x2 � x3 � 2 ,

x2 � x5 � 7 ,

x2 � x6 � 5 ,

x3 � x6 � 10 ,

x4 � x2 � 2 ,

x5 � x1 � �1 ,

x5 � x4 � 3 ,

x6 � x3 � �8 .

24.4-2
Find a feasible solution or determine that no feasible solution exists for the follow-
ing system of difference constraints:

x1 � x2 � 4 ,

x1 � x5 � 5 ,

x2 � x4 � �6 ,

x3 � x2 � 1 ,

x4 � x1 � 3 ,

x4 � x3 � 5 ,

x4 � x5 � 10 ,

x5 � x3 � �4 ,

x5 � x4 � �8 .

24.4-3
Can any shortest-path weight from the new vertex �0 in a constraint graph be posi-
tive? Explain.

24.4-4
Express the single-pair shortest-path problem as a linear program.

670 Chapter 24 Single-Source Shortest Paths

24.4-5
Show how to modify the Bellman-Ford algorithm slightly so that when we use it
to solve a system of difference constraints with m inequalities on n unknowns, the
running time is O.nm/.

24.4-6
Suppose that in addition to a system of difference constraints, we want to handle
equality constraints of the form xi D xj C bk. Show how to adapt the Bellman-
Ford algorithm to solve this variety of constraint system.

24.4-7
Show how to solve a system of difference constraints by a Bellman-Ford-like algo-
rithm that runs on a constraint graph without the extra vertex �0.

24.4-8 ?

Let Ax � b be a system of m difference constraints in n unknowns. Show that the
Bellman-Ford algorithm, when run on the corresponding constraint graph, maxi-
mizes

Pn

iD1 xi subject to Ax � b and xi � 0 for all xi .

24.4-9 ?

Show that the Bellman-Ford algorithm, when run on the constraint graph for a sys-
tem Ax � b of difference constraints, minimizes the quantity .max fxig�min fxig/
subject to Ax � b. Explain how this fact might come in handy if the algorithm is
used to schedule construction jobs.

24.4-10
Suppose that every row in the matrix A of a linear program Ax � b corresponds to
a difference constraint, a single-variable constraint of the form xi � bk, or a single-
variable constraint of the form �xi � bk. Show how to adapt the Bellman-Ford
algorithm to solve this variety of constraint system.

24.4-11
Give an efficient algorithm to solve a system Ax � b of difference constraints
when all of the elements of b are real-valued and all of the unknowns xi must be
integers.

24.4-12 ?

Give an efficient algorithm to solve a system Ax � b of difference constraints
when all of the elements of b are real-valued and a specified subset of some, but
not necessarily all, of the unknowns xi must be integers.

24.5 Proofs of shortest-paths properties 671

24.5 Proofs of shortest-paths properties

Throughout this chapter, our correctness arguments have relied on the triangle
inequality, upper-bound property, no-path property, convergence property, path-
relaxation property, and predecessor-subgraph property. We stated these properties
without proof at the beginning of this chapter. In this section, we prove them.

The triangle inequality

In studying breadth-first search (Section 22.2), we proved as Lemma 22.1 a sim-
ple property of shortest distances in unweighted graphs. The triangle inequality
generalizes the property to weighted graphs.

Lemma 24.10 (Triangle inequality)
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R

and source vertex s. Then, for all edges .u; �/ 2 E, we have

ı.s; �/ � ı.s; u/Cw.u; �/ :

Proof Suppose that p is a shortest path from source s to vertex �. Then p has
no more weight than any other path from s to �. Specifically, path p has no more
weight than the particular path that takes a shortest path from source s to vertex u

and then takes edge .u; �/.
Exercise 24.5-3 asks you to handle the case in which there is no shortest path

from s to �.

Effects of relaxation on shortest-path estimates

The next group of lemmas describes how shortest-path estimates are affected when
we execute a sequence of relaxation steps on the edges of a weighted, directed
graph that has been initialized by INITIALIZE-SINGLE-SOURCE.

Lemma 24.11 (Upper-bound property)
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R.
Let s 2 V be the source vertex, and let the graph be initialized by INITIALIZE-
SINGLE-SOURCE.G; s/. Then, �:d � ı.s; �/ for all � 2 V , and this invariant is
maintained over any sequence of relaxation steps on the edges of G. Moreover,
once �:d achieves its lower bound ı.s; �/, it never changes.

672 Chapter 24 Single-Source Shortest Paths

Proof We prove the invariant �:d � ı.s; �/ for all vertices � 2 V by induction
over the number of relaxation steps.

For the basis, �:d � ı.s; �/ is certainly true after initialization, since �:d D 1
implies �:d � ı.s; �/ for all � 2 V � fsg, and since s:d D 0 � ı.s; s/ (note that
ı.s; s/ D �1 if s is on a negative-weight cycle and 0 otherwise).

For the inductive step, consider the relaxation of an edge .u; �/. By the inductive
hypothesis, x:d � ı.s; x/ for all x 2 V prior to the relaxation. The only d value
that may change is �:d. If it changes, we have

�:d D u:d Cw.u; �/

� ı.s; u/Cw.u; �/ (by the inductive hypothesis)

� ı.s; �/ (by the triangle inequality) ,

and so the invariant is maintained.
To see that the value of �:d never changes once �:d D ı.s; �/, note that having

achieved its lower bound, �:d cannot decrease because we have just shown that
�:d � ı.s; �/, and it cannot increase because relaxation steps do not increase d

values.

Corollary 24.12 (No-path property)
Suppose that in a weighted, directed graph G D .V; E/ with weight function
w W E ! R, no path connects a source vertex s 2 V to a given vertex � 2 V .
Then, after the graph is initialized by INITIALIZE-SINGLE-SOURCE.G; s/, we
have �:d D ı.s; �/ D 1, and this equality is maintained as an invariant over
any sequence of relaxation steps on the edges of G.

Proof By the upper-bound property, we always have 1 D ı.s; �/ � �:d, and
thus �:d D1 D ı.s; �/.

Lemma 24.13
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R,
and let .u; �/ 2 E. Then, immediately after relaxing edge .u; �/ by executing
RELAX.u; �; w/, we have �:d � u:dCw.u; �/.

Proof If, just prior to relaxing edge .u; �/, we have �:d > u:d C w.u; �/, then
�:d D u:d C w.u; �/ afterward. If, instead, �:d � u:d C w.u; �/ just before
the relaxation, then neither u:d nor �:d changes, and so �:d � u:d C w.u; �/

afterward.

Lemma 24.14 (Convergence property)
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R,
let s 2 V be a source vertex, and let s � u ! � be a shortest path in G for

24.5 Proofs of shortest-paths properties 673

some vertices u; � 2 V . Suppose that G is initialized by INITIALIZE-SINGLE-
SOURCE.G; s/ and then a sequence of relaxation steps that includes the call
RELAX.u; �; w/ is executed on the edges of G. If u:d D ı.s; u/ at any time
prior to the call, then �:d D ı.s; �/ at all times after the call.

Proof By the upper-bound property, if u:d D ı.s; u/ at some point prior to re-
laxing edge .u; �/, then this equality holds thereafter. In particular, after relaxing
edge .u; �/, we have

�:d � u:dCw.u; �/ (by Lemma 24.13)

D ı.s; u/C w.u; �/

D ı.s; �/ (by Lemma 24.1) .

By the upper-bound property, �:d � ı.s; �/, from which we conclude that
�:d D ı.s; �/, and this equality is maintained thereafter.

Lemma 24.15 (Path-relaxation property)
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R,
and let s 2 V be a source vertex. Consider any shortest path p D h�0; �1; : : : ; �ki
from s D �0 to �k. If G is initialized by INITIALIZE-SINGLE-SOURCE.G; s/ and
then a sequence of relaxation steps occurs that includes, in order, relaxing the edges
.�0; �1/; .�1; �2/; : : : ; .�k�1; �k/, then �k:d D ı.s; �k/ after these relaxations and
at all times afterward. This property holds no matter what other edge relaxations
occur, including relaxations that are intermixed with relaxations of the edges of p.

Proof We show by induction that after the i th edge of path p is relaxed, we have
�i :d D ı.s; �i /. For the basis, i D 0, and before any edges of p have been relaxed,
we have from the initialization that �0:d D s:d D 0 D ı.s; s/. By the upper-bound
property, the value of s:d never changes after initialization.

For the inductive step, we assume that �i�1:d D ı.s; �i�1/, and we examine
what happens when we relax edge .�i�1; �i/. By the convergence property, after
relaxing this edge, we have �i :d D ı.s; �i /, and this equality is maintained at all
times thereafter.

Relaxation and shortest-paths trees

We now show that once a sequence of relaxations has caused the shortest-path es-
timates to converge to shortest-path weights, the predecessor subgraph G� induced
by the resulting � values is a shortest-paths tree for G. We start with the follow-
ing lemma, which shows that the predecessor subgraph always forms a rooted tree
whose root is the source.

674 Chapter 24 Single-Source Shortest Paths

Lemma 24.16
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R,
let s 2 V be a source vertex, and assume that G contains no negative-weight
cycles that are reachable from s. Then, after the graph is initialized by INITIALIZE-
SINGLE-SOURCE.G; s/, the predecessor subgraph G� forms a rooted tree with
root s, and any sequence of relaxation steps on edges of G maintains this property
as an invariant.

Proof Initially, the only vertex in G� is the source vertex, and the lemma is triv-
ially true. Consider a predecessor subgraph G� that arises after a sequence of
relaxation steps. We shall first prove that G� is acyclic. Suppose for the sake of
contradiction that some relaxation step creates a cycle in the graph G� . Let the cy-
cle be c D h�0; �1; : : : ; �ki, where �k D �0. Then, �i :� D �i�1 for i D 1; 2; : : : ; k

and, without loss of generality, we can assume that relaxing edge .�k�1; �k/ created
the cycle in G� .

We claim that all vertices on cycle c are reachable from the source s. Why?
Each vertex on c has a non-NIL predecessor, and so each vertex on c was assigned
a finite shortest-path estimate when it was assigned its non-NIL � value. By the
upper-bound property, each vertex on cycle c has a finite shortest-path weight,
which implies that it is reachable from s.

We shall examine the shortest-path estimates on c just prior to the call
RELAX.�k�1; �k; w/ and show that c is a negative-weight cycle, thereby contra-
dicting the assumption that G contains no negative-weight cycles that are reachable
from the source. Just before the call, we have �i :� D �i�1 for i D 1; 2; : : : ; k � 1.
Thus, for i D 1; 2; : : : ; k � 1, the last update to �i :d was by the assignment
�i :d D �i�1:dCw.�i�1; �i /. If �i�1:d changed since then, it decreased. Therefore,
just before the call RELAX.�k�1; �k ; w/, we have

�i :d � �i�1:dCw.�i�1; �i / for all i D 1; 2; : : : ; k � 1 : (24.12)

Because �k:� is changed by the call, immediately beforehand we also have the
strict inequality

�k:d > �k�1:dCw.�k�1; �k/ :

Summing this strict inequality with the k � 1 inequalities (24.12), we obtain the
sum of the shortest-path estimates around cycle c:

kX
iD1

�i :d >

kX
iD1

.�i�1:dC w.�i�1; �i//

D
kX

iD1

�i�1:dC
kX

iD1

w.�i�1; �i/ :

24.5 Proofs of shortest-paths properties 675

s
u

x

y

z
v

Figure 24.9 Showing that a simple path in G� from source s to vertex � is unique. If there are two
paths p1 (s � u � x ! ´ � �) and p2 (s � u � y ! ´ � �), where x ¤ y, then ´:� D x

and ´:� D y, a contradiction.

But

kX
iD1

�i :d D
kX

iD1

�i�1:d ;

since each vertex in the cycle c appears exactly once in each summation. This
equality implies

0 >

kX
iD1

w.�i�1; �i / :

Thus, the sum of weights around the cycle c is negative, which provides the desired
contradiction.

We have now proven that G� is a directed, acyclic graph. To show that it forms
a rooted tree with root s, it suffices (see Exercise B.5-2) to prove that for each
vertex � 2 V� , there is a unique simple path from s to � in G� .

We first must show that a path from s exists for each vertex in V� . The ver-
tices in V� are those with non-NIL � values, plus s. The idea here is to prove by
induction that a path exists from s to all vertices in V� . We leave the details as
Exercise 24.5-6.

To complete the proof of the lemma, we must now show that for any vertex
� 2 V� , the graph G� contains at most one simple path from s to �. Suppose other-
wise. That is, suppose that, as Figure 24.9 illustrates, G� contains two simple paths
from s to some vertex �: p1, which we decompose into s � u � x ! ´ � �,
and p2, which we decompose into s � u � y ! ´ � �, where x ¤ y (though u

could be s and ´ could be �). But then, ´:� D x and ´:� D y, which implies
the contradiction that x D y. We conclude that G� contains a unique simple path
from s to �, and thus G� forms a rooted tree with root s.

We can now show that if, after we have performed a sequence of relaxation steps,
all vertices have been assigned their true shortest-path weights, then the predeces-
sor subgraph G� is a shortest-paths tree.

676 Chapter 24 Single-Source Shortest Paths

Lemma 24.17 (Predecessor-subgraph property)
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R,
let s 2 V be a source vertex, and assume that G contains no negative-weight cycles
that are reachable from s. Let us call INITIALIZE-SINGLE-SOURCE.G; s/ and then
execute any sequence of relaxation steps on edges of G that produces �:d D ı.s; �/

for all � 2 V . Then, the predecessor subgraph G� is a shortest-paths tree rooted
at s.

Proof We must prove that the three properties of shortest-paths trees given on
page 647 hold for G� . To show the first property, we must show that V� is the set
of vertices reachable from s. By definition, a shortest-path weight ı.s; �/ is finite
if and only if � is reachable from s, and thus the vertices that are reachable from s

are exactly those with finite d values. But a vertex � 2 V � fsg has been assigned
a finite value for �:d if and only if �:� ¤ NIL. Thus, the vertices in V� are exactly
those reachable from s.

The second property follows directly from Lemma 24.16.
It remains, therefore, to prove the last property of shortest-paths trees: for each

vertex � 2 V� , the unique simple path s
p
� � in G� is a shortest path from s to �

in G. Let p D h�0; �1; : : : ; �ki, where �0 D s and �k D �. For i D 1; 2; : : : ; k,
we have both �i :d D ı.s; �i / and �i :d � �i�1:d C w.�i�1; �i /, from which we
conclude w.�i�1; �i / � ı.s; �i / � ı.s; �i�1/. Summing the weights along path p

yields

w.p/ D
kX

iD1

w.�i�1; �i /

�
kX

iD1

.ı.s; �i / � ı.s; �i�1//

D ı.s; �k/ � ı.s; �0/ (because the sum telescopes)

D ı.s; �k/ (because ı.s; �0/ D ı.s; s/ D 0) .

Thus, w.p/ � ı.s; �k/. Since ı.s; �k/ is a lower bound on the weight of any path
from s to �k, we conclude that w.p/ D ı.s; �k/, and thus p is a shortest path
from s to � D �k.

Exercises

24.5-1
Give two shortest-paths trees for the directed graph of Figure 24.2 (on page 648)
other than the two shown.

24.5 Proofs of shortest-paths properties 677

24.5-2
Give an example of a weighted, directed graph G D .V; E/ with weight function
w W E ! R and source vertex s such that G satisfies the following property: For
every edge .u; �/ 2 E, there is a shortest-paths tree rooted at s that contains .u; �/

and another shortest-paths tree rooted at s that does not contain .u; �/.

24.5-3
Embellish the proof of Lemma 24.10 to handle cases in which shortest-path
weights are1 or �1.

24.5-4
Let G D .V; E/ be a weighted, directed graph with source vertex s, and let G

be initialized by INITIALIZE-SINGLE-SOURCE.G; s/. Prove that if a sequence of
relaxation steps sets s:� to a non-NIL value, then G contains a negative-weight
cycle.

24.5-5
Let G D .V; E/ be a weighted, directed graph with no negative-weight edges. Let
s 2 V be the source vertex, and suppose that we allow �:� to be the predecessor
of � on any shortest path to � from source s if � 2 V � fsg is reachable from s,
and NIL otherwise. Give an example of such a graph G and an assignment of �

values that produces a cycle in G� . (By Lemma 24.16, such an assignment cannot
be produced by a sequence of relaxation steps.)

24.5-6
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R

and no negative-weight cycles. Let s 2 V be the source vertex, and let G be initial-
ized by INITIALIZE-SINGLE-SOURCE.G; s/. Prove that for every vertex � 2 V� ,
there exists a path from s to � in G� and that this property is maintained as an
invariant over any sequence of relaxations.

24.5-7
Let G D .V; E/ be a weighted, directed graph that contains no negative-weight
cycles. Let s 2 V be the source vertex, and let G be initialized by INITIALIZE-
SINGLE-SOURCE.G; s/. Prove that there exists a sequence of jV j � 1 relaxation
steps that produces �:d D ı.s; �/ for all � 2 V .

24.5-8
Let G be an arbitrary weighted, directed graph with a negative-weight cycle reach-
able from the source vertex s. Show how to construct an infinite sequence of relax-
ations of the edges of G such that every relaxation causes a shortest-path estimate
to change.

678 Chapter 24 Single-Source Shortest Paths

Problems

24-1 Yen’s improvement to Bellman-Ford
Suppose that we order the edge relaxations in each pass of the Bellman-Ford al-
gorithm as follows. Before the first pass, we assign an arbitrary linear order
�1; �2; : : : ; �jV j to the vertices of the input graph G D .V; E/. Then, we parti-
tion the edge set E into Ef [Eb, where Ef D f.�i ; �j / 2 E W i < j g and
Eb D f.�i ; �j / 2 E W i > j g. (Assume that G contains no self-loops, so that every
edge is in either Ef or Eb.) Define Gf D .V; Ef / and Gb D .V; Eb/.

a. Prove that Gf is acyclic with topological sort h�1; �2; : : : ; �jV ji and that Gb is
acyclic with topological sort h�jV j; �jV j�1; : : : ; �1i.

Suppose that we implement each pass of the Bellman-Ford algorithm in the fol-
lowing way. We visit each vertex in the order �1; �2; : : : ; �jV j, relaxing edges of Ef

that leave the vertex. We then visit each vertex in the order �jV j; �jV j�1; : : : ; �1,
relaxing edges of Eb that leave the vertex.

b. Prove that with this scheme, if G contains no negative-weight cycles that are
reachable from the source vertex s, then after only djV j =2e passes over the
edges, �:d D ı.s; �/ for all vertices � 2 V .

c. Does this scheme improve the asymptotic running time of the Bellman-Ford
algorithm?

24-2 Nesting boxes
A d -dimensional box with dimensions .x1; x2; : : : ; xd / nests within another box
with dimensions .y1; y2; : : : ; yd / if there exists a permutation � on f1; 2; : : : ; dg
such that x�.1/ < y1, x�.2/ < y2, . . . , x�.d/ < yd .

a. Argue that the nesting relation is transitive.

b. Describe an efficient method to determine whether or not one d -dimensional
box nests inside another.

c. Suppose that you are given a set of n d -dimensional boxes fB1; B2; : : : ; Bng.
Give an efficient algorithm to find the longest sequence hBi1; Bi2 ; : : : ; Biki of
boxes such that Bij nests within Bij C1

for j D 1; 2; : : : ; k � 1. Express the
running time of your algorithm in terms of n and d .

Problems for Chapter 24 679

24-3 Arbitrage
Arbitrage is the use of discrepancies in currency exchange rates to transform one
unit of a currency into more than one unit of the same currency. For example,
suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese
yen, and 1 Japanese yen buys 0:0107 U.S. dollars. Then, by converting currencies,
a trader can start with 1 U.S. dollar and buy 49	2	0:0107 D 1:0486 U.S. dollars,
thus turning a profit of 4:86 percent.

Suppose that we are given n currencies c1; c2; : : : ; cn and an n 	 n table R of
exchange rates, such that one unit of currency ci buys RŒi; j � units of currency cj .

a. Give an efficient algorithm to determine whether or not there exists a sequence
of currencies hci1; ci2 ; : : : ; cik i such that

RŒi1; i2� �RŒi2; i3� � � �RŒik�1; ik � � RŒik; i1� > 1 :

Analyze the running time of your algorithm.

b. Give an efficient algorithm to print out such a sequence if one exists. Analyze
the running time of your algorithm.

24-4 Gabow’s scaling algorithm for single-source shortest paths
A scaling algorithm solves a problem by initially considering only the highest-
order bit of each relevant input value (such as an edge weight). It then refines the
initial solution by looking at the two highest-order bits. It progressively looks at
more and more high-order bits, refining the solution each time, until it has exam-
ined all bits and computed the correct solution.

In this problem, we examine an algorithm for computing the shortest paths from
a single source by scaling edge weights. We are given a directed graph G D .V; E/

with nonnegative integer edge weights w. Let W D max.u;�/2E fw.u; �/g. Our
goal is to develop an algorithm that runs in O.E lg W / time. We assume that all
vertices are reachable from the source.

The algorithm uncovers the bits in the binary representation of the edge weights
one at a time, from the most significant bit to the least significant bit. Specifically,
let k D dlg.W C 1/e be the number of bits in the binary representation of W ,
and for i D 1; 2; : : : ; k, let wi.u; �/ D

w.u; �/=2k�i
˘
. That is, wi .u; �/ is the

“scaled-down” version of w.u; �/ given by the i most significant bits of w.u; �/.
(Thus, wk.u; �/ D w.u; �/ for all .u; �/ 2 E.) For example, if k D 5 and
w.u; �/ D 25, which has the binary representation h11001i, then w3.u; �/ D
h110i D 6. As another example with k D 5, if w.u; �/ D h00100i D 4, then
w3.u; �/ D h001i D 1. Let us define ıi.u; �/ as the shortest-path weight from
vertex u to vertex � using weight function wi . Thus, ık.u; �/ D ı.u; �/ for all
u; � 2 V . For a given source vertex s, the scaling algorithm first computes the

680 Chapter 24 Single-Source Shortest Paths

shortest-path weights ı1.s; �/ for all � 2 V , then computes ı2.s; �/ for all � 2 V ,
and so on, until it computes ık.s; �/ for all � 2 V . We assume throughout that
jEj � jV j � 1, and we shall see that computing ıi from ıi�1 takes O.E/ time, so
that the entire algorithm takes O.kE/ D O.E lg W / time.

a. Suppose that for all vertices � 2 V , we have ı.s; �/ � jEj. Show that we can
compute ı.s; �/ for all � 2 V in O.E/ time.

b. Show that we can compute ı1.s; �/ for all � 2 V in O.E/ time.

Let us now focus on computing ıi from ıi�1.

c. Prove that for i D 2; 3; : : : ; k, we have either wi.u; �/ D 2wi�1.u; �/ or
wi.u; �/ D 2wi�1.u; �/C 1. Then, prove that

2ıi�1.s; �/ � ıi .s; �/ � 2ıi�1.s; �/C jV j � 1

for all � 2 V .

d. Define for i D 2; 3; : : : ; k and all .u; �/ 2 E,

ywi.u; �/ D wi.u; �/C 2ıi�1.s; u/ � 2ıi�1.s; �/ :

Prove that for i D 2; 3; : : : ; k and all u; � 2 V , the “reweighted” value ywi .u; �/

of edge .u; �/ is a nonnegative integer.

e. Now, define yıi .s; �/ as the shortest-path weight from s to � using the weight
function ywi . Prove that for i D 2; 3; : : : ; k and all � 2 V ,

ıi.s; �/ D yıi .s; �/C 2ıi�1.s; �/

and that yıi .s; �/ � jEj.

f. Show how to compute ıi .s; �/ from ıi�1.s; �/ for all � 2 V in O.E/ time, and
conclude that we can compute ı.s; �/ for all � 2 V in O.E lg W / time.

24-5 Karp’s minimum mean-weight cycle algorithm
Let G D .V; E/ be a directed graph with weight function w W E ! R, and let
n D jV j. We define the mean weight of a cycle c D he1; e2; : : : ; eki of edges in E

to be

.c/ D 1

k

kX
iD1

w.ei/ :

Problems for Chapter 24 681

Let
� D minc
.c/, where c ranges over all directed cycles in G. We call a cycle c

for which
.c/ D
� a minimum mean-weight cycle. This problem investigates
an efficient algorithm for computing
�.

Assume without loss of generality that every vertex � 2 V is reachable from a
source vertex s 2 V . Let ı.s; �/ be the weight of a shortest path from s to �, and let
ık.s; �/ be the weight of a shortest path from s to � consisting of exactly k edges.
If there is no path from s to � with exactly k edges, then ık.s; �/ D1.

a. Show that if
� D 0, then G contains no negative-weight cycles and ı.s; �/ D
min0�k�n�1 ık.s; �/ for all vertices � 2 V .

b. Show that if
� D 0, then

max
0�k�n�1

ın.s; �/ � ık.s; �/

n � k
� 0

for all vertices � 2 V . (Hint: Use both properties from part (a).)

c. Let c be a 0-weight cycle, and let u and � be any two vertices on c. Suppose
that
� D 0 and that the weight of the simple path from u to � along the cycle
is x. Prove that ı.s; �/ D ı.s; u/ C x. (Hint: The weight of the simple path
from � to u along the cycle is �x.)

d. Show that if
� D 0, then on each minimum mean-weight cycle there exists a
vertex � such that

max
0�k�n�1

ın.s; �/ � ık.s; �/

n � k
D 0 :

(Hint: Show how to extend a shortest path to any vertex on a minimum mean-
weight cycle along the cycle to make a shortest path to the next vertex on the
cycle.)

e. Show that if
� D 0, then

min
�2V

max
0�k�n�1

ın.s; �/ � ık.s; �/

n � k
D 0 :

f. Show that if we add a constant t to the weight of each edge of G, then
�

increases by t . Use this fact to show that

� D min
�2V

max
0�k�n�1

ın.s; �/ � ık.s; �/

n � k
:

g. Give an O.VE/-time algorithm to compute
�.

682 Chapter 24 Single-Source Shortest Paths

24-6 Bitonic shortest paths
A sequence is bitonic if it monotonically increases and then monotonically de-
creases, or if by a circular shift it monotonically increases and then monotonically
decreases. For example the sequences h1; 4; 6; 8; 3;�2i, h9; 2;�4;�10;�5i, and
h1; 2; 3; 4i are bitonic, but h1; 3; 12; 4; 2; 10i is not bitonic. (See Problem 15-3 for
the bitonic euclidean traveling-salesman problem.)

Suppose that we are given a directed graph G D .V; E/ with weight function
w W E ! R, where all edge weights are unique, and we wish to find single-source
shortest paths from a source vertex s. We are given one additional piece of infor-
mation: for each vertex � 2 V , the weights of the edges along any shortest path
from s to � form a bitonic sequence.

Give the most efficient algorithm you can to solve this problem, and analyze its
running time.

Chapter notes

Dijkstra’s algorithm [88] appeared in 1959, but it contained no mention of a priority
queue. The Bellman-Ford algorithm is based on separate algorithms by Bellman
[38] and Ford [109]. Bellman describes the relation of shortest paths to difference
constraints. Lawler [224] describes the linear-time algorithm for shortest paths in
a dag, which he considers part of the folklore.

When edge weights are relatively small nonnegative integers, we have more ef-
ficient algorithms to solve the single-source shortest-paths problem. The sequence
of values returned by the EXTRACT-MIN calls in Dijkstra’s algorithm monoton-
ically increases over time. As discussed in the chapter notes for Chapter 6, in
this case several data structures can implement the various priority-queue opera-
tions more efficiently than a binary heap or a Fibonacci heap. Ahuja, Mehlhorn,
Orlin, and Tarjan [8] give an algorithm that runs in O.E C V

p
lg W / time on

graphs with nonnegative edge weights, where W is the largest weight of any edge
in the graph. The best bounds are by Thorup [337], who gives an algorithm that
runs in O.E lg lg V / time, and by Raman [291], who gives an algorithm that runs
in O

�
E C V min

˚
.lg V /1=3C�; .lg W /1=4C�

�
time. These two algorithms use an

amount of space that depends on the word size of the underlying machine. Al-
though the amount of space used can be unbounded in the size of the input, it can
be reduced to be linear in the size of the input using randomized hashing.

For undirected graphs with integer weights, Thorup [336] gives an O.V C E/-
time algorithm for single-source shortest paths. In contrast to the algorithms men-
tioned in the previous paragraph, this algorithm is not an implementation of Dijk-

Notes for Chapter 24 683

stra’s algorithm, since the sequence of values returned by EXTRACT-MIN calls
does not monotonically increase over time.

For graphs with negative edge weights, an algorithm due to Gabow and Tar-
jan [122] runs in O.

p
V E lg.V W // time, and one by Goldberg [137] runs in

O.
p

V E lg W / time, where W D max.u;�/2E fjw.u; �/jg.
Cherkassky, Goldberg, and Radzik [64] conducted extensive experiments com-

paring various shortest-path algorithms.

25 All-Pairs Shortest Paths

In this chapter, we consider the problem of finding shortest paths between all pairs
of vertices in a graph. This problem might arise in making a table of distances be-
tween all pairs of cities for a road atlas. As in Chapter 24, we are given a weighted,
directed graph G D .V; E/ with a weight function w W E ! R that maps edges
to real-valued weights. We wish to find, for every pair of vertices u; � 2 V , a
shortest (least-weight) path from u to �, where the weight of a path is the sum of
the weights of its constituent edges. We typically want the output in tabular form:
the entry in u’s row and �’s column should be the weight of a shortest path from u

to �.
We can solve an all-pairs shortest-paths problem by running a single-source

shortest-paths algorithm jV j times, once for each vertex as the source. If all
edge weights are nonnegative, we can use Dijkstra’s algorithm. If we use
the linear-array implementation of the min-priority queue, the running time is
O.V 3 C VE/ D O.V 3/. The binary min-heap implementation of the min-priority
queue yields a running time of O.VE lg V /, which is an improvement if the graph
is sparse. Alternatively, we can implement the min-priority queue with a Fibonacci
heap, yielding a running time of O.V 2 lg V C VE/.

If the graph has negative-weight edges, we cannot use Dijkstra’s algorithm. In-
stead, we must run the slower Bellman-Ford algorithm once from each vertex. The
resulting running time is O.V 2E/, which on a dense graph is O.V 4/. In this chap-
ter we shall see how to do better. We also investigate the relation of the all-pairs
shortest-paths problem to matrix multiplication and study its algebraic structure.

Unlike the single-source algorithms, which assume an adjacency-list represen-
tation of the graph, most of the algorithms in this chapter use an adjacency-
matrix representation. (Johnson’s algorithm for sparse graphs, in Section 25.3,
uses adjacency lists.) For convenience, we assume that the vertices are numbered
1; 2; : : : ; jV j, so that the input is an n 	 n matrix W representing the edge weights
of an n-vertex directed graph G D .V; E/. That is, W D .wij /, where

Chapter 25 All-Pairs Shortest Paths 685

wij D

�
0 if i D j ;

the weight of directed edge .i; j / if i ¤ j and .i; j / 2 E ;

1 if i ¤ j and .i; j / 62 E :

(25.1)

We allow negative-weight edges, but we assume for the time being that the input
graph contains no negative-weight cycles.

The tabular output of the all-pairs shortest-paths algorithms presented in this
chapter is an n 	 n matrix D D .dij /, where entry dij contains the weight of a
shortest path from vertex i to vertex j . That is, if we let ı.i; j / denote the shortest-
path weight from vertex i to vertex j (as in Chapter 24), then dij D ı.i; j / at
termination.

To solve the all-pairs shortest-paths problem on an input adjacency matrix, we
need to compute not only the shortest-path weights but also a predecessor matrix
… D .�ij /, where �ij is NIL if either i D j or there is no path from i to j ,
and otherwise �ij is the predecessor of j on some shortest path from i . Just as
the predecessor subgraph G� from Chapter 24 is a shortest-paths tree for a given
source vertex, the subgraph induced by the i th row of the … matrix should be a
shortest-paths tree with root i . For each vertex i 2 V , we define the predecessor
subgraph of G for i as G�;i D .V�;i ; E�;i/ , where

V�;i D fj 2 V W �ij ¤ NILg [fig
and

E�;i D f.�ij ; j / W j 2 V�;i � figg :

If G�;i is a shortest-paths tree, then the following procedure, which is a modified
version of the PRINT-PATH procedure from Chapter 22, prints a shortest path from
vertex i to vertex j .

PRINT-ALL-PAIRS-SHORTEST-PATH.…; i; j /

1 if i == j

2 print i

3 elseif �ij == NIL

4 print “no path from” i “to” j “exists”
5 else PRINT-ALL-PAIRS-SHORTEST-PATH.…; i; �ij /

6 print j

In order to highlight the essential features of the all-pairs algorithms in this chapter,
we won’t cover the creation and properties of predecessor matrices as extensively
as we dealt with predecessor subgraphs in Chapter 24. Some of the exercises cover
the basics.

686 Chapter 25 All-Pairs Shortest Paths

Chapter outline

Section 25.1 presents a dynamic-programming algorithm based on matrix multi-
plication to solve the all-pairs shortest-paths problem. Using the technique of “re-
peated squaring,” we can achieve a running time of ‚.V 3 lg V /. Section 25.2 gives
another dynamic-programming algorithm, the Floyd-Warshall algorithm, which
runs in time ‚.V 3/. Section 25.2 also covers the problem of finding the tran-
sitive closure of a directed graph, which is related to the all-pairs shortest-paths
problem. Finally, Section 25.3 presents Johnson’s algorithm, which solves the all-
pairs shortest-paths problem in O.V 2 lg V C VE/ time and is a good choice for
large, sparse graphs.

Before proceeding, we need to establish some conventions for adjacency-matrix
representations. First, we shall generally assume that the input graph G D .V; E/

has n vertices, so that n D jV j. Second, we shall use the convention of denoting
matrices by uppercase letters, such as W , L, or D, and their individual elements
by subscripted lowercase letters, such as wij , lij , or dij . Some matrices will have
parenthesized superscripts, as in L.m/ D �

l
.m/
ij

�
or D.m/ D �

d
.m/
ij

�
, to indicate

iterates. Finally, for a given n 	 n matrix A, we shall assume that the value of n is
stored in the attribute A:rows.

25.1 Shortest paths and matrix multiplication

This section presents a dynamic-programming algorithm for the all-pairs shortest-
paths problem on a directed graph G D .V; E/. Each major loop of the dynamic
program will invoke an operation that is very similar to matrix multiplication, so
that the algorithm will look like repeated matrix multiplication. We shall start by
developing a ‚.V 4/-time algorithm for the all-pairs shortest-paths problem and
then improve its running time to ‚.V 3 lg V /.

Before proceeding, let us briefly recap the steps given in Chapter 15 for devel-
oping a dynamic-programming algorithm.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

We reserve the fourth step—constructing an optimal solution from computed in-
formation—for the exercises.

25.1 Shortest paths and matrix multiplication 687

The structure of a shortest path

We start by characterizing the structure of an optimal solution. For the all-pairs
shortest-paths problem on a graph G D .V; E/, we have proven (Lemma 24.1)
that all subpaths of a shortest path are shortest paths. Suppose that we represent
the graph by an adjacency matrix W D .wij /. Consider a shortest path p from
vertex i to vertex j , and suppose that p contains at most m edges. Assuming that
there are no negative-weight cycles, m is finite. If i D j , then p has weight 0

and no edges. If vertices i and j are distinct, then we decompose path p into

i
p0

� k ! j , where path p0 now contains at most m � 1 edges. By Lemma 24.1,
p0 is a shortest path from i to k, and so ı.i; j / D ı.i; k/C wkj .

A recursive solution to the all-pairs shortest-paths problem

Now, let l
.m/
ij be the minimum weight of any path from vertex i to vertex j that

contains at most m edges. When m D 0, there is a shortest path from i to j with
no edges if and only if i D j . Thus,

l
.0/
ij D

(
0 if i D j ;

1 if i ¤ j :

For m � 1, we compute l
.m/
ij as the minimum of l

.m�1/
ij (the weight of a shortest

path from i to j consisting of at most m�1 edges) and the minimum weight of any
path from i to j consisting of at most m edges, obtained by looking at all possible
predecessors k of j . Thus, we recursively define

l
.m/
ij D min

�
l

.m�1/
ij ; min

1�k�n

˚
l

.m�1/

ik
C wkj

�
D min

1�k�n

˚
l

.m�1/

ik
Cwkj

: (25.2)

The latter equality follows since wjj D 0 for all j .
What are the actual shortest-path weights ı.i; j /? If the graph contains

no negative-weight cycles, then for every pair of vertices i and j for which
ı.i; j / <1, there is a shortest path from i to j that is simple and thus contains at
most n � 1 edges. A path from vertex i to vertex j with more than n � 1 edges
cannot have lower weight than a shortest path from i to j . The actual shortest-path
weights are therefore given by

ı.i; j / D l
.n�1/
ij D l

.n/
ij D l

.nC1/
ij D � � � : (25.3)

688 Chapter 25 All-Pairs Shortest Paths

Computing the shortest-path weights bottom up

Taking as our input the matrix W D .wij /, we now compute a series of matrices
L.1/; L.2/; : : : ; L.n�1/, where for m D 1; 2; : : : ; n � 1, we have L.m/ D �

l
.m/
ij

�
.

The final matrix L.n�1/ contains the actual shortest-path weights. Observe that
l

.1/
ij D wij for all vertices i; j 2 V , and so L.1/ D W .

The heart of the algorithm is the following procedure, which, given matrices
L.m�1/ and W , returns the matrix L.m/. That is, it extends the shortest paths com-
puted so far by one more edge.

EXTEND-SHORTEST-PATHS.L; W /

1 n D L:rows
2 let L0 D �l 0

ij

�
be a new n 	 n matrix

3 for i D 1 to n

4 for j D 1 to n

5 l 0
ij D 1

6 for k D 1 to n

7 l 0
ij D min.l 0

ij ; lik C wkj /

8 return L0

The procedure computes a matrix L0 D .l 0
ij /, which it returns at the end. It does so

by computing equation (25.2) for all i and j , using L for L.m�1/ and L0 for L.m/.
(It is written without the superscripts to make its input and output matrices inde-
pendent of m.) Its running time is ‚.n3/ due to the three nested for loops.

Now we can see the relation to matrix multiplication. Suppose we wish to com-
pute the matrix product C D A � B of two n 	 n matrices A and B . Then, for
i; j D 1; 2; : : : ; n, we compute

cij D
nX

kD1

aik � bkj : (25.4)

Observe that if we make the substitutions

l .m�1/ ! a ;

w ! b ;

l .m/ ! c ;

min ! C ;

C ! �
in equation (25.2), we obtain equation (25.4). Thus, if we make these changes to
EXTEND-SHORTEST-PATHS and also replace 1 (the identity for min) by 0 (the

25.1 Shortest paths and matrix multiplication 689

identity for C), we obtain the same ‚.n3/-time procedure for multiplying square
matrices that we saw in Section 4.2:

SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n 	 n matrix
3 for i D 1 to n

4 for j D 1 to n

5 cij D 0

6 for k D 1 to n

7 cij D cij C aik � bkj

8 return C

Returning to the all-pairs shortest-paths problem, we compute the shortest-path
weights by extending shortest paths edge by edge. Letting A � B denote the ma-
trix “product” returned by EXTEND-SHORTEST-PATHS.A; B/, we compute the se-
quence of n � 1 matrices

L.1/ D L.0/ �W D W ;

L.2/ D L.1/ �W D W 2 ;

L.3/ D L.2/ �W D W 3 ;
:::

L.n�1/ D L.n�2/ �W D W n�1 :

As we argued above, the matrix L.n�1/ D W n�1 contains the shortest-path weights.
The following procedure computes this sequence in ‚.n4/ time.

SLOW-ALL-PAIRS-SHORTEST-PATHS.W /

1 n D W:rows
2 L.1/ D W

3 for m D 2 to n � 1

4 let L.m/ be a new n 	 n matrix
5 L.m/ D EXTEND-SHORTEST-PATHS.L.m�1/; W /

6 return L.n�1/

Figure 25.1 shows a graph and the matrices L.m/ computed by the procedure
SLOW-ALL-PAIRS-SHORTEST-PATHS.

Improving the running time

Our goal, however, is not to compute all the L.m/ matrices: we are interested
only in matrix L.n�1/. Recall that in the absence of negative-weight cycles, equa-

690 Chapter 25 All-Pairs Shortest Paths

2

1 3

5 4

3 4

82

6

7 1
–4 –5

L.1/ D

�
0 3 8 1 �4

1 0 1 1 7

1 4 0 1 1
2 1 �5 0 1
1 1 1 6 0

˘
L.2/ D

�
0 3 8 2 �4

3 0 �4 1 7

1 4 0 5 11

2 �1 �5 0 �2

8 1 1 6 0

˘

L.3/ D

�
0 3 �3 2 �4

3 0 �4 1 �1

7 4 0 5 11

2 �1 �5 0 �2

8 5 1 6 0

˘
L.4/ D

�
0 1 �3 2 �4

3 0 �4 1 �1

7 4 0 5 3

2 �1 �5 0 �2

8 5 1 6 0

˘
Figure 25.1 A directed graph and the sequence of matrices L.m/ computed by SLOW-ALL-PAIRS-
SHORTEST-PATHS. You might want to verify that L.5/, defined as L.4/ �W , equals L.4/, and thus
L.m/ D L.4/ for all m � 4.

tion (25.3) implies L.m/ D L.n�1/ for all integers m � n � 1. Just as tradi-
tional matrix multiplication is associative, so is matrix multiplication defined by
the EXTEND-SHORTEST-PATHS procedure (see Exercise 25.1-4). Therefore, we
can compute L.n�1/ with only dlg.n � 1/e matrix products by computing the se-
quence

L.1/ D W ;

L.2/ D W 2 D W �W ;

L.4/ D W 4 D W 2 �W 2

L.8/ D W 8 D W 4 �W 4 ;
:::

L.2dlg.n�1/e/ D W 2dlg.n�1/e D W 2dlg.n�1/e�1 �W 2dlg.n�1/e�1

:

Since 2dlg.n�1/e � n � 1, the final product L.2dlg.n�1/e/ is equal to L.n�1/.
The following procedure computes the above sequence of matrices by using this

technique of repeated squaring.

25.1 Shortest paths and matrix multiplication 691

1 2

3

5–12

1 2 3

4 5 6

–4 –8107

Figure 25.2 A weighted, directed graph for use in Exercises 25.1-1, 25.2-1, and 25.3-1.

FASTER-ALL-PAIRS-SHORTEST-PATHS.W /

1 n D W:rows
2 L.1/ D W

3 m D 1

4 while m < n � 1

5 let L.2m/ be a new n 	 n matrix
6 L.2m/ D EXTEND-SHORTEST-PATHS.L.m/; L.m//

7 m D 2m

8 return L.m/

In each iteration of the while loop of lines 4–7, we compute L.2m/ D �
L.m/

�2
,

starting with m D 1. At the end of each iteration, we double the value
of m. The final iteration computes L.n�1/ by actually computing L.2m/ for some
n � 1 � 2m < 2n � 2. By equation (25.3), L.2m/ D L.n�1/. The next time the test
in line 4 is performed, m has been doubled, so now m � n � 1, the test fails, and
the procedure returns the last matrix it computed.

Because each of the dlg.n � 1/e matrix products takes ‚.n3/ time, FASTER-
ALL-PAIRS-SHORTEST-PATHS runs in ‚.n3 lg n/ time. Observe that the code
is tight, containing no elaborate data structures, and the constant hidden in the
‚-notation is therefore small.

Exercises

25.1-1
Run SLOW-ALL-PAIRS-SHORTEST-PATHS on the weighted, directed graph of
Figure 25.2, showing the matrices that result for each iteration of the loop. Then
do the same for FASTER-ALL-PAIRS-SHORTEST-PATHS.

25.1-2
Why do we require that wi i D 0 for all 1 � i � n?

692 Chapter 25 All-Pairs Shortest Paths

25.1-3
What does the matrix

L.0/ D

�
0 1 1 � � � 1
1 0 1 � � � 1
1 1 0 � � � 1
:::

:::
:::

: : :
:::

1 1 1 � � � 0

�
used in the shortest-paths algorithms correspond to in regular matrix multiplica-
tion?

25.1-4
Show that matrix multiplication defined by EXTEND-SHORTEST-PATHS is asso-
ciative.

25.1-5
Show how to express the single-source shortest-paths problem as a product of ma-
trices and a vector. Describe how evaluating this product corresponds to a Bellman-
Ford-like algorithm (see Section 24.1).

25.1-6
Suppose we also wish to compute the vertices on shortest paths in the algorithms of
this section. Show how to compute the predecessor matrix … from the completed
matrix L of shortest-path weights in O.n3/ time.

25.1-7
We can also compute the vertices on shortest paths as we compute the shortest-
path weights. Define �

.m/
ij as the predecessor of vertex j on any minimum-weight

path from i to j that contains at most m edges. Modify the EXTEND-SHORTEST-
PATHS and SLOW-ALL-PAIRS-SHORTEST-PATHS procedures to compute the ma-
trices ….1/; ….2/; : : : ; ….n�1/ as the matrices L.1/; L.2/; : : : ; L.n�1/ are computed.

25.1-8
The FASTER-ALL-PAIRS-SHORTEST-PATHS procedure, as written, requires us to
store dlg.n � 1/e matrices, each with n2 elements, for a total space requirement of
‚.n2 lg n/. Modify the procedure to require only ‚.n2/ space by using only two
n 	 n matrices.

25.1-9
Modify FASTER-ALL-PAIRS-SHORTEST-PATHS so that it can determine whether
the graph contains a negative-weight cycle.

25.2 The Floyd-Warshall algorithm 693

25.1-10
Give an efficient algorithm to find the length (number of edges) of a minimum-
length negative-weight cycle in a graph.

25.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve
the all-pairs shortest-paths problem on a directed graph G D .V; E/. The result-
ing algorithm, known as the Floyd-Warshall algorithm, runs in ‚.V 3/ time. As
before, negative-weight edges may be present, but we assume that there are no
negative-weight cycles. As in Section 25.1, we follow the dynamic-programming
process to develop the algorithm. After studying the resulting algorithm, we
present a similar method for finding the transitive closure of a directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we characterize the structure of a shortest path
differently from how we characterized it in Section 25.1. The Floyd-Warshall algo-
rithm considers the intermediate vertices of a shortest path, where an intermediate
vertex of a simple path p D h�1; �2; : : : ; �li is any vertex of p other than �1 or �l ,
that is, any vertex in the set f�2; �3; : : : ; �l�1g.

The Floyd-Warshall algorithm relies on the following observation. Under our
assumption that the vertices of G are V D f1; 2; : : : ; ng, let us consider a subset
f1; 2; : : : ; kg of vertices for some k. For any pair of vertices i; j 2 V , consider all
paths from i to j whose intermediate vertices are all drawn from f1; 2; : : : ; kg, and
let p be a minimum-weight path from among them. (Path p is simple.) The Floyd-
Warshall algorithm exploits a relationship between path p and shortest paths from i

to j with all intermediate vertices in the set f1; 2; : : : ; k � 1g. The relationship
depends on whether or not k is an intermediate vertex of path p.

� If k is not an intermediate vertex of path p, then all intermediate vertices of
path p are in the set f1; 2; : : : ; k � 1g. Thus, a shortest path from vertex i

to vertex j with all intermediate vertices in the set f1; 2; : : : ; k � 1g is also a
shortest path from i to j with all intermediate vertices in the set f1; 2; : : : ; kg.

� If k is an intermediate vertex of path p, then we decompose p into i
p1
� k

p2
� j ,

as Figure 25.3 illustrates. By Lemma 24.1, p1 is a shortest path from i to k

with all intermediate vertices in the set f1; 2; : : : ; kg. In fact, we can make a
slightly stronger statement. Because vertex k is not an intermediate vertex of
path p1, all intermediate vertices of p1 are in the set f1; 2; : : : ; k � 1g. There-

694 Chapter 25 All-Pairs Shortest Paths

i

k

j

p1 p2

p: all intermediate vertices in f1; 2; : : : ; kg

all intermediate vertices in f1; 2; : : : ; k � 1gall intermediate vertices in f1; 2; : : : ; k � 1g

Figure 25.3 Path p is a shortest path from vertex i to vertex j , and k is the highest-numbered
intermediate vertex of p. Path p1, the portion of path p from vertex i to vertex k, has all intermediate
vertices in the set f1; 2; : : : ; k � 1g. The same holds for path p2 from vertex k to vertex j .

fore, p1 is a shortest path from i to k with all intermediate vertices in the set
f1; 2; : : : ; k � 1g. Similarly, p2 is a shortest path from vertex k to vertex j with
all intermediate vertices in the set f1; 2; : : : ; k � 1g.

A recursive solution to the all-pairs shortest-paths problem

Based on the above observations, we define a recursive formulation of shortest-
path estimates that differs from the one in Section 25.1. Let d

.k/
ij be the weight

of a shortest path from vertex i to vertex j for which all intermediate vertices
are in the set f1; 2; : : : ; kg. When k D 0, a path from vertex i to vertex j with
no intermediate vertex numbered higher than 0 has no intermediate vertices at all.
Such a path has at most one edge, and hence d

.0/
ij D wij . Following the above

discussion, we define d
.k/
ij recursively by

d
.k/
ij D

(
wij if k D 0 ;

min
�
d

.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�
if k � 1 :

(25.5)

Because for any path, all intermediate vertices are in the set f1; 2; : : : ; ng, the ma-
trix D.n/ D �d .n/

ij

�
gives the final answer: d

.n/
ij D ı.i; j / for all i; j 2 V .

Computing the shortest-path weights bottom up

Based on recurrence (25.5), we can use the following bottom-up procedure to com-
pute the values d

.k/
ij in order of increasing values of k. Its input is an n	n matrix W

defined as in equation (25.1). The procedure returns the matrix D.n/ of shortest-
path weights.

25.2 The Floyd-Warshall algorithm 695

FLOYD-WARSHALL.W /

1 n D W:rows
2 D.0/ D W

3 for k D 1 to n

4 let D.k/ D �d .k/
ij

�
be a new n 	 n matrix

5 for i D 1 to n

6 for j D 1 to n

7 d
.k/
ij D min

�
d

.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

�
8 return D.n/

Figure 25.4 shows the matrices D.k/ computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply
nested for loops of lines 3–7. Because each execution of line 7 takes O.1/ time,
the algorithm runs in time ‚.n3/. As in the final algorithm in Section 25.1, the
code is tight, with no elaborate data structures, and so the constant hidden in the
‚-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even
moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths in the Floyd-
Warshall algorithm. One way is to compute the matrix D of shortest-path weights
and then construct the predecessor matrix … from the D matrix. Exercise 25.1-6
asks you to implement this method so that it runs in O.n3/ time. Given the pre-
decessor matrix …, the PRINT-ALL-PAIRS-SHORTEST-PATH procedure will print
the vertices on a given shortest path.

Alternatively, we can compute the predecessor matrix … while the algorithm
computes the matrices D.k/. Specifically, we compute a sequence of matrices
….0/; ….1/; : : : ; ….n/, where … D ….n/ and we define �

.k/
ij as the predecessor of

vertex j on a shortest path from vertex i with all intermediate vertices in the set
f1; 2; : : : ; kg.

We can give a recursive formulation of �
.k/
ij . When k D 0, a shortest path from i

to j has no intermediate vertices at all. Thus,

�
.0/
ij D

(
NIL if i D j or wij D1 ;

i if i ¤ j and wij <1 :
(25.6)

For k � 1, if we take the path i � k � j , where k ¤ j , then the predecessor
of j we choose is the same as the predecessor of j we chose on a shortest path
from k with all intermediate vertices in the set f1; 2; : : : ; k � 1g. Otherwise, we

696 Chapter 25 All-Pairs Shortest Paths

D.0/ D

�
0 3 8 1 �4

1 0 1 1 7

1 4 0 1 1
2 1 �5 0 1
1 1 1 6 0

˘
….0/ D

�
NIL 1 1 NIL 1

NIL NIL NIL 2 2

NIL 3 NIL NIL NIL

4 NIL 4 NIL NIL

NIL NIL NIL 5 NIL

˘

D.1/ D

�
0 3 8 1 �4

1 0 1 1 7

1 4 0 1 1
2 5 �5 0 �2

1 1 1 6 0

˘
….1/ D

�
NIL 1 1 NIL 1

NIL NIL NIL 2 2

NIL 3 NIL NIL NIL

4 1 4 NIL 1

NIL NIL NIL 5 NIL

˘

D.2/ D

�
0 3 8 4 �4

1 0 1 1 7

1 4 0 5 11

2 5 �5 0 �2

1 1 1 6 0

˘
….2/ D

�
NIL 1 1 2 1

NIL NIL NIL 2 2

NIL 3 NIL 2 2

4 1 4 NIL 1

NIL NIL NIL 5 NIL

˘

D.3/ D

�
0 3 8 4 �4

1 0 1 1 7

1 4 0 5 11

2 �1 �5 0 �2

1 1 1 6 0

˘
….3/ D

�
NIL 1 1 2 1

NIL NIL NIL 2 2

NIL 3 NIL 2 2

4 3 4 NIL 1

NIL NIL NIL 5 NIL

˘

D.4/ D

�
0 3 �1 4 �4

3 0 �4 1 �1

7 4 0 5 3

2 �1 �5 0 �2

8 5 1 6 0

˘
….4/ D

�
NIL 1 4 2 1

4 NIL 4 2 1

4 3 NIL 2 1

4 3 4 NIL 1

4 3 4 5 NIL

˘

D.5/ D

�
0 1 �3 2 �4

3 0 �4 1 �1

7 4 0 5 3

2 �1 �5 0 �2

8 5 1 6 0

˘
….5/ D

�
NIL 3 4 5 1

4 NIL 4 2 1

4 3 NIL 2 1

4 3 4 NIL 1

4 3 4 5 NIL

˘

Figure 25.4 The sequence of matrices D.k/ and ….k/ computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.

25.2 The Floyd-Warshall algorithm 697

choose the same predecessor of j that we chose on a shortest path from i with all
intermediate vertices in the set f1; 2; : : : ; k � 1g. Formally, for k � 1,

�
.k/
ij D

(
�

.k�1/
ij if d

.k�1/
ij � d

.k�1/

ik
C d

.k�1/

kj
;

�
.k�1/

kj
if d

.k�1/
ij > d

.k�1/

ik
C d

.k�1/

kj
:

(25.7)

We leave the incorporation of the ….k/ matrix computations into the FLOYD-
WARSHALL procedure as Exercise 25.2-3. Figure 25.4 shows the sequence of ….k/

matrices that the resulting algorithm computes for the graph of Figure 25.1. The
exercise also asks for the more difficult task of proving that the predecessor sub-
graph G�;i is a shortest-paths tree with root i . Exercise 25.2-7 asks for yet another
way to reconstruct shortest paths.

Transitive closure of a directed graph

Given a directed graph G D .V; E/ with vertex set V D f1; 2; : : : ; ng, we might
wish to determine whether G contains a path from i to j for all vertex pairs
i; j 2 V . We define the transitive closure of G as the graph G� D .V; E�/, where

E� D f.i; j / W there is a path from vertex i to vertex j in Gg :

One way to compute the transitive closure of a graph in ‚.n3/ time is to assign
a weight of 1 to each edge of E and run the Floyd-Warshall algorithm. If there is a
path from vertex i to vertex j , we get dij < n. Otherwise, we get dij D1.

There is another, similar way to compute the transitive closure of G in ‚.n3/

time that can save time and space in practice. This method substitutes the logical
operations _ (logical OR) and ^ (logical AND) for the arithmetic operations min
and C in the Floyd-Warshall algorithm. For i; j; k D 1; 2; : : : ; n, we define t

.k/
ij to

be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate
vertices in the set f1; 2; : : : ; kg, and 0 otherwise. We construct the transitive closure
G� D .V; E�/ by putting edge .i; j / into E� if and only if t

.n/
ij D 1. A recursive

definition of t
.k/
ij , analogous to recurrence (25.5), is

t
.0/
ij D

(
0 if i ¤ j and .i; j / 62 E ;

1 if i D j or .i; j / 2 E ;

and for k � 1,

t
.k/
ij D t

.k�1/
ij _ �t .k�1/

ik
^ t

.k�1/

kj

�
: (25.8)

As in the Floyd-Warshall algorithm, we compute the matrices T .k/ D �
t

.k/
ij

�
in

order of increasing k.

698 Chapter 25 All-Pairs Shortest Paths

1 2

4 3

T .0/ D

�
1 0 0 0

0 1 1 1

0 1 1 0

1 0 1 1

�
T .1/ D

�
1 0 0 0

0 1 1 1

0 1 1 0

1 0 1 1

�
T .2/ D

�
1 0 0 0

0 1 1 1

0 1 1 1

1 0 1 1

�

T .3/ D

�
1 0 0 0

0 1 1 1

0 1 1 1

1 1 1 1

�
T .4/ D

�
1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

�
Figure 25.5 A directed graph and the matrices T .k/ computed by the transitive-closure algorithm.

TRANSITIVE-CLOSURE.G/

1 n D jG:Vj
2 let T .0/ D �t .0/

ij

�
be a new n 	 n matrix

3 for i D 1 to n

4 for j D 1 to n

5 if i == j or .i; j / 2 G:E
6 t

.0/
ij D 1

7 else t
.0/
ij D 0

8 for k D 1 to n

9 let T .k/ D �t .k/
ij

�
be a new n 	 n matrix

10 for i D 1 to n

11 for j D 1 to n

12 t
.k/
ij D t

.k�1/
ij _ �t .k�1/

ik
^ t

.k�1/

kj

�
13 return T .n/

Figure 25.5 shows the matrices T .k/ computed by the TRANSITIVE-CLOSURE

procedure on a sample graph. The TRANSITIVE-CLOSURE procedure, like the
Floyd-Warshall algorithm, runs in ‚.n3/ time. On some computers, though, log-
ical operations on single-bit values execute faster than arithmetic operations on
integer words of data. Moreover, because the direct transitive-closure algorithm
uses only boolean values rather than integer values, its space requirement is less

25.2 The Floyd-Warshall algorithm 699

than the Floyd-Warshall algorithm’s by a factor corresponding to the size of a word
of computer storage.

Exercises

25.2-1
Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2.
Show the matrix D.k/ that results for each iteration of the outer loop.

25.2-2
Show how to compute the transitive closure using the technique of Section 25.1.

25.2-3
Modify the FLOYD-WARSHALL procedure to compute the ….k/ matrices according
to equations (25.6) and (25.7). Prove rigorously that for all i 2 V , the predecessor
subgraph G�;i is a shortest-paths tree with root i . (Hint: To show that G�;i is
acyclic, first show that �

.k/
ij D l implies d

.k/
ij � d

.k/

il
C wlj , according to the

definition of �
.k/
ij . Then, adapt the proof of Lemma 24.16.)

25.2-4
As it appears above, the Floyd-Warshall algorithm requires ‚.n3/ space, since we
compute d

.k/
ij for i; j; k D 1; 2; : : : ; n. Show that the following procedure, which

simply drops all the superscripts, is correct, and thus only ‚.n2/ space is required.

FLOYD-WARSHALL0.W /

1 n D W:rows
2 D D W

3 for k D 1 to n

4 for i D 1 to n

5 for j D 1 to n

6 dij D min .dij ; dik C dkj /

7 return D

25.2-5
Suppose that we modify the way in which equation (25.7) handles equality:

�
.k/
ij D

(
�

.k�1/
ij if d

.k�1/
ij < d

.k�1/

ik
C d

.k�1/

kj
;

�
.k�1/

kj
if d

.k�1/
ij � d

.k�1/

ik
C d

.k�1/

kj
:

Is this alternative definition of the predecessor matrix … correct?

700 Chapter 25 All-Pairs Shortest Paths

25.2-6
How can we use the output of the Floyd-Warshall algorithm to detect the presence
of a negative-weight cycle?

25.2-7
Another way to reconstruct shortest paths in the Floyd-Warshall algorithm uses
values �

.k/
ij for i; j; k D 1; 2; : : : ; n, where �

.k/
ij is the highest-numbered interme-

diate vertex of a shortest path from i to j in which all intermediate vertices are
in the set f1; 2; : : : ; kg. Give a recursive formulation for �

.k/
ij , modify the FLOYD-

WARSHALL procedure to compute the �
.k/
ij values, and rewrite the PRINT-ALL-

PAIRS-SHORTEST-PATH procedure to take the matrix ˆ D �
�

.n/
ij

�
as an input.

How is the matrix ˆ like the s table in the matrix-chain multiplication problem of
Section 15.2?

25.2-8
Give an O.VE/-time algorithm for computing the transitive closure of a directed
graph G D .V; E/.

25.2-9
Suppose that we can compute the transitive closure of a directed acyclic graph in
f .jV j ; jEj/ time, where f is a monotonically increasing function of jV j and jEj.
Show that the time to compute the transitive closure G� D .V; E�/ of a general
directed graph G D .V; E/ is then f .jV j ; jEj/CO.V CE�/.

25.3 Johnson’s algorithm for sparse graphs

Johnson’s algorithm finds shortest paths between all pairs in O.V 2 lg V C VE/

time. For sparse graphs, it is asymptotically faster than either repeated squaring of
matrices or the Floyd-Warshall algorithm. The algorithm either returns a matrix of
shortest-path weights for all pairs of vertices or reports that the input graph contains
a negative-weight cycle. Johnson’s algorithm uses as subroutines both Dijkstra’s
algorithm and the Bellman-Ford algorithm, which Chapter 24 describes.

Johnson’s algorithm uses the technique of reweighting, which works as follows.
If all edge weights w in a graph G D .V; E/ are nonnegative, we can find short-
est paths between all pairs of vertices by running Dijkstra’s algorithm once from
each vertex; with the Fibonacci-heap min-priority queue, the running time of this
all-pairs algorithm is O.V 2 lg V C VE/. If G has negative-weight edges but no
negative-weight cycles, we simply compute a new set of nonnegative edge weights

25.3 Johnson’s algorithm for sparse graphs 701

that allows us to use the same method. The new set of edge weights yw must satisfy
two important properties:

1. For all pairs of vertices u; � 2 V , a path p is a shortest path from u to � using
weight function w if and only if p is also a shortest path from u to � using
weight function yw.

2. For all edges .u; �/, the new weight yw.u; �/ is nonnegative.

As we shall see in a moment, we can preprocess G to determine the new weight
function yw in O.VE/ time.

Preserving shortest paths by reweighting

The following lemma shows how easily we can reweight the edges to satisfy the
first property above. We use ı to denote shortest-path weights derived from weight
function w and yı to denote shortest-path weights derived from weight function yw.

Lemma 25.1 (Reweighting does not change shortest paths)
Given a weighted, directed graph G D .V; E/ with weight function w W E ! R,
let h W V ! R be any function mapping vertices to real numbers. For each edge
.u; �/ 2 E, define

yw.u; �/ D w.u; �/C h.u/ � h.�/ : (25.9)

Let p D h�0; �1; : : : ; �ki be any path from vertex �0 to vertex �k. Then p is a
shortest path from �0 to �k with weight function w if and only if it is a shortest path
with weight function yw. That is, w.p/ D ı.�0; �k/ if and only if yw.p/ D yı.�0; �k/.
Furthermore, G has a negative-weight cycle using weight function w if and only
if G has a negative-weight cycle using weight function yw.

Proof We start by showing that

yw.p/ D w.p/C h.�0/ � h.�k/ : (25.10)

We have

yw.p/ D
kX

iD1

yw.�i�1; �i /

D
kX

iD1

.w.�i�1; �i /C h.�i�1/ � h.�i //

D
kX

iD1

w.�i�1; �i /C h.�0/ � h.�k/ (because the sum telescopes)

D w.p/C h.�0/ � h.�k/ :

702 Chapter 25 All-Pairs Shortest Paths

Therefore, any path p from �0 to �k has yw.p/ D w.p/ C h.�0/ � h.�k/. Be-
cause h.�0/ and h.�k/ do not depend on the path, if one path from �0 to �k is
shorter than another using weight function w, then it is also shorter using yw. Thus,
w.p/ D ı.�0; �k/ if and only if yw.p/ D yı.�0; �k/.

Finally, we show that G has a negative-weight cycle using weight function w if
and only if G has a negative-weight cycle using weight function yw. Consider any
cycle c D h�0; �1; : : : ; �ki, where �0 D �k. By equation (25.10),

yw.c/ D w.c/C h.�0/ � h.�k/

D w.c/ ;

and thus c has negative weight using w if and only if it has negative weight us-
ing yw.

Producing nonnegative weights by reweighting

Our next goal is to ensure that the second property holds: we want yw.u; �/ to be
nonnegative for all edges .u; �/ 2 E. Given a weighted, directed graph G D
.V; E/ with weight function w W E ! R, we make a new graph G0 D .V 0; E 0/,
where V 0 D V [fsg for some new vertex s 62 V and E 0 D E [f.s; �/ W � 2 V g.
We extend the weight function w so that w.s; �/ D 0 for all � 2 V . Note that
because s has no edges that enter it, no shortest paths in G0, other than those with
source s, contain s. Moreover, G0 has no negative-weight cycles if and only if G

has no negative-weight cycles. Figure 25.6(a) shows the graph G0 corresponding
to the graph G of Figure 25.1.

Now suppose that G and G0 have no negative-weight cycles. Let us define
h.�/ D ı.s; �/ for all � 2 V 0. By the triangle inequality (Lemma 24.10),
we have h.�/ � h.u/ C w.u; �/ for all edges .u; �/ 2 E 0. Thus, if we de-
fine the new weights yw by reweighting according to equation (25.9), we have
yw.u; �/ D w.u; �/C h.u/ � h.�/ � 0, and we have satisfied the second property.
Figure 25.6(b) shows the graph G0 from Figure 25.6(a) with reweighted edges.

Computing all-pairs shortest paths

Johnson’s algorithm to compute all-pairs shortest paths uses the Bellman-Ford al-
gorithm (Section 24.1) and Dijkstra’s algorithm (Section 24.3) as subroutines. It
assumes implicitly that the edges are stored in adjacency lists. The algorithm re-
turns the usual jV j 	 jV j matrix D D dij , where dij D ı.i; j /, or it reports that
the input graph contains a negative-weight cycle. As is typical for an all-pairs
shortest-paths algorithm, we assume that the vertices are numbered from 1 to jV j.

25.3 Johnson’s algorithm for sparse graphs 703

2

1

5

4

3 4

82

6

7 1

0

0

0

0

0

0

0

2/1

2/–3

2/20/–4

2/3 0/–4

0/12/–1

2/7

0/4

0/52/3

2/2

0/–1

0/–5

2/–2

4/8

2/5

2/1

2/6

(a)

(c)

(b)

–4

–4

–1

–5

–5

3

2

1

5

4

4 0

132

2

10 0

5

1

0

4

0

0

0

0

–4

–1

–5

0

3

2

1

5 4

4 0

132

2

10 0
0 0

3

(d)

2

1

5 4

4 0

132

2

10 0
0 0

3

(e)

2

1

5 4

4 0

132

2

10 0
0 0

3

(f)

2

1

5 4

4 0

132

2

10 0
0 0

3

(g)

2

1

5 4

4 0

132

2

10 0
0 0

3

0/00/0

0/0

0/0

0/0

00

Figure 25.6 Johnson’s all-pairs shortest-paths algorithm run on the graph of Figure 25.1. Ver-
tex numbers appear outside the vertices. (a) The graph G0 with the original weight function w.
The new vertex s is black. Within each vertex � is h.�/ D ı.s; �/. (b) After reweighting each
edge .u; �/ with weight function yw.u; �/ D w.u; �/C h.u/ � h.�/. (c)–(g) The result of running

is black, and shaded edges are in the shortest-paths tree computed by the algorithm. Within each
vertex � are the values yı.u; �/ and ı.u; �/, separated by a slash. The value du� D ı.u; �/ is equal to
yı. �/C h.�/� h.u/

Dijkstra’s algorithm on each vertex of G using weight function wy. In each part, the source vertex u

.u;

704 Chapter 25 All-Pairs Shortest Paths

JOHNSON.G; w/

1 compute G0, where G0:V D G:V [fsg,
G0:E D G:E [f.s; �/ W � 2 G:Vg, and
w.s; �/ D 0 for all � 2 G:V

2 if BELLMAN-FORD.G0; w; s/ == FALSE

3 print “the input graph contains a negative-weight cycle”
4 else for each vertex � 2 G0:V
5 set h.�/ to the value of ı.s; �/

computed by the Bellman-Ford algorithm
6 for each edge .u; �/ 2 G0:E
7 yw.u; �/ D w.u; �/C h.u/ � h.�/

8 let D D .du�/ be a new n 	 n matrix
9 for each vertex u 2 G:V

10 run DIJKSTRA.G; yw; u/ to compute yı.u; �/ for all � 2 G:V
11 for each vertex � 2 G:V
12 du� D yı.u; �/C h.�/ � h.u/

13 return D

This code simply performs the actions we specified earlier. Line 1 produces G0.
Line 2 runs the Bellman-Ford algorithm on G0 with weight function w and source
vertex s. If G0, and hence G, contains a negative-weight cycle, line 3 reports the
problem. Lines 4–12 assume that G0 contains no negative-weight cycles. Lines 4–5
set h.�/ to the shortest-path weight ı.s; �/ computed by the Bellman-Ford algo-
rithm for all � 2 V 0. Lines 6–7 compute the new weights yw. For each pair of ver-
tices u; � 2 V , the for loop of lines 9–12 computes the shortest-path weight yı.u; �/

by calling Dijkstra’s algorithm once from each vertex in V . Line 12 stores in
matrix entry du� the correct shortest-path weight ı.u; �/, calculated using equa-
tion (25.10). Finally, line 13 returns the completed D matrix. Figure 25.6 depicts
the execution of Johnson’s algorithm.

If we implement the min-priority queue in Dijkstra’s algorithm by a Fibonacci
heap, Johnson’s algorithm runs in O.V 2 lg V CVE/ time. The simpler binary min-
heap implementation yields a running time of O.VE lg V /, which is still asymp-
totically faster than the Floyd-Warshall algorithm if the graph is sparse.

Exercises

25.3-1
Use Johnson’s algorithm to find the shortest paths between all pairs of vertices in
the graph of Figure 25.2. Show the values of h and yw computed by the algorithm.

Problems for Chapter 25 705

25.3-2
What is the purpose of adding the new vertex s to V , yielding V 0?

25.3-3
Suppose that w.u; �/ � 0 for all edges .u; �/ 2 E. What is the relationship
between the weight functions w and yw?

25.3-4
Professor Greenstreet claims that there is a simpler way to reweight edges than
the method used in Johnson’s algorithm. Letting w� D min.u;�/2E fw.u; �/g, just
define yw.u; �/ D w.u; �/ � w� for all edges .u; �/ 2 E. What is wrong with the
professor’s method of reweighting?

25.3-5
Suppose that we run Johnson’s algorithm on a directed graph G with weight func-
tion w. Show that if G contains a 0-weight cycle c, then yw.u; �/ D 0 for every
edge .u; �/ in c.

25.3-6
Professor Michener claims that there is no need to create a new source vertex in
line 1 of JOHNSON. He claims that instead we can just use G0 D G and let s be any
vertex. Give an example of a weighted, directed graph G for which incorporating
the professor’s idea into JOHNSON causes incorrect answers. Then show that if G

is strongly connected (every vertex is reachable from every other vertex), the results
returned by JOHNSON with the professor’s modification are correct.

Problems

25-1 Transitive closure of a dynamic graph
Suppose that we wish to maintain the transitive closure of a directed graph G D
.V; E/ as we insert edges into E. That is, after each edge has been inserted, we
want to update the transitive closure of the edges inserted so far. Assume that the
graph G has no edges initially and that we represent the transitive closure as a
boolean matrix.

a. Show how to update the transitive closure G� D .V; E�/ of a graph G D .V; E/

in O.V 2/ time when a new edge is added to G.

b. Give an example of a graph G and an edge e such that �.V 2/ time is required
to update the transitive closure after the insertion of e into G, no matter what
algorithm is used.

706 Chapter 25 All-Pairs Shortest Paths

c. Describe an efficient algorithm for updating the transitive closure as edges are
inserted into the graph. For any sequence of n insertions, your algorithm should
run in total time

Pn

iD1 ti D O.V 3/, where ti is the time to update the transitive
closure upon inserting the i th edge. Prove that your algorithm attains this time
bound.

25-2 Shortest paths in �-dense graphs
A graph G D .V; E/ is �-dense if jEj D ‚.V 1C�/ for some constant � in the
range 0 < � � 1. By using d -ary min-heaps (see Problem 6-2) in shortest-paths
algorithms on �-dense graphs, we can match the running times of Fibonacci-heap-
based algorithms without using as complicated a data structure.

a. What are the asymptotic running times for INSERT, EXTRACT-MIN, and
DECREASE-KEY, as a function of d and the number n of elements in a d -ary
min-heap? What are these running times if we choose d D ‚.n˛/ for some
constant 0 < ˛ � 1? Compare these running times to the amortized costs of
these operations for a Fibonacci heap.

b. Show how to compute shortest paths from a single source on an �-dense directed
graph G D .V; E/ with no negative-weight edges in O.E/ time. (Hint: Pick d

as a function of �.)

c. Show how to solve the all-pairs shortest-paths problem on an �-dense directed
graph G D .V; E/ with no negative-weight edges in O.VE/ time.

d. Show how to solve the all-pairs shortest-paths problem in O.VE/ time on an
�-dense directed graph G D .V; E/ that may have negative-weight edges but
has no negative-weight cycles.

Chapter notes

Lawler [224] has a good discussion of the all-pairs shortest-paths problem, al-
though he does not analyze solutions for sparse graphs. He attributes the matrix-
multiplication algorithm to the folklore. The Floyd-Warshall algorithm is due to
Floyd [105], who based it on a theorem of Warshall [349] that describes how to
compute the transitive closure of boolean matrices. Johnson’s algorithm is taken
from [192].

Several researchers have given improved algorithms for computing shortest
paths via matrix multiplication. Fredman [111] shows how to solve the all-
pairs shortest paths problem using O.V 5=2/ comparisons between sums of edge

Notes for Chapter 25 707

weights and obtains an algorithm that runs in O.V 3.lg lg V= lg V /1=3/ time, which
is slightly better than the running time of the Floyd-Warshall algorithm. Han [159]
reduced the running time to O.V 3.lg lg V= lg V /5=4/. Another line of research
demonstrates that we can apply algorithms for fast matrix multiplication (see the
chapter notes for Chapter 4) to the all-pairs shortest paths problem. Let O.n!/ be
the running time of the fastest algorithm for multiplying n 	 n matrices; currently
! < 2:376 [78]. Galil and Margalit [123, 124] and Seidel [308] designed algo-
rithms that solve the all-pairs shortest paths problem in undirected, unweighted
graphs in .V !p.V // time, where p.n/ denotes a particular function that is poly-
logarithmically bounded in n. In dense graphs, these algorithms are faster than
the O.VE/ time needed to perform jV j breadth-first searches. Several researchers
have extended these results to give algorithms for solving the all-pairs shortest
paths problem in undirected graphs in which the edge weights are integers in the
range f1; 2; : : : ; W g. The asymptotically fastest such algorithm, by Shoshan and
Zwick [316], runs in time O.W V !p.V W //.

Karger, Koller, and Phillips [196] and independently McGeoch [247] have given
a time bound that depends on E�, the set of edges in E that participate in some
shortest path. Given a graph with nonnegative edge weights, their algorithms run in
O.VE�CV 2 lg V / time and improve upon running Dijkstra’s algorithm jV j times
when jE�j D o.E/.

Baswana, Hariharan, and Sen [33] examined decremental algorithms for main-
taining all-pairs shortest paths and transitive-closure information. Decremen-
tal algorithms allow a sequence of intermixed edge deletions and queries; by
comparison, Problem 25-1, in which edges are inserted, asks for an incremen-
tal algorithm. The algorithms by Baswana, Hariharan, and Sen are randomized
and, when a path exists, their transitive-closure algorithm can fail to report it
with probability 1=nc for an arbitrary c > 0. The query times are O.1/ with
high probability. For transitive closure, the amortized time for each update is
O.V 4=3 lg1=3 V /. For all-pairs shortest paths, the update times depend on the
queries. For queries just giving the shortest-path weights, the amortized time per
update is O.V 3=E lg2 V /. To report the actual shortest path, the amortized up-
date time is min.O.V 3=2

p
lg V /; O.V 3=E lg2 V //. Demetrescu and Italiano [84]

showed how to handle update and query operations when edges are both inserted
and deleted, as long as each given edge has a bounded range of possible values
drawn from the real numbers.

Aho, Hopcroft, and Ullman [5] defined an algebraic structure known as a “closed
semiring,” which serves as a general framework for solving path problems in di-
rected graphs. Both the Floyd-Warshall algorithm and the transitive-closure algo-
rithm from Section 25.2 are instantiations of an all-pairs algorithm based on closed
semirings. Maggs and Plotkin [240] showed how to find minimum spanning trees
using a closed semiring.

26 Maximum Flow

Just as we can model a road map as a directed graph in order to find the shortest
path from one point to another, we can also interpret a directed graph as a “flow
network” and use it to answer questions about material flows. Imagine a mate-
rial coursing through a system from a source, where the material is produced, to
a sink, where it is consumed. The source produces the material at some steady
rate, and the sink consumes the material at the same rate. The “flow” of the mate-
rial at any point in the system is intuitively the rate at which the material moves.
Flow networks can model many problems, including liquids flowing through pipes,
parts through assembly lines, current through electrical networks, and information
through communication networks.

We can think of each directed edge in a flow network as a conduit for the mate-
rial. Each conduit has a stated capacity, given as a maximum rate at which the ma-
terial can flow through the conduit, such as 200 gallons of liquid per hour through
a pipe or 20 amperes of electrical current through a wire. Vertices are conduit
junctions, and other than the source and sink, material flows through the vertices
without collecting in them. In other words, the rate at which material enters a ver-
tex must equal the rate at which it leaves the vertex. We call this property “flow
conservation,” and it is equivalent to Kirchhoff’s current law when the material is
electrical current.

In the maximum-flow problem, we wish to compute the greatest rate at which
we can ship material from the source to the sink without violating any capacity
constraints. It is one of the simplest problems concerning flow networks and, as
we shall see in this chapter, this problem can be solved by efficient algorithms.
Moreover, we can adapt the basic techniques used in maximum-flow algorithms to
solve other network-flow problems.

This chapter presents two general methods for solving the maximum-flow prob-
lem. Section 26.1 formalizes the notions of flow networks and flows, formally
defining the maximum-flow problem. Section 26.2 describes the classical method
of Ford and Fulkerson for finding maximum flows. An application of this method,

26.1 Flow networks 709

finding a maximum matching in an undirected bipartite graph, appears in Sec-
tion 26.3. Section 26.4 presents the push-relabel method, which underlies many of
the fastest algorithms for network-flow problems. Section 26.5 covers the “relabel-
to-front” algorithm, a particular implementation of the push-relabel method that
runs in time O.V 3/. Although this algorithm is not the fastest algorithm known,
it illustrates some of the techniques used in the asymptotically fastest algorithms,
and it is reasonably efficient in practice.

26.1 Flow networks

In this section, we give a graph-theoretic definition of flow networks, discuss their
properties, and define the maximum-flow problem precisely. We also introduce
some helpful notation.

Flow networks and flows

A flow network G D .V; E/ is a directed graph in which each edge .u; �/ 2 E

has a nonnegative capacity c.u; �/ � 0. We further require that if E contains an
edge .u; �/, then there is no edge .�; u/ in the reverse direction. (We shall see
shortly how to work around this restriction.) If .u; �/ 62 E, then for convenience
we define c.u; �/ D 0, and we disallow self-loops. We distinguish two vertices
in a flow network: a source s and a sink t . For convenience, we assume that each
vertex lies on some path from the source to the sink. That is, for each vertex � 2 V ,
the flow network contains a path s � � � t . The graph is therefore connected
and, since each vertex other than s has at least one entering edge, jEj � jV j � 1.
Figure 26.1 shows an example of a flow network.

We are now ready to define flows more formally. Let G D .V; E/ be a flow
network with a capacity function c. Let s be the source of the network, and let t be
the sink. A flow in G is a real-valued function f W V 	 V ! R that satisfies the
following two properties:

Capacity constraint: For all u; � 2 V , we require 0 � f .u; �/ � c.u; �/.

Flow conservation: For all u 2 V � fs; tg, we requireX
�2V

f .�; u/ D
X
�2V

f .u; �/ :

When .u; �/ 62 E, there can be no flow from u to �, and f .u; �/ D 0.

710 Chapter 26 Maximum Flow

s t

16

12
20

794

13

14

4

Edmonton

Calgary

Saskatoon

Regina

Vancouver Winnipeg

s t

11/16
12/12

15/20

7/
7

4/91/
4

8/13
11/14

4/4

(a) (b)

v1 v1

v2 v2

v3 v3

v4v4

Figure 26.1 (a) A flow network G D .V; E/ for the Lucky Puck Company’s trucking problem.
The Vancouver factory is the source s, and the Winnipeg warehouse is the sink t . The company ships
pucks through intermediate cities, but only c.u; �/ crates per day can go from city u to city �. Each
edge is labeled with its capacity. (b) A flow f in G with value jf j D 19. Each edge .u; �/ is labeled
by f .u; �/=c.u; �/. The slash notation merely separates the flow and capacity; it does not indicate
division.

We call the nonnegative quantity f .u; �/ the flow from vertex u to vertex �. The
value jf j of a flow f is defined as

jf j D
X
�2V

f .s; �/ �
X
�2V

f .�; s/ ; (26.1)

that is, the total flow out of the source minus the flow into the source. (Here, the j�j
notation denotes flow value, not absolute value or cardinality.) Typically, a flow
network will not have any edges into the source, and the flow into the source, given
by the summation

P
�2V f .�; s/, will be 0. We include it, however, because when

we introduce residual networks later in this chapter, the flow into the source will
become significant. In themaximum-flow problem, we are given a flow network G

with source s and sink t , and we wish to find a flow of maximum value.
Before seeing an example of a network-flow problem, let us briefly explore the

definition of flow and the two flow properties. The capacity constraint simply
says that the flow from one vertex to another must be nonnegative and must not
exceed the given capacity. The flow-conservation property says that the total flow
into a vertex other than the source or sink must equal the total flow out of that
vertex—informally, “flow in equals flow out.”

An example of flow

A flow network can model the trucking problem shown in Figure 26.1(a). The
Lucky Puck Company has a factory (source s) in Vancouver that manufactures
hockey pucks, and it has a warehouse (sink t) in Winnipeg that stocks them. Lucky

26.1 Flow networks 711

s t

16

12
20

794

13

14

4

(a) (b)

v1

v2

v3

v4

10 s t

16

12
20

794

13

14

4

v1

v2

v3

v4

v′
10

10

Figure 26.2 Converting a network with antiparallel edges to an equivalent one with no antiparallel
edges. (a)A flow network containing both the edges .�1; �2/ and .�2; �1/. (b)An equivalent network
with no antiparallel edges. We add the new vertex �0, and we replace edge .�1; �2/ by the pair of
edges .�1; �0/ and .�0; �2/, both with the same capacity as .�1; �2/.

Puck leases space on trucks from another firm to ship the pucks from the factory
to the warehouse. Because the trucks travel over specified routes (edges) between
cities (vertices) and have a limited capacity, Lucky Puck can ship at most c.u; �/

crates per day between each pair of cities u and � in Figure 26.1(a). Lucky Puck
has no control over these routes and capacities, and so the company cannot alter
the flow network shown in Figure 26.1(a). They need to determine the largest
number p of crates per day that they can ship and then to produce this amount, since
there is no point in producing more pucks than they can ship to their warehouse.
Lucky Puck is not concerned with how long it takes for a given puck to get from
the factory to the warehouse; they care only that p crates per day leave the factory
and p crates per day arrive at the warehouse.

We can model the “flow” of shipments with a flow in this network because the
number of crates shipped per day from one city to another is subject to a capacity
constraint. Additionally, the model must obey flow conservation, for in a steady
state, the rate at which pucks enter an intermediate city must equal the rate at which
they leave. Otherwise, crates would accumulate at intermediate cities.

Modeling problems with antiparallel edges

Suppose that the trucking firm offered Lucky Puck the opportunity to lease space
for 10 crates in trucks going from Edmonton to Calgary. It would seem natural to
add this opportunity to our example and form the network shown in Figure 26.2(a).
This network suffers from one problem, however: it violates our original assump-
tion that if an edge .�1; �2/ 2 E, then .�2; �1/ 62 E. We call the two edges .�1; �2/

and .�2; �1/ antiparallel. Thus, if we wish to model a flow problem with antipar-
allel edges, we must transform the network into an equivalent one containing no

712 Chapter 26 Maximum Flow

antiparallel edges. Figure 26.2(b) displays this equivalent network. We choose
one of the two antiparallel edges, in this case .�1; �2/, and split it by adding a new
vertex � 0 and replacing edge .�1; �2/ with the pair of edges .�1; � 0/ and .� 0; �2/.
We also set the capacity of both new edges to the capacity of the original edge.
The resulting network satisfies the property that if an edge is in the network, the
reverse edge is not. Exercise 26.1-1 asks you to prove that the resulting network is
equivalent to the original one.

Thus, we see that a real-world flow problem might be most naturally modeled
by a network with antiparallel edges. It will be convenient to disallow antipar-
allel edges, however, and so we have a straightforward way to convert a network
containing antiparallel edges into an equivalent one with no antiparallel edges.

Networks with multiple sources and sinks

A maximum-flow problem may have several sources and sinks, rather than just
one of each. The Lucky Puck Company, for example, might actually have a set
of m factories fs1; s2; : : : ; smg and a set of n warehouses ft1; t2; : : : ; tng, as shown
in Figure 26.3(a). Fortunately, this problem is no harder than ordinary maximum
flow.

We can reduce the problem of determining a maximum flow in a network with
multiple sources and multiple sinks to an ordinary maximum-flow problem. Fig-
ure 26.3(b) shows how to convert the network from (a) to an ordinary flow network
with only a single source and a single sink. We add a supersource s and add a
directed edge .s; si / with capacity c.s; si / D 1 for each i D 1; 2; : : : ; m. We also
create a new supersink t and add a directed edge .ti ; t/ with capacity c.ti ; t/ D1
for each i D 1; 2; : : : ; n. Intuitively, any flow in the network in (a) corresponds to
a flow in the network in (b), and vice versa. The single source s simply provides
as much flow as desired for the multiple sources si , and the single sink t likewise
consumes as much flow as desired for the multiple sinks ti . Exercise 26.1-2 asks
you to prove formally that the two problems are equivalent.

Exercises

26.1-1
Show that splitting an edge in a flow network yields an equivalent network. More
formally, suppose that flow network G contains edge .u; �/, and we create a new
flow network G0 by creating a new vertex x and replacing .u; �/ by new edges
.u; x/ and .x; �/ with c.u; x/ D c.x; �/ D c.u; �/. Show that a maximum flow
in G0 has the same value as a maximum flow in G.

26.1 Flow networks 713

10

(a)

12

5

8

14

7

11

2

3

15

6

20

13

18

10

12

5

8

14

7

11

2

3

15

6

20

13

18

∞ ∞

∞

∞

∞

∞

∞

∞

s1 s1

s2 s2

s3s3

s4 s4

s5s5

t1 t1

t2t2

t3 t3

(b)

s t

Figure 26.3 Converting a multiple-source, multiple-sink maximum-flow problem into a problem
with a single source and a single sink. (a) A flow network with five sources S D fs1; s2; s3; s4; s5g
and three sinks T D ft1; t2; t3g. (b) An equivalent single-source, single-sink flow network. We add
a supersource s and an edge with infinite capacity from s to each of the multiple sources. We also
add a supersink t and an edge with infinite capacity from each of the multiple sinks to t .

26.1-2
Extend the flow properties and definitions to the multiple-source, multiple-sink
problem. Show that any flow in a multiple-source, multiple-sink flow network
corresponds to a flow of identical value in the single-source, single-sink network
obtained by adding a supersource and a supersink, and vice versa.

26.1-3
Suppose that a flow network G D .V; E/ violates the assumption that the network
contains a path s � � � t for all vertices � 2 V . Let u be a vertex for which there
is no path s � u � t . Show that there must exist a maximum flow f in G such
that f .u; �/ D f .�; u/ D 0 for all vertices � 2 V .

714 Chapter 26 Maximum Flow

26.1-4
Let f be a flow in a network, and let ˛ be a real number. The scalar flow product,
denoted f̨ , is a function from V 	 V to R defined by

. f̨ /.u; �/ D ˛ � f .u; �/ :

Prove that the flows in a network form a convex set. That is, show that if f1 and f2

are flows, then so is f̨1 C .1� ˛/f2 for all ˛ in the range 0 � ˛ � 1.

26.1-5
State the maximum-flow problem as a linear-programming problem.

26.1-6
Professor Adam has two children who, unfortunately, dislike each other. The prob-
lem is so severe that not only do they refuse to walk to school together, but in fact
each one refuses to walk on any block that the other child has stepped on that day.
The children have no problem with their paths crossing at a corner. Fortunately
both the professor’s house and the school are on corners, but beyond that he is not
sure if it is going to be possible to send both of his children to the same school.
The professor has a map of his town. Show how to formulate the problem of de-
termining whether both his children can go to the same school as a maximum-flow
problem.

26.1-7
Suppose that, in addition to edge capacities, a flow network has vertex capacities.
That is each vertex � has a limit l.�/ on how much flow can pass though �. Show
how to transform a flow network G D .V; E/ with vertex capacities into an equiv-
alent flow network G0 D .V 0; E 0/ without vertex capacities, such that a maximum
flow in G0 has the same value as a maximum flow in G. How many vertices and
edges does G0 have?

26.2 The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for solving the maximum-flow
problem. We call it a “method” rather than an “algorithm” because it encompasses
several implementations with differing running times. The Ford-Fulkerson method
depends on three important ideas that transcend the method and are relevant to
many flow algorithms and problems: residual networks, augmenting paths, and
cuts. These ideas are essential to the important max-flow min-cut theorem (The-
orem 26.6), which characterizes the value of a maximum flow in terms of cuts of

26.2 The Ford-Fulkerson method 715

the flow network. We end this section by presenting one specific implementation
of the Ford-Fulkerson method and analyzing its running time.

The Ford-Fulkerson method iteratively increases the value of the flow. We start
with f .u; �/ D 0 for all u; � 2 V , giving an initial flow of value 0. At each
iteration, we increase the flow value in G by finding an “augmenting path” in an
associated “residual network” Gf . Once we know the edges of an augmenting
path in Gf , we can easily identify specific edges in G for which we can change
the flow so that we increase the value of the flow. Although each iteration of the
Ford-Fulkerson method increases the value of the flow, we shall see that the flow
on any particular edge of G may increase or decrease; decreasing the flow on some
edges may be necessary in order to enable an algorithm to send more flow from the
source to the sink. We repeatedly augment the flow until the residual network has
no more augmenting paths. The max-flow min-cut theorem will show that upon
termination, this process yields a maximum flow.

FORD-FULKERSON-METHOD.G; s; t/

1 initialize flow f to 0

2 while there exists an augmenting path p in the residual network Gf

3 augment flow f along p

4 return f

In order to implement and analyze the Ford-Fulkerson method, we need to intro-
duce several additional concepts.

Residual networks

Intuitively, given a flow network G and a flow f , the residual network Gf consists
of edges with capacities that represent how we can change the flow on edges of G.
An edge of the flow network can admit an amount of additional flow equal to the
edge’s capacity minus the flow on that edge. If that value is positive, we place
that edge into Gf with a “residual capacity” of cf .u; �/ D c.u; �/ � f .u; �/.
The only edges of G that are in Gf are those that can admit more flow; those
edges .u; �/ whose flow equals their capacity have cf .u; �/ D 0, and they are not
in Gf .

The residual network Gf may also contain edges that are not in G, however.
As an algorithm manipulates the flow, with the goal of increasing the total flow, it
might need to decrease the flow on a particular edge. In order to represent a pos-
sible decrease of a positive flow f .u; �/ on an edge in G, we place an edge .�; u/

into Gf with residual capacity cf .�; u/ D f .u; �/—that is, an edge that can admit
flow in the opposite direction to .u; �/, at most canceling out the flow on .u; �/.
These reverse edges in the residual network allow an algorithm to send back flow

716 Chapter 26 Maximum Flow

it has already sent along an edge. Sending flow back along an edge is equiva-
lent to decreasing the flow on the edge, which is a necessary operation in many
algorithms.

More formally, suppose that we have a flow network G D .V; E/ with source s

and sink t . Let f be a flow in G, and consider a pair of vertices u; � 2 V . We
define the residual capacity cf .u; �/ by

cf .u; �/ D

�
c.u; �/ � f .u; �/ if .u; �/ 2 E ;

f .�; u/ if .�; u/ 2 E ;

0 otherwise :

(26.2)

Because of our assumption that .u; �/ 2 E implies .�; u/ 62 E, exactly one case in
equation (26.2) applies to each ordered pair of vertices.

As an example of equation (26.2), if c.u; �/ D 16 and f .u; �/ D 11, then we
can increase f .u; �/ by up to cf .u; �/ D 5 units before we exceed the capacity
constraint on edge .u; �/. We also wish to allow an algorithm to return up to 11

units of flow from � to u, and hence cf .�; u/ D 11.
Given a flow network G D .V; E/ and a flow f , the residual network of G

induced by f is Gf D .V; Ef /, where

Ef D f.u; �/ 2 V 	 V W cf .u; �/ > 0g : (26.3)

That is, as promised above, each edge of the residual network, or residual edge,
can admit a flow that is greater than 0. Figure 26.4(a) repeats the flow network G

and flow f of Figure 26.1(b), and Figure 26.4(b) shows the corresponding residual
network Gf . The edges in Ef are either edges in E or their reversals, and thus

jEf j � 2 jEj :

Observe that the residual network Gf is similar to a flow network with capacities
given by cf . It does not satisfy our definition of a flow network because it may
contain both an edge .u; �/ and its reversal .�; u/. Other than this difference, a
residual network has the same properties as a flow network, and we can define a
flow in the residual network as one that satisfies the definition of a flow, but with
respect to capacities cf in the network Gf .

A flow in a residual network provides a roadmap for adding flow to the original
flow network. If f is a flow in G and f 0 is a flow in the corresponding residual
network Gf , we define f "f 0, the augmentation of flow f by f 0, to be a function
from V 	 V to R, defined by

.f "f 0/.u; �/ D
(

f .u; �/C f 0.u; �/ � f 0.�; u/ if .u; �/ 2 E ;

0 otherwise :
(26.4)

26.2 The Ford-Fulkerson method 717

9

15
s t

5
12

5

7

5

31

8

11

4

s t

11/16
12/12

19/20

7/
7

91/
4

12/13
11/14

4/4

(b)

(c)

11
5

3

4
s t

11/16
12/12

15/20

7/
7

4/91/
4

8/13
11/14

4/4

(d)

19
s t

5
12

1

731

12

11

4

11
1

3

v1

v1

v1

v1

v2

v2

v2

v2

v3

v3

v3

v3

v4

v4

v4

v4

(a)

Figure 26.4 (a) The flow network G and flow f of Figure 26.1(b). (b) The residual network Gf

with augmenting path p shaded; its residual capacity is cf .p/ D cf .�2; �3/ D 4. Edges with
residual capacity equal to 0, such as .�1; �3/, are not shown, a convention we follow in the remainder
of this section. (c) The flow in G that results from augmenting along path p by its residual capacity 4.
Edges carrying no flow, such as .�3; �2/, are labeled only by their capacity, another convention we
follow throughout. (d) The residual network induced by the flow in (c).

The intuition behind this definition follows the definition of the residual network.
We increase the flow on .u; �/ by f 0.u; �/ but decrease it by f 0.�; u/ because
pushing flow on the reverse edge in the residual network signifies decreasing the
flow in the original network. Pushing flow on the reverse edge in the residual
network is also known as cancellation. For example, if we send 5 crates of hockey
pucks from u to � and send 2 crates from � to u, we could equivalently (from the
perspective of the final result) just send 3 creates from u to � and none from � to u.
Cancellation of this type is crucial for any maximum-flow algorithm.

Lemma 26.1
Let G D .V; E/ be a flow network with source s and sink t , and let f be a flow
in G. Let Gf be the residual network of G induced by f , and let f 0 be a flow
in Gf . Then the function f "f 0 defined in equation (26.4) is a flow in G with
value jf "f 0j D jf j C jf 0j.

Proof We first verify that f "f 0 obeys the capacity constraint for each edge in E

and flow conservation at each vertex in V � fs; tg.

718 Chapter 26 Maximum Flow

For the capacity constraint, first observe that if .u; �/ 2 E, then cf .�; u/ D
f .u; �/. Therefore, we have f 0.�; u/ � cf .�; u/ D f .u; �/, and hence

.f "f 0/.u; �/ D f .u; �/C f 0.u; �/ � f 0.�; u/ (by equation (26.4))

� f .u; �/C f 0.u; �/ � f .u; �/ (because f 0.�; u/ � f .u; �/)

D f 0.u; �/

� 0 :

In addition,

.f "f 0/.u; �/

D f .u; �/C f 0.u; �/ � f 0.�; u/ (by equation (26.4))

� f .u; �/C f 0.u; �/ (because flows are nonnegative)

� f .u; �/C cf .u; �/ (capacity constraint)

D f .u; �/C c.u; �/ � f .u; �/ (definition of cf)

D c.u; �/ :

For flow conservation, because both f and f 0 obey flow conservation, we have
that for all u 2 V � fs; tg,X
�2V

.f " f 0/.u; �/ D
X
�2V

.f .u; �/C f 0.u; �/ � f 0.�; u//

D
X
�2V

f .u; �/C
X
�2V

f 0.u; �/ �
X
�2V

f 0.�; u/

D
X
�2V

f .�; u/C
X
�2V

f 0.�; u/ �
X
�2V

f 0.u; �/

D
X
�2V

.f .�; u/C f 0.�; u/ � f 0.u; �//

D
X
�2V

.f "f 0/.�; u/ ;

where the third line follows from the second by flow conservation.
Finally, we compute the value of f "f 0. Recall that we disallow antiparallel

edges in G (but not in Gf), and hence for each vertex � 2 V , we know that there
can be an edge .s; �/ or .�; s/, but never both. We define V1 D f� W .s; �/ 2 Eg
to be the set of vertices with edges from s, and V2 D f� W .�; s/ 2 Eg to be the
set of vertices with edges to s. We have V1 [V2 � V and, because we disallow
antiparallel edges, V1 \ V2 D ;. We now compute

jf "f 0j D
X
�2V

.f "f 0/ .s; �/ �
X
�2V

.f " f 0/ .�; s/

D
X
�2V1

.f " f 0/ .s; �/ �
X
�2V2

.f " f 0/ .�; s/ ; (26.5)

26.2 The Ford-Fulkerson method 719

where the second line follows because .f "f 0/.w; x/ is 0 if .w; x/ 62 E. We now
apply the definition of f "f 0 to equation (26.5), and then reorder and group terms
to obtain

jf "f 0j
D

X
�2V1

.f .s; �/C f 0.s; �/ � f 0.�; s// �
X
�2V2

.f .�; s/C f 0.�; s/ � f 0.s; �//

D
X
�2V1

f .s; �/C
X
�2V1

f 0.s; �/ �
X
�2V1

f 0.�; s/

�
X
�2V2

f .�; s/ �
X
�2V2

f 0.�; s/C
X
�2V2

f 0.s; �/

D
X
�2V1

f .s; �/ �
X
�2V2

f .�; s/

C
X
�2V1

f 0.s; �/C
X
�2V2

f 0.s; �/ �
X
�2V1

f 0.�; s/ �
X
�2V2

f 0.�; s/

D
X
�2V1

f .s; �/ �
X
�2V2

f .�; s/C
X

�2V1[V2

f 0.s; �/ �
X

�2V1[V2

f 0.�; s/ : (26.6)

In equation (26.6), we can extend all four summations to sum over V , since each
additional term has value 0. (Exercise 26.2-1 asks you to prove this formally.) We
thus have

jf "f 0j D
X
�2V

f .s; �/ �
X
�2V

f .�; s/C
X
�2V

f 0.s; �/ �
X
�2V

f 0.�; s/ (26.7)

D jf j C jf 0j :

Augmenting paths

Given a flow network G D .V; E/ and a flow f , an augmenting path p is a
simple path from s to t in the residual network Gf . By the definition of the resid-
ual network, we may increase the flow on an edge .u; �/ of an augmenting path
by up to cf .u; �/ without violating the capacity constraint on whichever of .u; �/

and .�; u/ is in the original flow network G.
The shaded path in Figure 26.4(b) is an augmenting path. Treating the residual

network Gf in the figure as a flow network, we can increase the flow through each
edge of this path by up to 4 units without violating a capacity constraint, since the
smallest residual capacity on this path is cf .�2; �3/ D 4. We call the maximum
amount by which we can increase the flow on each edge in an augmenting path p

the residual capacity of p, given by

cf .p/ D min fcf .u; �/ W .u; �/ is on pg :

720 Chapter 26 Maximum Flow

The following lemma, whose proof we leave as Exercise 26.2-7, makes the above
argument more precise.

Lemma 26.2
Let G D .V; E/ be a flow network, let f be a flow in G, and let p be an augmenting
path in Gf . Define a function fp W V 	 V ! R by

fp.u; �/ D
(

cf .p/ if .u; �/ is on p ;

0 otherwise :
(26.8)

Then, fp is a flow in Gf with value jfpj D cf .p/ > 0.

The following corollary shows that if we augment f by fp, we get another flow
in G whose value is closer to the maximum. Figure 26.4(c) shows the result of
augmenting the flow f from Figure 26.4(a) by the flow fp in Figure 26.4(b), and
Figure 26.4(d) shows the ensuing residual network.

Corollary 26.3
Let G D .V; E/ be a flow network, let f be a flow in G, and let p be an
augmenting path in Gf . Let fp be defined as in equation (26.8), and suppose
that we augment f by fp. Then the function f "fp is a flow in G with value
jf "fpj D jf j C jfpj > jf j.

Proof Immediate from Lemmas 26.1 and 26.2.

Cuts of flow networks

The Ford-Fulkerson method repeatedly augments the flow along augmenting paths
until it has found a maximum flow. How do we know that when the algorithm
terminates, we have actually found a maximum flow? The max-flow min-cut theo-
rem, which we shall prove shortly, tells us that a flow is maximum if and only if its
residual network contains no augmenting path. To prove this theorem, though, we
must first explore the notion of a cut of a flow network.

A cut .S; T / of flow network G D .V; E/ is a partition of V into S and
T D V � S such that s 2 S and t 2 T . (This definition is similar to the def-
inition of “cut” that we used for minimum spanning trees in Chapter 23, except
that here we are cutting a directed graph rather than an undirected graph, and we
insist that s 2 S and t 2 T .) If f is a flow, then the net flow f .S; T / across the
cut .S; T / is defined to be

f .S; T / D
X
u2S

X
�2T

f .u; �/�
X
u2S

X
�2T

f .�; u/ : (26.9)

26.2 The Ford-Fulkerson method 721

s t

11/16
12/12

15/20

7/
7

4/91/
4

8/13
11/14

4/4

S T

v4

v3v1

v2

Figure 26.5 A cut .S; T / in the flow network of Figure 26.1(b), where S D fs; �1; �2g and
T D f�3; �4; tg. The vertices in S are black, and the vertices in T are white. The net flow
across .S; T / is f .S; T / D 19, and the capacity is c.S; T / D 26.

The capacity of the cut .S; T / is

c.S; T / D
X
u2S

X
�2T

c.u; �/ : (26.10)

A minimum cut of a network is a cut whose capacity is minimum over all cuts of
the network.

The asymmetry between the definitions of flow and capacity of a cut is inten-
tional and important. For capacity, we count only the capacities of edges going
from S to T , ignoring edges in the reverse direction. For flow, we consider the
flow going from S to T minus the flow going in the reverse direction from T to S .
The reason for this difference will become clear later in this section.

Figure 26.5 shows the cut .fs; �1; �2g ; f�3; �4; tg/ in the flow network of Fig-
ure 26.1(b). The net flow across this cut is

f .�1; �3/C f .�2; �4/ � f .�3; �2/ D 12C 11 � 4

D 19 ;

and the capacity of this cut is

c.�1; �3/C c.�2; �4/ D 12C 14

D 26 :

The following lemma shows that, for a given flow f , the net flow across any cut
is the same, and it equals jf j, the value of the flow.

Lemma 26.4
Let f be a flow in a flow network G with source s and sink t , and let .S; T / be any
cut of G. Then the net flow across .S; T / is f .S; T / D jf j.

722 Chapter 26 Maximum Flow

Proof We can rewrite the flow-conservation condition for any node u 2 V �fs; tg
asX
�2V

f .u; �/ �
X
�2V

f .�; u/ D 0 : (26.11)

Taking the definition of jf j from equation (26.1) and adding the left-hand side of
equation (26.11), which equals 0, summed over all vertices in S � fsg, gives

jf j D
X
�2V

f .s; �/ �
X
�2V

f .�; s/C
X

u2S�fsg

 X
�2V

f .u; �/ �
X
�2V

f .�; u/

!
:

Expanding the right-hand summation and regrouping terms yields

jf j D
X
�2V

f .s; �/ �
X
�2V

f .�; s/C
X

u2S�fsg

X
�2V

f .u; �/�
X

u2S�fsg

X
�2V

f .�; u/

D
X
�2V

f .s; �/C

X
u2S�fsg

f .u; �/

!
�
X
�2V

f .�; s/C

X
u2S�fsg

f .�; u/

!
D

X
�2V

X
u2S

f .u; �/ �
X
�2V

X
u2S

f .�; u/ :

Because V D S [T and S \ T D ;, we can split each summation over V into
summations over S and T to obtain

jf j D
X
�2S

X
u2S

f .u; �/C
X
�2T

X
u2S

f .u; �/�
X
�2S

X
u2S

f .�; u/�
X
�2T

X
u2S

f .�; u/

D
X
�2T

X
u2S

f .u; �/ �
X
�2T

X
u2S

f .�; u/

C
 X

�2S

X
u2S

f .u; �/ �
X
�2S

X
u2S

f .�; u/

!
:

The two summations within the parentheses are actually the same, since for all
vertices x; y 2 V , the term f .x; y/ appears once in each summation. Hence, these
summations cancel, and we have

jf j D
X
u2S

X
�2T

f .u; �/ �
X
u2S

X
�2T

f .�; u/

D f .S; T / :

A corollary to Lemma 26.4 shows how we can use cut capacities to bound the
value of a flow.

26.2 The Ford-Fulkerson method 723

Corollary 26.5
The value of any flow f in a flow network G is bounded from above by the capacity
of any cut of G.

Proof Let .S; T / be any cut of G and let f be any flow. By Lemma 26.4 and the
capacity constraint,

jf j D f .S; T /

D
X
u2S

X
�2T

f .u; �/�
X
u2S

X
�2T

f .�; u/

�
X
u2S

X
�2T

f .u; �/

�
X
u2S

X
�2T

c.u; �/

D c.S; T / :

Corollary 26.5 yields the immediate consequence that the value of a maximum
flow in a network is bounded from above by the capacity of a minimum cut of
the network. The important max-flow min-cut theorem, which we now state and
prove, says that the value of a maximum flow is in fact equal to the capacity of a
minimum cut.

Theorem 26.6 (Max-flow min-cut theorem)
If f is a flow in a flow network G D .V; E/ with source s and sink t , then the
following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. jf j D c.S; T / for some cut .S; T / of G.

Proof .1/) .2/: Suppose for the sake of contradiction that f is a maximum
flow in G but that Gf has an augmenting path p. Then, by Corollary 26.3, the
flow found by augmenting f by fp, where fp is given by equation (26.8), is a flow
in G with value strictly greater than jf j, contradicting the assumption that f is a
maximum flow.

.2/) .3/: Suppose that Gf has no augmenting path, that is, that Gf contains
no path from s to t . Define

S D f� 2 V W there exists a path from s to � in Gf g
and T D V � S . The partition .S; T / is a cut: we have s 2 S trivially and t 62 S

because there is no path from s to t in Gf . Now consider a pair of vertices

724 Chapter 26 Maximum Flow

u 2 S and � 2 T . If .u; �/ 2 E, we must have f .u; �/ D c.u; �/, since
otherwise .u; �/ 2 Ef , which would place � in set S . If .�; u/ 2 E, we must
have f .�; u/ D 0, because otherwise cf .u; �/ D f .�; u/ would be positive and
we would have .u; �/ 2 Ef , which would place � in S . Of course, if neither .u; �/

nor .�; u/ is in E, then f .u; �/ D f .�; u/ D 0. We thus have

f .S; T / D
X
u2S

X
�2T

f .u; �/ �
X
�2T

X
u2S

f .�; u/

D
X
u2S

X
�2T

c.u; �/ �
X
�2T

X
u2S

0

D c.S; T / :

By Lemma 26.4, therefore, jf j D f .S; T / D c.S; T /.
.3/) .1/: By Corollary 26.5, jf j � c.S; T / for all cuts .S; T /. The condition
jf j D c.S; T / thus implies that f is a maximum flow.

The basic Ford-Fulkerson algorithm

In each iteration of the Ford-Fulkerson method, we find some augmenting path p

and use p to modify the flow f . As Lemma 26.2 and Corollary 26.3 suggest, we
replace f by f "fp, obtaining a new flow whose value is jf j C jfpj. The follow-
ing implementation of the method computes the maximum flow in a flow network
G D .V; E/ by updating the flow attribute .u; �/: f for each edge .u; �/ 2 E.1

If .u; �/ 62 E, we assume implicitly that .u; �/: f D 0. We also assume that we
are given the capacities c.u; �/ along with the flow network, and c.u; �/ D 0

if .u; �/ 62 E. We compute the residual capacity cf .u; �/ in accordance with the
formula (26.2). The expression cf .p/ in the code is just a temporary variable that
stores the residual capacity of the path p.

FORD-FULKERSON.G; s; t/

1 for each edge .u; �/ 2 G:E
2 .u; �/: f D 0

3 while there exists a path p from s to t in the residual network Gf

4 cf .p/ D min fcf .u; �/ W .u; �/ is in pg
5 for each edge .u; �/ in p

6 if .u; �/ 2 E

7 .u; �/: f D .u; �/: f C cf .p/

8 else .�; u/: f D .�; u/: f � cf .p/

1Recall from Section 22.1 that we represent an attribute f for edge .u; �/ with the same style of
notation—.u; �/: f —that we use for an attribute of any other object.

26.2 The Ford-Fulkerson method 725

The FORD-FULKERSON algorithm simply expands on the FORD-FULKERSON-
METHOD pseudocode given earlier. Figure 26.6 shows the result of each iteration
in a sample run. Lines 1–2 initialize the flow f to 0. The while loop of lines 3–8
repeatedly finds an augmenting path p in Gf and augments flow f along p by
the residual capacity cf .p/. Each residual edge in path p is either an edge in the
original network or the reversal of an edge in the original network. Lines 6–8
update the flow in each case appropriately, adding flow when the residual edge is
an original edge and subtracting it otherwise. When no augmenting paths exist, the
flow f is a maximum flow.

Analysis of Ford-Fulkerson

The running time of FORD-FULKERSON depends on how we find the augmenting
path p in line 3. If we choose it poorly, the algorithm might not even terminate: the
value of the flow will increase with successive augmentations, but it need not even
converge to the maximum flow value.2 If we find the augmenting path by using a
breadth-first search (which we saw in Section 22.2), however, the algorithm runs in
polynomial time. Before proving this result, we obtain a simple bound for the case
in which we choose the augmenting path arbitrarily and all capacities are integers.

In practice, the maximum-flow problem often arises with integral capacities. If
the capacities are rational numbers, we can apply an appropriate scaling transfor-
mation to make them all integral. If f � denotes a maximum flow in the transformed
network, then a straightforward implementation of FORD-FULKERSON executes
the while loop of lines 3–8 at most jf �j times, since the flow value increases by at
least one unit in each iteration.

We can perform the work done within the while loop efficiently if we implement
the flow network G D .V; E/ with the right data structure and find an augmenting
path by a linear-time algorithm. Let us assume that we keep a data structure cor-
responding to a directed graph G0 D .V; E 0/, where E 0 D f.u; �/ W .u; �/ 2 E or
.�; u/ 2 Eg. Edges in the network G are also edges in G0, and therefore we can
easily maintain capacities and flows in this data structure. Given a flow f on G,
the edges in the residual network Gf consist of all edges .u; �/ of G0 such that
cf .u; �/ > 0, where cf conforms to equation (26.2). The time to find a path in
a residual network is therefore O.V C E 0/ D O.E/ if we use either depth-first
search or breadth-first search. Each iteration of the while loop thus takes O.E/

time, as does the initialization in lines 1–2, making the total running time of the
FORD-FULKERSON algorithm O.E jf �j/.

2The Ford-Fulkerson method might fail to terminate only if edge capacities are irrational numbers.

726 Chapter 26 Maximum Flow

12

4

4
4/

4
4

v1

4

16

4

10

s t

16

12
20

794

13

14

4

v1

s t

4/16

4/12
20

7

4/9

13

4/14
4/4

s t75

4

4

v1

8

4

13

20
v1

s t

4/16

8/12
4/20

7

4/9

4/13
4/14

4/4

4

10

s t75

8

4

v1
4

9

v1

s t

8/16

8/12
8/20

79
4/13

4/14
4/4

v2 v2

v2v2

v2 v2

v3 v3

v3v3

v3 v3

v4 v4

v4v4

v4v4

(b)

(a)

(c)

12
4

4

4

4

4

Figure 26.6 The execution of the basic Ford-Fulkerson algorithm. (a)–(e) Successive iterations of
the while loop. The left side of each part shows the residual network Gf from line 3 with a shaded
augmenting path p. The right side of each part shows the new flow f that results from augmenting f

by fp. The residual network in (a) is the input network G.

When the capacities are integral and the optimal flow value jf �j is small, the
running time of the Ford-Fulkerson algorithm is good. Figure 26.7(a) shows an ex-
ample of what can happen on a simple flow network for which jf �j is large. A max-
imum flow in this network has value 2,000,000: 1,000,000 units of flow traverse
the path s ! u! t , and another 1,000,000 units traverse the path s ! � ! t . If
the first augmenting path found by FORD-FULKERSON is s ! u! � ! t , shown
in Figure 26.7(a), the flow has value 1 after the first iteration. The resulting resid-
ual network appears in Figure 26.7(b). If the second iteration finds the augment-
ing path s ! � ! u! t , as shown in Figure 26.7(b), the flow then has value 2.
Figure 26.7(c) shows the resulting residual network. We can continue, choosing
the augmenting path s ! u! � ! t in the odd-numbered iterations and the aug-
menting path s ! � ! u! t in the even-numbered iterations. We would perform
a total of 2,000,000 augmentations, increasing the flow value by only 1 unit in each.

26.2 The Ford-Fulkerson method 727

4

12
11

2

11

2

8

8

9

4

4

9

8

4

4

9

8
s t

12

7

4

4

v1

s t

8/16

8/12
15/20

7/
7

9
11/13

11/14
4/4

v1

10

19
s t

12
1

7

11

43

v2

v3 v3

v3

v4
v4

v4

(d)

(f)

4

9

8

4

4

15
s t

5

7
11

4

v1

s t

12/16
12/12

19/20

7/
7

9
11/13

11/14
4/4

v1

3
v2

v3 v3

v4
v4

(e) 4

v2

v2

v1

v2

8

8

Figure 26.6, continued (f) The residual network at the last while loop test. It has no augmenting
paths, and the flow f shown in (e) is therefore a maximum flow. The value of the maximum flow
found is 23.

The Edmonds-Karp algorithm

We can improve the bound on FORD-FULKERSON by finding the augmenting
path p in line 3 with a breadth-first search. That is, we choose the augmenting
path as a shortest path from s to t in the residual network, where each edge has
unit distance (weight). We call the Ford-Fulkerson method so implemented the
Edmonds-Karp algorithm. We now prove that the Edmonds-Karp algorithm runs
in O.VE2/ time.

The analysis depends on the distances to vertices in the residual network Gf .
The following lemma uses the notation ıf .u; �/ for the shortest-path distance
from u to � in Gf , where each edge has unit distance.

Lemma 26.7
If the Edmonds-Karp algorithm is run on a flow network G D .V; E/ with source s

and sink t , then for all vertices � 2 V � fs; tg, the shortest-path distance ıf .s; �/

in the residual network Gf increases monotonically with each flow augmentation.

728 Chapter 26 Maximum Flow

1

999,999

999,999

1

s t
1,000,000 1,000,000

1

1,000,000 1,000,000

999,999

1

1 999,999

u

v

s t

1,000,000

1

1,000,000

u

v

999,999

1

999,999

1
s t1

u

v

(a) (b) (c)

Figure 26.7 (a) A flow network for which FORD-FULKERSON can take ‚.E jf �j/ time,
where f � is a maximum flow, shown here with jf �j D 2,000,000. The shaded path is an aug-
menting path with residual capacity 1. (b) The resulting residual network, with another augmenting
path whose residual capacity is 1. (c) The resulting residual network.

Proof We will suppose that for some vertex � 2 V � fs; tg, there is a flow aug-
mentation that causes the shortest-path distance from s to � to decrease, and then
we will derive a contradiction. Let f be the flow just before the first augmentation
that decreases some shortest-path distance, and let f 0 be the flow just afterward.
Let � be the vertex with the minimum ıf 0.s; �/ whose distance was decreased by
the augmentation, so that ıf 0.s; �/ < ıf .s; �/. Let p D s � u ! � be a shortest
path from s to � in Gf 0 , so that .u; �/ 2 Ef 0 and

ıf 0.s; u/ D ıf 0.s; �/ � 1 : (26.12)

Because of how we chose �, we know that the distance of vertex u from the source s

did not decrease, i.e.,

ıf 0.s; u/ � ıf .s; u/ : (26.13)

We claim that .u; �/ 62 Ef . Why? If we had .u; �/ 2 Ef , then we would also have

ıf .s; �/ � ıf .s; u/C 1 (by Lemma 24.10, the triangle inequality)

� ıf 0.s; u/C 1 (by inequality (26.13))

D ıf 0.s; �/ (by equation (26.12)) ,

which contradicts our assumption that ıf 0.s; �/ < ıf .s; �/.
How can we have .u; �/ 62 Ef and .u; �/ 2 Ef 0? The augmentation must

have increased the flow from � to u. The Edmonds-Karp algorithm always aug-
ments flow along shortest paths, and therefore the shortest path from s to u in Gf

has .�; u/ as its last edge. Therefore,

ıf .s; �/ D ıf .s; u/ � 1

� ıf 0.s; u/ � 1 (by inequality (26.13))

D ıf 0.s; �/ � 2 (by equation (26.12)) ,

26.2 The Ford-Fulkerson method 729

which contradicts our assumption that ıf 0.s; �/ < ıf .s; �/. We conclude that our
assumption that such a vertex � exists is incorrect.

The next theorem bounds the number of iterations of the Edmonds-Karp algo-
rithm.

Theorem 26.8
If the Edmonds-Karp algorithm is run on a flow network G D .V; E/ with source s

and sink t , then the total number of flow augmentations performed by the algorithm
is O.VE/.

Proof We say that an edge .u; �/ in a residual network Gf is critical on an aug-
menting path p if the residual capacity of p is the residual capacity of .u; �/, that
is, if cf .p/ D cf .u; �/. After we have augmented flow along an augmenting path,
any critical edge on the path disappears from the residual network. Moreover, at
least one edge on any augmenting path must be critical. We will show that each of
the jEj edges can become critical at most jV j =2 times.

Let u and � be vertices in V that are connected by an edge in E. Since augment-
ing paths are shortest paths, when .u; �/ is critical for the first time, we have

ıf .s; �/ D ıf .s; u/C 1 :

Once the flow is augmented, the edge .u; �/ disappears from the residual network.
It cannot reappear later on another augmenting path until after the flow from u to �

is decreased, which occurs only if .�; u/ appears on an augmenting path. If f 0 is
the flow in G when this event occurs, then we have

ıf 0.s; u/ D ıf 0.s; �/C 1 :

Since ıf .s; �/ � ıf 0.s; �/ by Lemma 26.7, we have

ıf 0.s; u/ D ıf 0.s; �/C 1

� ıf .s; �/C 1

D ıf .s; u/C 2 :

Consequently, from the time .u; �/ becomes critical to the time when it next
becomes critical, the distance of u from the source increases by at least 2. The
distance of u from the source is initially at least 0. The intermediate vertices on a
shortest path from s to u cannot contain s, u, or t (since .u; �/ on an augmenting
path implies that u ¤ t). Therefore, until u becomes unreachable from the source,
if ever, its distance is at most jV j � 2. Thus, after the first time that .u; �/ becomes
critical, it can become critical at most .jV j � 2/=2 D jV j =2 � 1 times more, for a
total of at most jV j =2 times. Since there are O.E/ pairs of vertices that can have an
edge between them in a residual network, the total number of critical edges during

730 Chapter 26 Maximum Flow

the entire execution of the Edmonds-Karp algorithm is O.VE/. Each augmenting
path has at least one critical edge, and hence the theorem follows.

Because we can implement each iteration of FORD-FULKERSON in O.E/ time
when we find the augmenting path by breadth-first search, the total running time of
the Edmonds-Karp algorithm is O.VE2/. We shall see that push-relabel algorithms
can yield even better bounds. The algorithm of Section 26.4 gives a method for
achieving an O.V 2E/ running time, which forms the basis for the O.V 3/-time
algorithm of Section 26.5.

Exercises

26.2-1
Prove that the summations in equation (26.6) equal the summations in equa-
tion (26.7).

26.2-2
In Figure 26.1(b), what is the flow across the cut .fs; �2; �4g ; f�1; �3; tg/? What is
the capacity of this cut?

26.2-3
Show the execution of the Edmonds-Karp algorithm on the flow network of Fig-
ure 26.1(a).

26.2-4
In the example of Figure 26.6, what is the minimum cut corresponding to the max-
imum flow shown? Of the augmenting paths appearing in the example, which one
cancels flow?

26.2-5
Recall that the construction in Section 26.1 that converts a flow network with mul-
tiple sources and sinks into a single-source, single-sink network adds edges with
infinite capacity. Prove that any flow in the resulting network has a finite value
if the edges of the original network with multiple sources and sinks have finite
capacity.

26.2-6
Suppose that each source si in a flow network with multiple sources and sinks
produces exactly pi units of flow, so that

P
�2V f .si ; �/ D pi . Suppose also

that each sink tj consumes exactly qj units, so that
P

�2V f .�; tj / D qj , whereP
i pi D

P
j qj . Show how to convert the problem of finding a flow f that obeys

26.2 The Ford-Fulkerson method 731

these additional constraints into the problem of finding a maximum flow in a single-
source, single-sink flow network.

26.2-7
Prove Lemma 26.2.

26.2-8
Suppose that we redefine the residual network to disallow edges into s. Argue that
the procedure FORD-FULKERSON still correctly computes a maximum flow.

26.2-9
Suppose that both f and f 0 are flows in a network G and we compute flow f "f 0.
Does the augmented flow satisfy the flow conservation property? Does it satisfy
the capacity constraint?

26.2-10
Show how to find a maximum flow in a network G D .V; E/ by a sequence of at
most jEj augmenting paths. (Hint: Determine the paths after finding the maximum
flow.)

26.2-11
The edge connectivity of an undirected graph is the minimum number k of edges
that must be removed to disconnect the graph. For example, the edge connectivity
of a tree is 1, and the edge connectivity of a cyclic chain of vertices is 2. Show
how to determine the edge connectivity of an undirected graph G D .V; E/ by
running a maximum-flow algorithm on at most jV j flow networks, each having
O.V / vertices and O.E/ edges.

26.2-12
Suppose that you are given a flow network G, and G has edges entering the
source s. Let f be a flow in G in which one of the edges .�; s/ entering the source
has f .�; s/ D 1. Prove that there must exist another flow f 0 with f 0.�; s/ D 0

such that jf j D jf 0j. Give an O.E/-time algorithm to compute f 0, given f , and
assuming that all edge capacities are integers.

26.2-13
Suppose that you wish to find, among all minimum cuts in a flow network G with
integral capacities, one that contains the smallest number of edges. Show how to
modify the capacities of G to create a new flow network G0 in which any minimum
cut in G0 is a minimum cut with the smallest number of edges in G.

732 Chapter 26 Maximum Flow

26.3 Maximum bipartite matching

Some combinatorial problems can easily be cast as maximum-flow problems. The
multiple-source, multiple-sink maximum-flow problem from Section 26.1 gave us
one example. Some other combinatorial problems seem on the surface to have little
to do with flow networks, but can in fact be reduced to maximum-flow problems.
This section presents one such problem: finding a maximum matching in a bipartite
graph. In order to solve this problem, we shall take advantage of an integrality
property provided by the Ford-Fulkerson method. We shall also see how to use
the Ford-Fulkerson method to solve the maximum-bipartite-matching problem on
a graph G D .V; E/ in O.VE/ time.

The maximum-bipartite-matching problem

Given an undirected graph G D .V; E/, a matching is a subset of edges M � E

such that for all vertices � 2 V , at most one edge of M is incident on �. We
say that a vertex � 2 V is matched by the matching M if some edge in M is
incident on �; otherwise, � is unmatched. A maximum matching is a matching
of maximum cardinality, that is, a matching M such that for any matching M 0,
we have jM j � jM 0j. In this section, we shall restrict our attention to finding
maximum matchings in bipartite graphs: graphs in which the vertex set can be
partitioned into V D L [R, where L and R are disjoint and all edges in E

go between L and R. We further assume that every vertex in V has at least one
incident edge. Figure 26.8 illustrates the notion of a matching in a bipartite graph.

The problem of finding a maximum matching in a bipartite graph has many
practical applications. As an example, we might consider matching a set L of ma-
chines with a set R of tasks to be performed simultaneously. We take the presence
of edge .u; �/ in E to mean that a particular machine u 2 L is capable of per-
forming a particular task � 2 R. A maximum matching provides work for as many
machines as possible.

Finding a maximum bipartite matching

We can use the Ford-Fulkerson method to find a maximum matching in an undi-
rected bipartite graph G D .V; E/ in time polynomial in jV j and jEj. The trick is
to construct a flow network in which flows correspond to matchings, as shown in
Figure 26.8(c). We define the corresponding flow network G0 D .V 0; E 0/ for the
bipartite graph G as follows. We let the source s and sink t be new vertices not
in V , and we let V 0 D V [fs; tg. If the vertex partition of G is V D L [R, the

26.3 Maximum bipartite matching 733

L R L R

s t

(a) (c)

L R

(b)

Figure 26.8 A bipartite graph G D .V; E/ with vertex partition V D L [R. (a) A matching
with cardinality 2, indicated by shaded edges. (b) A maximum matching with cardinality 3. (c) The
corresponding flow network G0 with a maximum flow shown. Each edge has unit capacity. Shaded
edges have a flow of 1, and all other edges carry no flow. The shaded edges from L to R correspond
to those in the maximum matching from (b).

directed edges of G0 are the edges of E, directed from L to R, along with jV j new
directed edges:

E 0 D f.s; u/ W u 2 Lg [f.u; �/ W .u; �/ 2 Eg [f.�; t/ W � 2 Rg :

To complete the construction, we assign unit capacity to each edge in E 0. Since
each vertex in V has at least one incident edge, jEj � jV j =2. Thus, jEj � jE 0j D
jEj C jV j � 3 jEj, and so jE 0j D ‚.E/.

The following lemma shows that a matching in G corresponds directly to a flow
in G’s corresponding flow network G0. We say that a flow f on a flow network
G D .V; E/ is integer-valued if f .u; �/ is an integer for all .u; �/ 2 V 	 V .

Lemma 26.9
Let G D .V; E/ be a bipartite graph with vertex partition V D L [R, and let
G0 D .V 0; E 0/ be its corresponding flow network. If M is a matching in G, then
there is an integer-valued flow f in G0 with value jf j D jM j. Conversely, if f

is an integer-valued flow in G0, then there is a matching M in G with cardinality
jM j D jf j.

Proof We first show that a matching M in G corresponds to an integer-valued
flow f in G0. Define f as follows. If .u; �/ 2 M , then f .s; u/ D f .u; �/ D
f .�; t/ D 1. For all other edges .u; �/ 2 E 0, we define f .u; �/ D 0. It is simple
to verify that f satisfies the capacity constraint and flow conservation.

734 Chapter 26 Maximum Flow

Intuitively, each edge .u; �/ 2 M corresponds to one unit of flow in G0 that
traverses the path s ! u ! � ! t . Moreover, the paths induced by edges in M

are vertex-disjoint, except for s and t . The net flow across cut .L [fsg ; R [ftg/
is equal to jM j; thus, by Lemma 26.4, the value of the flow is jf j D jM j.

To prove the converse, let f be an integer-valued flow in G0, and let

M D f.u; �/ W u 2 L; � 2 R; and f .u; �/ > 0g :

Each vertex u 2 L has only one entering edge, namely .s; u/, and its capacity
is 1. Thus, each u 2 L has at most one unit of flow entering it, and if one unit of
flow does enter, by flow conservation, one unit of flow must leave. Furthermore,
since f is integer-valued, for each u 2 L, the one unit of flow can enter on at most
one edge and can leave on at most one edge. Thus, one unit of flow enters u if and
only if there is exactly one vertex � 2 R such that f .u; �/ D 1, and at most one
edge leaving each u 2 L carries positive flow. A symmetric argument applies to
each � 2 R. The set M is therefore a matching.

To see that jM j D jf j, observe that for every matched vertex u 2 L, we have
f .s; u/ D 1, and for every edge .u; �/ 2 E �M , we have f .u; �/ D 0. Conse-
quently, f .L [fsg ; R [ftg/, the net flow across cut .L [fsg ; R [ftg/, is equal
to jM j. Applying Lemma 26.4, we have that jf j D f .L[fsg ; R[ftg/ D jM j.

Based on Lemma 26.9, we would like to conclude that a maximum matching
in a bipartite graph G corresponds to a maximum flow in its corresponding flow
network G0, and we can therefore compute a maximum matching in G by running
a maximum-flow algorithm on G0. The only hitch in this reasoning is that the
maximum-flow algorithm might return a flow in G0 for which some f .u; �/ is
not an integer, even though the flow value jf j must be an integer. The following
theorem shows that if we use the Ford-Fulkerson method, this difficulty cannot
arise.

Theorem 26.10 (Integrality theorem)
If the capacity function c takes on only integral values, then the maximum flow f

produced by the Ford-Fulkerson method has the property that jf j is an integer.
Moreover, for all vertices u and �, the value of f .u; �/ is an integer.

Proof The proof is by induction on the number of iterations. We leave it as
Exercise 26.3-2.

We can now prove the following corollary to Lemma 26.9.

26.3 Maximum bipartite matching 735

Corollary 26.11
The cardinality of a maximum matching M in a bipartite graph G equals the value
of a maximum flow f in its corresponding flow network G0.

Proof We use the nomenclature from Lemma 26.9. Suppose that M is a max-
imum matching in G and that the corresponding flow f in G0 is not maximum.
Then there is a maximum flow f 0 in G0 such that jf 0j > jf j. Since the ca-
pacities in G0 are integer-valued, by Theorem 26.10, we can assume that f 0 is
integer-valued. Thus, f 0 corresponds to a matching M 0 in G with cardinality
jM 0j D jf 0j > jf j D jM j, contradicting our assumption that M is a maximum
matching. In a similar manner, we can show that if f is a maximum flow in G0, its
corresponding matching is a maximum matching on G.

Thus, given a bipartite undirected graph G, we can find a maximum matching by
creating the flow network G0, running the Ford-Fulkerson method, and directly ob-
taining a maximum matching M from the integer-valued maximum flow f found.
Since any matching in a bipartite graph has cardinality at most min.L; R/ D O.V /,
the value of the maximum flow in G0 is O.V /. We can therefore find a maximum
matching in a bipartite graph in time O.VE 0/ D O.VE/, since jE 0j D ‚.E/.

Exercises

26.3-1
Run the Ford-Fulkerson algorithm on the flow network in Figure 26.8(c) and show
the residual network after each flow augmentation. Number the vertices in L top
to bottom from 1 to 5 and in R top to bottom from 6 to 9. For each iteration, pick
the augmenting path that is lexicographically smallest.

26.3-2
Prove Theorem 26.10.

26.3-3
Let G D .V; E/ be a bipartite graph with vertex partition V D L [R, and let G0

be its corresponding flow network. Give a good upper bound on the length of any
augmenting path found in G0 during the execution of FORD-FULKERSON.

26.3-4 ?

A perfect matching is a matching in which every vertex is matched. Let G D
.V; E/ be an undirected bipartite graph with vertex partition V D L [R, where
jLj D jRj. For any X � V , define the neighborhood of X as

N.X/ D fy 2 V W .x; y/ 2 E for some x 2 Xg ;

736 Chapter 26 Maximum Flow

that is, the set of vertices adjacent to some member of X . Prove Hall’s theorem:
there exists a perfect matching in G if and only if jAj � jN.A/j for every subset
A � L.

26.3-5 ?

We say that a bipartite graph G D .V; E/, where V D L[R, is d -regular if every
vertex � 2 V has degree exactly d . Every d -regular bipartite graph has jLj D jRj.
Prove that every d -regular bipartite graph has a matching of cardinality jLj by
arguing that a minimum cut of the corresponding flow network has capacity jLj.

? 26.4 Push-relabel algorithms

In this section, we present the “push-relabel” approach to computing maximum
flows. To date, many of the asymptotically fastest maximum-flow algorithms are
push-relabel algorithms, and the fastest actual implementations of maximum-flow
algorithms are based on the push-relabel method. Push-relabel methods also effi-
ciently solve other flow problems, such as the minimum-cost flow problem. This
section introduces Goldberg’s “generic” maximum-flow algorithm, which has a
simple implementation that runs in O.V 2E/ time, thereby improving upon the
O.VE2/ bound of the Edmonds-Karp algorithm. Section 26.5 refines the generic
algorithm to obtain another push-relabel algorithm that runs in O.V 3/ time.

Push-relabel algorithms work in a more localized manner than the Ford-
Fulkerson method. Rather than examine the entire residual network to find an aug-
menting path, push-relabel algorithms work on one vertex at a time, looking only
at the vertex’s neighbors in the residual network. Furthermore, unlike the Ford-
Fulkerson method, push-relabel algorithms do not maintain the flow-conservation
property throughout their execution. They do, however, maintain a preflow, which
is a function f W V 	V ! R that satisfies the capacity constraint and the following
relaxation of flow conservation:X
�2V

f .�; u/�
X
�2V

f .u; �/ � 0

for all vertices u 2 V � fsg. That is, the flow into a vertex may exceed the flow
out. We call the quantity

e.u/ D
X
�2V

f .�; u/�
X
�2V

f .u; �/ (26.14)

the excess flow into vertex u. The excess at a vertex is the amount by which the
flow in exceeds the flow out. We say that a vertex u 2 V � fs; tg is overflowing if
e.u/ > 0.

26.4 Push-relabel algorithms 737

We shall begin this section by describing the intuition behind the push-relabel
method. We shall then investigate the two operations employed by the method:
“pushing” preflow and “relabeling” a vertex. Finally, we shall present a generic
push-relabel algorithm and analyze its correctness and running time.

Intuition

You can understand the intuition behind the push-relabel method in terms of fluid
flows: we consider a flow network G D .V; E/ to be a system of interconnected
pipes of given capacities. Applying this analogy to the Ford-Fulkerson method,
we might say that each augmenting path in the network gives rise to an additional
stream of fluid, with no branch points, flowing from the source to the sink. The
Ford-Fulkerson method iteratively adds more streams of flow until no more can be
added.

The generic push-relabel algorithm has a rather different intuition. As before,
directed edges correspond to pipes. Vertices, which are pipe junctions, have two
interesting properties. First, to accommodate excess flow, each vertex has an out-
flow pipe leading to an arbitrarily large reservoir that can accumulate fluid. Second,
each vertex, its reservoir, and all its pipe connections sit on a platform whose height
increases as the algorithm progresses.

Vertex heights determine how flow is pushed: we push flow only downhill, that
is, from a higher vertex to a lower vertex. The flow from a lower vertex to a higher
vertex may be positive, but operations that push flow push it only downhill. We
fix the height of the source at jV j and the height of the sink at 0. All other vertex
heights start at 0 and increase with time. The algorithm first sends as much flow as
possible downhill from the source toward the sink. The amount it sends is exactly
enough to fill each outgoing pipe from the source to capacity; that is, it sends the
capacity of the cut .s; V � fsg/. When flow first enters an intermediate vertex, it
collects in the vertex’s reservoir. From there, we eventually push it downhill.

We may eventually find that the only pipes that leave a vertex u and are not
already saturated with flow connect to vertices that are on the same level as u or
are uphill from u. In this case, to rid an overflowing vertex u of its excess flow, we
must increase its height—an operation called “relabeling” vertex u. We increase
its height to one unit more than the height of the lowest of its neighbors to which
it has an unsaturated pipe. After a vertex is relabeled, therefore, it has at least one
outgoing pipe through which we can push more flow.

Eventually, all the flow that can possibly get through to the sink has arrived there.
No more can arrive, because the pipes obey the capacity constraints; the amount of
flow across any cut is still limited by the capacity of the cut. To make the preflow
a “legal” flow, the algorithm then sends the excess collected in the reservoirs of
overflowing vertices back to the source by continuing to relabel vertices to above

738 Chapter 26 Maximum Flow

the fixed height jV j of the source. As we shall see, once we have emptied all the
reservoirs, the preflow is not only a “legal” flow, it is also a maximum flow.

The basic operations

From the preceding discussion, we see that a push-relabel algorithm performs two
basic operations: pushing flow excess from a vertex to one of its neighbors and
relabeling a vertex. The situations in which these operations apply depend on the
heights of vertices, which we now define precisely.

Let G D .V; E/ be a flow network with source s and sink t , and let f be a
preflow in G. A function h W V ! N is a height function3 if h.s/ D jV j,
h.t/ D 0, and

h.u/ � h.�/C 1

for every residual edge .u; �/ 2 Ef . We immediately obtain the following lemma.

Lemma 26.12
Let G D .V; E/ be a flow network, let f be a preflow in G, and let h be a height
function on V . For any two vertices u; � 2 V , if h.u/ > h.�/C 1, then .u; �/ is
not an edge in the residual network.

The push operation
The basic operation PUSH.u; �/ applies if u is an overflowing vertex, cf .u; �/ > 0,
and h.u/ D h.�/C1. The pseudocode below updates the preflow f and the excess
flows for u and �. It assumes that we can compute residual capacity cf .u; �/ in
constant time given c and f . We maintain the excess flow stored at a vertex u as
the attribute u:e and the height of u as the attribute u:h. The expression �f .u; �/

is a temporary variable that stores the amount of flow that we can push from u to �.

3In the literature, a height function is typically called a “distance function,” and the height of a vertex
is called a “distance label.” We use the term “height” because it is more suggestive of the intuition
behind the algorithm. We retain the use of the term “relabel” to refer to the operation that increases
the height of a vertex. The height of a vertex is related to its distance from the sink t , as would be
found in a breadth-first search of the transpose GT.

26.4 Push-relabel algorithms 739

PUSH.u; �/

1 // Applies when: u is overflowing, cf .u; �/ > 0, and u:h D �:hC 1.
2 // Action: Push �f .u; �/ D min.u:e; cf .u; �// units of flow from u to �.
3 �f .u; �/ D min.u:e; cf .u; �//

4 if .u; �/ 2 E

5 .u; �/: f D .u; �/: f C�f .u; �/

6 else .�; u/: f D .�; u/: f ��f .u; �/

7 u:e D u:e��f .u; �/

8 �:e D �:eC�f .u; �/

The code for PUSH operates as follows. Because vertex u has a positive excess u:e
and the residual capacity of .u; �/ is positive, we can increase the flow from u to �

by �f .u; �/ D min.u:e; cf .u; �// without causing u:e to become negative or the
capacity c.u; �/ to be exceeded. Line 3 computes the value �f .u; �/, and lines 4–6
update f . Line 5 increases the flow on edge .u; �/, because we are pushing flow
over a residual edge that is also an original edge. Line 6 decreases the flow on
edge .�; u/, because the residual edge is actually the reverse of an edge in the
original network. Finally, lines 7–8 update the excess flows into vertices u and �.
Thus, if f is a preflow before PUSH is called, it remains a preflow afterward.

Observe that nothing in the code for PUSH depends on the heights of u and �,
yet we prohibit it from being invoked unless u:h D �:hC 1. Thus, we push excess
flow downhill only by a height differential of 1. By Lemma 26.12, no residual
edges exist between two vertices whose heights differ by more than 1, and thus,
as long as the attribute h is indeed a height function, we would gain nothing by
allowing flow to be pushed downhill by a height differential of more than 1.

We call the operation PUSH.u; �/ a push from u to �. If a push operation ap-
plies to some edge .u; �/ leaving a vertex u, we also say that the push operation
applies to u. It is a saturating push if edge .u; �/ in the residual network becomes
saturated (cf .u; �/ D 0 afterward); otherwise, it is a nonsaturating push. If an
edge becomes saturated, it disappears from the residual network. A simple lemma
characterizes one result of a nonsaturating push.

Lemma 26.13
After a nonsaturating push from u to �, the vertex u is no longer overflowing.

Proof Since the push was nonsaturating, the amount of flow �f .u; �/ actually
pushed must equal u:e prior to the push. Since u:e is reduced by this amount, it
becomes 0 after the push.

740 Chapter 26 Maximum Flow

The relabel operation
The basic operation RELABEL.u/ applies if u is overflowing and if u:h � �:h for
all edges .u; �/ 2 Ef . In other words, we can relabel an overflowing vertex u if
for every vertex � for which there is residual capacity from u to �, flow cannot be
pushed from u to � because � is not downhill from u. (Recall that by definition,
neither the source s nor the sink t can be overflowing, and so s and t are ineligible
for relabeling.)

RELABEL.u/

1 // Applies when: u is overflowing and for all � 2 V such that .u; �/ 2 Ef ,
we have u:h � �:h.

2 // Action: Increase the height of u.
3 u:h D 1Cmin f�:h W .u; �/ 2 Ef g
When we call the operation RELABEL.u/, we say that vertex u is relabeled. Note
that when u is relabeled, Ef must contain at least one edge that leaves u, so that
the minimization in the code is over a nonempty set. This property follows from
the assumption that u is overflowing, which in turn tells us that

u:e D
X
�2V

f .�; u/�
X
�2V

f .u; �/ > 0 :

Since all flows are nonnegative, we must therefore have at least one vertex � such
that .�; u/: f > 0. But then, cf .u; �/ > 0, which implies that .u; �/ 2 Ef . The
operation RELABEL.u/ thus gives u the greatest height allowed by the constraints
on height functions.

The generic algorithm

The generic push-relabel algorithm uses the following subroutine to create an ini-
tial preflow in the flow network.

INITIALIZE-PREFLOW.G; s/

1 for each vertex � 2 G:V
2 �:h D 0

3 �:e D 0

4 for each edge .u; �/ 2 G:E
5 .u; �/: f D 0

6 s:h D jG:Vj
7 for each vertex � 2 s:Adj
8 .s; �/: f D c.s; �/

9 �:e D c.s; �/

10 s:e D s:e � c.s; �/

26.4 Push-relabel algorithms 741

INITIALIZE-PREFLOW creates an initial preflow f defined by

.u; �/: f D
(

c.u; �/ if u D s ;

0 otherwise :
(26.15)

That is, we fill to capacity each edge leaving the source s, and all other edges carry
no flow. For each vertex � adjacent to the source, we initially have �:e D c.s; �/,
and we initialize s:e to the negative of the sum of these capacities. The generic
algorithm also begins with an initial height function h, given by

u:h D
(
jV j if u D s ;

0 otherwise :
(26.16)

Equation (26.16) defines a height function because the only edges .u; �/ for which
u:h > �:h C 1 are those for which u D s, and those edges are saturated, which
means that they are not in the residual network.

Initialization, followed by a sequence of push and relabel operations, executed
in no particular order, yields the GENERIC-PUSH-RELABEL algorithm:

GENERIC-PUSH-RELABEL.G/

1 INITIALIZE-PREFLOW.G; s/

2 while there exists an applicable push or relabel operation
3 select an applicable push or relabel operation and perform it

The following lemma tells us that as long as an overflowing vertex exists, at least
one of the two basic operations applies.

Lemma 26.14 (An overflowing vertex can be either pushed or relabeled)
Let G D .V; E/ be a flow network with source s and sink t , let f be a preflow,
and let h be any height function for f . If u is any overflowing vertex, then either a
push or relabel operation applies to it.

Proof For any residual edge .u; �/, we have h.u/ � h.�/ C 1 because h is a
height function. If a push operation does not apply to an overflowing vertex u,
then for all residual edges .u; �/, we must have h.u/ < h.�/ C 1, which implies
h.u/ � h.�/. Thus, a relabel operation applies to u.

Correctness of the push-relabel method

To show that the generic push-relabel algorithm solves the maximum-flow prob-
lem, we shall first prove that if it terminates, the preflow f is a maximum flow.
We shall later prove that it terminates. We start with some observations about the
height function h.

742 Chapter 26 Maximum Flow

Lemma 26.15 (Vertex heights never decrease)
During the execution of the GENERIC-PUSH-RELABEL procedure on a flow net-
work G D .V; E/, for each vertex u 2 V , the height u:h never decreases. More-
over, whenever a relabel operation is applied to a vertex u, its height u:h increases
by at least 1.

Proof Because vertex heights change only during relabel operations, it suffices
to prove the second statement of the lemma. If vertex u is about to be rela-
beled, then for all vertices � such that .u; �/ 2 Ef , we have u:h � �:h. Thus,
u:h < 1Cmin f�:h W .u; �/ 2 Ef g, and so the operation must increase u:h.

Lemma 26.16
Let G D .V; E/ be a flow network with source s and sink t . Then the execution of
GENERIC-PUSH-RELABEL on G maintains the attribute h as a height function.

Proof The proof is by induction on the number of basic operations performed.
Initially, h is a height function, as we have already observed.

We claim that if h is a height function, then an operation RELABEL.u/ leaves h

a height function. If we look at a residual edge .u; �/ 2 Ef that leaves u, then
the operation RELABEL.u/ ensures that u:h � �:hC 1 afterward. Now consider
a residual edge .w; u/ that enters u. By Lemma 26.15, w:h � u:hC 1 before the
operation RELABEL.u/ implies w:h < u:h C 1 afterward. Thus, the operation
RELABEL.u/ leaves h a height function.

Now, consider an operation PUSH.u; �/. This operation may add the edge .�; u/

to Ef , and it may remove .u; �/ from Ef . In the former case, we have
�:h D u:h � 1 < u:hC 1, and so h remains a height function. In the latter case,
removing .u; �/ from the residual network removes the corresponding constraint,
and h again remains a height function.

The following lemma gives an important property of height functions.

Lemma 26.17
Let G D .V; E/ be a flow network with source s and sink t , let f be a preflow
in G, and let h be a height function on V . Then there is no path from the source s

to the sink t in the residual network Gf .

Proof Assume for the sake of contradiction that Gf contains a path p from s to t ,
where p D h�0; �1; : : : ; �ki, �0 D s, and �k D t . Without loss of generality, p

is a simple path, and so k < jV j. For i D 0; 1; : : : ; k � 1, edge .�i ; �iC1/ 2 Ef .
Because h is a height function, h.�i/ � h.�iC1/C 1 for i D 0; 1; : : : ; k � 1. Com-
bining these inequalities over path p yields h.s/ � h.t/Ck. But because h.t/ D 0,

26.4 Push-relabel algorithms 743

we have h.s/ � k < jV j, which contradicts the requirement that h.s/ D jV j in a
height function.

We are now ready to show that if the generic push-relabel algorithm terminates,
the preflow it computes is a maximum flow.

Theorem 26.18 (Correctness of the generic push-relabel algorithm)
If the algorithm GENERIC-PUSH-RELABEL terminates when run on a flow net-
work G D .V; E/ with source s and sink t , then the preflow f it computes is a
maximum flow for G.

Proof We use the following loop invariant:

Each time the while loop test in line 2 in GENERIC-PUSH-RELABEL is
executed, f is a preflow.

Initialization: INITIALIZE-PREFLOW makes f a preflow.

Maintenance: The only operations within thewhile loop of lines 2–3 are push and
relabel. Relabel operations affect only height attributes and not the flow values;
hence they do not affect whether f is a preflow. As argued on page 739, if f is
a preflow prior to a push operation, it remains a preflow afterward.

Termination: At termination, each vertex in V � fs; tg must have an excess of 0,
because by Lemma 26.14 and the invariant that f is always a preflow, there are
no overflowing vertices. Therefore, f is a flow. Lemma 26.16 shows that h is
a height function at termination, and thus Lemma 26.17 tells us that there is no
path from s to t in the residual network Gf . By the max-flow min-cut theorem
(Theorem 26.6), therefore, f is a maximum flow.

Analysis of the push-relabel method

To show that the generic push-relabel algorithm indeed terminates, we shall bound
the number of operations it performs. We bound separately each of the three types
of operations: relabels, saturating pushes, and nonsaturating pushes. With knowl-
edge of these bounds, it is a straightforward problem to construct an algorithm that
runs in O.V 2E/ time. Before beginning the analysis, however, we prove an im-
portant lemma. Recall that we allow edges into the source in the residual network.

Lemma 26.19
Let G D .V; E/ be a flow network with source s and sink t , and let f be a preflow
in G. Then, for any overflowing vertex x, there is a simple path from x to s in the
residual network Gf .

744 Chapter 26 Maximum Flow

Proof For an overflowing vertex x, let U D f� W there exists a simple path from x

to � in Gf g, and suppose for the sake of contradiction that s 62 U . Let U D V �U .
We take the definition of excess from equation (26.14), sum over all vertices

in U , and note that V D U [U , to obtainX
u2U

e.u/

D
X
u2U

 X
�2V

f .�; u/ �
X
�2V

f .u; �/

!

D
X
u2U

 X
�2U

f .�; u/C
X
�2U

f .�; u/

!
�
 X

�2U

f .u; �/C
X
�2U

f .u; �/

!!
D

X
u2U

X
�2U

f .�; u/C
X
u2U

X
�2U

f .�; u/�
X
u2U

X
�2U

f .u; �/�
X
u2U

X
�2U

f .u; �/

D
X
u2U

X
�2U

f .�; u/�
X
u2U

X
�2U

f .u; �/ :

We know that the quantity
P

u2U e.u/ must be positive because e.x/ > 0, x 2 U ,
all vertices other than s have nonnegative excess, and, by assumption, s 62 U . Thus,
we haveX
u2U

X
�2U

f .�; u/�
X
u2U

X
�2U

f .u; �/ > 0 : (26.17)

All edge flows are nonnegative, and so for equation (26.17) to hold, we must haveP
u2U

P
�2U f .�; u/ > 0. Hence, there must exist at least one pair of vertices

u0 2 U and � 0 2 U with f .� 0; u0/ > 0. But, if f .� 0; u0/ > 0, there must be a
residual edge .u0; � 0/, which means that there is a simple path from x to � 0 (the
path x � u0 ! � 0), thus contradicting the definition of U .

The next lemma bounds the heights of vertices, and its corollary bounds the
number of relabel operations that are performed in total.

Lemma 26.20
Let G D .V; E/ be a flow network with source s and sink t . At any time during
the execution of GENERIC-PUSH-RELABEL on G, we have u:h � 2 jV j�1 for all
vertices u 2 V .

Proof The heights of the source s and the sink t never change because these
vertices are by definition not overflowing. Thus, we always have s:h D jV j and
t:h D 0, both of which are no greater than 2 jV j � 1.

Now consider any vertex u 2 V �fs; tg. Initially, u:h D 0 � 2 jV j�1. We shall
show that after each relabeling operation, we still have u:h � 2 jV j � 1. When u is

26.4 Push-relabel algorithms 745

relabeled, it is overflowing, and Lemma 26.19 tells us that there is a simple path p

from u to s in Gf . Let p D h�0;�1; : : : ;�ki, where �0 D u, �k D s, and k � jV j�1

because p is simple. For i D 0; 1; : : : ; k � 1, we have .�i ; �iC1/ 2 Ef , and
therefore, by Lemma 26.16, �i :h � �iC1:hC 1. Expanding these inequalities over
path p yields u:h D �0:h � �k:hC k � s:hC .jV j � 1/ D 2 jV j � 1.

Corollary 26.21 (Bound on relabel operations)
Let G D .V; E/ be a flow network with source s and sink t . Then, during the
execution of GENERIC-PUSH-RELABEL on G, the number of relabel operations is
at most 2 jV j � 1 per vertex and at most .2 jV j � 1/.jV j � 2/ < 2 jV j2 overall.

Proof Only the jV j�2 vertices in V �fs; tg may be relabeled. Let u 2 V �fs; tg.
The operation RELABEL.u/ increases u:h. The value of u:h is initially 0 and by
Lemma 26.20, it grows to at most 2 jV j � 1. Thus, each vertex u 2 V � fs; tg
is relabeled at most 2 jV j � 1 times, and the total number of relabel operations
performed is at most .2 jV j � 1/.jV j � 2/ < 2 jV j2.

Lemma 26.20 also helps us to bound the number of saturating pushes.

Lemma 26.22 (Bound on saturating pushes)
During the execution of GENERIC-PUSH-RELABEL on any flow network G D
.V; E/, the number of saturating pushes is less than 2 jV j jEj.

Proof For any pair of vertices u; � 2 V , we will count the saturating pushes
from u to � and from � to u together, calling them the saturating pushes between u

and �. If there are any such pushes, at least one of .u; �/ and .�; u/ is actually
an edge in E. Now, suppose that a saturating push from u to � has occurred.
At that time, �:h D u:h � 1. In order for another push from u to � to occur
later, the algorithm must first push flow from � to u, which cannot happen until
�:h D u:h C 1. Since u:h never decreases, in order for �:h D u:h C 1, the
value of �:h must increase by at least 2. Likewise, u:h must increase by at least 2

between saturating pushes from � to u. Heights start at 0 and, by Lemma 26.20,
never exceed 2 jV j�1, which implies that the number of times any vertex can have
its height increase by 2 is less than jV j. Since at least one of u:h and �:h must
increase by 2 between any two saturating pushes between u and �, there are fewer
than 2 jV j saturating pushes between u and �. Multiplying by the number of edges
gives a bound of less than 2 jV j jEj on the total number of saturating pushes.

The following lemma bounds the number of nonsaturating pushes in the generic
push-relabel algorithm.

746 Chapter 26 Maximum Flow

Lemma 26.23 (Bound on nonsaturating pushes)
During the execution of GENERIC-PUSH-RELABEL on any flow network G D
.V; E/, the number of nonsaturating pushes is less than 4 jV j2 .jV j C jEj/.

Proof Define a potential function ˆ D P
�We.�/>0 �:h. Initially, ˆ D 0, and the

value of ˆ may change after each relabeling, saturating push, and nonsaturating
push. We will bound the amount that saturating pushes and relabelings can con-
tribute to the increase of ˆ. Then we will show that each nonsaturating push must
decrease ˆ by at least 1, and will use these bounds to derive an upper bound on the
number of nonsaturating pushes.

Let us examine the two ways in which ˆ might increase. First, relabeling a
vertex u increases ˆ by less than 2 jV j, since the set over which the sum is taken is
the same and the relabeling cannot increase u’s height by more than its maximum
possible height, which, by Lemma 26.20, is at most 2 jV j � 1. Second, a saturating
push from a vertex u to a vertex � increases ˆ by less than 2 jV j, since no heights
change and only vertex �, whose height is at most 2 jV j � 1, can possibly become
overflowing.

Now we show that a nonsaturating push from u to � decreases ˆ by at least 1.
Why? Before the nonsaturating push, u was overflowing, and � may or may not
have been overflowing. By Lemma 26.13, u is no longer overflowing after the
push. In addition, unless � is the source, it may or may not be overflowing after
the push. Therefore, the potential function ˆ has decreased by exactly u:h, and it
has increased by either 0 or �:h. Since u:h � �:h D 1, the net effect is that the
potential function has decreased by at least 1.

Thus, during the course of the algorithm, the total amount of increase in ˆ is
due to relabelings and saturated pushes, and Corollary 26.21 and Lemma 26.22
constrain the increase to be less than .2 jV j/.2 jV j2/ C .2 jV j/.2 jV j jEj/ D
4 jV j2 .jV j C jEj/. Since ˆ � 0, the total amount of decrease, and therefore the
total number of nonsaturating pushes, is less than 4 jV j2 .jV j C jEj/.

Having bounded the number of relabelings, saturating pushes, and nonsatu-
rating push, we have set the stage for the following analysis of the GENERIC-
PUSH-RELABEL procedure, and hence of any algorithm based on the push-relabel
method.

Theorem 26.24
During the execution of GENERIC-PUSH-RELABEL on any flow network G D
.V; E/, the number of basic operations is O.V 2E/.

Proof Immediate from Corollary 26.21 and Lemmas 26.22 and 26.23.

26.4 Push-relabel algorithms 747

Thus, the algorithm terminates after O.V 2E/ operations. All that remains is
to give an efficient method for implementing each operation and for choosing an
appropriate operation to execute.

Corollary 26.25
There is an implementation of the generic push-relabel algorithm that runs in
O.V 2E/ time on any flow network G D .V; E/.

Proof Exercise 26.4-2 asks you to show how to implement the generic algorithm
with an overhead of O.V / per relabel operation and O.1/ per push. It also asks
you to design a data structure that allows you to pick an applicable operation in
O.1/ time. The corollary then follows.

Exercises

26.4-1
Prove that, after the procedure INITIALIZE-PREFLOW.G; s/ terminates, we have
s:e � � jf �j, where f � is a maximum flow for G.

26.4-2
Show how to implement the generic push-relabel algorithm using O.V / time per
relabel operation, O.1/ time per push, and O.1/ time to select an applicable oper-
ation, for a total time of O.V 2E/.

26.4-3
Prove that the generic push-relabel algorithm spends a total of only O.VE/ time
in performing all the O.V 2/ relabel operations.

26.4-4
Suppose that we have found a maximum flow in a flow network G D .V; E/ using
a push-relabel algorithm. Give a fast algorithm to find a minimum cut in G.

26.4-5
Give an efficient push-relabel algorithm to find a maximum matching in a bipartite
graph. Analyze your algorithm.

26.4-6
Suppose that all edge capacities in a flow network G D .V; E/ are in the set
f1; 2; : : : ; kg. Analyze the running time of the generic push-relabel algorithm in
terms of jV j, jEj, and k. (Hint: How many times can each edge support a nonsat-
urating push before it becomes saturated?)

748 Chapter 26 Maximum Flow

26.4-7
Show that we could change line 6 of INITIALIZE-PREFLOW to

6 s:h D jG:Vj � 2

without affecting the correctness or asymptotic performance of the generic push-
relabel algorithm.

26.4-8
Let ıf .u; �/ be the distance (number of edges) from u to � in the residual net-
work Gf . Show that the GENERIC-PUSH-RELABEL procedure maintains the
properties that u:h < jV j implies u:h � ıf .u; t/ and that u:h � jV j implies
u:h � jV j � ıf .u; s/.

26.4-9 ?

As in the previous exercise, let ıf .u; �/ be the distance from u to � in the residual
network Gf . Show how to modify the generic push-relabel algorithm to maintain
the property that u:h < jV j implies u:h D ıf .u; t/ and that u:h � jV j implies
u:h � jV j D ıf .u; s/. The total time that your implementation dedicates to main-
taining this property should be O.VE/.

26.4-10
Show that the number of nonsaturating pushes executed by the GENERIC-PUSH-
RELABEL procedure on a flow network G D .V; E/ is at most 4 jV j2 jEj for
jV j � 4.

? 26.5 The relabel-to-front algorithm

The push-relabel method allows us to apply the basic operations in any order at
all. By choosing the order carefully and managing the network data structure effi-
ciently, however, we can solve the maximum-flow problem faster than the O.V 2E/

bound given by Corollary 26.25. We shall now examine the relabel-to-front algo-
rithm, a push-relabel algorithm whose running time is O.V 3/, which is asymptot-
ically at least as good as O.V 2E/, and even better for dense networks.

The relabel-to-front algorithm maintains a list of the vertices in the network.
Beginning at the front, the algorithm scans the list, repeatedly selecting an over-
flowing vertex u and then “discharging” it, that is, performing push and relabel
operations until u no longer has a positive excess. Whenever we relabel a ver-
tex, we move it to the front of the list (hence the name “relabel-to-front”) and the
algorithm begins its scan anew.

26.5 The relabel-to-front algorithm 749

The correctness and analysis of the relabel-to-front algorithm depend on the
notion of “admissible” edges: those edges in the residual network through which
flow can be pushed. After proving some properties about the network of admissible
edges, we shall investigate the discharge operation and then present and analyze the
relabel-to-front algorithm itself.

Admissible edges and networks

If G D .V; E/ is a flow network with source s and sink t , f is a preflow in G, and h

is a height function, then we say that .u; �/ is an admissible edge if cf .u; �/ > 0

and h.u/ D h.�/C 1. Otherwise, .u; �/ is inadmissible. The admissible network
is Gf;h D .V; Ef;h/, where Ef;h is the set of admissible edges.

The admissible network consists of those edges through which we can push flow.
The following lemma shows that this network is a directed acyclic graph (dag).

Lemma 26.26 (The admissible network is acyclic)
If G D .V; E/ is a flow network, f is a preflow in G, and h is a height function
on G, then the admissible network Gf;h D .V; Ef;h/ is acyclic.

Proof The proof is by contradiction. Suppose that Gf;h contains a cycle p D
h�0; �1; : : : ; �ki, where �0 D �k and k > 0. Since each edge in p is admissible, we
have h.�i�1/ D h.�i /C 1 for i D 1; 2; : : : ; k. Summing around the cycle gives

kX
iD1

h.�i�1/ D
kX

iD1

.h.�i /C 1/

D
kX

iD1

h.�i /C k :

Because each vertex in cycle p appears once in each of the summations, we derive
the contradiction that 0 D k.

The next two lemmas show how push and relabel operations change the admis-
sible network.

Lemma 26.27
Let G D .V; E/ be a flow network, let f be a preflow in G, and suppose that the
attribute h is a height function. If a vertex u is overflowing and .u; �/ is an ad-
missible edge, then PUSH.u; �/ applies. The operation does not create any new
admissible edges, but it may cause .u; �/ to become inadmissible.

750 Chapter 26 Maximum Flow

Proof By the definition of an admissible edge, we can push flow from u to �.
Since u is overflowing, the operation PUSH.u; �/ applies. The only new residual
edge that pushing flow from u to � can create is .�; u/. Since �:h D u:h � 1,
edge .�; u/ cannot become admissible. If the operation is a saturating push, then
cf .u; �/ D 0 afterward and .u; �/ becomes inadmissible.

Lemma 26.28
Let G D .V; E/ be a flow network, let f be a preflow in G, and suppose that
the attribute h is a height function. If a vertex u is overflowing and there are no
admissible edges leaving u, then RELABEL.u/ applies. After the relabel operation,
there is at least one admissible edge leaving u, but there are no admissible edges
entering u.

Proof If u is overflowing, then by Lemma 26.14, either a push or a relabel op-
eration applies to it. If there are no admissible edges leaving u, then no flow
can be pushed from u and so RELABEL.u/ applies. After the relabel operation,
u:h D 1 C min f�:h W .u; �/ 2 Ef g. Thus, if � is a vertex that realizes the mini-
mum in this set, the edge .u; �/ becomes admissible. Hence, after the relabel, there
is at least one admissible edge leaving u.

To show that no admissible edges enter u after a relabel operation, suppose that
there is a vertex � such that .�; u/ is admissible. Then, �:h D u:h C 1 after the
relabel, and so �:h > u:h C 1 just before the relabel. But by Lemma 26.12, no
residual edges exist between vertices whose heights differ by more than 1. More-
over, relabeling a vertex does not change the residual network. Thus, .�; u/ is not
in the residual network, and hence it cannot be in the admissible network.

Neighbor lists

Edges in the relabel-to-front algorithm are organized into “neighbor lists.” Given
a flow network G D .V; E/, the neighbor list u:N for a vertex u 2 V is a singly
linked list of the neighbors of u in G. Thus, vertex � appears in the list u:N if
.u; �/ 2 E or .�; u/ 2 E. The neighbor list u:N contains exactly those vertices �

for which there may be a residual edge .u; �/. The attribute u:N:head points to
the first vertex in u:N, and �:next-neighbor points to the vertex following � in a
neighbor list; this pointer is NIL if � is the last vertex in the neighbor list.

The relabel-to-front algorithm cycles through each neighbor list in an arbitrary
order that is fixed throughout the execution of the algorithm. For each vertex u,
the attribute u:current points to the vertex currently under consideration in u:N.
Initially, u:current is set to u:N:head.

26.5 The relabel-to-front algorithm 751

Discharging an overflowing vertex

An overflowing vertex u is discharged by pushing all of its excess flow through
admissible edges to neighboring vertices, relabeling u as necessary to cause edges
leaving u to become admissible. The pseudocode goes as follows.

DISCHARGE.u/

1 while u:e > 0

2 � D u:current
3 if � == NIL

4 RELABEL.u/

5 u:current D u:N:head
6 elseif cf .u; �/ > 0 and u:h == �:hC 1

7 PUSH.u; �/

8 else u:current D �:next-neighbor

Figure 26.9 steps through several iterations of the while loop of lines 1–8, which
executes as long as vertex u has positive excess. Each iteration performs exactly
one of three actions, depending on the current vertex � in the neighbor list u:N.

1. If � is NIL, then we have run off the end of u:N. Line 4 relabels vertex u,
and then line 5 resets the current neighbor of u to be the first one in u:N.
(Lemma 26.29 below states that the relabel operation applies in this situation.)

2. If � is non-NIL and .u; �/ is an admissible edge (determined by the test in
line 6), then line 7 pushes some (or possibly all) of u’s excess to vertex �.

3. If � is non-NIL but .u; �/ is inadmissible, then line 8 advances u:current one
position further in the neighbor list u:N.

Observe that if DISCHARGE is called on an overflowing vertex u, then the last
action performed by DISCHARGE must be a push from u. Why? The procedure
terminates only when u:e becomes zero, and neither the relabel operation nor ad-
vancing the pointer u:current affects the value of u:e.

We must be sure that when PUSH or RELABEL is called by DISCHARGE, the
operation applies. The next lemma proves this fact.

Lemma 26.29
If DISCHARGE calls PUSH.u; �/ in line 7, then a push operation applies to .u; �/.
If DISCHARGE calls RELABEL.u/ in line 4, then a relabel operation applies to u.

Proof The tests in lines 1 and 6 ensure that a push operation occurs only if the
operation applies, which proves the first statement in the lemma.

752 Chapter 26 Maximum Flow

s
–265

4

3

2

1

0

6

x
0 y

19
z
0

5/5 8

14/14

s

x

z

s
–265

4

3

2

1

0

6

x
0

y
19 z

0

8

14/14

s

x

z
5/5

s
–265

4

3

2

1

0

6

x
0

y
11 z

8

8/8

14/14

5/5

s

x

z

s

x

z

1 2 3

s

x

z

4

5

s

x

z

6

s

x

z

7

s

x

z

8

s

x

z

9

(a)

(b)

(c)

Figure 26.9 Discharging a vertex y. It takes 15 iterations of the while loop of DISCHARGE to push
all the excess flow from y. Only the neighbors of y and edges of the flow network that enter or leave y

are shown. In each part of the figure, the number inside each vertex is its excess at the beginning of
the first iteration shown in the part, and each vertex is shown at its height throughout the part. The
neighbor list y:N at the beginning of each iteration appears on the right, with the iteration number
on top. The shaded neighbor is y:current. (a) Initially, there are 19 units of excess to push from y,
and y:current D s. Iterations 1, 2, and 3 just advance y:current, since there are no admissible edges
leaving y. In iteration 4, y:current D NIL (shown by the shading being below the neighbor list),
and so y is relabeled and y:current is reset to the head of the neighbor list. (b) After relabeling,
vertex y has height 1. In iterations 5 and 6, edges .y; s/ and .y; x/ are found to be inadmissible, but
iteration 7 pushes 8 units of excess flow from y to ´. Because of the push, y:current does not advance
in this iteration. (c) Because the push in iteration 7 saturated edge .y; ´/, it is found inadmissible in
iteration 8. In iteration 9, y:current D NIL, and so vertex y is again relabeled and y:current is reset.

26.5 The relabel-to-front algorithm 753

s
–265

4

3

2

1

0

6

x
5

y
6

z
8

5
8/8

14/14

s
–265

4

3

2

1

0

6

x
0

y
11

z
8

8/8

14/14

5/5

s
–265

4

3

2

1

0

6

x
5

y
6

z
8

8/8

14/14

5

s
–205

4

3

2

1

0

6

x
5

y
0

z
8

5
8/8

8/14

s

x

z

10

s

x

z

11

s

x

z

12

s

x

z

13

s

x

z

14

s

x

z

15

(f)

(d)

(e)

(g)

Figure 26.9, continued (d) In iteration 10, .y; s/ is inadmissible, but iteration 11 pushes 5 units
of excess flow from y to x. (e) Because y:current did not advance in iteration 11, iteration 12
finds .y; x/ to be inadmissible. Iteration 13 finds .y; ´/ inadmissible, and iteration 14 relabels ver-
tex y and resets y:current. (f) Iteration 15 pushes 6 units of excess flow from y to s. (g) Vertex y

now has no excess flow, and DISCHARGE terminates. In this example, DISCHARGE both starts and
finishes with the current pointer at the head of the neighbor list, but in general this need not be the
case.

754 Chapter 26 Maximum Flow

To prove the second statement, according to the test in line 1 and Lemma 26.28,
we need only show that all edges leaving u are inadmissible. If a call to
DISCHARGE.u/ starts with the pointer u:current at the head of u’s neighbor list
and finishes with it off the end of the list, then all of u’s outgoing edges are in-
admissible and a relabel operation applies. It is possible, however, that during a
call to DISCHARGE.u/, the pointer u:current traverses only part of the list be-
fore the procedure returns. Calls to DISCHARGE on other vertices may then oc-
cur, but u:current will continue moving through the list during the next call to
DISCHARGE.u/. We now consider what happens during a complete pass through
the list, which begins at the head of u:N and finishes with u:current D NIL. Once
u:current reaches the end of the list, the procedure relabels u and begins a new
pass. For the u:current pointer to advance past a vertex � 2 u:N during a pass, the
edge .u; �/ must be deemed inadmissible by the test in line 6. Thus, by the time
the pass completes, every edge leaving u has been determined to be inadmissible
at some time during the pass. The key observation is that at the end of the pass,
every edge leaving u is still inadmissible. Why? By Lemma 26.27, pushes cannot
create any admissible edges, regardless of which vertex the flow is pushed from.
Thus, any admissible edge must be created by a relabel operation. But the vertex u

is not relabeled during the pass, and by Lemma 26.28, any other vertex � that is
relabeled during the pass (resulting from a call of DISCHARGE.�/) has no entering
admissible edges after relabeling. Thus, at the end of the pass, all edges leaving u

remain inadmissible, which completes the proof.

The relabel-to-front algorithm

In the relabel-to-front algorithm, we maintain a linked list L consisting of all ver-
tices in V � fs; tg. A key property is that the vertices in L are topologically sorted
according to the admissible network, as we shall see in the loop invariant that fol-
lows. (Recall from Lemma 26.26 that the admissible network is a dag.)

The pseudocode for the relabel-to-front algorithm assumes that the neighbor
lists u:N have already been created for each vertex u. It also assumes that u:next
points to the vertex that follows u in list L and that, as usual, u:next D NIL if u is
the last vertex in the list.

26.5 The relabel-to-front algorithm 755

RELABEL-TO-FRONT.G; s; t/

1 INITIALIZE-PREFLOW.G; s/

2 L D G:V � fs; tg, in any order
3 for each vertex u 2 G:V � fs; tg
4 u:current D u:N:head
5 u D L:head
6 while u ¤ NIL

7 old-height D u:h
8 DISCHARGE.u/

9 if u:h > old-height
10 move u to the front of list L

11 u D u:next

The relabel-to-front algorithm works as follows. Line 1 initializes the preflow
and heights to the same values as in the generic push-relabel algorithm. Line 2
initializes the list L to contain all potentially overflowing vertices, in any order.
Lines 3–4 initialize the current pointer of each vertex u to the first vertex in u’s
neighbor list.

As Figure 26.10 illustrates, the while loop of lines 6–11 runs through the list L,
discharging vertices. Line 5 makes it start with the first vertex in the list. Each
time through the loop, line 8 discharges a vertex u. If u was relabeled by the
DISCHARGE procedure, line 10 moves it to the front of list L. We can determine
whether u was relabeled by comparing its height before the discharge operation,
saved into the variable old-height in line 7, with its height afterward, in line 9.
Line 11 makes the next iteration of the while loop use the vertex following u in
list L. If line 10 moved u to the front of the list, the vertex used in the next iteration
is the one following u in its new position in the list.

To show that RELABEL-TO-FRONT computes a maximum flow, we shall show
that it is an implementation of the generic push-relabel algorithm. First, ob-
serve that it performs push and relabel operations only when they apply, since
Lemma 26.29 guarantees that DISCHARGE performs them only when they apply.
It remains to show that when RELABEL-TO-FRONT terminates, no basic opera-
tions apply. The remainder of the correctness argument relies on the following
loop invariant:

At each test in line 6 of RELABEL-TO-FRONT, list L is a topological sort
of the vertices in the admissible network Gf;h D .V; Ef;h/, and no vertex
before u in the list has excess flow.

Initialization: Immediately after INITIALIZE-PREFLOW has been run, s:h D jV j
and �:h D 0 for all � 2 V � fsg. Since jV j � 2 (because V contains at

756 Chapter 26 Maximum Flow

s
–265

4

3

2

1

0

6

x
12

y
14

z
0

t
0

5 8 10

7 16

14/14

12/12

L: x y z

N: s

y

z

t

s

x

z

x

y

t

(a)

s
–265

4

3

2

1

0

6

x
0 y

19
z
0

t
7

5/5 8 10

14/14

12/12

L: x y z

N: s

y

z

t

s

x

z

x

y

t

(b)

7
7/16

s
–205

4

3

2

1

0

6

x
5

y
0

z
8

t
7

5

8/8

10

8/14

12/12

L: xy z

N: s

y

z

t

s

x

z

x

y

t

(c)

7

7/16

Figure 26.10 The action of RELABEL-TO-FRONT. (a)A flow network just before the first iteration
of the while loop. Initially, 26 units of flow leave source s. On the right is shown the initial list
L D hx; y; ´i, where initially u D x. Under each vertex in list L is its neighbor list, with the current
neighbor shaded. Vertex x is discharged. It is relabeled to height 1, 5 units of excess flow are pushed
to y, and the 7 remaining units of excess are pushed to the sink t . Because x is relabeled, it moves
to the head of L, which in this case does not change the structure of L. (b) After x, the next vertex
in L that is discharged is y. Figure 26.9 shows the detailed action of discharging y in this situation.
Because y is relabeled, it is moved to the head of L. (c) Vertex x now follows y in L, and so it is
again discharged, pushing all 5 units of excess flow to t . Because vertex x is not relabeled in this
discharge operation, it remains in place in list L.

26.5 The relabel-to-front algorithm 757

s
–205

4

3

2

1

0

6

x
0

y
0

z
8

t
12

5

8/8

10

8/14

12/12

L: xy z

N: s

y

z

t

s

x

z

x

y

t

(d)

7

12/16

s
–205

4

3

2

1

0

6

x
0

y
0

z
0 t

20

5

8/8
8/10

8/14

12/12

L: xyz

N: s

y

z

t

s

x

z

x

y

t

(e)

12/16
7

Figure 26.10, continued (d) Since vertex ´ follows vertex x in L, it is discharged. It is relabeled
to height 1 and all 8 units of excess flow are pushed to t . Because ´ is relabeled, it moves to the
front of L. (e) Vertex y now follows vertex ´ in L and is therefore discharged. But because y has no
excess, DISCHARGE immediately returns, and y remains in place in L. Vertex x is then discharged.
Because it, too, has no excess, DISCHARGE again returns, and x remains in place in L. RELABEL-
TO-FRONT has reached the end of list L and terminates. There are no overflowing vertices, and the
preflow is a maximum flow.

least s and t), no edge can be admissible. Thus, Ef;h D ;, and any ordering of
V � fs; tg is a topological sort of Gf;h.

Because u is initially the head of the list L, there are no vertices before it and
so there are none before it with excess flow.

Maintenance: To see that each iteration of the while loop maintains the topolog-
ical sort, we start by observing that the admissible network is changed only by
push and relabel operations. By Lemma 26.27, push operations do not cause
edges to become admissible. Thus, only relabel operations can create admissi-
ble edges. After a vertex u is relabeled, however, Lemma 26.28 states that there
are no admissible edges entering u but there may be admissible edges leaving u.
Thus, by moving u to the front of L, the algorithm ensures that any admissible
edges leaving u satisfy the topological sort ordering.

758 Chapter 26 Maximum Flow

To see that no vertex preceding u in L has excess flow, we denote the vertex
that will be u in the next iteration by u0. The vertices that will precede u0 in the
next iteration include the current u (due to line 11) and either no other vertices
(if u is relabeled) or the same vertices as before (if u is not relabeled). When u

is discharged, it has no excess flow afterward. Thus, if u is relabeled during
the discharge, no vertices preceding u0 have excess flow. If u is not relabeled
during the discharge, no vertices before it on the list acquired excess flow during
this discharge, because L remained topologically sorted at all times during the
discharge (as just pointed out, admissible edges are created only by relabeling,
not pushing), and so each push operation causes excess flow to move only to
vertices further down the list (or to s or t). Again, no vertices preceding u0 have
excess flow.

Termination: When the loop terminates, u is just past the end of L, and so the
loop invariant ensures that the excess of every vertex is 0. Thus, no basic oper-
ations apply.

Analysis

We shall now show that RELABEL-TO-FRONT runs in O.V 3/ time on any flow
network G D .V; E/. Since the algorithm is an implementation of the generic
push-relabel algorithm, we shall take advantage of Corollary 26.21, which pro-
vides an O.V / bound on the number of relabel operations executed per vertex and
an O.V 2/ bound on the total number of relabel operations overall. In addition, Ex-
ercise 26.4-3 provides an O.VE/ bound on the total time spent performing relabel
operations, and Lemma 26.22 provides an O.VE/ bound on the total number of
saturating push operations.

Theorem 26.30
The running time of RELABEL-TO-FRONT on any flow network G D .V; E/

is O.V 3/.

Proof Let us consider a “phase” of the relabel-to-front algorithm to be the time
between two consecutive relabel operations. There are O.V 2/ phases, since there
are O.V 2/ relabel operations. Each phase consists of at most jV j calls to DIS-
CHARGE, which we can see as follows. If DISCHARGE does not perform a re-
label operation, then the next call to DISCHARGE is further down the list L, and
the length of L is less than jV j. If DISCHARGE does perform a relabel, the next
call to DISCHARGE belongs to a different phase. Since each phase contains at
most jV j calls to DISCHARGE and there are O.V 2/ phases, the number of times
DISCHARGE is called in line 8 of RELABEL-TO-FRONT is O.V 3/. Thus, the total

26.5 The relabel-to-front algorithm 759

work performed by the while loop in RELABEL-TO-FRONT, excluding the work
performed within DISCHARGE, is at most O.V 3/.

We must now bound the work performed within DISCHARGE during the ex-
ecution of the algorithm. Each iteration of the while loop within DISCHARGE

performs one of three actions. We shall analyze the total amount of work involved
in performing each of these actions.

We start with relabel operations (lines 4–5). Exercise 26.4-3 provides an O.VE/

time bound on all the O.V 2/ relabels that are performed.
Now, suppose that the action updates the u:current pointer in line 8. This action

occurs O.degree.u// times each time a vertex u is relabeled, and O.V �degree.u//

times overall for the vertex. For all vertices, therefore, the total amount of work
done in advancing pointers in neighbor lists is O.VE/ by the handshaking lemma
(Exercise B.4-1).

The third type of action performed by DISCHARGE is a push operation (line 7).
We already know that the total number of saturating push operations is O.VE/.
Observe that if a nonsaturating push is executed, DISCHARGE immediately returns,
since the push reduces the excess to 0. Thus, there can be at most one nonsaturating
push per call to DISCHARGE. As we have observed, DISCHARGE is called O.V 3/

times, and thus the total time spent performing nonsaturating pushes is O.V 3/.
The running time of RELABEL-TO-FRONT is therefore O.V 3 C VE/, which

is O.V 3/.

Exercises

26.5-1
Illustrate the execution of RELABEL-TO-FRONT in the manner of Figure 26.10 for
the flow network in Figure 26.1(a). Assume that the initial ordering of vertices in L

is h�1; �2; �3; �4i and that the neighbor lists are

�1:N D hs; �2; �3i ;

�2:N D hs; �1; �3; �4i ;

�3:N D h�1; �2; �4; ti ;

�4:N D h�2; �3; ti :

26.5-2 ?

We would like to implement a push-relabel algorithm in which we maintain a first-
in, first-out queue of overflowing vertices. The algorithm repeatedly discharges the
vertex at the head of the queue, and any vertices that were not overflowing before
the discharge but are overflowing afterward are placed at the end of the queue.
After the vertex at the head of the queue is discharged, it is removed. When the

760 Chapter 26 Maximum Flow

queue is empty, the algorithm terminates. Show how to implement this algorithm
to compute a maximum flow in O.V 3/ time.

26.5-3
Show that the generic algorithm still works if RELABEL updates u:h by sim-
ply computing u:h D u:h C 1. How would this change affect the analysis of
RELABEL-TO-FRONT?

26.5-4 ?

Show that if we always discharge a highest overflowing vertex, we can make the
push-relabel method run in O.V 3/ time.

26.5-5
Suppose that at some point in the execution of a push-relabel algorithm, there exists
an integer 0 < k � jV j � 1 for which no vertex has �:h D k. Show that all
vertices with �:h > k are on the source side of a minimum cut. If such a k exists,
the gap heuristic updates every vertex � 2 V � fsg for which �:h > k, to set
�:h D max.�:h; jV j C 1/. Show that the resulting attribute h is a height function.
(The gap heuristic is crucial in making implementations of the push-relabel method
perform well in practice.)

Problems

26-1 Escape problem
An n	n grid is an undirected graph consisting of n rows and n columns of vertices,
as shown in Figure 26.11. We denote the vertex in the i th row and the j th column
by .i; j /. All vertices in a grid have exactly four neighbors, except for the boundary
vertices, which are the points .i; j / for which i D 1, i D n, j D 1, or j D n.

Given m � n2 starting points .x1; y1/; .x2; y2/; : : : ; .xm; ym/ in the grid, the
escape problem is to determine whether or not there are m vertex-disjoint paths
from the starting points to any m different points on the boundary. For example,
the grid in Figure 26.11(a) has an escape, but the grid in Figure 26.11(b) does not.

a. Consider a flow network in which vertices, as well as edges, have capacities.
That is, the total positive flow entering any given vertex is subject to a capacity
constraint. Show that determining the maximum flow in a network with edge
and vertex capacities can be reduced to an ordinary maximum-flow problem on
a flow network of comparable size.

Problems for Chapter 26 761

(a) (b)

Figure 26.11 Grids for the escape problem. Starting points are black, and other grid vertices are
white. (a) A grid with an escape, shown by shaded paths. (b) A grid with no escape.

b. Describe an efficient algorithm to solve the escape problem, and analyze its
running time.

26-2 Minimum path cover
A path cover of a directed graph G D .V; E/ is a set P of vertex-disjoint paths
such that every vertex in V is included in exactly one path in P . Paths may start
and end anywhere, and they may be of any length, including 0. A minimum path
cover of G is a path cover containing the fewest possible paths.

a. Give an efficient algorithm to find a minimum path cover of a directed acyclic
graph G D .V; E/. (Hint: Assuming that V D f1; 2; : : : ; ng, construct the
graph G0 D .V 0; E 0/, where

V 0 D fx0; x1; : : : ; xng [fy0; y1; : : : ; yng ;

E 0 D f.x0; xi / W i 2 V g [f.yi ; y0/ W i 2 V g [f.xi ; yj / W .i; j / 2 Eg ;

and run a maximum-flow algorithm.)

b. Does your algorithm work for directed graphs that contain cycles? Explain.

26-3 Algorithmic consulting
Professor Gore wants to open up an algorithmic consulting company. He has iden-
tified n important subareas of algorithms (roughly corresponding to different por-
tions of this textbook), which he represents by the set A D fA1; A2; : : : ; Ang. In
each subarea Ak, he can hire an expert in that area for ck dollars. The consulting
company has lined up a set J D fJ1; J2; : : : ; Jmg of potential jobs. In order to
perform job Ji , the company needs to have hired experts in a subset Ri � A of

762 Chapter 26 Maximum Flow

subareas. Each expert can work on multiple jobs simultaneously. If the company
chooses to accept job Ji , it must have hired experts in all subareas in Ri , and it will
take in revenue of pi dollars.

Professor Gore’s job is to determine which subareas to hire experts in and which
jobs to accept in order to maximize the net revenue, which is the total income from
jobs accepted minus the total cost of employing the experts.

Consider the following flow network G. It contains a source vertex s, vertices
A1; A2; : : : ; An, vertices J1; J2; : : : ; Jm, and a sink vertex t . For k D 1; 2 : : : ; n,
the flow network contains an edge .s; Ak/ with capacity c.s; Ak/ D ck, and
for i D 1; 2; : : : ; m, the flow network contains an edge .Ji ; t/ with capacity
c.Ji ; t/ D pi . For k D 1; 2; : : : ; n and i D 1; 2; : : : ; m, if Ak 2 Ri , then G

contains an edge .Ak; Ji / with capacity c.Ak; Ji / D1.

a. Show that if Ji 2 T for a finite-capacity cut .S; T / of G, then Ak 2 T for each
Ak 2 Ri .

b. Show how to determine the maximum net revenue from the capacity of a mini-
mum cut of G and the given pi values.

c. Give an efficient algorithm to determine which jobs to accept and which experts
to hire. Analyze the running time of your algorithm in terms of m, n, and
r DPm

iD1 jRi j.

26-4 Updating maximum flow
Let G D .V; E/ be a flow network with source s, sink t , and integer capacities.
Suppose that we are given a maximum flow in G.

a. Suppose that we increase the capacity of a single edge .u; �/ 2 E by 1. Give
an O.V CE/-time algorithm to update the maximum flow.

b. Suppose that we decrease the capacity of a single edge .u; �/ 2 E by 1. Give
an O.V CE/-time algorithm to update the maximum flow.

26-5 Maximum flow by scaling
Let G D .V; E/ be a flow network with source s, sink t , and an integer capac-
ity c.u; �/ on each edge .u; �/ 2 E. Let C D max.u;�/2E c.u; �/.

a. Argue that a minimum cut of G has capacity at most C jEj.

b. For a given number K, show how to find an augmenting path of capacity at
least K in O.E/ time, if such a path exists.

Problems for Chapter 26 763

We can use the following modification of FORD-FULKERSON-METHOD to com-
pute a maximum flow in G:

MAX-FLOW-BY-SCALING.G; s; t/

1 C D max.u;�/2E c.u; �/

2 initialize flow f to 0

3 K D 2blg C c

4 while K � 1

5 while there exists an augmenting path p of capacity at least K

6 augment flow f along p

7 K D K=2

8 return f

c. Argue that MAX-FLOW-BY-SCALING returns a maximum flow.

d. Show that the capacity of a minimum cut of the residual network Gf is at most
2K jEj each time line 4 is executed.

e. Argue that the inner while loop of lines 5–6 executes O.E/ times for each value
of K.

f. Conclude that MAX-FLOW-BY-SCALING can be implemented so that it runs
in O.E2 lg C / time.

26-6 The Hopcroft-Karp bipartite matching algorithm
In this problem, we describe a faster algorithm, due to Hopcroft and Karp, for
finding a maximum matching in a bipartite graph. The algorithm runs in O.

p
V E/

time. Given an undirected, bipartite graph G D .V; E/, where V D L [R and
all edges have exactly one endpoint in L, let M be a matching in G. We say that
a simple path P in G is an augmenting path with respect to M if it starts at an
unmatched vertex in L, ends at an unmatched vertex in R, and its edges belong
alternately to M and E � M . (This definition of an augmenting path is related
to, but different from, an augmenting path in a flow network.) In this problem,
we treat a path as a sequence of edges, rather than as a sequence of vertices. A
shortest augmenting path with respect to a matching M is an augmenting path
with a minimum number of edges.

Given two sets A and B , the symmetric difference A˚B is defined as .A�B/[
.B � A/, that is, the elements that are in exactly one of the two sets.

764 Chapter 26 Maximum Flow

a. Show that if M is a matching and P is an augmenting path with respect to M ,
then the symmetric difference M ˚P is a matching and jM ˚ P j D jM j C 1.
Show that if P1; P2; : : : ; Pk are vertex-disjoint augmenting paths with respect
to M , then the symmetric difference M ˚ .P1 [P2 [� � � [Pk/ is a matching
with cardinality jM j C k.

The general structure of our algorithm is the following:

HOPCROFT-KARP.G/

1 M D ;
2 repeat
3 let P D fP1; P2; : : : ; Pkg be a maximal set of vertex-disjoint

shortest augmenting paths with respect to M

4 M D M ˚ .P1 [P2 [� � � [Pk/

5 until P == ;
6 returnM

The remainder of this problem asks you to analyze the number of iterations in
the algorithm (that is, the number of iterations in the repeat loop) and to describe
an implementation of line 3.

b. Given two matchings M and M � in G, show that every vertex in the graph
G0 D .V; M ˚ M �/ has degree at most 2. Conclude that G0 is a disjoint
union of simple paths or cycles. Argue that edges in each such simple path
or cycle belong alternately to M or M �. Prove that if jM j � jM �j, then
M ˚M � contains at least jM �j � jM j vertex-disjoint augmenting paths with
respect to M .

Let l be the length of a shortest augmenting path with respect to a matching M , and
let P1; P2; : : : ; Pk be a maximal set of vertex-disjoint augmenting paths of length l

with respect to M . Let M 0 D M˚.P1[� � �[Pk/, and suppose that P is a shortest
augmenting path with respect to M 0.

c. Show that if P is vertex-disjoint from P1; P2; : : : ; Pk, then P has more than l

edges.

d. Now suppose that P is not vertex-disjoint from P1; P2; : : : ; Pk . Let A be the
set of edges .M ˚M 0/˚ P . Show that A D .P1 [P2 [� � � [Pk/˚ P and
that jAj � .k C 1/l . Conclude that P has more than l edges.

e. Prove that if a shortest augmenting path with respect to M has l edges, the size
of the maximum matching is at most jM j C jV j =.l C 1/.

Notes for Chapter 26 765

f. Show that the number of repeat loop iterations in the algorithm is at
most 2

p
jV j. (Hint: By how much can M grow after iteration number

p
jV j?)

g. Give an algorithm that runs in O.E/ time to find a maximal set of vertex-
disjoint shortest augmenting paths P1; P2; : : : ; Pk for a given matching M .
Conclude that the total running time of HOPCROFT-KARP is O.

p
V E/.

Chapter notes

Ahuja, Magnanti, and Orlin [7], Even [103], Lawler [224], Papadimitriou and Stei-
glitz [271], and Tarjan [330] are good references for network flow and related algo-
rithms. Goldberg, Tardos, and Tarjan [139] also provide a nice survey of algorithms
for network-flow problems, and Schrijver [304] has written an interesting review
of historical developments in the field of network flows.

The Ford-Fulkerson method is due to Ford and Fulkerson [109], who originated
the formal study of many of the problems in the area of network flow, including
the maximum-flow and bipartite-matching problems. Many early implementations
of the Ford-Fulkerson method found augmenting paths using breadth-first search;
Edmonds and Karp [102], and independently Dinic [89], proved that this strategy
yields a polynomial-time algorithm. A related idea, that of using “blocking flows,”
was also first developed by Dinic [89]. Karzanov [202] first developed the idea of
preflows. The push-relabel method is due to Goldberg [136] and Goldberg and Tar-
jan [140]. Goldberg and Tarjan gave an O.V 3/-time algorithm that uses a queue to
maintain the set of overflowing vertices, as well as an algorithm that uses dynamic
trees to achieve a running time of O.VE lg.V 2=EC2//. Several other researchers
have developed push-relabel maximum-flow algorithms. Ahuja and Orlin [9] and
Ahuja, Orlin, and Tarjan [10] gave algorithms that used scaling. Cheriyan and
Maheshwari [62] proposed pushing flow from the overflowing vertex of maximum
height. Cheriyan and Hagerup [61] suggested randomly permuting the neighbor
lists, and several researchers [14, 204, 276] developed clever derandomizations of
this idea, leading to a sequence of faster algorithms. The algorithm of King, Rao,
and Tarjan [204] is the fastest such algorithm and runs in O.VE logE=.V lg V / V /

time.
The asymptotically fastest algorithm to date for the maximum-flow problem, by

Goldberg and Rao [138], runs in time O.min.V 2=3; E1=2/E lg.V 2=E C 2/ lg C /,
where C D max.u;�/2E c.u; �/. This algorithm does not use the push-relabel
method but instead is based on finding blocking flows. All previous maximum-
flow algorithms, including the ones in this chapter, use some notion of distance
(the push-relabel algorithms use the analogous notion of height), with a length of 1

766 Chapter 26 Maximum Flow

assigned implicitly to each edge. This new algorithm takes a different approach and
assigns a length of 0 to high-capacity edges and a length of 1 to low-capacity edges.
Informally, with respect to these lengths, shortest paths from the source to the sink
tend have high capacity, which means that fewer iterations need be performed.

In practice, push-relabel algorithms currently dominate augmenting-path or
linear-programming based algorithms for the maximum-flow problem. A study
by Cherkassky and Goldberg [63] underscores the importance of using two heuris-
tics when implementing a push-relabel algorithm. The first heuristic is to peri-
odically perform a breadth-first search of the residual network in order to obtain
more accurate height values. The second heuristic is the gap heuristic, described in
Exercise 26.5-5. Cherkassky and Goldberg conclude that the best choice of push-
relabel variants is the one that chooses to discharge the overflowing vertex with the
maximum height.

The best algorithm to date for maximum bipartite matching, discovered by
Hopcroft and Karp [176], runs in O.

p
V E/ time and is described in Problem 26-6.

The book by Lovász and Plummer [239] is an excellent reference on matching
problems.

VII Selected Topics

Introduction

This part contains a selection of algorithmic topics that extend and complement
earlier material in this book. Some chapters introduce new models of computation
such as circuits or parallel computers. Others cover specialized domains such as
computational geometry or number theory. The last two chapters discuss some of
the known limitations to the design of efficient algorithms and introduce techniques
for coping with those limitations.

Chapter 27 presents an algorithmic model for parallel computing based on dy-
namic multithreading. The chapter introduces the basics of the model, showing
how to quantify parallelism in terms of the measures of work and span. It then
investigates several interesting multithreaded algorithms, including algorithms for
matrix multiplication and merge sorting.

Chapter 28 studies efficient algorithms for operating on matrices. It presents
two general methods—LU decomposition and LUP decomposition—for solving
linear equations by Gaussian elimination in O.n3/ time. It also shows that matrix
inversion and matrix multiplication can be performed equally fast. The chapter
concludes by showing how to compute a least-squares approximate solution when
a set of linear equations has no exact solution.

Chapter 29 studies linear programming, in which we wish to maximize or mini-
mize an objective, given limited resources and competing constraints. Linear pro-
gramming arises in a variety of practical application areas. This chapter covers how
to formulate and solve linear programs. The solution method covered is the sim-
plex algorithm, which is the oldest algorithm for linear programming. In contrast
to many algorithms in this book, the simplex algorithm does not run in polynomial
time in the worst case, but it is fairly efficient and widely used in practice.

770 Part VII Selected Topics

Chapter 30 studies operations on polynomials and shows how to use a well-
known signal-processing technique—the fast Fourier transform (FFT)—to multi-
ply two degree-n polynomials in O.n lg n/ time. It also investigates efficient im-
plementations of the FFT, including a parallel circuit.

Chapter 31 presents number-theoretic algorithms. After reviewing elementary
number theory, it presents Euclid’s algorithm for computing greatest common di-
visors. Next, it studies algorithms for solving modular linear equations and for
raising one number to a power modulo another number. Then, it explores an impor-
tant application of number-theoretic algorithms: the RSA public-key cryptosystem.
This cryptosystem can be used not only to encrypt messages so that an adversary
cannot read them, but also to provide digital signatures. The chapter then presents
the Miller-Rabin randomized primality test, with which we can find large primes
efficiently—an essential requirement for the RSA system. Finally, the chapter cov-
ers Pollard’s “rho” heuristic for factoring integers and discusses the state of the art
of integer factorization.

Chapter 32 studies the problem of finding all occurrences of a given pattern
string in a given text string, a problem that arises frequently in text-editing pro-
grams. After examining the naive approach, the chapter presents an elegant ap-
proach due to Rabin and Karp. Then, after showing an efficient solution based
on finite automata, the chapter presents the Knuth-Morris-Pratt algorithm, which
modifies the automaton-based algorithm to save space by cleverly preprocessing
the pattern.

Chapter 33 considers a few problems in computational geometry. After dis-
cussing basic primitives of computational geometry, the chapter shows how to use
a “sweeping” method to efficiently determine whether a set of line segments con-
tains any intersections. Two clever algorithms for finding the convex hull of a set of
points—Graham’s scan and Jarvis’s march—also illustrate the power of sweeping
methods. The chapter closes with an efficient algorithm for finding the closest pair
from among a given set of points in the plane.

Chapter 34 concerns NP-complete problems. Many interesting computational
problems are NP-complete, but no polynomial-time algorithm is known for solving
any of them. This chapter presents techniques for determining when a problem is
NP-complete. Several classic problems are proved to be NP-complete: determining
whether a graph has a hamiltonian cycle, determining whether a boolean formula
is satisfiable, and determining whether a given set of numbers has a subset that
adds up to a given target value. The chapter also proves that the famous traveling-
salesman problem is NP-complete.

Chapter 35 shows how to find approximate solutions to NP-complete problems
efficiently by using approximation algorithms. For some NP-complete problems,
approximate solutions that are near optimal are quite easy to produce, but for others
even the best approximation algorithms known work progressively more poorly as

Part VII Selected Topics 771

the problem size increases. Then, there are some problems for which we can invest
increasing amounts of computation time in return for increasingly better approx-
imate solutions. This chapter illustrates these possibilities with the vertex-cover
problem (unweighted and weighted versions), an optimization version of 3-CNF
satisfiability, the traveling-salesman problem, the set-covering problem, and the
subset-sum problem.

27 Multithreaded Algorithms

The vast majority of algorithms in this book are serial algorithms suitable for
running on a uniprocessor computer in which only one instruction executes at a
time. In this chapter, we shall extend our algorithmic model to encompass parallel
algorithms, which can run on a multiprocessor computer that permits multiple
instructions to execute concurrently. In particular, we shall explore the elegant
model of dynamic multithreaded algorithms, which are amenable to algorithmic
design and analysis, as well as to efficient implementation in practice.

Parallel computers—computers with multiple processing units—have become
increasingly common, and they span a wide range of prices and performance. Rela-
tively inexpensive desktop and laptop chip multiprocessors contain a single multi-
core integrated-circuit chip that houses multiple processing “cores,” each of which
is a full-fledged processor that can access a common memory. At an intermedi-
ate price/performance point are clusters built from individual computers—often
simple PC-class machines—with a dedicated network interconnecting them. The
highest-priced machines are supercomputers, which often use a combination of
custom architectures and custom networks to deliver the highest performance in
terms of instructions executed per second.

Multiprocessor computers have been around, in one form or another, for
decades. Although the computing community settled on the random-access ma-
chine model for serial computing early on in the history of computer science, no
single model for parallel computing has gained as wide acceptance. A major rea-
son is that vendors have not agreed on a single architectural model for parallel
computers. For example, some parallel computers feature shared memory, where
each processor can directly access any location of memory. Other parallel com-
puters employ distributed memory, where each processor’s memory is private, and
an explicit message must be sent between processors in order for one processor to
access the memory of another. With the advent of multicore technology, however,
every new laptop and desktop machine is now a shared-memory parallel computer,

Chapter 27 Multithreaded Algorithms 773

and the trend appears to be toward shared-memory multiprocessing. Although time
will tell, that is the approach we shall take in this chapter.

One common means of programming chip multiprocessors and other shared-
memory parallel computers is by using static threading, which provides a software
abstraction of “virtual processors,” or threads, sharing a common memory. Each
thread maintains an associated program counter and can execute code indepen-
dently of the other threads. The operating system loads a thread onto a processor
for execution and switches it out when another thread needs to run. Although the
operating system allows programmers to create and destroy threads, these opera-
tions are comparatively slow. Thus, for most applications, threads persist for the
duration of a computation, which is why we call them “static.”

Unfortunately, programming a shared-memory parallel computer directly using
static threads is difficult and error-prone. One reason is that dynamically parti-
tioning the work among the threads so that each thread receives approximately
the same load turns out to be a complicated undertaking. For any but the sim-
plest of applications, the programmer must use complex communication protocols
to implement a scheduler to load-balance the work. This state of affairs has led
toward the creation of concurrency platforms, which provide a layer of software
that coordinates, schedules, and manages the parallel-computing resources. Some
concurrency platforms are built as runtime libraries, but others provide full-fledged
parallel languages with compiler and runtime support.

Dynamic multithreaded programming

One important class of concurrency platform is dynamic multithreading, which is
the model we shall adopt in this chapter. Dynamic multithreading allows program-
mers to specify parallelism in applications without worrying about communication
protocols, load balancing, and other vagaries of static-thread programming. The
concurrency platform contains a scheduler, which load-balances the computation
automatically, thereby greatly simplifying the programmer’s chore. Although the
functionality of dynamic-multithreading environments is still evolving, almost all
support two features: nested parallelism and parallel loops. Nested parallelism
allows a subroutine to be “spawned,” allowing the caller to proceed while the
spawned subroutine is computing its result. A parallel loop is like an ordinary
for loop, except that the iterations of the loop can execute concurrently.

These two features form the basis of the model for dynamic multithreading that
we shall study in this chapter. A key aspect of this model is that the programmer
needs to specify only the logical parallelism within a computation, and the threads
within the underlying concurrency platform schedule and load-balance the compu-
tation among themselves. We shall investigate multithreaded algorithms written for

774 Chapter 27 Multithreaded Algorithms

this model, as well how the underlying concurrency platform can schedule compu-
tations efficiently.

Our model for dynamic multithreading offers several important advantages:

� It is a simple extension of our serial programming model. We can describe a
multithreaded algorithm by adding to our pseudocode just three “concurrency”
keywords: parallel, spawn, and sync. Moreover, if we delete these concur-
rency keywords from the multithreaded pseudocode, the resulting text is serial
pseudocode for the same problem, which we call the “serialization” of the mul-
tithreaded algorithm.

� It provides a theoretically clean way to quantify parallelism based on the no-
tions of “work” and “span.”

� Many multithreaded algorithms involving nested parallelism follow naturally
from the divide-and-conquer paradigm. Moreover, just as serial divide-and-
conquer algorithms lend themselves to analysis by solving recurrences, so do
multithreaded algorithms.

� The model is faithful to how parallel-computing practice is evolving. A grow-
ing number of concurrency platforms support one variant or another of dynamic
multithreading, including Cilk [51, 118], Cilk++ [71], OpenMP [59], Task Par-
allel Library [230], and Threading Building Blocks [292].

Section 27.1 introduces the dynamic multithreading model and presents the met-
rics of work, span, and parallelism, which we shall use to analyze multithreaded
algorithms. Section 27.2 investigates how to multiply matrices with multithread-
ing, and Section 27.3 tackles the tougher problem of multithreading merge sort.

27.1 The basics of dynamic multithreading

We shall begin our exploration of dynamic multithreading using the example of
computing Fibonacci numbers recursively. Recall that the Fibonacci numbers are
defined by recurrence (3.22):

F0 D 0 ;

F1 D 1 ;

Fi D Fi�1 C Fi�2 for i � 2 :

Here is a simple, recursive, serial algorithm to compute the nth Fibonacci number:

27.1 The basics of dynamic multithreading 775

FIB.0/

FIB.0/FIB.0/FIB.0/

FIB.0/

FIB.1/FIB.1/

FIB.1/

FIB.1/

FIB.1/FIB.1/FIB.1/

FIB.1/

FIB.2/

FIB.2/FIB.2/FIB.2/

FIB.2/

FIB.3/FIB.3/

FIB.3/

FIB.4/

FIB.4/

FIB.5/

FIB.6/

Figure 27.1 The tree of recursive procedure instances when computing FIB.6/. Each instance of
FIB with the same argument does the same work to produce the same result, providing an inefficient
but interesting way to compute Fibonacci numbers.

FIB.n/

1 if n � 1

2 return n

3 else x D FIB.n � 1/

4 y D FIB.n � 2/

5 return x C y

You would not really want to compute large Fibonacci numbers this way, be-
cause this computation does much repeated work. Figure 27.1 shows the tree of
recursive procedure instances that are created when computing F6. For example,
a call to FIB.6/ recursively calls FIB.5/ and then FIB.4/. But, the call to FIB.5/

also results in a call to FIB.4/. Both instances of FIB.4/ return the same result
(F4 D 3). Since the FIB procedure does not memoize, the second call to FIB.4/

replicates the work that the first call performs.
Let T .n/ denote the running time of FIB.n/. Since FIB.n/ contains two recur-

sive calls plus a constant amount of extra work, we obtain the recurrence

T .n/ D T .n � 1/C T .n � 2/C‚.1/ :

This recurrence has solution T .n/ D ‚.Fn/, which we can show using the substi-
tution method. For an inductive hypothesis, assume that T .n/ � aFn � b, where
a > 1 and b > 0 are constants. Substituting, we obtain

776 Chapter 27 Multithreaded Algorithms

T .n/ � .aFn�1 � b/C .aFn�2 � b/C‚.1/

D a.Fn�1 C Fn�2/ � 2b C‚.1/

D aFn � b � .b �‚.1//

� aFn � b

if we choose b large enough to dominate the constant in the ‚.1/. We can then
choose a large enough to satisfy the initial condition. The analytical bound

T .n/ D ‚.�n/ ; (27.1)

where � D .1 C p5/=2 is the golden ratio, now follows from equation (3.25).
Since Fn grows exponentially in n, this procedure is a particularly slow way to
compute Fibonacci numbers. (See Problem 31-3 for much faster ways.)

Although the FIB procedure is a poor way to compute Fibonacci numbers, it
makes a good example for illustrating key concepts in the analysis of multithreaded
algorithms. Observe that within FIB.n/, the two recursive calls in lines 3 and 4 to
FIB.n� 1/ and FIB.n� 2/, respectively, are independent of each other: they could
be called in either order, and the computation performed by one in no way affects
the other. Therefore, the two recursive calls can run in parallel.

We augment our pseudocode to indicate parallelism by adding the concurrency
keywords spawn and sync. Here is how we can rewrite the FIB procedure to use
dynamic multithreading:

P-FIB.n/

1 if n � 1

2 return n

3 else x D spawn P-FIB.n � 1/

4 y D P-FIB.n � 2/

5 sync
6 return x C y

Notice that if we delete the concurrency keywords spawn and sync from P-FIB,
the resulting pseudocode text is identical to FIB (other than renaming the procedure
in the header and in the two recursive calls). We define the serialization of a mul-
tithreaded algorithm to be the serial algorithm that results from deleting the multi-
threaded keywords: spawn, sync, and when we examine parallel loops, parallel.
Indeed, our multithreaded pseudocode has the nice property that a serialization is
always ordinary serial pseudocode to solve the same problem.
Nested parallelism occurs when the keyword spawn precedes a procedure call,

as in line 3. The semantics of a spawn differs from an ordinary procedure call in
that the procedure instance that executes the spawn—the parent—may continue
to execute in parallel with the spawned subroutine—its child—instead of waiting

27.1 The basics of dynamic multithreading 777

for the child to complete, as would normally happen in a serial execution. In this
case, while the spawned child is computing P-FIB.n � 1/, the parent may go on
to compute P-FIB.n � 2/ in line 4 in parallel with the spawned child. Since the
P-FIB procedure is recursive, these two subroutine calls themselves create nested
parallelism, as do their children, thereby creating a potentially vast tree of subcom-
putations, all executing in parallel.

The keyword spawn does not say, however, that a procedure must execute con-
currently with its spawned children, only that it may. The concurrency keywords
express the logical parallelism of the computation, indicating which parts of the
computation may proceed in parallel. At runtime, it is up to a scheduler to deter-
mine which subcomputations actually run concurrently by assigning them to avail-
able processors as the computation unfolds. We shall discuss the theory behind
schedulers shortly.

A procedure cannot safely use the values returned by its spawned children until
after it executes a sync statement, as in line 5. The keyword sync indicates that
the procedure must wait as necessary for all its spawned children to complete be-
fore proceeding to the statement after the sync. In the P-FIB procedure, a sync
is required before the return statement in line 6 to avoid the anomaly that would
occur if x and y were summed before x was computed. In addition to explicit
synchronization provided by the sync statement, every procedure executes a sync
implicitly before it returns, thus ensuring that all its children terminate before it
does.

A model for multithreaded execution

It helps to think of a multithreaded computation—the set of runtime instruc-
tions executed by a processor on behalf of a multithreaded program—as a directed
acyclic graph G D .V; E/, called a computation dag. As an example, Figure 27.2
shows the computation dag that results from computing P-FIB.4/. Conceptually,
the vertices in V are instructions, and the edges in E represent dependencies be-
tween instructions, where .u; �/ 2 E means that instruction u must execute before
instruction �. For convenience, however, if a chain of instructions contains no
parallel control (no spawn, sync, or return from a spawn—via either an explicit
return statement or the return that happens implicitly upon reaching the end of
a procedure), we may group them into a single strand, each of which represents
one or more instructions. Instructions involving parallel control are not included
in strands, but are represented in the structure of the dag. For example, if a strand
has two successors, one of them must have been spawned, and a strand with mul-
tiple predecessors indicates the predecessors joined because of a sync statement.
Thus, in the general case, the set V forms the set of strands, and the set E of di-
rected edges represents dependencies between strands induced by parallel control.

778 Chapter 27 Multithreaded Algorithms

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)

Figure 27.2 A directed acyclic graph representing the computation of P-FIB.4/. Each circle rep-
resents one strand, with black circles representing either base cases or the part of the procedure
(instance) up to the spawn of P-FIB.n � 1/ in line 3, shaded circles representing the part of the pro-
cedure that calls P-FIB.n� 2/ in line 4 up to the sync in line 5, where it suspends until the spawn of
P-FIB.n � 1/ returns, and white circles representing the part of the procedure after the sync where
it sums x and y up to the point where it returns the result. Each group of strands belonging to the
same procedure is surrounded by a rounded rectangle, lightly shaded for spawned procedures and
heavily shaded for called procedures. Spawn edges and call edges point downward, continuation
edges point horizontally to the right, and return edges point upward. Assuming that each strand takes
unit time, the work equals 17 time units, since there are 17 strands, and the span is 8 time units, since
the critical path—shown with shaded edges—contains 8 strands.

If G has a directed path from strand u to strand �, we say that the two strands are
(logically) in series. Otherwise, strands u and � are (logically) in parallel.

We can picture a multithreaded computation as a dag of strands embedded in a
tree of procedure instances. For example, Figure 27.1 shows the tree of procedure
instances for P-FIB.6/ without the detailed structure showing strands. Figure 27.2
zooms in on a section of that tree, showing the strands that constitute each proce-
dure. All directed edges connecting strands run either within a procedure or along
undirected edges in the procedure tree.

We can classify the edges of a computation dag to indicate the kind of dependen-
cies between the various strands. A continuation edge .u; u0/, drawn horizontally
in Figure 27.2, connects a strand u to its successor u0 within the same procedure
instance. When a strand u spawns a strand �, the dag contains a spawn edge .u; �/,
which points downward in the figure. Call edges, representing normal procedure
calls, also point downward. Strand u spawning strand � differs from u calling �

in that a spawn induces a horizontal continuation edge from u to the strand u0 fol-

27.1 The basics of dynamic multithreading 779

lowing u in its procedure, indicating that u0 is free to execute at the same time
as �, whereas a call induces no such edge. When a strand u returns to its calling
procedure and x is the strand immediately following the next sync in the calling
procedure, the computation dag contains return edge .u; x/, which points upward.
A computation starts with a single initial strand—the black vertex in the procedure
labeled P-FIB.4/ in Figure 27.2—and ends with a single final strand—the white
vertex in the procedure labeled P-FIB.4/.

We shall study the execution of multithreaded algorithms on an ideal paral-
lel computer, which consists of a set of processors and a sequentially consistent
shared memory. Sequential consistency means that the shared memory, which may
in reality be performing many loads and stores from the processors at the same
time, produces the same results as if at each step, exactly one instruction from one
of the processors is executed. That is, the memory behaves as if the instructions
were executed sequentially according to some global linear order that preserves the
individual orders in which each processor issues its own instructions. For dynamic
multithreaded computations, which are scheduled onto processors automatically
by the concurrency platform, the shared memory behaves as if the multithreaded
computation’s instructions were interleaved to produce a linear order that preserves
the partial order of the computation dag. Depending on scheduling, the ordering
could differ from one run of the program to another, but the behavior of any exe-
cution can be understood by assuming that the instructions are executed in some
linear order consistent with the computation dag.

In addition to making assumptions about semantics, the ideal-parallel-computer
model makes some performance assumptions. Specifically, it assumes that each
processor in the machine has equal computing power, and it ignores the cost of
scheduling. Although this last assumption may sound optimistic, it turns out that
for algorithms with sufficient “parallelism” (a term we shall define precisely in a
moment), the overhead of scheduling is generally minimal in practice.

Performance measures

We can gauge the theoretical efficiency of a multithreaded algorithm by using two
metrics: “work” and “span.” The work of a multithreaded computation is the total
time to execute the entire computation on one processor. In other words, the work
is the sum of the times taken by each of the strands. For a computation dag in
which each strand takes unit time, the work is just the number of vertices in the
dag. The span is the longest time to execute the strands along any path in the dag.
Again, for a dag in which each strand takes unit time, the span equals the number of
vertices on a longest or critical path in the dag. (Recall from Section 24.2 that we
can find a critical path in a dag G D .V; E/ in ‚.V C E/ time.) For example, the
computation dag of Figure 27.2 has 17 vertices in all and 8 vertices on its critical

780 Chapter 27 Multithreaded Algorithms

path, so that if each strand takes unit time, its work is 17 time units and its span
is 8 time units.

The actual running time of a multithreaded computation depends not only on
its work and its span, but also on how many processors are available and how
the scheduler allocates strands to processors. To denote the running time of a
multithreaded computation on P processors, we shall subscript by P . For example,
we might denote the running time of an algorithm on P processors by TP . The
work is the running time on a single processor, or T1. The span is the running time
if we could run each strand on its own processor—in other words, if we had an
unlimited number of processors—and so we denote the span by T1.

The work and span provide lower bounds on the running time TP of a multi-
threaded computation on P processors:

� In one step, an ideal parallel computer with P processors can do at most P

units of work, and thus in TP time, it can perform at most P TP work. Since the
total work to do is T1, we have P TP � T1. Dividing by P yields the work law:

TP � T1=P : (27.2)

� A P -processor ideal parallel computer cannot run any faster than a machine
with an unlimited number of processors. Looked at another way, a machine
with an unlimited number of processors can emulate a P -processor machine by
using just P of its processors. Thus, the span law follows:

TP � T1 : (27.3)

We define the speedup of a computation on P processors by the ratio T1=TP ,
which says how many times faster the computation is on P processors than
on 1 processor. By the work law, we have TP � T1=P , which implies that
T1=TP � P . Thus, the speedup on P processors can be at most P . When the
speedup is linear in the number of processors, that is, when T1=TP D ‚.P /, the
computation exhibits linear speedup, and when T1=TP D P , we have perfect
linear speedup.

The ratio T1=T1 of the work to the span gives the parallelism of the multi-
threaded computation. We can view the parallelism from three perspectives. As a
ratio, the parallelism denotes the average amount of work that can be performed in
parallel for each step along the critical path. As an upper bound, the parallelism
gives the maximum possible speedup that can be achieved on any number of pro-
cessors. Finally, and perhaps most important, the parallelism provides a limit on
the possibility of attaining perfect linear speedup. Specifically, once the number of
processors exceeds the parallelism, the computation cannot possibly achieve per-
fect linear speedup. To see this last point, suppose that P > T1=T1, in which case

27.1 The basics of dynamic multithreading 781

the span law implies that the speedup satisfies T1=TP � T1=T1 < P . Moreover,
if the number P of processors in the ideal parallel computer greatly exceeds the
parallelism—that is, if P � T1=T1—then T1=TP � P , so that the speedup is
much less than the number of processors. In other words, the more processors we
use beyond the parallelism, the less perfect the speedup.

As an example, consider the computation P-FIB.4/ in Figure 27.2, and assume
that each strand takes unit time. Since the work is T1 D 17 and the span is T1 D 8,
the parallelism is T1=T1 D 17=8 D 2:125. Consequently, achieving much more
than double the speedup is impossible, no matter how many processors we em-
ploy to execute the computation. For larger input sizes, however, we shall see that
P-FIB.n/ exhibits substantial parallelism.

We define the (parallel) slackness of a multithreaded computation executed
on an ideal parallel computer with P processors to be the ratio .T1=T1/=P D
T1=.P T1/, which is the factor by which the parallelism of the computation ex-
ceeds the number of processors in the machine. Thus, if the slackness is less than 1,
we cannot hope to achieve perfect linear speedup, because T1=.P T1/ < 1 and the
span law imply that the speedup on P processors satisfies T1=TP � T1=T1 < P .
Indeed, as the slackness decreases from 1 toward 0, the speedup of the computation
diverges further and further from perfect linear speedup. If the slackness is greater
than 1, however, the work per processor is the limiting constraint. As we shall see,
as the slackness increases from 1, a good scheduler can achieve closer and closer
to perfect linear speedup.

Scheduling

Good performance depends on more than just minimizing the work and span. The
strands must also be scheduled efficiently onto the processors of the parallel ma-
chine. Our multithreaded programming model provides no way to specify which
strands to execute on which processors. Instead, we rely on the concurrency plat-
form’s scheduler to map the dynamically unfolding computation to individual pro-
cessors. In practice, the scheduler maps the strands to static threads, and the op-
erating system schedules the threads on the processors themselves, but this extra
level of indirection is unnecessary for our understanding of scheduling. We can
just imagine that the concurrency platform’s scheduler maps strands to processors
directly.

A multithreaded scheduler must schedule the computation with no advance
knowledge of when strands will be spawned or when they will complete—it must
operate on-line. Moreover, a good scheduler operates in a distributed fashion,
where the threads implementing the scheduler cooperate to load-balance the com-
putation. Provably good on-line, distributed schedulers exist, but analyzing them
is complicated.

782 Chapter 27 Multithreaded Algorithms

Instead, to keep our analysis simple, we shall investigate an on-line centralized
scheduler, which knows the global state of the computation at any given time. In
particular, we shall analyze greedy schedulers, which assign as many strands to
processors as possible in each time step. If at least P strands are ready to execute
during a time step, we say that the step is a complete step, and a greedy scheduler
assigns any P of the ready strands to processors. Otherwise, fewer than P strands
are ready to execute, in which case we say that the step is an incomplete step, and
the scheduler assigns each ready strand to its own processor.

From the work law, the best running time we can hope for on P processors
is TP D T1=P , and from the span law the best we can hope for is TP D T1.
The following theorem shows that greedy scheduling is provably good in that it
achieves the sum of these two lower bounds as an upper bound.

Theorem 27.1
On an ideal parallel computer with P processors, a greedy scheduler executes a
multithreaded computation with work T1 and span T1 in time

TP � T1=P C T1 : (27.4)

Proof We start by considering the complete steps. In each complete step, the
P processors together perform a total of P work. Suppose for the purpose of
contradiction that the number of complete steps is strictly greater than bT1=P c.
Then, the total work of the complete steps is at least

P � .bT1=P c C 1/ D P bT1=P c C P

D T1 � .T1 mod P /C P (by equation (3.8))

> T1 (by inequality (3.9)) .

Thus, we obtain the contradiction that the P processors would perform more work
than the computation requires, which allows us to conclude that the number of
complete steps is at most bT1=P c.

Now, consider an incomplete step. Let G be the dag representing the entire
computation, and without loss of generality, assume that each strand takes unit
time. (We can replace each longer strand by a chain of unit-time strands.) Let G0

be the subgraph of G that has yet to be executed at the start of the incomplete step,
and let G00 be the subgraph remaining to be executed after the incomplete step. A
longest path in a dag must necessarily start at a vertex with in-degree 0. Since an
incomplete step of a greedy scheduler executes all strands with in-degree 0 in G0,
the length of a longest path in G00 must be 1 less than the length of a longest path
in G0. In other words, an incomplete step decreases the span of the unexecuted dag
by 1. Hence, the number of incomplete steps is at most T1.

Since each step is either complete or incomplete, the theorem follows.

27.1 The basics of dynamic multithreading 783

The following corollary to Theorem 27.1 shows that a greedy scheduler always
performs well.

Corollary 27.2
The running time TP of any multithreaded computation scheduled by a greedy
scheduler on an ideal parallel computer with P processors is within a factor of 2

of optimal.

Proof Let T �
P be the running time produced by an optimal scheduler on a machine

with P processors, and let T1 and T1 be the work and span of the computation,
respectively. Since the work and span laws—inequalities (27.2) and (27.3)—give
us T �

P � max.T1=P; T1/, Theorem 27.1 implies that

TP � T1=P C T1
� 2 �max.T1=P; T1/

� 2T �
P :

The next corollary shows that, in fact, a greedy scheduler achieves near-perfect
linear speedup on any multithreaded computation as the slackness grows.

Corollary 27.3
Let TP be the running time of a multithreaded computation produced by a greedy
scheduler on an ideal parallel computer with P processors, and let T1 and T1 be
the work and span of the computation, respectively. Then, if P � T1=T1, we
have TP � T1=P , or equivalently, a speedup of approximately P .

Proof If we suppose that P � T1=T1, then we also have T1 � T1=P , and
hence Theorem 27.1 gives us TP � T1=P C T1 � T1=P . Since the work
law (27.2) dictates that TP � T1=P , we conclude that TP � T1=P , or equiva-
lently, that the speedup is T1=TP � P .

The� symbol denotes “much less,” but how much is “much less”? As a rule
of thumb, a slackness of at least 10—that is, 10 times more parallelism than pro-
cessors—generally suffices to achieve good speedup. Then, the span term in the
greedy bound, inequality (27.4), is less than 10% of the work-per-processor term,
which is good enough for most engineering situations. For example, if a computa-
tion runs on only 10 or 100 processors, it doesn’t make sense to value parallelism
of, say 1,000,000 over parallelism of 10,000, even with the factor of 100 differ-
ence. As Problem 27-2 shows, sometimes by reducing extreme parallelism, we
can obtain algorithms that are better with respect to other concerns and which still
scale up well on reasonable numbers of processors.

784 Chapter 27 Multithreaded Algorithms

A

(a) (b)

B

A

B

Work: T1.A [B/ D T1.A/C T1.B/

Span: T1.A[B/ D T1.A/C T1.B/

Work: T1.A [B/ D T1.A/C T1.B/

Span: T1.A [B/ D max.T1.A/; T1.B/)

Figure 27.3 The work and span of composed subcomputations. (a) When two subcomputations
are joined in series, the work of the composition is the sum of their work, and the span of the
composition is the sum of their spans. (b) When two subcomputations are joined in parallel, the
work of the composition remains the sum of their work, but the span of the composition is only the
maximum of their spans.

Analyzing multithreaded algorithms

We now have all the tools we need to analyze multithreaded algorithms and provide
good bounds on their running times on various numbers of processors. Analyzing
the work is relatively straightforward, since it amounts to nothing more than ana-
lyzing the running time of an ordinary serial algorithm—namely, the serialization
of the multithreaded algorithm—which you should already be familiar with, since
that is what most of this textbook is about! Analyzing the span is more interesting,
but generally no harder once you get the hang of it. We shall investigate the basic
ideas using the P-FIB program.

Analyzing the work T1.n/ of P-FIB.n/ poses no hurdles, because we’ve already
done it. The original FIB procedure is essentially the serialization of P-FIB, and
hence T1.n/ D T .n/ D ‚.�n/ from equation (27.1).

Figure 27.3 illustrates how to analyze the span. If two subcomputations are
joined in series, their spans add to form the span of their composition, whereas
if they are joined in parallel, the span of their composition is the maximum of the
spans of the two subcomputations. For P-FIB.n/, the spawned call to P-FIB.n�1/

in line 3 runs in parallel with the call to P-FIB.n � 2/ in line 4. Hence, we can
express the span of P-FIB.n/ as the recurrence

T1.n/ D max.T1.n � 1/; T1.n � 2//C‚.1/

D T1.n � 1/C‚.1/ ;

which has solution T1.n/ D ‚.n/.
The parallelism of P-FIB.n/ is T1.n/=T1.n/ D ‚.�n=n/, which grows dra-

matically as n gets large. Thus, on even the largest parallel computers, a modest

27.1 The basics of dynamic multithreading 785

value for n suffices to achieve near perfect linear speedup for P-FIB.n/, because
this procedure exhibits considerable parallel slackness.

Parallel loops

Many algorithms contain loops all of whose iterations can operate in parallel. As
we shall see, we can parallelize such loops using the spawn and sync keywords,
but it is much more convenient to specify directly that the iterations of such loops
can run concurrently. Our pseudocode provides this functionality via the parallel
concurrency keyword, which precedes the for keyword in a for loop statement.

As an example, consider the problem of multiplying an n 	 n matrix A D .aij /

by an n-vector x D .xj /. The resulting n-vector y D .yi/ is given by the equation

yi D
nX

j D1

aij xj ;

for i D 1; 2; : : : ; n. We can perform matrix-vector multiplication by computing all
the entries of y in parallel as follows:

MAT-VEC.A; x/

1 n D A:rows
2 let y be a new vector of length n

3 parallel for i D 1 to n

4 yi D 0

5 parallel for i D 1 to n

6 for j D 1 to n

7 yi D yi C aij xj

8 return y

In this code, the parallel for keywords in lines 3 and 5 indicate that the itera-
tions of the respective loops may be run concurrently. A compiler can implement
each parallel for loop as a divide-and-conquer subroutine using nested parallelism.
For example, the parallel for loop in lines 5–7 can be implemented with the call
MAT-VEC-MAIN-LOOP.A; x; y; n; 1; n/, where the compiler produces the auxil-
iary subroutine MAT-VEC-MAIN-LOOP as follows:

786 Chapter 27 Multithreaded Algorithms

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8

Figure 27.4 A dag representing the computation of MAT-VEC-MAIN-LOOP.A; x; y; 8; 1; 8/. The
two numbers within each rounded rectangle give the values of the last two parameters (i and i 0 in
the procedure header) in the invocation (spawn or call) of the procedure. The black circles repre-
sent strands corresponding to either the base case or the part of the procedure up to the spawn of
MAT-VEC-MAIN-LOOP in line 5; the shaded circles represent strands corresponding to the part of
the procedure that calls MAT-VEC-MAIN-LOOP in line 6 up to the sync in line 7, where it suspends
until the spawned subroutine in line 5 returns; and the white circles represent strands corresponding
to the (negligible) part of the procedure after the sync up to the point where it returns.

MAT-VEC-MAIN-LOOP.A; x; y; n; i; i 0/

1 if i == i 0

2 for j D 1 to n

3 yi D yi C aij xj

4 else mid D b.i C i 0/=2c
5 spawn MAT-VEC-MAIN-LOOP.A; x; y; n; i; mid/

6 MAT-VEC-MAIN-LOOP.A; x; y; n; midC 1; i 0/
7 sync

This code recursively spawns the first half of the iterations of the loop to execute
in parallel with the second half of the iterations and then executes a sync, thereby
creating a binary tree of execution where the leaves are individual loop iterations,
as shown in Figure 27.4.

To calculate the work T1.n/ of MAT-VEC on an n	n matrix, we simply compute
the running time of its serialization, which we obtain by replacing the parallel for
loops with ordinary for loops. Thus, we have T1.n/ D ‚.n2/, because the qua-
dratic running time of the doubly nested loops in lines 5–7 dominates. This analysis

27.1 The basics of dynamic multithreading 787

seems to ignore the overhead for recursive spawning in implementing the parallel
loops, however. In fact, the overhead of recursive spawning does increase the work
of a parallel loop compared with that of its serialization, but not asymptotically.
To see why, observe that since the tree of recursive procedure instances is a full
binary tree, the number of internal nodes is 1 fewer than the number of leaves (see
Exercise B.5-3). Each internal node performs constant work to divide the iteration
range, and each leaf corresponds to an iteration of the loop, which takes at least
constant time (‚.n/ time in this case). Thus, we can amortize the overhead of re-
cursive spawning against the work of the iterations, contributing at most a constant
factor to the overall work.

As a practical matter, dynamic-multithreading concurrency platforms sometimes
coarsen the leaves of the recursion by executing several iterations in a single leaf,
either automatically or under programmer control, thereby reducing the overhead
of recursive spawning. This reduced overhead comes at the expense of also reduc-
ing the parallelism, however, but if the computation has sufficient parallel slack-
ness, near-perfect linear speedup need not be sacrificed.

We must also account for the overhead of recursive spawning when analyzing the
span of a parallel-loop construct. Since the depth of recursive calling is logarithmic
in the number of iterations, for a parallel loop with n iterations in which the i th
iteration has span iter1.i/, the span is

T1.n/ D ‚.lg n/C max
1�i�n

iter1.i/ :

For example, for MAT-VEC on an n 	 n matrix, the parallel initialization loop in
lines 3–4 has span ‚.lg n/, because the recursive spawning dominates the constant-
time work of each iteration. The span of the doubly nested loops in lines 5–7
is ‚.n/, because each iteration of the outer parallel for loop contains n iterations
of the inner (serial) for loop. The span of the remaining code in the procedure
is constant, and thus the span is dominated by the doubly nested loops, yielding
an overall span of ‚.n/ for the whole procedure. Since the work is ‚.n2/, the
parallelism is ‚.n2/=‚.n/ D ‚.n/. (Exercise 27.1-6 asks you to provide an
implementation with even more parallelism.)

Race conditions

A multithreaded algorithm is deterministic if it always does the same thing on the
same input, no matter how the instructions are scheduled on the multicore com-
puter. It is nondeterministic if its behavior might vary from run to run. Often, a
multithreaded algorithm that is intended to be deterministic fails to be, because it
contains a “determinacy race.”

Race conditions are the bane of concurrency. Famous race bugs include the
Therac-25 radiation therapy machine, which killed three people and injured sev-

788 Chapter 27 Multithreaded Algorithms

eral others, and the North American Blackout of 2003, which left over 50 million
people without power. These pernicious bugs are notoriously hard to find. You can
run tests in the lab for days without a failure only to discover that your software
sporadically crashes in the field.

A determinacy race occurs when two logically parallel instructions access the
same memory location and at least one of the instructions performs a write. The
following procedure illustrates a race condition:

RACE-EXAMPLE. /

1 x D 0

2 parallel for i D 1 to 2

3 x D x C 1

4 print x

After initializing x to 0 in line 1, RACE-EXAMPLE creates two parallel strands,
each of which increments x in line 3. Although it might seem that RACE-
EXAMPLE should always print the value 2 (its serialization certainly does), it could
instead print the value 1. Let’s see how this anomaly might occur.

When a processor increments x, the operation is not indivisible, but is composed
of a sequence of instructions:

1. Read x from memory into one of the processor’s registers.

2. Increment the value in the register.

3. Write the value in the register back into x in memory.

Figure 27.5(a) illustrates a computation dag representing the execution of RACE-
EXAMPLE, with the strands broken down to individual instructions. Recall that
since an ideal parallel computer supports sequential consistency, we can view the
parallel execution of a multithreaded algorithm as an interleaving of instructions
that respects the dependencies in the dag. Part (b) of the figure shows the values
in an execution of the computation that elicits the anomaly. The value x is stored
in memory, and r1 and r2 are processor registers. In step 1, one of the processors
sets x to 0. In steps 2 and 3, processor 1 reads x from memory into its register r1

and increments it, producing the value 1 in r1. At that point, processor 2 comes
into the picture, executing instructions 4–6. Processor 2 reads x from memory into
register r2; increments it, producing the value 1 in r2; and then stores this value
into x, setting x to 1. Now, processor 1 resumes with step 7, storing the value 1

in r1 into x, which leaves the value of x unchanged. Therefore, step 8 prints the
value 1, rather than 2, as the serialization would print.

We can see what has happened. If the effect of the parallel execution were that
processor 1 executed all its instructions before processor 2, the value 2 would be

27.1 The basics of dynamic multithreading 789

incr r13

r1 = x2

x = r17

incr r25

r2 = x4

x = r26

x = 01

print x8

(a)

step x r1 r2

1

2

3

4

5

6

7

0

0

0

0

0

1

1

–

0

1

1

1

1

1

–

–

–

0

1

1

1

(b)

Figure 27.5 Illustration of the determinacy race in RACE-EXAMPLE. (a)A computation dag show-
ing the dependencies among individual instructions. The processor registers are r1 and r2. Instruc-
tions unrelated to the race, such as the implementation of loop control, are omitted. (b)An execution
sequence that elicits the bug, showing the values of x in memory and registers r1 and r2 for each
step in the execution sequence.

printed. Conversely, if the effect were that processor 2 executed all its instructions
before processor 1, the value 2 would still be printed. When the instructions of the
two processors execute at the same time, however, it is possible, as in this example
execution, that one of the updates to x is lost.

Of course, many executions do not elicit the bug. For example, if the execution
order were h1; 2; 3; 7; 4; 5; 6; 8i or h1; 4; 5; 6; 2; 3; 7; 8i, we would get the cor-
rect result. That’s the problem with determinacy races. Generally, most orderings
produce correct results—such as any in which the instructions on the left execute
before the instructions on the right, or vice versa. But some orderings generate
improper results when the instructions interleave. Consequently, races can be ex-
tremely hard to test for. You can run tests for days and never see the bug, only to
experience a catastrophic system crash in the field when the outcome is critical.

Although we can cope with races in a variety of ways, including using mutual-
exclusion locks and other methods of synchronization, for our purposes, we shall
simply ensure that strands that operate in parallel are independent: they have no
determinacy races among them. Thus, in a parallel for construct, all the iterations
should be independent. Between a spawn and the corresponding sync, the code
of the spawned child should be independent of the code of the parent, including
code executed by additional spawned or called children. Note that arguments to a
spawned child are evaluated in the parent before the actual spawn occurs, and thus
the evaluation of arguments to a spawned subroutine is in series with any accesses
to those arguments after the spawn.

790 Chapter 27 Multithreaded Algorithms

As an example of how easy it is to generate code with races, here is a faulty
implementation of multithreaded matrix-vector multiplication that achieves a span
of ‚.lg n/ by parallelizing the inner for loop:

MAT-VEC-WRONG.A; x/

1 n D A:rows
2 let y be a new vector of length n

3 parallel for i D 1 to n

4 yi D 0

5 parallel for i D 1 to n

6 parallel for j D 1 to n

7 yi D yi C aij xj

8 return y

This procedure is, unfortunately, incorrect due to races on updating yi in line 7,
which executes concurrently for all n values of j . Exercise 27.1-6 asks you to give
a correct implementation with ‚.lg n/ span.

A multithreaded algorithm with races can sometimes be correct. As an exam-
ple, two parallel threads might store the same value into a shared variable, and it
wouldn’t matter which stored the value first. Generally, however, we shall consider
code with races to be illegal.

A chess lesson

We close this section with a true story that occurred during the development of
the world-class multithreaded chess-playing program ?Socrates [80], although the
timings below have been simplified for exposition. The program was prototyped
on a 32-processor computer but was ultimately to run on a supercomputer with 512

processors. At one point, the developers incorporated an optimization into the pro-
gram that reduced its running time on an important benchmark on the 32-processor
machine from T32 D 65 seconds to T 0

32 D 40 seconds. Yet, the developers used
the work and span performance measures to conclude that the optimized version,
which was faster on 32 processors, would actually be slower than the original ver-
sion on 512 processsors. As a result, they abandoned the “optimization.”

Here is their analysis. The original version of the program had work T1 D 2048

seconds and span T1 D 1 second. If we treat inequality (27.4) as an equation,
TP D T1=P C T1, and use it as an approximation to the running time on P pro-
cessors, we see that indeed T32 D 2048=32 C 1 D 65. With the optimization, the
work became T 0

1 D 1024 seconds and the span became T 0
1 D 8 seconds. Again

using our approximation, we get T 0
32 D 1024=32C 8 D 40.

The relative speeds of the two versions switch when we calculate the running
times on 512 processors, however. In particular, we have T512 D 2048=512C1 D 5

27.1 The basics of dynamic multithreading 791

seconds, and T 0
512 D 1024=512 C 8 D 10 seconds. The optimization that sped up

the program on 32 processors would have made the program twice as slow on 512

processors! The optimized version’s span of 8, which was not the dominant term in
the running time on 32 processors, became the dominant term on 512 processors,
nullifying the advantage from using more processors.

The moral of the story is that work and span can provide a better means of
extrapolating performance than can measured running times.

Exercises

27.1-1
Suppose that we spawn P-FIB.n � 2/ in line 4 of P-FIB, rather than calling it
as is done in the code. What is the impact on the asymptotic work, span, and
parallelism?

27.1-2
Draw the computation dag that results from executing P-FIB.5/. Assuming that
each strand in the computation takes unit time, what are the work, span, and par-
allelism of the computation? Show how to schedule the dag on 3 processors using
greedy scheduling by labeling each strand with the time step in which it is executed.

27.1-3
Prove that a greedy scheduler achieves the following time bound, which is slightly
stronger than the bound proven in Theorem 27.1:

TP �
T1 � T1

P
C T1 : (27.5)

27.1-4
Construct a computation dag for which one execution of a greedy scheduler can
take nearly twice the time of another execution of a greedy scheduler on the same
number of processors. Describe how the two executions would proceed.

27.1-5
Professor Karan measures her deterministic multithreaded algorithm on 4, 10,
and 64 processors of an ideal parallel computer using a greedy scheduler. She
claims that the three runs yielded T4 D 80 seconds, T10 D 42 seconds, and
T64 D 10 seconds. Argue that the professor is either lying or incompetent. (Hint:
Use the work law (27.2), the span law (27.3), and inequality (27.5) from Exer-
cise 27.1-3.)

792 Chapter 27 Multithreaded Algorithms

27.1-6
Give a multithreaded algorithm to multiply an n 	 n matrix by an n-vector that
achieves ‚.n2= lg n/ parallelism while maintaining ‚.n2/ work.

27.1-7
Consider the following multithreaded pseudocode for transposing an n	n matrix A

in place:

P-TRANSPOSE.A/

1 n D A:rows
2 parallel for j D 2 to n

3 parallel for i D 1 to j � 1

4 exchange aij with aj i

Analyze the work, span, and parallelism of this algorithm.

27.1-8
Suppose that we replace the parallel for loop in line 3 of P-TRANSPOSE (see Ex-
ercise 27.1-7) with an ordinary for loop. Analyze the work, span, and parallelism
of the resulting algorithm.

27.1-9
For how many processors do the two versions of the chess programs run equally
fast, assuming that TP D T1=P C T1?

27.2 Multithreaded matrix multiplication

In this section, we examine how to multithread matrix multiplication, a problem
whose serial running time we studied in Section 4.2. We’ll look at multithreaded
algorithms based on the standard triply nested loop, as well as divide-and-conquer
algorithms.

Multithreaded matrix multiplication

The first algorithm we study is the straighforward algorithm based on parallelizing
the loops in the procedure SQUARE-MATRIX-MULTIPLY on page 75:

27.2 Multithreaded matrix multiplication 793

P-SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n � n matrix
3 parallel for i D 1 to n

4 parallel for j D 1 to n

5 cij D 0

6 for k D 1 to n

7 cij D cij C aik � bkj

8 return C

To analyze this algorithm, observe that since the serialization of the algorithm is
just SQUARE-MATRIX-MULTIPLY, the work is therefore simply T1.n/ D ‚.n3/,
the same as the running time of SQUARE-MATRIX-MULTIPLY. The span is
T1.n/ D ‚.n/, because it follows a path down the tree of recursion for the
parallel for loop starting in line 3, then down the tree of recursion for the parallel
for loop starting in line 4, and then executes all n iterations of the ordinary for loop
starting in line 6, resulting in a total span of ‚.lg n/ C ‚.lg n/ C ‚.n/ D ‚.n/.
Thus, the parallelism is ‚.n3/=‚.n/ D ‚.n2/. Exercise 27.2-3 asks you to par-
allelize the inner loop to obtain a parallelism of ‚.n3= lg n/, which you cannot do
straightforwardly using parallel for, because you would create races.

A divide-and-conquer multithreaded algorithm for matrix multiplication

As we learned in Section 4.2, we can multiply n � n matrices serially in time
‚.nlg 7/ D O.n2:81/ using Strassen’s divide-and-conquer strategy, which motivates
us to look at multithreading such an algorithm. We begin, as we did in Section 4.2,
with multithreading a simpler divide-and-conquer algorithm.

Recall from page 77 that the SQUARE-MATRIX-MULTIPLY-RECURSIVE proce-
dure, which multiplies two n � n matrices A and B to produce the n � n matrix C ,
relies on partitioning each of the three matrices into four n=2 � n=2 submatrices:

A D
�

A11 A12

A21 A22

�
; B D

�
B11 B12

B21 B22

�
; C D

�
C11 C12

C21 C22

�
:

Then, we can write the matrix product as�
C11 C12

C21 C22

�
D

�
A11 A12

A21 A22

��
B11 B12

B21 B22

�
D

�
A11B11 A11B12

A21B11 A21B12

�
C

�
A12B21 A12B22

A22B21 A22B22

�
: (27.6)

Thus, to multiply two n�n matrices, we perform eight multiplications of n=2�n=2

matrices and one addition of n�n matrices. The following pseudocode implements

794 Chapter 27 Multithreaded Algorithms

this divide-and-conquer strategy using nested parallelism. Unlike the SQUARE-
MATRIX-MULTIPLY-RECURSIVE procedure on which it is based, P-MATRIX-
MULTIPLY-RECURSIVE takes the output matrix as a parameter to avoid allocating
matrices unnecessarily.

P-MATRIX-MULTIPLY-RECURSIVE.C; A; B/

1 n D A:rows
2 if n == 1

3 c11 D a11b11

4 else let T be a new n 	 n matrix
5 partition A, B , C , and T into n=2 	 n=2 submatrices

A11; A12; A21; A22; B11; B12; B21; B22; C11; C12; C21; C22;
and T11; T12; T21; T22; respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE.C11; A11; B11/

7 spawn P-MATRIX-MULTIPLY-RECURSIVE.C12; A11; B12/

8 spawn P-MATRIX-MULTIPLY-RECURSIVE.C21; A21; B11/

9 spawn P-MATRIX-MULTIPLY-RECURSIVE.C22; A21; B12/

10 spawn P-MATRIX-MULTIPLY-RECURSIVE.T11; A12; B21/

11 spawn P-MATRIX-MULTIPLY-RECURSIVE.T12; A12; B22/

12 spawn P-MATRIX-MULTIPLY-RECURSIVE.T21; A22; B21/

13 P-MATRIX-MULTIPLY-RECURSIVE.T22; A22; B22/

14 sync
15 parallel for i D 1 to n

16 parallel for j D 1 to n

17 cij D cij C tij

Line 3 handles the base case, where we are multiplying 1 	 1 matrices. We handle
the recursive case in lines 4–17. We allocate a temporary matrix T in line 4, and
line 5 partitions each of the matrices A, B , C , and T into n=2 	 n=2 submatrices.
(As with SQUARE-MATRIX-MULTIPLY-RECURSIVE on page 77, we gloss over
the minor issue of how to use index calculations to represent submatrix sections
of a matrix.) The recursive call in line 6 sets the submatrix C11 to the submatrix
product A11B11, so that C11 equals the first of the two terms that form its sum in
equation (27.6). Similarly, lines 7–9 set C12, C21, and C22 to the first of the two
terms that equal their sums in equation (27.6). Line 10 sets the submatrix T11 to
the submatrix product A12B21, so that T11 equals the second of the two terms that
form C11’s sum. Lines 11–13 set T12, T21, and T22 to the second of the two terms
that form the sums of C12, C21, and C22, respectively. The first seven recursive
calls are spawned, and the last one runs in the main strand. The sync statement in
line 14 ensures that all the submatrix products in lines 6–13 have been computed,

27.2 Multithreaded matrix multiplication 795

after which we add the products from T into C in using the doubly nested parallel
for loops in lines 15–17.

We first analyze the work M1.n/ of the P-MATRIX-MULTIPLY-RECURSIVE

procedure, echoing the serial running-time analysis of its progenitor SQUARE-
MATRIX-MULTIPLY-RECURSIVE. In the recursive case, we partition in ‚.1/ time,
perform eight recursive multiplications of n=2 	 n=2 matrices, and finish up with
the ‚.n2/ work from adding two n 	 n matrices. Thus, the recurrence for the
work M1.n/ is

M1.n/ D 8M1.n=2/C‚.n2/

D ‚.n3/

by case 1 of the master theorem. In other words, the work of our multithreaded al-
gorithm is asymptotically the same as the running time of the procedure SQUARE-
MATRIX-MULTIPLY in Section 4.2, with its triply nested loops.

To determine the span M1.n/ of P-MATRIX-MULTIPLY-RECURSIVE, we first
observe that the span for partitioning is ‚.1/, which is dominated by the ‚.lg n/

span of the doubly nested parallel for loops in lines 15–17. Because the eight
parallel recursive calls all execute on matrices of the same size, the maximum span
for any recursive call is just the span of any one. Hence, the recurrence for the
span M1.n/ of P-MATRIX-MULTIPLY-RECURSIVE is

M1.n/ DM1.n=2/C‚.lg n/ : (27.7)

This recurrence does not fall under any of the cases of the master theorem, but
it does meet the condition of Exercise 4.6-2. By Exercise 4.6-2, therefore, the
solution to recurrence (27.7) is M1.n/ D ‚.lg2 n/.

Now that we know the work and span of P-MATRIX-MULTIPLY-RECURSIVE,
we can compute its parallelism as M1.n/=M1.n/ D ‚.n3= lg2 n/, which is very
high.

Multithreading Strassen’s method

To multithread Strassen’s algorithm, we follow the same general outline as on
page 79, only using nested parallelism:

1. Divide the input matrices A and B and output matrix C into n=2 	 n=2 sub-
matrices, as in equation (27.6). This step takes ‚.1/ work and span by index
calculation.

2. Create 10 matrices S1; S2; : : : ; S10, each of which is n=2 	 n=2 and is the sum
or difference of two matrices created in step 1. We can create all 10 matrices
with ‚.n2/ work and ‚.lg n/ span by using doubly nested parallel for loops.

796 Chapter 27 Multithreaded Algorithms

3. Using the submatrices created in step 1 and the 10 matrices created in
step 2, recursively spawn the computation of seven n=2 	 n=2 matrix products
P1; P2; : : : ; P7.

4. Compute the desired submatrices C11; C12; C21; C22 of the result matrix C by
adding and subtracting various combinations of the Pi matrices, once again
using doubly nested parallel for loops. We can compute all four submatrices
with ‚.n2/ work and ‚.lg n/ span.

To analyze this algorithm, we first observe that since the serialization is the
same as the original serial algorithm, the work is just the running time of the
serialization, namely, ‚.nlg 7/. As for P-MATRIX-MULTIPLY-RECURSIVE, we
can devise a recurrence for the span. In this case, seven recursive calls exe-
cute in parallel, but since they all operate on matrices of the same size, we ob-
tain the same recurrence (27.7) as we did for P-MATRIX-MULTIPLY-RECURSIVE,
which has solution ‚.lg2 n/. Thus, the parallelism of multithreaded Strassen’s
method is ‚.nlg 7= lg2 n/, which is high, though slightly less than the parallelism
of P-MATRIX-MULTIPLY-RECURSIVE.

Exercises

27.2-1
Draw the computation dag for computing P-SQUARE-MATRIX-MULTIPLY on 2	2

matrices, labeling how the vertices in your diagram correspond to strands in the
execution of the algorithm. Use the convention that spawn and call edges point
downward, continuation edges point horizontally to the right, and return edges
point upward. Assuming that each strand takes unit time, analyze the work, span,
and parallelism of this computation.

27.2-2
Repeat Exercise 27.2-1 for P-MATRIX-MULTIPLY-RECURSIVE.

27.2-3
Give pseudocode for a multithreaded algorithm that multiplies two n 	 n matrices
with work ‚.n3/ but span only ‚.lg n/. Analyze your algorithm.

27.2-4
Give pseudocode for an efficient multithreaded algorithm that multiplies a p 	 q

matrix by a q 	 r matrix. Your algorithm should be highly parallel even if any of
p, q, and r are 1. Analyze your algorithm.

27.3 Multithreaded merge sort 797

27.2-5
Give pseudocode for an efficient multithreaded algorithm that transposes an n 	 n

matrix in place by using divide-and-conquer to divide the matrix recursively into
four n=2 	 n=2 submatrices. Analyze your algorithm.

27.2-6
Give pseudocode for an efficient multithreaded implementation of the Floyd-
Warshall algorithm (see Section 25.2), which computes shortest paths between all
pairs of vertices in an edge-weighted graph. Analyze your algorithm.

27.3 Multithreaded merge sort

We first saw serial merge sort in Section 2.3.1, and in Section 2.3.2 we analyzed its
running time and showed it to be ‚.n lg n/. Because merge sort already uses the
divide-and-conquer paradigm, it seems like a terrific candidate for multithreading
using nested parallelism. We can easily modify the pseudocode so that the first
recursive call is spawned:

MERGE-SORT0.A; p; r/

1 if p < r

2 q D b.p C r/=2c
3 spawn MERGE-SORT 0.A; p; q/

4 MERGE-SORT 0.A; q C 1; r/

5 sync
6 MERGE.A; p; q; r/

Like its serial counterpart, MERGE-SORT 0 sorts the subarray AŒp : : r�. After the
two recursive subroutines in lines 3 and 4 have completed, which is ensured by the
sync statement in line 5, MERGE-SORT 0 calls the same MERGE procedure as on
page 31.

Let us analyze MERGE-SORT 0. To do so, we first need to analyze MERGE. Re-
call that its serial running time to merge n elements is ‚.n/. Because MERGE is
serial, both its work and its span are ‚.n/. Thus, the following recurrence charac-
terizes the work MS0

1.n/ of MERGE-SORT 0 on n elements:

MS0
1.n/ D 2 MS0

1.n=2/C‚.n/

D ‚.n lg n/ ;

798 Chapter 27 Multithreaded Algorithms

… … …

… …
merge mergecopy

p1 q1 r1 p2 q2 r2

p3 q3 r3

A

T

x

x

� x

� x < x

� x

� x � x

Figure 27.6 The idea behind the multithreaded merging of two sorted subarrays T Œp1 : : r1�

and T Œp2 : : r2� into the subarray AŒp3 : : r3�. Letting x D T Œq1� be the median of T Œp1 : : r1� and q2

be the place in T Œp2 : : r2� such that x would fall between T Œq2 � 1� and T Œq2�, every element in
subarrays T Œp1 : : q1 � 1� and T Œp2 : : q2 � 1� (lightly shaded) is less than or equal to x, and every
element in the subarrays T Œq1C 1 : : r1� and T Œq2C 1 : : r2� (heavily shaded) is at least x. To merge,
we compute the index q3 where x belongs in AŒp3 : : r3�, copy x into AŒq3�, and then recursively
merge T Œp1 : : q1 � 1� with T Œp2 : : q2 � 1� into AŒp3 : : q3 � 1� and T Œq1 C 1 : : r1� with T Œq2 : : r2�

into AŒq3 C 1 : : r3�.

which is the same as the serial running time of merge sort. Since the two recursive
calls of MERGE-SORT0 can run in parallel, the span MS0

1 is given by the recurrence

MS0
1.n/ D MS0

1.n=2/C‚.n/

D ‚.n/ :

Thus, the parallelism of MERGE-SORT0 comes to MS0
1.n/=MS0

1.n/ D ‚.lg n/,
which is an unimpressive amount of parallelism. To sort 10 million elements, for
example, it might achieve linear speedup on a few processors, but it would not
scale up effectively to hundreds of processors.

You probably have already figured out where the parallelism bottleneck is in
this multithreaded merge sort: the serial MERGE procedure. Although merging
might initially seem to be inherently serial, we can, in fact, fashion a multithreaded
version of it by using nested parallelism.

Our divide-and-conquer strategy for multithreaded merging, which is illus-
trated in Figure 27.6, operates on subarrays of an array T . Suppose that we
are merging the two sorted subarrays T Œp1 : : r1� of length n1 D r1 � p1 C 1

and T Œp2 : : r2� of length n2 D r2 � p2 C 1 into another subarray AŒp3 : : r3�, of
length n3 D r3 � p3 C 1 D n1 C n2. Without loss of generality, we make the sim-
plifying assumption that n1 � n2.

We first find the middle element x D T Œq1� of the subarray T Œp1 : : r1�,
where q1 D b.p1 C r1/=2c. Because the subarray is sorted, x is a median
of T Œp1 : : r1�: every element in T Œp1 : : q1 � 1� is no more than x, and every el-
ement in T Œq1 C 1 : : r1� is no less than x. We then use binary search to find the

27.3 Multithreaded merge sort 799

index q2 in the subarray T Œp2 : : r2� so that the subarray would still be sorted if we
inserted x between T Œq2 � 1� and T Œq2�.

We next merge the original subarrays T Œp1 : : r1� and T Œp2 : : r2� into AŒp3 : : r3�

as follows:

1. Set q3 D p3 C .q1 � p1/C .q2 � p2/.

2. Copy x into AŒq3�.

3. Recursively merge T Œp1 : : q1�1� with T Œp2 : : q2�1�, and place the result into
the subarray AŒp3 : : q3 � 1�.

4. Recursively merge T Œq1 C 1 : : r1� with T Œq2 : : r2�, and place the result into the
subarray AŒq3 C 1 : : r3�.

When we compute q3, the quantity q1�p1 is the number of elements in the subarray
T Œp1 : : q1 � 1�, and the quantity q2 � p2 is the number of elements in the subarray
T Œp2 : : q2 � 1�. Thus, their sum is the number of elements that end up before x in
the subarray AŒp3 : : r3�.

The base case occurs when n1 D n2 D 0, in which case we have no work
to do to merge the two empty subarrays. Since we have assumed that the sub-
array T Œp1 : : r1� is at least as long as T Œp2 : : r2�, that is, n1 � n2, we can check
for the base case by just checking whether n1 D 0. We must also ensure that the
recursion properly handles the case when only one of the two subarrays is empty,
which, by our assumption that n1 � n2, must be the subarray T Œp2 : : r2�.

Now, let’s put these ideas into pseudocode. We start with the binary search,
which we express serially. The procedure BINARY-SEARCH.x; T; p; r/ takes a
key x and a subarray T Œp : : r�, and it returns one of the following:
� If T Œp : : r� is empty (r < p), then it returns the index p.
� If x � T Œp�, and hence less than or equal to all the elements of T Œp : : r�, then

it returns the index p.
� If x > T Œp�, then it returns the largest index q in the range p < q � rC1 such

that T Œq � 1� < x.

Here is the pseudocode:

BINARY-SEARCH.x; T; p; r/

1 low D p

2 high D max.p; r C 1/

3 while low < high
4 mid D b.lowC high/=2c
5 if x � T Œmid�

6 high D mid
7 else low D midC 1

8 return high

800 Chapter 27 Multithreaded Algorithms

The call BINARY-SEARCH.x; T; p; r/ takes ‚.lg n/ serial time in the worst case,
where n D r � p C 1 is the size of the subarray on which it runs. (See Exer-
cise 2.3-5.) Since BINARY-SEARCH is a serial procedure, its worst-case work and
span are both ‚.lg n/.

We are now prepared to write pseudocode for the multithreaded merging pro-
cedure itself. Like the MERGE procedure on page 31, the P-MERGE procedure
assumes that the two subarrays to be merged lie within the same array. Un-
like MERGE, however, P-MERGE does not assume that the two subarrays to
be merged are adjacent within the array. (That is, P-MERGE does not require
that p2 D r1 C 1.) Another difference between MERGE and P-MERGE is that
P-MERGE takes as an argument an output subarray A into which the merged val-
ues should be stored. The call P-MERGE.T; p1; r1; p2; r2; A; p3/ merges the sorted
subarrays T Œp1 : : r1� and T Œp2 : : r2� into the subarray AŒp3 : : r3�, where r3 D
p3 C .r1 � p1 C 1/C .r2 � p2 C 1/ � 1 D p3 C .r1 � p1/C .r2 � p2/C 1 and
is not provided as an input.

P-MERGE.T; p1; r1; p2; r2; A; p3/

1 n1 D r1 � p1 C 1

2 n2 D r2 � p2 C 1

3 if n1 < n2 // ensure that n1 � n2

4 exchange p1 with p2

5 exchange r1 with r2

6 exchange n1 with n2

7 if n1 == 0 // both empty?
8 return
9 else q1 D b.p1 C r1/=2c

10 q2 D BINARY-SEARCH.T Œq1�; T; p2; r2/

11 q3 D p3 C .q1 � p1/C .q2 � p2/

12 AŒq3� D T Œq1�

13 spawn P-MERGE.T; p1; q1 � 1; p2; q2 � 1; A; p3/

14 P-MERGE.T; q1 C 1; r1; q2; r2; A; q3 C 1/

15 sync

The P-MERGE procedure works as follows. Lines 1–2 compute the lengths n1

and n2 of the subarrays T Œp1 : : r1� and T Œp2 : : r2�, respectively. Lines 3–6 en-
force the assumption that n1 � n2. Line 7 tests for the base case, where the
subarray T Œp1 : : r1� is empty (and hence so is T Œp2 : : r2�), in which case we sim-
ply return. Lines 9–15 implement the divide-and-conquer strategy. Line 9 com-
putes the midpoint of T Œp1 : : r1�, and line 10 finds the point q2 in T Œp2 : : r2� such
that all elements in T Œp2 : : q2 � 1� are less than T Œq1� (which corresponds to x)
and all the elements in T Œq2 : : p2� are at least as large as T Œq1�. Line 11 com-

27.3 Multithreaded merge sort 801

putes the index q3 of the element that divides the output subarray AŒp3 : : r3� into
AŒp3 : : q3 � 1� and AŒq3C1 : : r3�, and then line 12 copies T Œq1� directly into AŒq3�.

Then, we recurse using nested parallelism. Line 13 spawns the first subproblem,
while line 14 calls the second subproblem in parallel. The sync statement in line 15
ensures that the subproblems have completed before the procedure returns. (Since
every procedure implicitly executes a sync before returning, we could have omitted
the sync statement in line 15, but including it is good coding practice.) There
is some cleverness in the coding to ensure that when the subarray T Œp2 : : r2� is
empty, the code operates correctly. The way it works is that on each recursive call,
a median element of T Œp1 : : r1� is placed into the output subarray, until T Œp1 : : r1�

itself finally becomes empty, triggering the base case.

Analysis of multithreaded merging

We first derive a recurrence for the span PM1.n/ of P-MERGE, where the two
subarrays contain a total of n D n1Cn2 elements. Because the spawn in line 13 and
the call in line 14 operate logically in parallel, we need examine only the costlier of
the two calls. The key is to understand that in the worst case, the maximum number
of elements in either of the recursive calls can be at most 3n=4, which we see as
follows. Because lines 3–6 ensure that n2 � n1, it follows that n2 D 2n2=2 �
.n1 C n2/=2 D n=2. In the worst case, one of the two recursive calls merges
bn1=2c elements of T Œp1 : : r1� with all n2 elements of T Œp2 : : r2�, and hence the
number of elements involved in the call is

bn1=2c C n2 � n1=2C n2=2C n2=2

D .n1 C n2/=2C n2=2

� n=2C n=4

D 3n=4 :

Adding in the ‚.lg n/ cost of the call to BINARY-SEARCH in line 10, we obtain
the following recurrence for the worst-case span:

PM1.n/ D PM1.3n=4/C‚.lg n/ : (27.8)

(For the base case, the span is ‚.1/, since lines 1–8 execute in constant time.)
This recurrence does not fall under any of the cases of the master theorem, but it
meets the condition of Exercise 4.6-2. Therefore, the solution to recurrence (27.8)
is PM1.n/ D ‚.lg2 n/.

We now analyze the work PM1.n/ of P-MERGE on n elements, which turns out
to be ‚.n/. Since each of the n elements must be copied from array T to array A,
we have PM1.n/ D �.n/. Thus, it remains only to show that PM1.n/ D O.n/.

We shall first derive a recurrence for the worst-case work. The binary search in
line 10 costs ‚.lg n/ in the worst case, which dominates the other work outside

802 Chapter 27 Multithreaded Algorithms

of the recursive calls. For the recursive calls, observe that although the recursive
calls in lines 13 and 14 might merge different numbers of elements, together the
two recursive calls merge at most n elements (actually n� 1 elements, since T Œq1�

does not participate in either recursive call). Moreover, as we saw in analyzing the
span, a recursive call operates on at most 3n=4 elements. We therefore obtain the
recurrence

PM1.n/ D PM1.˛n/C PM1..1� ˛/n/CO.lg n/ ; (27.9)

where ˛ lies in the range 1=4 � ˛ � 3=4, and where we understand that the actual
value of ˛ may vary for each level of recursion.

We prove that recurrence (27.9) has solution PM1 D O.n/ via the substitution
method. Assume that PM1.n/ � c1n�c2 lg n for some positive constants c1 and c2.
Substituting gives us

PM1.n/ � .c1˛n � c2 lg.˛n//C .c1.1� ˛/n � c2 lg..1� ˛/n//C‚.lg n/

D c1.˛ C .1 � ˛//n� c2.lg.˛n/C lg..1 � ˛/n//C‚.lg n/

D c1n � c2.lg ˛ C lg nC lg.1� ˛/C lg n/C‚.lg n/

D c1n � c2 lg n � .c2.lg nC lg.˛.1� ˛/// �‚.lg n//

� c1n � c2 lg n ;

since we can choose c2 large enough that c2.lg n C lg.˛.1 � ˛/// dominates the
‚.lg n/ term. Furthermore, we can choose c1 large enough to satisfy the base
conditions of the recurrence. Since the work PM1.n/ of P-MERGE is both �.n/

and O.n/, we have PM1.n/ D ‚.n/.
The parallelism of P-MERGE is PM1.n/=PM1.n/ D ‚.n= lg2 n/.

Multithreaded merge sort

Now that we have a nicely parallelized multithreaded merging procedure, we can
incorporate it into a multithreaded merge sort. This version of merge sort is similar
to the MERGE-SORT 0 procedure we saw earlier, but unlike MERGE-SORT 0, it takes
as an argument an output subarray B , which will hold the sorted result. In par-
ticular, the call P-MERGE-SORT.A; p; r; B; s/ sorts the elements in AŒp : : r� and
stores them in BŒs : : s C r � p�.

27.3 Multithreaded merge sort 803

P-MERGE-SORT.A; p; r; B; s/

1 n D r � p C 1

2 if n == 1

3 BŒs� D AŒp�

4 else let T Œ1 : : n� be a new array
5 q D b.p C r/=2c
6 q0 D q � p C 1

7 spawn P-MERGE-SORT.A; p; q; T; 1/

8 P-MERGE-SORT.A; q C 1; r; T; q0 C 1/

9 sync
10 P-MERGE.T; 1; q0; q0 C 1; n; B; s/

After line 1 computes the number n of elements in the input subarray AŒp : : r�,
lines 2–3 handle the base case when the array has only 1 element. Lines 4–6 set
up for the recursive spawn in line 7 and call in line 8, which operate in parallel. In
particular, line 4 allocates a temporary array T with n elements to store the results
of the recursive merge sorting. Line 5 calculates the index q of AŒp : : r� to divide
the elements into the two subarrays AŒp : : q� and AŒq C 1 : : r� that will be sorted
recursively, and line 6 goes on to compute the number q0 of elements in the first
subarray AŒp : : q�, which line 8 uses to determine the starting index in T of where
to store the sorted result of AŒq C 1 : : r�. At that point, the spawn and recursive
call are made, followed by the sync in line 9, which forces the procedure to wait
until the spawned procedure is done. Finally, line 10 calls P-MERGE to merge
the sorted subarrays, now in T Œ1 : : q0� and T Œq0 C 1 : : n�, into the output subarray
BŒs : : s C r � p�.

Analysis of multithreaded merge sort

We start by analyzing the work PMS1.n/ of P-MERGE-SORT, which is consider-
ably easier than analyzing the work of P-MERGE. Indeed, the work is given by the
recurrence

PMS1.n/ D 2 PMS1.n=2/C PM1.n/

D 2 PMS1.n=2/C‚.n/ :

This recurrence is the same as the recurrence (4.4) for ordinary MERGE-SORT

from Section 2.3.1 and has solution PMS1.n/ D ‚.n lg n/ by case 2 of the master
theorem.

We now derive and analyze a recurrence for the worst-case span PMS1.n/. Be-
cause the two recursive calls to P-MERGE-SORT on lines 7 and 8 operate logically
in parallel, we can ignore one of them, obtaining the recurrence

804 Chapter 27 Multithreaded Algorithms

PMS1.n/ D PMS1.n=2/C PM1.n/

D PMS1.n=2/C‚.lg2 n/ : (27.10)

As for recurrence (27.8), the master theorem does not apply to recurrence (27.10),
but Exercise 4.6-2 does. The solution is PMS1.n/ D ‚.lg3 n/, and so the span of
P-MERGE-SORT is ‚.lg3 n/.

Parallel merging gives P-MERGE-SORT a significant parallelism advantage over
MERGE-SORT 0. Recall that the parallelism of MERGE-SORT 0, which calls the se-
rial MERGE procedure, is only ‚.lg n/. For P-MERGE-SORT, the parallelism is

PMS1.n/=PMS1.n/ D ‚.n lg n/=‚.lg3 n/

D ‚.n= lg2 n/ ;

which is much better both in theory and in practice. A good implementation in
practice would sacrifice some parallelism by coarsening the base case in order to
reduce the constants hidden by the asymptotic notation. The straightforward way
to coarsen the base case is to switch to an ordinary serial sort, perhaps quicksort,
when the size of the array is sufficiently small.

Exercises

27.3-1
Explain how to coarsen the base case of P-MERGE.

27.3-2
Instead of finding a median element in the larger subarray, as P-MERGE does, con-
sider a variant that finds a median element of all the elements in the two sorted
subarrays using the result of Exercise 9.3-8. Give pseudocode for an efficient
multithreaded merging procedure that uses this median-finding procedure. Ana-
lyze your algorithm.

27.3-3
Give an efficient multithreaded algorithm for partitioning an array around a pivot,
as is done by the PARTITION procedure on page 171. You need not partition the ar-
ray in place. Make your algorithm as parallel as possible. Analyze your algorithm.
(Hint: You may need an auxiliary array and may need to make more than one pass
over the input elements.)

27.3-4
Give a multithreaded version of RECURSIVE-FFT on page 911. Make your imple-
mentation as parallel as possible. Analyze your algorithm.

Problems for Chapter 27 805

27.3-5 ?

Give a multithreaded version of RANDOMIZED-SELECT on page 216. Make your
implementation as parallel as possible. Analyze your algorithm. (Hint: Use the
partitioning algorithm from Exercise 27.3-3.)

27.3-6 ?

Show how to multithread SELECT from Section 9.3. Make your implementation as
parallel as possible. Analyze your algorithm.

Problems

27-1 Implementing parallel loops using nested parallelism
Consider the following multithreaded algorithm for performing pairwise addition
on n-element arrays AŒ1 : : n� and BŒ1 : : n�, storing the sums in C Œ1 : : n�:

SUM-ARRAYS.A; B; C /

1 parallel for i D 1 to A: length
2 C Œi� D AŒi�C BŒi�

a. Rewrite the parallel loop in SUM-ARRAYS using nested parallelism (spawn
and sync) in the manner of MAT-VEC-MAIN-LOOP. Analyze the parallelism
of your implementation.

Consider the following alternative implementation of the parallel loop, which
contains a value grain-size to be specified:

SUM-ARRAYS0.A; B; C /

1 n D A: length
2 grain-size D ‹ // to be determined
3 r D dn=grain-sizee
4 for k D 0 to r � 1

5 spawn ADD-SUBARRAY.A; B; C; k � grain-sizeC 1;

min..k C 1/ � grain-size; n//

6 sync

ADD-SUBARRAY.A; B; C; i; j /

1 for k D i to j

2 C Œk� D AŒk�C BŒk�

806 Chapter 27 Multithreaded Algorithms

b. Suppose that we set grain-size D 1. What is the parallelism of this implemen-
tation?

c. Give a formula for the span of SUM-ARRAYS0 in terms of n and grain-size.
Derive the best value for grain-size to maximize parallelism.

27-2 Saving temporary space in matrix multiplication
The P-MATRIX-MULTIPLY-RECURSIVE procedure has the disadvantage that it
must allocate a temporary matrix T of size n 	 n, which can adversely affect the
constants hidden by the ‚-notation. The P-MATRIX-MULTIPLY-RECURSIVE pro-
cedure does have high parallelism, however. For example, ignoring the constants
in the ‚-notation, the parallelism for multiplying 1000 	 1000 matrices comes to
approximately 10003=102 D 107, since lg 1000 � 10. Most parallel computers
have far fewer than 10 million processors.

a. Describe a recursive multithreaded algorithm that eliminates the need for the
temporary matrix T at the cost of increasing the span to ‚.n/. (Hint: Com-
pute C D C C AB following the general strategy of P-MATRIX-MULTIPLY-
RECURSIVE, but initialize C in parallel and insert a sync in a judiciously cho-
sen location.)

b. Give and solve recurrences for the work and span of your implementation.

c. Analyze the parallelism of your implementation. Ignoring the constants in the
‚-notation, estimate the parallelism on 1000 	 1000 matrices. Compare with
the parallelism of P-MATRIX-MULTIPLY-RECURSIVE.

27-3 Multithreaded matrix algorithms
a. Parallelize the LU-DECOMPOSITION procedure on page 821 by giving pseu-

docode for a multithreaded version of this algorithm. Make your implementa-
tion as parallel as possible, and analyze its work, span, and parallelism.

b. Do the same for LUP-DECOMPOSITION on page 824.

c. Do the same for LUP-SOLVE on page 817.

d. Do the same for a multithreaded algorithm based on equation (28.13) for in-
verting a symmetric positive-definite matrix.

Problems for Chapter 27 807

27-4 Multithreading reductions and prefix computations
A ˝-reduction of an array xŒ1 : : n�, where˝ is an associative operator, is the value

y D xŒ1�˝ xŒ2�˝ � � � ˝ xŒn� :

The following procedure computes the˝-reduction of a subarray xŒi : : j � serially.

REDUCE.x; i; j /

1 y D xŒi �

2 for k D i C 1 to j

3 y D y ˝ xŒk�

4 return y

a. Use nested parallelism to implement a multithreaded algorithm P-REDUCE,
which performs the same function with ‚.n/ work and ‚.lg n/ span. Analyze
your algorithm.

A related problem is that of computing a ˝-prefix computation, sometimes
called a ˝-scan, on an array xŒ1 : : n�, where ˝ is once again an associative op-
erator. The˝-scan produces the array yŒ1 : : n� given by

yŒ1� D xŒ1� ;

yŒ2� D xŒ1�˝ xŒ2� ;

yŒ3� D xŒ1�˝ xŒ2�˝ xŒ3� ;

:::

yŒn� D xŒ1�˝ xŒ2�˝ xŒ3�˝ � � � ˝ xŒn� ;

that is, all prefixes of the array x “summed” using the ˝ operator. The following
serial procedure SCAN performs a˝-prefix computation:

SCAN.x/

1 n D x: length
2 let yŒ1 : : n� be a new array
3 yŒ1� D xŒ1�

4 for i D 2 to n

5 yŒi � D yŒi � 1�˝ xŒi �

6 return y

Unfortunately, multithreading SCAN is not straightforward. For example, changing
the for loop to a parallel for loop would create races, since each iteration of the
loop body depends on the previous iteration. The following procedure P-SCAN-1
performs the˝-prefix computation in parallel, albeit inefficiently:

808 Chapter 27 Multithreaded Algorithms

P-SCAN-1.x/

1 n D x: length
2 let yŒ1 : : n� be a new array
3 P-SCAN-1-AUX.x; y; 1; n/

4 return y

P-SCAN-1-AUX.x; y; i; j /

1 parallel for l D i to j

2 yŒl� D P-REDUCE.x; 1; l/

b. Analyze the work, span, and parallelism of P-SCAN-1.

By using nested parallelism, we can obtain a more efficient ˝-prefix computa-
tion:

P-SCAN-2.x/

1 n D x: length
2 let yŒ1 : : n� be a new array
3 P-SCAN-2-AUX.x; y; 1; n/

4 return y

P-SCAN-2-AUX.x; y; i; j /

1 if i == j

2 yŒi � D xŒi �

3 else k D b.i C j /=2c
4 spawn P-SCAN-2-AUX.x; y; i; k/

5 P-SCAN-2-AUX.x; y; k C 1; j /

6 sync
7 parallel for l D k C 1 to j

8 yŒl� D yŒk�˝ yŒl�

c. Argue that P-SCAN-2 is correct, and analyze its work, span, and parallelism.

We can improve on both P-SCAN-1 and P-SCAN-2 by performing the ˝-prefix
computation in two distinct passes over the data. On the first pass, we gather the
terms for various contiguous subarrays of x into a temporary array t , and on the
second pass we use the terms in t to compute the final result y. The following
pseudocode implements this strategy, but certain expressions have been omitted:

Problems for Chapter 27 809

P-SCAN-3.x/

1 n D x: length
2 let yŒ1 : : n� and t Œ1 : : n� be new arrays
3 yŒ1� D xŒ1�

4 if n > 1

5 P-SCAN-UP.x; t; 2; n/

6 P-SCAN-DOWN.xŒ1�; x; t; y; 2; n/

7 return y

P-SCAN-UP.x; t; i; j /

1 if i == j

2 return xŒi �

3 else
4 k D b.i C j /=2c
5 t Œk� D spawn P-SCAN-UP.x; t; i; k/

6 right D P-SCAN-UP.x; t; k C 1; j /

7 sync
8 return // fill in the blank

P-SCAN-DOWN.�; x; t; y; i; j /

1 if i == j

2 yŒi � D � ˝ xŒi �

3 else
4 k D b.i C j /=2c
5 spawn P-SCAN-DOWN. ; x; t; y; i; k/ // fill in the blank
6 P-SCAN-DOWN. ; x; t; y; k C 1; j / // fill in the blank
7 sync

d. Fill in the three missing expressions in line 8 of P-SCAN-UP and lines 5 and 6
of P-SCAN-DOWN. Argue that with expressions you supplied, P-SCAN-3 is
correct. (Hint: Prove that the value � passed to P-SCAN-DOWN.�; x; t; y; i; j /

satisfies � D xŒ1�˝ xŒ2�˝ � � � ˝ xŒi � 1�.)

e. Analyze the work, span, and parallelism of P-SCAN-3.

27-5 Multithreading a simple stencil calculation
Computational science is replete with algorithms that require the entries of an array
to be filled in with values that depend on the values of certain already computed
neighboring entries, along with other information that does not change over the
course of the computation. The pattern of neighboring entries does not change
during the computation and is called a stencil. For example, Section 15.4 presents

810 Chapter 27 Multithreaded Algorithms

a stencil algorithm to compute a longest common subsequence, where the value in
entry cŒi; j � depends only on the values in cŒi�1; j �, cŒi; j �1�, and cŒi�1; j �1�,
as well as the elements xi and yj within the two sequences given as inputs. The
input sequences are fixed, but the algorithm fills in the two-dimensional array c so
that it computes entry cŒi; j � after computing all three entries cŒi�1; j �, cŒi; j �1�,
and cŒi � 1; j � 1�.

In this problem, we examine how to use nested parallelism to multithread a
simple stencil calculation on an n 	 n array A in which, of the values in A, the
value placed into entry AŒi; j � depends only on values in AŒi 0; j 0�, where i 0 � i

and j 0 � j (and of course, i 0 ¤ i or j 0 ¤ j). In other words, the value in an
entry depends only on values in entries that are above it and/or to its left, along
with static information outside of the array. Furthermore, we assume throughout
this problem that once we have filled in the entries upon which AŒi; j � depends, we
can fill in AŒi; j � in ‚.1/ time (as in the LCS-LENGTH procedure of Section 15.4).

We can partition the n 	 n array A into four n=2 	 n=2 subarrays as follows:

A D
�

A11 A12

A21 A22

�
: (27.11)

Observe now that we can fill in subarray A11 recursively, since it does not depend
on the entries of the other three subarrays. Once A11 is complete, we can continue
to fill in A12 and A21 recursively in parallel, because although they both depend
on A11, they do not depend on each other. Finally, we can fill in A22 recursively.

a. Give multithreaded pseudocode that performs this simple stencil calculation
using a divide-and-conquer algorithm SIMPLE-STENCIL based on the decom-
position (27.11) and the discussion above. (Don’t worry about the details of the
base case, which depends on the specific stencil.) Give and solve recurrences
for the work and span of this algorithm in terms of n. What is the parallelism?

b. Modify your solution to part (a) to divide an n 	 n array into nine n=3 	 n=3

subarrays, again recursing with as much parallelism as possible. Analyze this
algorithm. How much more or less parallelism does this algorithm have com-
pared with the algorithm from part (a)?

c. Generalize your solutions to parts (a) and (b) as follows. Choose an integer
b � 2. Divide an n	n array into b2 subarrays, each of size n=b	n=b, recursing
with as much parallelism as possible. In terms of n and b, what are the work,
span, and parallelism of your algorithm? Argue that, using this approach, the
parallelism must be o.n/ for any choice of b � 2. (Hint: For this last argument,
show that the exponent of n in the parallelism is strictly less than 1 for any
choice of b � 2.)

Notes for Chapter 27 811

d. Give pseudocode for a multithreaded algorithm for this simple stencil calcu-
lation that achieves ‚.n= lg n/ parallelism. Argue using notions of work and
span that the problem, in fact, has ‚.n/ inherent parallelism. As it turns out,
the divide-and-conquer nature of our multithreaded pseudocode does not let us
achieve this maximal parallelism.

27-6 Randomized multithreaded algorithms
Just as with ordinary serial algorithms, we sometimes want to implement random-
ized multithreaded algorithms. This problem explores how to adapt the various
performance measures in order to handle the expected behavior of such algorithms.
It also asks you to design and analyze a multithreaded algorithm for randomized
quicksort.

a. Explain how to modify the work law (27.2), span law (27.3), and greedy sched-
uler bound (27.4) to work with expectations when TP , T1, and T1 are all ran-
dom variables.

b. Consider a randomized multithreaded algorithm for which 1% of the time we
have T1 D 104 and T10;000 D 1, but for 99% of the time we have T1 D
T10;000 D 109. Argue that the speedup of a randomized multithreaded algo-
rithm should be defined as E ŒT1� =E ŒTP �, rather than E ŒT1=TP �.

c. Argue that the parallelism of a randomized multithreaded algorithm should be
defined as the ratio E ŒT1� =E ŒT1�.

d. Multithread the RANDOMIZED-QUICKSORT algorithm on page 179 by using
nested parallelism. (Do not parallelize RANDOMIZED-PARTITION.) Give the
pseudocode for your P-RANDOMIZED-QUICKSORT algorithm.

e. Analyze your multithreaded algorithm for randomized quicksort. (Hint: Re-
view the analysis of RANDOMIZED-SELECT on page 216.)

Chapter notes

Parallel computers, models for parallel computers, and algorithmic models for par-
allel programming have been around in various forms for years. Prior editions of
this book included material on sorting networks and the PRAM (Parallel Random-
Access Machine) model. The data-parallel model [48, 168] is another popular al-
gorithmic programming model, which features operations on vectors and matrices
as primitives.

812 Chapter 27 Multithreaded Algorithms

Graham [149] and Brent [55] showed that there exist schedulers achieving the
bound of Theorem 27.1. Eager, Zahorjan, and Lazowska [98] showed that any
greedy scheduler achieves this bound and proposed the methodology of using work
and span (although not by those names) to analyze parallel algorithms. Blelloch
[47] developed an algorithmic programming model based on work and span (which
he called the “depth” of the computation) for data-parallel programming. Blumofe
and Leiserson [52] gave a distributed scheduling algorithm for dynamic multi-
threading based on randomized “work-stealing” and showed that it achieves the
bound E ŒTP � � T1=P CO.T1/. Arora, Blumofe, and Plaxton [19] and Blelloch,
Gibbons, and Matias [49] also provided provably good algorithms for scheduling
dynamic multithreaded computations.

The multithreaded pseudocode and programming model were heavily influenced
by the Cilk [51, 118] project at MIT and the Cilk++ [71] extensions to C++ dis-
tributed by Cilk Arts, Inc. Many of the multithreaded algorithms in this chapter
appeared in unpublished lecture notes by C. E. Leiserson and H. Prokop and have
been implemented in Cilk or Cilk++. The multithreaded merge-sorting algorithm
was inspired by an algorithm of Akl [12].

The notion of sequential consistency is due to Lamport [223].

28 Matrix Operations

Because operations on matrices lie at the heart of scientific computing, efficient al-
gorithms for working with matrices have many practical applications. This chapter
focuses on how to multiply matrices and solve sets of simultaneous linear equa-
tions. Appendix D reviews the basics of matrices.

Section 28.1 shows how to solve a set of linear equations using LUP decomposi-
tions. Then, Section 28.2 explores the close relationship between multiplying and
inverting matrices. Finally, Section 28.3 discusses the important class of symmetric
positive-definite matrices and shows how we can use them to find a least-squares
solution to an overdetermined set of linear equations.

One important issue that arises in practice is numerical stability. Due to the
limited precision of floating-point representations in actual computers, round-off
errors in numerical computations may become amplified over the course of a com-
putation, leading to incorrect results; we call such computations numerically un-
stable. Although we shall briefly consider numerical stability on occasion, we do
not focus on it in this chapter. We refer you to the excellent book by Golub and
Van Loan [144] for a thorough discussion of stability issues.

28.1 Solving systems of linear equations

Numerous applications need to solve sets of simultaneous linear equations. We
can formulate a linear system as a matrix equation in which each matrix or vector
element belongs to a field, typically the real numbers R. This section discusses how
to solve a system of linear equations using a method called LUP decomposition.

We start with a set of linear equations in n unknowns x1; x2; : : : ; xn:

814 Chapter 28 Matrix Operations

a11x1 C a12x2 C � � � C a1nxn D b1 ;

a21x1 C a22x2 C � � � C a2nxn D b2 ;

:::

an1x1 C an2x2 C � � � C annxn D bn :

(28.1)

A solution to the equations (28.1) is a set of values for x1; x2; : : : ; xn that satisfy
all of the equations simultaneously. In this section, we treat only the case in which
there are exactly n equations in n unknowns.

We can conveniently rewrite equations (28.1) as the matrix-vector equation˙
a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

�˙
x1

x2

:::

xn

�
D

˙
b1

b2

:::

bn

�
or, equivalently, letting A D .aij /, x D .xi /, and b D .bi /, as

Ax D b : (28.2)

If A is nonsingular, it possesses an inverse A�1, and

x D A�1b (28.3)

is the solution vector. We can prove that x is the unique solution to equation (28.2)
as follows. If there are two solutions, x and x 0, then Ax D Ax 0 D b and, letting I

denote an identity matrix,

x D Ix

D .A�1A/x

D A�1.Ax/

D A�1.Ax 0/

D .A�1A/x 0

D x 0 :

In this section, we shall be concerned predominantly with the case in which A

is nonsingular or, equivalently (by Theorem D.1), the rank of A is equal to the
number n of unknowns. There are other possibilities, however, which merit a brief
discussion. If the number of equations is less than the number n of unknowns—or,
more generally, if the rank of A is less than n—then the system is underdeter-
mined. An underdetermined system typically has infinitely many solutions, al-
though it may have no solutions at all if the equations are inconsistent. If the
number of equations exceeds the number n of unknowns, the system is overdeter-
mined, and there may not exist any solutions. Section 28.3 addresses the important

28.1 Solving systems of linear equations 815

problem of finding good approximate solutions to overdetermined systems of linear
equations.

Let us return to our problem of solving the system Ax D b of n equations in n

unknowns. We could compute A�1 and then, using equation (28.3), multiply b

by A�1, yielding x D A�1b. This approach suffers in practice from numerical
instability. Fortunately, another approach—LUP decomposition—is numerically
stable and has the further advantage of being faster in practice.

Overview of LUP decomposition

The idea behind LUP decomposition is to find three n 	 n matrices L, U , and P

such that

PA D LU ; (28.4)

where

� L is a unit lower-triangular matrix,

� U is an upper-triangular matrix, and

� P is a permutation matrix.

We call matrices L, U , and P satisfying equation (28.4) an LUP decomposition
of the matrix A. We shall show that every nonsingular matrix A possesses such a
decomposition.

Computing an LUP decomposition for the matrix A has the advantage that we
can more easily solve linear systems when they are triangular, as is the case for
both matrices L and U . Once we have found an LUP decomposition for A, we
can solve equation (28.2), Ax D b, by solving only triangular linear systems, as
follows. Multiplying both sides of Ax D b by P yields the equivalent equation
PAx D P b, which, by Exercise D.1-4, amounts to permuting the equations (28.1).
Using our decomposition (28.4), we obtain

LUx D P b :

We can now solve this equation by solving two triangular linear systems. Let us
define y D Ux, where x is the desired solution vector. First, we solve the lower-
triangular system

Ly D P b (28.5)

for the unknown vector y by a method called “forward substitution.” Having solved
for y, we then solve the upper-triangular system

Ux D y (28.6)

816 Chapter 28 Matrix Operations

for the unknown x by a method called “back substitution.” Because the permu-
tation matrix P is invertible (Exercise D.2-3), multiplying both sides of equa-
tion (28.4) by P �1 gives P �1PA D P �1LU , so that

A D P �1LU : (28.7)

Hence, the vector x is our solution to Ax D b:

Ax D P �1LUx (by equation (28.7))

D P �1Ly (by equation (28.6))

D P �1P b (by equation (28.5))

D b :

Our next step is to show how forward and back substitution work and then attack
the problem of computing the LUP decomposition itself.

Forward and back substitution

Forward substitution can solve the lower-triangular system (28.5) in ‚.n2/ time,
given L, P , and b. For convenience, we represent the permutation P compactly
by an array �Œ1 : : n�. For i D 1; 2; : : : ; n, the entry �Œi� indicates that Pi;�Œi � D 1

and Pij D 0 for j ¤ �Œi�. Thus, PA has a�Œi�;j in row i and column j , and P b

has b�Œi� as its i th element. Since L is unit lower-triangular, we can rewrite equa-
tion (28.5) as

y1 D b�Œ1� ;

l21y1 C y2 D b�Œ2� ;

l31y1 C l32y2 C y3 D b�Œ3� ;

:::

ln1y1 C ln2y2 C ln3y3 C � � � C yn D b�Œn� :

The first equation tells us that y1 D b�Œ1�. Knowing the value of y1, we can
substitute it into the second equation, yielding

y2 D b�Œ2� � l21y1 :

Now, we can substitute both y1 and y2 into the third equation, obtaining

y3 D b�Œ3� � .l31y1 C l32y2/ :

In general, we substitute y1; y2; : : : ; yi�1 “forward” into the i th equation to solve
for yi :

28.1 Solving systems of linear equations 817

yi D b�Œi� �
i�1X
j D1

lij yj :

Having solved for y, we solve for x in equation (28.6) using back substitution,
which is similar to forward substitution. Here, we solve the nth equation first and
work backward to the first equation. Like forward substitution, this process runs
in ‚.n2/ time. Since U is upper-triangular, we can rewrite the system (28.6) as

u11x1 C u12x2 C � � � C u1;n�2xn�2 C u1;n�1xn�1 C u1nxn D y1 ;

u22x2 C � � � C u2;n�2xn�2 C u2;n�1xn�1 C u2nxn D y2 ;

:::

un�2;n�2xn�2 C un�2;n�1xn�1 C un�2;nxn D yn�2 ;

un�1;n�1xn�1 C un�1;nxn D yn�1 ;

un;nxn D yn :

Thus, we can solve for xn; xn�1; : : : ; x1 successively as follows:

xn D yn=un;n ;

xn�1 D .yn�1 � un�1;nxn/=un�1;n�1 ;

xn�2 D .yn�2 � .un�2;n�1xn�1 C un�2;nxn//=un�2;n�2 ;

:::

or, in general,

xi D

yi �
nX

j DiC1

uij xj

!
=ui i :

Given P , L, U , and b, the procedure LUP-SOLVE solves for x by combining
forward and back substitution. The pseudocode assumes that the dimension n ap-
pears in the attribute L:rows and that the permutation matrix P is represented by
the array � .

LUP-SOLVE.L; U; �; b/

1 n D L:rows
2 let x be a new vector of length n

3 for i D 1 to n

4 yi D b�Œi� �
Pi�1

j D1 lij yj

5 for i D n downto 1

6 xi D
�
yi �

Pn

j DiC1 uij xj

�
=ui i

7 return x

818 Chapter 28 Matrix Operations

Procedure LUP-SOLVE solves for y using forward substitution in lines 3–4, and
then it solves for x using backward substitution in lines 5–6. Since the summation
within each of the for loops includes an implicit loop, the running time is ‚.n2/.

As an example of these methods, consider the system of linear equations defined
by�

1 2 0

3 4 4

5 6 3

�
x D

�
3

7

8

�
;

where

A D
�

1 2 0

3 4 4

5 6 3

�
;

b D
�

3

7

8

�
;

and we wish to solve for the unknown x. The LUP decomposition is

L D
�

1 0 0

0:2 1 0

0:6 0:5 1

�
;

U D
�

5 6 3

0 0:8 �0:6

0 0 2:5

�
;

P D
�

0 0 1

1 0 0

0 1 0

�
:

(You might want to verify that PA D LU .) Using forward substitution, we solve
Ly D P b for y:�

1 0 0

0:2 1 0

0:6 0:5 1

��
y1

y2

y3

�
D
�

8

3

7

�
;

obtaining

y D
�

8

1:4

1:5

�
by computing first y1, then y2, and finally y3. Using back substitution, we solve
Ux D y for x:

28.1 Solving systems of linear equations 819�
5 6 3

0 0:8 �0:6

0 0 2:5

��
x1

x2

x3

�
D

�
8

1:4

1:5

�
;

thereby obtaining the desired answer

x D
� �1:4

2:2

0:6

�
by computing first x3, then x2, and finally x1.

Computing an LU decomposition

We have now shown that if we can create an LUP decomposition for a nonsingular
matrix A, then forward and back substitution can solve the system Ax D b of
linear equations. Now we show how to efficiently compute an LUP decomposition
for A. We start with the case in which A is an n 	 n nonsingular matrix and P is
absent (or, equivalently, P D In). In this case, we factor A D LU . We call the
two matrices L and U an LU decomposition of A.

We use a process known as Gaussian elimination to create an LU decomposi-
tion. We start by subtracting multiples of the first equation from the other equations
in order to remove the first variable from those equations. Then, we subtract mul-
tiples of the second equation from the third and subsequent equations so that now
the first and second variables are removed from them. We continue this process
until the system that remains has an upper-triangular form—in fact, it is the ma-
trix U . The matrix L is made up of the row multipliers that cause variables to be
eliminated.

Our algorithm to implement this strategy is recursive. We wish to construct an
LU decomposition for an n 	 n nonsingular matrix A. If n D 1, then we are done,
since we can choose L D I1 and U D A. For n > 1, we break A into four parts:

A D

˙
a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

�
D

�
a11 wT

� A0

�
;

where � is a column .n � 1/-vector, wT is a row .n � 1/-vector, and A0 is an
.n � 1/ 	 .n � 1/ matrix. Then, using matrix algebra (verify the equations by

820 Chapter 28 Matrix Operations

simply multiplying through), we can factor A as

A D
�

a11 wT

� A0

�
D

�
1 0

�=a11 In�1

��
a11 wT

0 A0 � �wT=a11

�
: (28.8)

The 0s in the first and second matrices of equation (28.8) are row and col-
umn .n � 1/-vectors, respectively. The term �wT=a11, formed by taking the
outer product of � and w and dividing each element of the result by a11, is an
.n � 1/ 	 .n � 1/ matrix, which conforms in size to the matrix A0 from which it is
subtracted. The resulting .n � 1/ 	 .n � 1/ matrix

A0 � �wT=a11 (28.9)

is called the Schur complement of A with respect to a11.
We claim that if A is nonsingular, then the Schur complement is nonsingular,

too. Why? Suppose that the Schur complement, which is .n � 1/ 	 .n � 1/, is
singular. Then by Theorem D.1, it has row rank strictly less than n � 1. Because
the bottom n � 1 entries in the first column of the matrix�

a11 wT

0 A0 � �wT=a11

�
are all 0, the bottom n � 1 rows of this matrix must have row rank strictly less
than n � 1. The row rank of the entire matrix, therefore, is strictly less than n.
Applying Exercise D.2-8 to equation (28.8), A has rank strictly less than n, and
from Theorem D.1 we derive the contradiction that A is singular.

Because the Schur complement is nonsingular, we can now recursively find an
LU decomposition for it. Let us say that

A0 � �wT=a11 D L0U 0 ;

where L0 is unit lower-triangular and U 0 is upper-triangular. Then, using matrix
algebra, we have

A D
�

1 0

�=a11 In�1

��
a11 wT

0 A0 � �wT=a11

�
D

�
1 0

�=a11 In�1

��
a11 wT

0 L0U 0

�
D

�
1 0

�=a11 L0

��
a11 wT

0 U 0

�
D LU ;

thereby providing our LU decomposition. (Note that because L0 is unit lower-
triangular, so is L, and because U 0 is upper-triangular, so is U .)

28.1 Solving systems of linear equations 821

Of course, if a11 D 0, this method doesn’t work, because it divides by 0. It also
doesn’t work if the upper leftmost entry of the Schur complement A0 � �wT=a11

is 0, since we divide by it in the next step of the recursion. The elements by
which we divide during LU decomposition are called pivots, and they occupy the
diagonal elements of the matrix U . The reason we include a permutation matrix P

during LUP decomposition is that it allows us to avoid dividing by 0. When we use
permutations to avoid division by 0 (or by small numbers, which would contribute
to numerical instability), we are pivoting.

An important class of matrices for which LU decomposition always works cor-
rectly is the class of symmetric positive-definite matrices. Such matrices require
no pivoting, and thus we can employ the recursive strategy outlined above with-
out fear of dividing by 0. We shall prove this result, as well as several others, in
Section 28.3.

Our code for LU decomposition of a matrix A follows the recursive strategy, ex-
cept that an iteration loop replaces the recursion. (This transformation is a standard
optimization for a “tail-recursive” procedure—one whose last operation is a recur-
sive call to itself. See Problem 7-4.) It assumes that the attribute A:rows gives
the dimension of A. We initialize the matrix U with 0s below the diagonal and
matrix L with 1s on its diagonal and 0s above the diagonal.

LU-DECOMPOSITION.A/

1 n D A:rows
2 let L and U be new n 	 n matrices
3 initialize U with 0s below the diagonal
4 initialize L with 1s on the diagonal and 0s above the diagonal
5 for k D 1 to n

6 ukk D akk

7 for i D k C 1 to n

8 lik D aik=ukk // lik holds �i

9 uki D aki // uki holds wT
i

10 for i D k C 1 to n

11 for j D k C 1 to n

12 aij D aij � likukj

13 return L and U

The outer for loop beginning in line 5 iterates once for each recursive step. Within
this loop, line 6 determines the pivot to be ukk D akk. The for loop in lines 7–9
(which does not execute when k D n), uses the � and wT vectors to update L

and U . Line 8 determines the elements of the � vector, storing �i in lik, and line 9
computes the elements of the wT vector, storing wT

i in uki . Finally, lines 10–12
compute the elements of the Schur complement and store them back into the ma-

822 Chapter 28 Matrix Operations

2 3 1 5

6 13 5 19

2 19 10 23

4 10 11 31

(a)

3 1 5

3 4 2 4

1 16 9 18

2 4 9 21

(b)

2 3 1 5

3 2 4

1 4 1 2

2 1 7 17

(c)

2 3 1 5

3 4 2 4

1 4 2

2 1 7 3

(d)

(e)

2

4

1

�
2 3 1 5

6 13 5 19

2 19 10 23

4 10 11 31

˘
D

�
1 0 0 0

3 1 0 0

1 4 1 0

2 1 7 1

˘ �
2 3 1 5

0 4 2 4

0 0 1 2

0 0 0 3

˘
A L U

Figure 28.1 The operation of LU-DECOMPOSITION. (a) The matrix A. (b) The element a11 D 2

in the black circle is the pivot, the shaded column is �=a11, and the shaded row is wT. The elements
of U computed thus far are above the horizontal line, and the elements of L are to the left of the
vertical line. The Schur complement matrix A0 � �wT=a11 occupies the lower right. (c) We now
operate on the Schur complement matrix produced from part (b). The element a22 D 4 in the black
circle is the pivot, and the shaded column and row are �=a22 and wT (in the partitioning of the Schur
complement), respectively. Lines divide the matrix into the elements of U computed so far (above),
the elements of L computed so far (left), and the new Schur complement (lower right). (d) After the
next step, the matrix A is factored. (The element 3 in the new Schur complement becomes part of U

when the recursion terminates.) (e) The factorization A D LU .

trix A. (We don’t need to divide by akk in line 12 because we already did so when
we computed lik in line 8.) Because line 12 is triply nested, LU-DECOMPOSITION

runs in time ‚.n3/.
Figure 28.1 illustrates the operation of LU-DECOMPOSITION. It shows a stan-

dard optimization of the procedure in which we store the significant elements of L

and U in place in the matrix A. That is, we can set up a correspondence between
each element aij and either lij (if i > j) or uij (if i � j) and update the ma-
trix A so that it holds both L and U when the procedure terminates. To obtain
the pseudocode for this optimization from the above pseudocode, just replace each
reference to l or u by a; you can easily verify that this transformation preserves
correctness.

Computing an LUP decomposition

Generally, in solving a system of linear equations Ax D b, we must pivot on off-
diagonal elements of A to avoid dividing by 0. Dividing by 0 would, of course,
be disastrous. But we also want to avoid dividing by a small value—even if A is

28.1 Solving systems of linear equations 823

nonsingular—because numerical instabilities can result. We therefore try to pivot
on a large value.

The mathematics behind LUP decomposition is similar to that of LU decom-
position. Recall that we are given an n 	 n nonsingular matrix A, and we wish
to find a permutation matrix P , a unit lower-triangular matrix L, and an upper-
triangular matrix U such that PA D LU . Before we partition the matrix A, as we
did for LU decomposition, we move a nonzero element, say ak1, from somewhere
in the first column to the .1; 1/ position of the matrix. For numerical stability, we
choose ak1 as the element in the first column with the greatest absolute value. (The
first column cannot contain only 0s, for then A would be singular, because its de-
terminant would be 0, by Theorems D.4 and D.5.) In order to preserve the set of
equations, we exchange row 1 with row k, which is equivalent to multiplying A by
a permutation matrix Q on the left (Exercise D.1-4). Thus, we can write QA as

QA D
�

ak1 wT

� A0

�
;

where � D .a21; a31; : : : ; an1/T, except that a11 replaces ak1; wT D .ak2; ak3;

: : : ; akn/; and A0 is an .n�1/	.n�1/ matrix. Since ak1 ¤ 0, we can now perform
much the same linear algebra as for LU decomposition, but now guaranteeing that
we do not divide by 0:

QA D
�

ak1 wT

� A0

�
D

�
1 0

�=ak1 In�1

��
ak1 wT

0 A0 � �wT=ak1

�
:

As we saw for LU decomposition, if A is nonsingular, then the Schur comple-
ment A0 � �wT=ak1 is nonsingular, too. Therefore, we can recursively find an
LUP decomposition for it, with unit lower-triangular matrix L0, upper-triangular
matrix U 0, and permutation matrix P 0, such that

P 0.A0 � �wT=ak1/ D L0U 0 :

Define

P D
�

1 0

0 P 0

�
Q ;

which is a permutation matrix, since it is the product of two permutation matrices
(Exercise D.1-4). We now have

824 Chapter 28 Matrix Operations

PA D
�

1 0

0 P 0

�
QA

D
�

1 0

0 P 0

��
1 0

�=ak1 In�1

��
ak1 wT

0 A0 � �wT=ak1

�
D

�
1 0

P 0�=ak1 P 0

��
ak1 wT

0 A0 � �wT=ak1

�
D

�
1 0

P 0�=ak1 In�1

��
ak1 wT

0 P 0.A0 � �wT=ak1/

�
D

�
1 0

P 0�=ak1 In�1

��
ak1 wT

0 L0U 0

�
D

�
1 0

P 0�=ak1 L0

��
ak1 wT

0 U 0

�
D LU ;

yielding the LUP decomposition. Because L0 is unit lower-triangular, so is L, and
because U 0 is upper-triangular, so is U .

Notice that in this derivation, unlike the one for LU decomposition, we must
multiply both the column vector �=ak1 and the Schur complement A0 � �wT=ak1

by the permutation matrix P 0. Here is the pseudocode for LUP decomposition:

LUP-DECOMPOSITION.A/

1 n D A:rows
2 let �Œ1 : : n� be a new array
3 for i D 1 to n

4 �Œi� D i

5 for k D 1 to n

6 p D 0

7 for i D k to n

8 if jaikj > p

9 p D jaikj
10 k0 D i

11 if p == 0

12 error “singular matrix”
13 exchange �Œk� with �Œk0�
14 for i D 1 to n

15 exchange aki with ak0i

16 for i D k C 1 to n

17 aik D aik=akk

18 for j D k C 1 to n

19 aij D aij � aikakj

28.1 Solving systems of linear equations 825

Like LU-DECOMPOSITION, our LUP-DECOMPOSITION procedure replaces
the recursion with an iteration loop. As an improvement over a direct implemen-
tation of the recursion, we dynamically maintain the permutation matrix P as an
array � , where �Œi� D j means that the i th row of P contains a 1 in column j .
We also implement the code to compute L and U “in place” in the matrix A. Thus,
when the procedure terminates,

aij D
(

lij if i > j ;

uij if i � j :

Figure 28.2 illustrates how LUP-DECOMPOSITION factors a matrix. Lines 3–4
initialize the array � to represent the identity permutation. The outer for loop
beginning in line 5 implements the recursion. Each time through the outer loop,
lines 6–10 determine the element ak0k with largest absolute value of those in the
current first column (column k) of the .n � k C 1/ 	 .n � k C 1/ matrix whose
LUP decomposition we are finding. If all elements in the current first column are
zero, lines 11–12 report that the matrix is singular. To pivot, we exchange �Œk0�
with �Œk� in line 13 and exchange the kth and k0th rows of A in lines 14–15,
thereby making the pivot element akk. (The entire rows are swapped because in
the derivation of the method above, not only is A0� �wT=ak1 multiplied by P 0, but
so is �=ak1.) Finally, the Schur complement is computed by lines 16–19 in much
the same way as it is computed by lines 7–12 of LU-DECOMPOSITION, except that
here the operation is written to work in place.

Because of its triply nested loop structure, LUP-DECOMPOSITION has a run-
ning time of ‚.n3/, which is the same as that of LU-DECOMPOSITION. Thus,
pivoting costs us at most a constant factor in time.

Exercises

28.1-1
Solve the equation�

1 0 0

4 1 0

�6 5 1

��
x1

x2

x3

�
D

�
3

14

�7

�
by using forward substitution.

28.1-2
Find an LU decomposition of the matrix�

4 �5 6

8 �6 7

12 �7 12

�
:

826 Chapter 28 Matrix Operations

2 0 2 0.6

3 3 4 –2

5 5 4 2

–1 –2 3.4 –1

(a)

1

2

3

4

2 0 2 0.6

3 3 4 –2

5 5 4 2

–1 –2 3.4 –1

(b)

3

2

1

4

0.4 –2 0.4 –.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(c)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(d)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(e)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(f)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(g)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(h)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 0.4 –3

5 5 4 2

–0.2 0.5 4 –0.5

(i)

3

2

1

4

(j)

�
0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

˘ �
2 0 2 0:6

3 3 4 �2

5 5 4 2

�1 �2 3:4 �1

˘
D

�
1 0 0 0

0:4 1 0 0

�0:2 0:5 1 0

0:6 0 0:4 1

˘ �
5 5 4 2

0 �2 0:4 �0:2

0 0 4 �0:5

0 0 0 �3

˘
P A L U

Figure 28.2 The operation of LUP-DECOMPOSITION. (a) The input matrix A with the identity
permutation of the rows on the left. The first step of the algorithm determines that the element 5

in the black circle in the third row is the pivot for the first column. (b) Rows 1 and 3 are swapped
and the permutation is updated. The shaded column and row represent � and wT. (c) The vector �

is replaced by �=5, and the lower right of the matrix is updated with the Schur complement. Lines
divide the matrix into three regions: elements of U (above), elements of L (left), and elements of the
Schur complement (lower right). (d)–(f) The second step. (g)–(i) The third step. No further changes
occur on the fourth (final) step. (j) The LUP decomposition PA D LU .

28.2 Inverting matrices 827

28.1-3
Solve the equation�

1 5 4

2 0 3

5 8 2

��
x1

x2

x3

�
D

�
12

9

5

�
by using an LUP decomposition.

28.1-4
Describe the LUP decomposition of a diagonal matrix.

28.1-5
Describe the LUP decomposition of a permutation matrix A, and prove that it is
unique.

28.1-6
Show that for all n � 1, there exists a singular n	n matrix that has an LU decom-
position.

28.1-7
In LU-DECOMPOSITION, is it necessary to perform the outermost for loop itera-
tion when k D n? How about in LUP-DECOMPOSITION?

28.2 Inverting matrices

Although in practice we do not generally use matrix inverses to solve systems of
linear equations, preferring instead to use more numerically stable techniques such
as LUP decomposition, sometimes we need to compute a matrix inverse. In this
section, we show how to use LUP decomposition to compute a matrix inverse.
We also prove that matrix multiplication and computing the inverse of a matrix
are equivalently hard problems, in that (subject to technical conditions) we can
use an algorithm for one to solve the other in the same asymptotic running time.
Thus, we can use Strassen’s algorithm (see Section 4.2) for matrix multiplication
to invert a matrix. Indeed, Strassen’s original paper was motivated by the problem
of showing that a set of a linear equations could be solved more quickly than by
the usual method.

828 Chapter 28 Matrix Operations

Computing a matrix inverse from an LUP decomposition

Suppose that we have an LUP decomposition of a matrix A in the form of three
matrices L, U , and P such that PA D LU . Using LUP-SOLVE, we can solve
an equation of the form Ax D b in time ‚.n2/. Since the LUP decomposition
depends on A but not b, we can run LUP-SOLVE on a second set of equations of
the form Ax D b0 in additional time ‚.n2/. In general, once we have the LUP
decomposition of A, we can solve, in time ‚.kn2/, k versions of the equation
Ax D b that differ only in b.

We can think of the equation

AX D In ; (28.10)

which defines the matrix X , the inverse of A, as a set of n distinct equations of the
form Ax D b. To be precise, let Xi denote the i th column of X , and recall that the
unit vector ei is the i th column of In. We can then solve equation (28.10) for X by
using the LUP decomposition for A to solve each equation

AXi D ei

separately for Xi . Once we have the LUP decomposition, we can compute each of
the n columns Xi in time ‚.n2/, and so we can compute X from the LUP decom-
position of A in time ‚.n3/. Since we can determine the LUP decomposition of A

in time ‚.n3/, we can compute the inverse A�1 of a matrix A in time ‚.n3/.

Matrix multiplication and matrix inversion

We now show that the theoretical speedups obtained for matrix multiplication
translate to speedups for matrix inversion. In fact, we prove something stronger:
matrix inversion is equivalent to matrix multiplication, in the following sense.
If M.n/ denotes the time to multiply two n 	 n matrices, then we can invert a
nonsingular n 	 n matrix in time O.M.n//. Moreover, if I.n/ denotes the time
to invert a nonsingular n 	 n matrix, then we can multiply two n 	 n matrices in
time O.I.n//. We prove these results as two separate theorems.

Theorem 28.1 (Multiplication is no harder than inversion)
If we can invert an n 	 n matrix in time I.n/, where I.n/ D �.n2/ and I.n/

satisfies the regularity condition I.3n/ D O.I.n//, then we can multiply two n	n

matrices in time O.I.n//.

Proof Let A and B be n 	 n matrices whose matrix product C we wish to com-
pute. We define the 3n 	 3n matrix D by

28.2 Inverting matrices 829

D D
�

In A 0

0 In B

0 0 In

�
:

The inverse of D is

D�1 D
�

In �A AB

0 In �B

0 0 In

�
;

and thus we can compute the product AB by taking the upper right n	n submatrix
of D�1.

We can construct matrix D in ‚.n2/ time, which is O.I.n// because we assume
that I.n/ D �.n2/, and we can invert D in O.I.3n// D O.I.n// time, by the
regularity condition on I.n/. We thus have M.n/ D O.I.n//.

Note that I.n/ satisfies the regularity condition whenever I.n/ D ‚.nc lgd n/

for any constants c > 0 and d � 0.
The proof that matrix inversion is no harder than matrix multiplication relies

on some properties of symmetric positive-definite matrices that we will prove in
Section 28.3.

Theorem 28.2 (Inversion is no harder than multiplication)
Suppose we can multiply two n 	 n real matrices in time M.n/, where M.n/ D
�.n2/ and M.n/ satisfies the two regularity conditions M.nC k/ D O.M.n// for
any k in the range 0 � k � n and M.n=2/ � cM.n/ for some constant c < 1=2.
Then we can compute the inverse of any real nonsingular n 	 n matrix in time
O.M.n//.

Proof We prove the theorem here for real matrices. Exercise 28.2-6 asks you to
generalize the proof for matrices whose entries are complex numbers.

We can assume that n is an exact power of 2, since we have�
A 0

0 Ik

��1

D
�

A�1 0

0 Ik

�
for any k > 0. Thus, by choosing k such that n C k is a power of 2, we enlarge
the matrix to a size that is the next power of 2 and obtain the desired answer A�1

from the answer to the enlarged problem. The first regularity condition on M.n/

ensures that this enlargement does not cause the running time to increase by more
than a constant factor.

For the moment, let us assume that the n	n matrix A is symmetric and positive-
definite. We partition each of A and its inverse A�1 into four n=2 	 n=2 submatri-
ces:

830 Chapter 28 Matrix Operations

A D
�

B C T

C D

�
and A�1 D

�
R T

U V

�
: (28.11)

Then, if we let

S D D � CB�1C T (28.12)

be the Schur complement of A with respect to B (we shall see more about this form
of Schur complement in Section 28.3), we have

A�1 D
�

R T

U V

�
D
�

B�1 C B�1C TS�1CB�1 �B�1C TS�1

�S�1CB�1 S�1

�
; (28.13)

since AA�1 D In, as you can verify by performing the matrix multiplication. Be-
cause A is symmetric and positive-definite, Lemmas 28.4 and 28.5 in Section 28.3
imply that B and S are both symmetric and positive-definite. By Lemma 28.3 in
Section 28.3, therefore, the inverses B�1 and S�1 exist, and by Exercise D.2-6,
B�1 and S�1 are symmetric, so that .B�1/T D B�1 and .S�1/T D S�1. There-
fore, we can compute the submatrices R, T , U , and V of A�1 as follows, where
all matrices mentioned are n=2 	 n=2:

1. Form the submatrices B , C , C T, and D of A.

2. Recursively compute the inverse B�1 of B .

3. Compute the matrix product W D CB�1, and then compute its transpose W T,
which equals B�1C T (by Exercise D.1-2 and .B�1/T D B�1).

4. Compute the matrix product X D W C T, which equals CB�1C T, and then
compute the matrix S D D �X D D � CB�1C T.

5. Recursively compute the inverse S�1 of S , and set V to S�1.

6. Compute the matrix product Y D S�1W , which equals S�1CB�1, and
then compute its transpose Y T, which equals B�1C TS�1 (by Exercise D.1-2,
.B�1/T D B�1, and .S�1/T D S�1). Set T to �Y T and U to �Y .

7. Compute the matrix product Z D W TY , which equals B�1C TS�1CB�1, and
set R to B�1 C Z.

Thus, we can invert an n	n symmetric positive-definite matrix by inverting two
n=2	n=2 matrices in steps 2 and 5; performing four multiplications of n=2	n=2

matrices in steps 3, 4, 6, and 7; plus an additional cost of O.n2/ for extracting
submatrices from A, inserting submatrices into A�1, and performing a constant
number of additions, subtractions, and transposes on n=2 	 n=2 matrices. We get
the recurrence

I.n/ � 2I.n=2/C 4M.n=2/CO.n2/

D 2I.n=2/C‚.M.n//

D O.M.n// :

28.2 Inverting matrices 831

The second line holds because the second regularity condition in the statement
of the theorem implies that 4M.n=2/ < 2M.n/ and because we assume that
M.n/ D �.n2/. The third line follows because the second regularity condition
allows us to apply case 3 of the master theorem (Theorem 4.1).

It remains to prove that we can obtain the same asymptotic running time for ma-
trix multiplication as for matrix inversion when A is invertible but not symmetric
and positive-definite. The basic idea is that for any nonsingular matrix A, the ma-
trix ATA is symmetric (by Exercise D.1-2) and positive-definite (by Theorem D.6).
The trick, then, is to reduce the problem of inverting A to the problem of invert-
ing ATA.

The reduction is based on the observation that when A is an n 	 n nonsingular
matrix, we have

A�1 D .ATA/�1AT ;

since ..ATA/�1AT/A D .ATA/�1.ATA/ D In and a matrix inverse is unique.
Therefore, we can compute A�1 by first multiplying AT by A to obtain ATA, then
inverting the symmetric positive-definite matrix ATA using the above divide-and-
conquer algorithm, and finally multiplying the result by AT. Each of these three
steps takes O.M.n// time, and thus we can invert any nonsingular matrix with real
entries in O.M.n// time.

The proof of Theorem 28.2 suggests a means of solving the equation Ax D b

by using LU decomposition without pivoting, so long as A is nonsingular. We
multiply both sides of the equation by AT, yielding .ATA/x D ATb. This trans-
formation doesn’t affect the solution x, since AT is invertible, and so we can fac-
tor the symmetric positive-definite matrix ATA by computing an LU decomposi-
tion. We then use forward and back substitution to solve for x with the right-hand
side ATb. Although this method is theoretically correct, in practice the procedure
LUP-DECOMPOSITION works much better. LUP decomposition requires fewer
arithmetic operations by a constant factor, and it has somewhat better numerical
properties.

Exercises

28.2-1
Let M.n/ be the time to multiply two n 	 n matrices, and let S.n/ denote the time
required to square an n 	 n matrix. Show that multiplying and squaring matri-
ces have essentially the same difficulty: an M.n/-time matrix-multiplication al-
gorithm implies an O.M.n//-time squaring algorithm, and an S.n/-time squaring
algorithm implies an O.S.n//-time matrix-multiplication algorithm.

832 Chapter 28 Matrix Operations

28.2-2
Let M.n/ be the time to multiply two n 	 n matrices, and let L.n/ be the time to
compute the LUP decomposition of an n	 n matrix. Show that multiplying matri-
ces and computing LUP decompositions of matrices have essentially the same dif-
ficulty: an M.n/-time matrix-multiplication algorithm implies an O.M.n//-time
LUP-decomposition algorithm, and an L.n/-time LUP-decomposition algorithm
implies an O.L.n//-time matrix-multiplication algorithm.

28.2-3
Let M.n/ be the time to multiply two n 	 n matrices, and let D.n/ denote the
time required to find the determinant of an n 	 n matrix. Show that multiply-
ing matrices and computing the determinant have essentially the same difficulty:
an M.n/-time matrix-multiplication algorithm implies an O.M.n//-time determi-
nant algorithm, and a D.n/-time determinant algorithm implies an O.D.n//-time
matrix-multiplication algorithm.

28.2-4
Let M.n/ be the time to multiply two n 	 n boolean matrices, and let T .n/ be the
time to find the transitive closure of an n 	 n boolean matrix. (See Section 25.2.)
Show that an M.n/-time boolean matrix-multiplication algorithm implies an
O.M.n/ lg n/-time transitive-closure algorithm, and a T .n/-time transitive-closure
algorithm implies an O.T .n//-time boolean matrix-multiplication algorithm.

28.2-5
Does the matrix-inversion algorithm based on Theorem 28.2 work when matrix
elements are drawn from the field of integers modulo 2? Explain.

28.2-6 ?

Generalize the matrix-inversion algorithm of Theorem 28.2 to handle matrices of
complex numbers, and prove that your generalization works correctly. (Hint: In-
stead of the transpose of A, use the conjugate transposeA�, which you obtain from
the transpose of A by replacing every entry with its complex conjugate. Instead of
symmetric matrices, consider Hermitian matrices, which are matrices A such that
A D A�.)

28.3 Symmetric positive-definite matrices and least-squares approximation

Symmetric positive-definite matrices have many interesting and desirable proper-
ties. For example, they are nonsingular, and we can perform LU decomposition
on them without having to worry about dividing by 0. In this section, we shall

28.3 Symmetric positive-definite matrices and least-squares approximation 833

prove several other important properties of symmetric positive-definite matrices
and show an interesting application to curve fitting by a least-squares approxima-
tion.

The first property we prove is perhaps the most basic.

Lemma 28.3
Any positive-definite matrix is nonsingular.

Proof Suppose that a matrix A is singular. Then by Corollary D.3, there exists a
nonzero vector x such that Ax D 0. Hence, xTAx D 0, and A cannot be positive-
definite.

The proof that we can perform LU decomposition on a symmetric positive-
definite matrix A without dividing by 0 is more involved. We begin by proving
properties about certain submatrices of A. Define the kth leading submatrix of A

to be the matrix Ak consisting of the intersection of the first k rows and first k

columns of A.

Lemma 28.4
If A is a symmetric positive-definite matrix, then every leading submatrix of A is
symmetric and positive-definite.

Proof That each leading submatrix Ak is symmetric is obvious. To prove that Ak

is positive-definite, we assume that it is not and derive a contradiction. If Ak is not
positive-definite, then there exists a k-vector xk ¤ 0 such that xT

k
Akxk � 0. Let A

be n 	 n, and

A D
�

Ak BT

B C

�
(28.14)

for submatrices B (which is .n�k/	k) and C (which is .n�k/	 .n�k/). Define
the n-vector x D . xT

k 0 /T, where n � k 0s follow xk. Then we have

xTAx D . xT
k 0 /

�
Ak BT

B C

��
xk

0

�
D . xT

k 0 /

�
Akxk

Bxk

�
D xT

kAkxk

� 0 ;

which contradicts A being positive-definite.

834 Chapter 28 Matrix Operations

We now turn to some essential properties of the Schur complement. Let A be
a symmetric positive-definite matrix, and let Ak be a leading k 	 k submatrix
of A. Partition A once again according to equation (28.14). We generalize equa-
tion (28.9) to define the Schur complement S of A with respect to Ak as

S D C � BA�1
k BT : (28.15)

(By Lemma 28.4, Ak is symmetric and positive-definite; therefore, A�1
k

exists by
Lemma 28.3, and S is well defined.) Note that our earlier definition (28.9) of the
Schur complement is consistent with equation (28.15), by letting k D 1.

The next lemma shows that the Schur-complement matrices of symmetric posi-
tive-definite matrices are themselves symmetric and positive-definite. We used this
result in Theorem 28.2, and we need its corollary to prove the correctness of LU
decomposition for symmetric positive-definite matrices.

Lemma 28.5 (Schur complement lemma)
If A is a symmetric positive-definite matrix and Ak is a leading k 	 k submatrix
of A, then the Schur complement S of A with respect to Ak is symmetric and
positive-definite.

Proof Because A is symmetric, so is the submatrix C . By Exercise D.2-6, the
product BA�1

k
BT is symmetric, and by Exercise D.1-1, S is symmetric.

It remains to show that S is positive-definite. Consider the partition of A given in
equation (28.14). For any nonzero vector x, we have xTAx > 0 by the assumption
that A is positive-definite. Let us break x into two subvectors y and ´ compatible
with Ak and C , respectively. Because A�1

k
exists, we have

xTAx D . yT ´T /

�
Ak BT

B C

��
y

´

�
D . yT ´T /

�
Aky C BT´

By C C ´

�
D yTAky C yTBT´C ´TBy C ´TC ´

D .y C A�1
k BT´/TAk.y C A�1

k BT´/C ´T.C � BA�1
k BT/´ ; (28.16)

by matrix magic. (Verify by multiplying through.) This last equation amounts to
“completing the square” of the quadratic form. (See Exercise 28.3-2.)

Since xTAx > 0 holds for any nonzero x, let us pick any nonzero ´ and then
choose y D �A�1

k
BT´, which causes the first term in equation (28.16) to vanish,

leaving

´T.C � BA�1
k BT/´ D ´TS´

as the value of the expression. For any ´ ¤ 0, we therefore have ´TS´ D
xTAx > 0, and thus S is positive-definite.

28.3 Symmetric positive-definite matrices and least-squares approximation 835

Corollary 28.6
LU decomposition of a symmetric positive-definite matrix never causes a division
by 0.

Proof Let A be a symmetric positive-definite matrix. We shall prove something
stronger than the statement of the corollary: every pivot is strictly positive. The first
pivot is a11. Let e1 be the first unit vector, from which we obtain a11 D eT

1Ae1 > 0.
Since the first step of LU decomposition produces the Schur complement of A

with respect to A1 D .a11/, Lemma 28.5 implies by induction that all pivots are
positive.

Least-squares approximation

One important application of symmetric positive-definite matrices arises in fitting
curves to given sets of data points. Suppose that we are given a set of m data points

.x1; y1/; .x2; y2/; : : : ; .xm; ym/ ;

where we know that the yi are subject to measurement errors. We would like to
determine a function F.x/ such that the approximation errors

�i D F.xi/ � yi (28.17)

are small for i D 1; 2; : : : ; m. The form of the function F depends on the problem
at hand. Here, we assume that it has the form of a linearly weighted sum,

F.x/ D
nX

j D1

cj fj .x/ ;

where the number of summands n and the specific basis functions fj are chosen
based on knowledge of the problem at hand. A common choice is fj .x/ D xj �1,
which means that

F.x/ D c1 C c2x C c3x2 C � � � C cnxn�1

is a polynomial of degree n � 1 in x. Thus, given m data points .x1; y1/; .x2; y2/;

: : : ; .xm; ym/, we wish to calculate n coefficients c1; c2; : : : ; cn that minimize the
approximation errors �1; �2; : : : ; �m.

By choosing n D m, we can calculate each yi exactly in equation (28.17). Such
a high-degree F “fits the noise” as well as the data, however, and generally gives
poor results when used to predict y for previously unseen values of x. It is usu-
ally better to choose n significantly smaller than m and hope that by choosing the
coefficients cj well, we can obtain a function F that finds the significant patterns
in the data points without paying undue attention to the noise. Some theoretical

836 Chapter 28 Matrix Operations

principles exist for choosing n, but they are beyond the scope of this text. In any
case, once we choose a value of n that is less than m, we end up with an overde-
termined set of equations whose solution we wish to approximate. We now show
how to do so.

Let

A D

˙
f1.x1/ f2.x1/ : : : fn.x1/

f1.x2/ f2.x2/ : : : fn.x2/
:::

:::
: : :

:::

f1.xm/ f2.xm/ : : : fn.xm/

�
denote the matrix of values of the basis functions at the given points; that is,
aij D fj .xi/. Let c D .ck/ denote the desired n-vector of coefficients. Then,

Ac D

˙
f1.x1/ f2.x1/ : : : fn.x1/

f1.x2/ f2.x2/ : : : fn.x2/
:::

:::
: : :

:::

f1.xm/ f2.xm/ : : : fn.xm/

�˙
c1

c2

:::

cn

�

D

˙
F.x1/

F.x2/
:::

F .xm/

�

is the m-vector of “predicted values” for y. Thus,

� D Ac � y

is the m-vector of approximation errors.
To minimize approximation errors, we choose to minimize the norm of the error

vector �, which gives us a least-squares solution, since

k�k D

mX
iD1

�2
i

!1=2

:

Because

k�k2 D kAc � yk2 D
mX

iD1

nX

j D1

aij cj � yi

!2

;

we can minimize k�k by differentiating k�k2 with respect to each ck and then
setting the result to 0:

28.3 Symmetric positive-definite matrices and least-squares approximation 837

d k�k2

dck

D
mX

iD1

2

nX

j D1

aij cj � yi

!
aik D 0 : (28.18)

The n equations (28.18) for k D 1; 2; : : : ; n are equivalent to the single matrix
equation

.Ac � y/TA D 0

or, equivalently (using Exercise D.1-2), to

AT.Ac � y/ D 0 ;

which implies

ATAc D ATy : (28.19)

In statistics, this is called the normal equation. The matrix ATA is symmetric
by Exercise D.1-2, and if A has full column rank, then by Theorem D.6, ATA

is positive-definite as well. Hence, .ATA/�1 exists, and the solution to equa-
tion (28.19) is

c D �
.ATA/�1AT

�
y

D ACy ; (28.20)

where the matrix AC D ..ATA/�1AT/ is the pseudoinverse of the matrix A. The
pseudoinverse naturally generalizes the notion of a matrix inverse to the case in
which A is not square. (Compare equation (28.20) as the approximate solution to
Ac D y with the solution A�1b as the exact solution to Ax D b.)

As an example of producing a least-squares fit, suppose that we have five data
points

.x1; y1/ D .�1; 2/ ;

.x2; y2/ D .1; 1/ ;

.x3; y3/ D .2; 1/ ;

.x4; y4/ D .3; 0/ ;

.x5; y5/ D .5; 3/ ;

shown as black dots in Figure 28.3. We wish to fit these points with a quadratic
polynomial

F.x/ D c1 C c2x C c3x2 :

We start with the matrix of basis-function values

838 Chapter 28 Matrix Operations

0.5

1.0

1.5

2.0

2.5

3.0

0.0
1 2 3 4 50–1–2

x

y

F(x) = 1.2 – 0.757x + 0.214x2

Figure 28.3 The least-squares fit of a quadratic polynomial to the set of five data points
f.�1; 2/; .1; 1/; .2; 1/; .3; 0/; .5; 3/g. The black dots are the data points, and the white dots are their
estimated values predicted by the polynomial F.x/ D 1:2 � 0:757x C 0:214x2 , the quadratic poly-
nomial that minimizes the sum of the squared errors. Each shaded line shows the error for one data
point.

A D

�
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

1 x5 x2
5

�
D

�
1 �1 1

1 1 1

1 2 4

1 3 9

1 5 25

�
;

whose pseudoinverse is

AC D
�

0:500 0:300 0:200 0:100 �0:100

�0:388 0:093 0:190 0:193 �0:088

0:060 �0:036 �0:048 �0:036 0:060

�
:

Multiplying y by AC, we obtain the coefficient vector

c D
�

1:200

�0:757

0:214

�
;

which corresponds to the quadratic polynomial

28.3 Symmetric positive-definite matrices and least-squares approximation 839

F.x/ D 1:200 � 0:757x C 0:214x2

as the closest-fitting quadratic to the given data, in a least-squares sense.
As a practical matter, we solve the normal equation (28.19) by multiplying y

by AT and then finding an LU decomposition of ATA. If A has full rank, the
matrix ATA is guaranteed to be nonsingular, because it is symmetric and positive-
definite. (See Exercise D.1-2 and Theorem D.6.)

Exercises

28.3-1
Prove that every diagonal element of a symmetric positive-definite matrix is posi-
tive.

28.3-2

Let A D
�

a b

b c

�
be a 2 	 2 symmetric positive-definite matrix. Prove that its

determinant ac � b2 is positive by “completing the square” in a manner similar to
that used in the proof of Lemma 28.5.

28.3-3
Prove that the maximum element in a symmetric positive-definite matrix lies on
the diagonal.

28.3-4
Prove that the determinant of each leading submatrix of a symmetric positive-
definite matrix is positive.

28.3-5
Let Ak denote the kth leading submatrix of a symmetric positive-definite matrix A.
Prove that det.Ak/= det.Ak�1/ is the kth pivot during LU decomposition, where,
by convention, det.A0/ D 1.

28.3-6
Find the function of the form

F.x/ D c1 C c2x lg x C c3ex

that is the best least-squares fit to the data points

.1; 1/; .2; 1/; .3; 3/; .4; 8/ :

840 Chapter 28 Matrix Operations

28.3-7
Show that the pseudoinverse AC satisfies the following four equations:

AACA D A ;

ACAAC D AC ;

.AAC/T D AAC ;

.ACA/T D ACA :

Problems

28-1 Tridiagonal systems of linear equations
Consider the tridiagonal matrix

A D

ˇ
1 �1 0 0 0

�1 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �1

0 0 0 �1 2

�
:

a. Find an LU decomposition of A.

b. Solve the equation Ax D �
1 1 1 1 1

�T
by using forward and back sub-

stitution.

c. Find the inverse of A.

d. Show how, for any n 	 n symmetric positive-definite, tridiagonal matrix A and
any n-vector b, to solve the equation Ax D b in O.n/ time by performing an
LU decomposition. Argue that any method based on forming A�1 is asymptot-
ically more expensive in the worst case.

e. Show how, for any n	n nonsingular, tridiagonal matrix A and any n-vector b, to
solve the equation Ax D b in O.n/ time by performing an LUP decomposition.

28-2 Splines
A practical method for interpolating a set of points with a curve is to use cu-
bic splines. We are given a set f.xi ; yi/ W i D 0; 1; : : : ; ng of n C 1 point-value
pairs, where x0 < x1 < � � � < xn. We wish to fit a piecewise-cubic curve
(spline) f .x/ to the points. That is, the curve f .x/ is made up of n cubic polyno-
mials fi.x/ D ai C bix C cix

2 C dix
3 for i D 0; 1; : : : ; n � 1, where if x falls in

Problems for Chapter 28 841

the range xi � x � xiC1, then the value of the curve is given by f .x/ D fi.x�xi/.
The points xi at which the cubic polynomials are “pasted” together are called knots.
For simplicity, we shall assume that xi D i for i D 0; 1; : : : ; n.

To ensure continuity of f .x/, we require that

f .xi/ D fi.0/ D yi ;

f .xiC1/ D fi.1/ D yiC1

for i D 0; 1; : : : ; n � 1. To ensure that f .x/ is sufficiently smooth, we also insist
that the first derivative be continuous at each knot:

f 0.xiC1/ D f 0
i .1/ D f 0

iC1.0/

for i D 0; 1; : : : ; n � 2.

a. Suppose that for i D 0; 1; : : : ; n, we are given not only the point-value pairs
f.xi ; yi /g but also the first derivatives Di D f 0.xi/ at each knot. Express each
coefficient ai , bi , ci , and di in terms of the values yi , yiC1, Di , and DiC1.
(Remember that xi D i .) How quickly can we compute the 4n coefficients
from the point-value pairs and first derivatives?

The question remains of how to choose the first derivatives of f .x/ at the knots.
One method is to require the second derivatives to be continuous at the knots:

f 00.xiC1/ D f 00
i .1/ D f 00

iC1.0/

for i D 0; 1; : : : ; n � 2. At the first and last knots, we assume that f 00.x0/ D
f 00

0 .0/ D 0 and f 00.xn/ D f 00
n�1.1/ D 0; these assumptions make f .x/ a natural

cubic spline.

b. Use the continuity constraints on the second derivative to show that for i D
1; 2; : : : ; n � 1,

Di�1 C 4Di CDiC1 D 3.yiC1 � yi�1/ : (28.21)

c. Show that

2D0 CD1 D 3.y1 � y0/ ; (28.22)

Dn�1 C 2Dn D 3.yn � yn�1/ : (28.23)

d. Rewrite equations (28.21)–(28.23) as a matrix equation involving the vector
D D hD0; D1; : : : ; Dni of unknowns. What attributes does the matrix in your
equation have?

e. Argue that a natural cubic spline can interpolate a set of nC 1 point-value pairs
in O.n/ time (see Problem 28-1).

842 Chapter 28 Matrix Operations

f. Show how to determine a natural cubic spline that interpolates a set of n C 1

points .xi ; yi / satisfying x0 < x1 < � � � < xn, even when xi is not necessarily
equal to i . What matrix equation must your method solve, and how quickly
does your algorithm run?

Chapter notes

Many excellent texts describe numerical and scientific computation in much greater
detail than we have room for here. The following are especially readable: George
and Liu [132], Golub and Van Loan [144], Press, Teukolsky, Vetterling, and Flan-
nery [283, 284], and Strang [323, 324].

Golub and Van Loan [144] discuss numerical stability. They show why det.A/

is not necessarily a good indicator of the stability of a matrix A, proposing instead
to use kAk1 kA�1k1, where kAk1 D max1�i�n

Pn

j D1 jaij j. They also address
the question of how to compute this value without actually computing A�1.

Gaussian elimination, upon which the LU and LUP decompositions are based,
was the first systematic method for solving linear systems of equations. It was also
one of the earliest numerical algorithms. Although it was known earlier, its dis-
covery is commonly attributed to C. F. Gauss (1777–1855). In his famous paper
[325], Strassen showed that an n	n matrix can be inverted in O.nlg 7/ time. Wino-
grad [358] originally proved that matrix multiplication is no harder than matrix
inversion, and the converse is due to Aho, Hopcroft, and Ullman [5].

Another important matrix decomposition is the singular value decomposition,
or SVD. The SVD factors an m 	 n matrix A into A D Q1†QT

2 , where † is an
m	n matrix with nonzero values only on the diagonal, Q1 is m	m with mutually
orthonormal columns, and Q2 is n 	 n, also with mutually orthonormal columns.
Two vectors are orthonormal if their inner product is 0 and each vector has a norm
of 1. The books by Strang [323, 324] and Golub and Van Loan [144] contain good
treatments of the SVD.

Strang [324] has an excellent presentation of symmetric positive-definite matri-
ces and of linear algebra in general.

29 Linear Programming

Many problems take the form of maximizing or minimizing an objective, given
limited resources and competing constraints. If we can specify the objective as
a linear function of certain variables, and if we can specify the constraints on
resources as equalities or inequalities on those variables, then we have a linear-
programming problem. Linear programs arise in a variety of practical applica-
tions. We begin by studying an application in electoral politics.

A political problem

Suppose that you are a politician trying to win an election. Your district has three
different types of areas—urban, suburban, and rural. These areas have, respec-
tively, 100,000, 200,000, and 50,000 registered voters. Although not all the reg-
istered voters actually go to the polls, you decide that to govern effectively, you
would like at least half the registered voters in each of the three regions to vote for
you. You are honorable and would never consider supporting policies in which you
do not believe. You realize, however, that certain issues may be more effective in
winning votes in certain places. Your primary issues are building more roads, gun
control, farm subsidies, and a gasoline tax dedicated to improved public transit.
According to your campaign staff’s research, you can estimate how many votes
you win or lose from each population segment by spending $1,000 on advertising
on each issue. This information appears in the table of Figure 29.1. In this table,
each entry indicates the number of thousands of either urban, suburban, or rural
voters who would be won over by spending $1,000 on advertising in support of a
particular issue. Negative entries denote votes that would be lost. Your task is to
figure out the minimum amount of money that you need to spend in order to win
50,000 urban votes, 100,000 suburban votes, and 25,000 rural votes.

You could, by trial and error, devise a strategy that wins the required number
of votes, but the strategy you come up with might not be the least expensive one.
For example, you could devote $20,000 of advertising to building roads, $0 to gun
control, $4,000 to farm subsidies, and $9,000 to a gasoline tax. In this case, you

844 Chapter 29 Linear Programming

policy urban suburban rural
build roads �2 5 3
gun control 8 2 �5

farm subsidies 0 0 10
gasoline tax 10 0 �2

Figure 29.1 The effects of policies on voters. Each entry describes the number of thousands of
urban, suburban, or rural voters who could be won over by spending $1,000 on advertising support
of a policy on a particular issue. Negative entries denote votes that would be lost.

would win 20.�2/C0.8/C4.0/C9.10/ D 50 thousand urban votes, 20.5/C0.2/C
4.0/C9.0/ D 100 thousand suburban votes, and 20.3/C0.�5/C4.10/C9.�2/ D
82 thousand rural votes. You would win the exact number of votes desired in the
urban and suburban areas and more than enough votes in the rural area. (In fact,
in the rural area, you would receive more votes than there are voters.) In order to
garner these votes, you would have paid for 20C 0C 4C 9 D 33 thousand dollars
of advertising.

Naturally, you may wonder whether this strategy is the best possible. That is,
could you achieve your goals while spending less on advertising? Additional trial
and error might help you to answer this question, but wouldn’t you rather have a
systematic method for answering such questions? In order to develop one, we shall
formulate this question mathematically. We introduce 4 variables:

� x1 is the number of thousands of dollars spent on advertising on building roads,

� x2 is the number of thousands of dollars spent on advertising on gun control,

� x3 is the number of thousands of dollars spent on advertising on farm subsidies,
and

� x4 is the number of thousands of dollars spent on advertising on a gasoline tax.

We can write the requirement that we win at least 50,000 urban votes as

�2x1 C 8x2 C 0x3 C 10x4 � 50 : (29.1)

Similarly, we can write the requirements that we win at least 100,000 suburban
votes and 25,000 rural votes as

5x1 C 2x2 C 0x3 C 0x4 � 100 (29.2)

and

3x1 � 5x2 C 10x3 � 2x4 � 25 : (29.3)

Any setting of the variables x1; x2; x3; x4 that satisfies inequalities (29.1)–(29.3)
yields a strategy that wins a sufficient number of each type of vote. In order to

Chapter 29 Linear Programming 845

keep costs as small as possible, you would like to minimize the amount spent on
advertising. That is, you want to minimize the expression

x1 C x2 C x3 C x4 : (29.4)

Although negative advertising often occurs in political campaigns, there is no such
thing as negative-cost advertising. Consequently, we require that

x1 � 0; x2 � 0; x3 � 0; and x4 � 0 : (29.5)

Combining inequalities (29.1)–(29.3) and (29.5) with the objective of minimiz-
ing (29.4), we obtain what is known as a “linear program.” We format this problem
as

minimize x1 C x2 C x3 C x4 (29.6)

subject to
�2x1 C 8x2 C 0x3 C 10x4 � 50 (29.7)

5x1 C 2x2 C 0x3 C 0x4 � 100 (29.8)

3x1 � 5x2 C 10x3 � 2x4 � 25 (29.9)

x1; x2; x3; x4 � 0 : (29.10)

The solution of this linear program yields your optimal strategy.

General linear programs

In the general linear-programming problem, we wish to optimize a linear function
subject to a set of linear inequalities. Given a set of real numbers a1; a2; : : : ; an and
a set of variables x1; x2; : : : ; xn, we define a linear function f on those variables
by

f .x1; x2; : : : ; xn/ D a1x1 C a2x2 C � � � C anxn D
nX

j D1

aj xj :

If b is a real number and f is a linear function, then the equation

f .x1; x2; : : : ; xn/ D b

is a linear equality and the inequalities

f .x1; x2; : : : ; xn/ � b

and

f .x1; x2; : : : ; xn/ � b

846 Chapter 29 Linear Programming

are linear inequalities. We use the general term linear constraints to denote either
linear equalities or linear inequalities. In linear programming, we do not allow
strict inequalities. Formally, a linear-programming problem is the problem of
either minimizing or maximizing a linear function subject to a finite set of linear
constraints. If we are to minimize, then we call the linear program a minimization
linear program, and if we are to maximize, then we call the linear program a
maximization linear program.

The remainder of this chapter covers how to formulate and solve linear pro-
grams. Although several polynomial-time algorithms for linear programming have
been developed, we will not study them in this chapter. Instead, we shall study the
simplex algorithm, which is the oldest linear-programming algorithm. The simplex
algorithm does not run in polynomial time in the worst case, but it is fairly efficient
and widely used in practice.

An overview of linear programming

In order to describe properties of and algorithms for linear programs, we find it
convenient to express them in canonical forms. We shall use two forms, standard
and slack, in this chapter. We will define them precisely in Section 29.1. Infor-
mally, a linear program in standard form is the maximization of a linear function
subject to linear inequalities, whereas a linear program in slack form is the max-
imization of a linear function subject to linear equalities. We shall typically use
standard form for expressing linear programs, but we find it more convenient to
use slack form when we describe the details of the simplex algorithm. For now, we
restrict our attention to maximizing a linear function on n variables subject to a set
of m linear inequalities.

Let us first consider the following linear program with two variables:

maximize x1 C x2 (29.11)

subject to
4x1 � x2 � 8 (29.12)

2x1 C x2 � 10 (29.13)

5x1 � 2x2 � �2 (29.14)

x1; x2 � 0 : (29.15)

We call any setting of the variables x1 and x2 that satisfies all the constraints
(29.12)–(29.15) a feasible solution to the linear program. If we graph the con-
straints in the .x1; x2/-Cartesian coordinate system, as in Figure 29.2(a), we see

Chapter 29 Linear Programming 847

4x
1
 –

 x
2

≤
8

2x
1 + x

2 ≤ 10

x2

x1x2 ≥ 0

x 1
≥

0

5x
1
 –

 2
x 2

≥
–2

(a)

x2

x1

(b)

x
1 + x

2 = 0

x
1 + x

2 = 4

x
1 + x

2 = 8

Figure 29.2 (a) The linear program given in (29.12)–(29.15). Each constraint is represented by
a line and a direction. The intersection of the constraints, which is the feasible region, is shaded.
(b) The dotted lines show, respectively, the points for which the objective value is 0, 4, and 8. The
optimal solution to the linear program is x1 D 2 and x2 D 6 with objective value 8.

that the set of feasible solutions (shaded in the figure) forms a convex region1 in
the two-dimensional space. We call this convex region the feasible region and the
function we wish to maximize the objective function. Conceptually, we could eval-
uate the objective function x1 C x2 at each point in the feasible region; we call the
value of the objective function at a particular point the objective value. We could
then identify a point that has the maximum objective value as an optimal solution.
For this example (and for most linear programs), the feasible region contains an
infinite number of points, and so we need to determine an efficient way to find a
point that achieves the maximum objective value without explicitly evaluating the
objective function at every point in the feasible region.

In two dimensions, we can optimize via a graphical procedure. The set of points
for which x1Cx2 D ´, for any ´, is a line with a slope of�1. If we plot x1Cx2 D 0,
we obtain the line with slope �1 through the origin, as in Figure 29.2(b). The
intersection of this line and the feasible region is the set of feasible solutions that
have an objective value of 0. In this case, that intersection of the line with the
feasible region is the single point .0; 0/. More generally, for any ´, the intersection

1An intuitive definition of a convex region is that it fulfills the requirement that for any two points in
the region, all points on a line segment between them are also in the region.

848 Chapter 29 Linear Programming

of the line x1 C x2 D ´ and the feasible region is the set of feasible solutions that
have objective value ´. Figure 29.2(b) shows the lines x1 C x2 D 0, x1 C x2 D 4,
and x1 C x2 D 8. Because the feasible region in Figure 29.2 is bounded, there
must be some maximum value ´ for which the intersection of the line x1C x2 D ´

and the feasible region is nonempty. Any point at which this occurs is an optimal
solution to the linear program, which in this case is the point x1 D 2 and x2 D 6

with objective value 8.
It is no accident that an optimal solution to the linear program occurs at a vertex

of the feasible region. The maximum value of ´ for which the line x1 C x2 D ´

intersects the feasible region must be on the boundary of the feasible region, and
thus the intersection of this line with the boundary of the feasible region is either a
single vertex or a line segment. If the intersection is a single vertex, then there is
just one optimal solution, and it is that vertex. If the intersection is a line segment,
every point on that line segment must have the same objective value; in particular,
both endpoints of the line segment are optimal solutions. Since each endpoint of a
line segment is a vertex, there is an optimal solution at a vertex in this case as well.

Although we cannot easily graph linear programs with more than two variables,
the same intuition holds. If we have three variables, then each constraint corre-
sponds to a half-space in three-dimensional space. The intersection of these half-
spaces forms the feasible region. The set of points for which the objective function
obtains a given value ´ is now a plane (assuming no degenerate conditions). If all
coefficients of the objective function are nonnegative, and if the origin is a feasible
solution to the linear program, then as we move this plane away from the origin, in
a direction normal to the objective function, we find points of increasing objective
value. (If the origin is not feasible or if some coefficients in the objective function
are negative, the intuitive picture becomes slightly more complicated.) As in two
dimensions, because the feasible region is convex, the set of points that achieve
the optimal objective value must include a vertex of the feasible region. Simi-
larly, if we have n variables, each constraint defines a half-space in n-dimensional
space. We call the feasible region formed by the intersection of these half-spaces a
simplex. The objective function is now a hyperplane and, because of convexity, an
optimal solution still occurs at a vertex of the simplex.

The simplex algorithm takes as input a linear program and returns an optimal
solution. It starts at some vertex of the simplex and performs a sequence of itera-
tions. In each iteration, it moves along an edge of the simplex from a current vertex
to a neighboring vertex whose objective value is no smaller than that of the current
vertex (and usually is larger.) The simplex algorithm terminates when it reaches
a local maximum, which is a vertex from which all neighboring vertices have a
smaller objective value. Because the feasible region is convex and the objective
function is linear, this local optimum is actually a global optimum. In Section 29.4,

Chapter 29 Linear Programming 849

we shall use a concept called “duality” to show that the solution returned by the
simplex algorithm is indeed optimal.

Although the geometric view gives a good intuitive view of the operations of the
simplex algorithm, we shall not refer to it explicitly when developing the details
of the simplex algorithm in Section 29.3. Instead, we take an algebraic view. We
first write the given linear program in slack form, which is a set of linear equalities.
These linear equalities express some of the variables, called “basic variables,” in
terms of other variables, called “nonbasic variables.” We move from one vertex
to another by making a basic variable become nonbasic and making a nonbasic
variable become basic. We call this operation a “pivot” and, viewed algebraically,
it is nothing more than rewriting the linear program in an equivalent slack form.

The two-variable example described above was particularly simple. We shall
need to address several more details in this chapter. These issues include iden-
tifying linear programs that have no solutions, linear programs that have no finite
optimal solution, and linear programs for which the origin is not a feasible solution.

Applications of linear programming

Linear programming has a large number of applications. Any textbook on opera-
tions research is filled with examples of linear programming, and linear program-
ming has become a standard tool taught to students in most business schools. The
election scenario is one typical example. Two more examples of linear program-
ming are the following:

� An airline wishes to schedule its flight crews. The Federal Aviation Adminis-
tration imposes many constraints, such as limiting the number of consecutive
hours that each crew member can work and insisting that a particular crew work
only on one model of aircraft during each month. The airline wants to schedule
crews on all of its flights using as few crew members as possible.

� An oil company wants to decide where to drill for oil. Siting a drill at a particu-
lar location has an associated cost and, based on geological surveys, an expected
payoff of some number of barrels of oil. The company has a limited budget for
locating new drills and wants to maximize the amount of oil it expects to find,
given this budget.

With linear programs, we also model and solve graph and combinatorial prob-
lems, such as those appearing in this textbook. We have already seen a special
case of linear programming used to solve systems of difference constraints in Sec-
tion 24.4. In Section 29.2, we shall study how to formulate several graph and
network-flow problems as linear programs. In Section 35.4, we shall use linear
programming as a tool to find an approximate solution to another graph problem.

850 Chapter 29 Linear Programming

Algorithms for linear programming

This chapter studies the simplex algorithm. This algorithm, when implemented
carefully, often solves general linear programs quickly in practice. With some
carefully contrived inputs, however, the simplex algorithm can require exponential
time. The first polynomial-time algorithm for linear programming was the ellipsoid
algorithm, which runs slowly in practice. A second class of polynomial-time algo-
rithms are known as interior-point methods. In contrast to the simplex algorithm,
which moves along the exterior of the feasible region and maintains a feasible solu-
tion that is a vertex of the simplex at each iteration, these algorithms move through
the interior of the feasible region. The intermediate solutions, while feasible, are
not necessarily vertices of the simplex, but the final solution is a vertex. For large
inputs, interior-point algorithms can run as fast as, and sometimes faster than, the
simplex algorithm. The chapter notes point you to more information about these
algorithms.

If we add to a linear program the additional requirement that all variables take
on integer values, we have an integer linear program. Exercise 34.5-3 asks you
to show that just finding a feasible solution to this problem is NP-hard; since
no polynomial-time algorithms are known for any NP-hard problems, there is no
known polynomial-time algorithm for integer linear programming. In contrast, we
can solve a general linear-programming problem in polynomial time.

In this chapter, if we have a linear program with variables x D .x1; x2; : : : ; xn/

and wish to refer to a particular setting of the variables, we shall use the notation
Nx D . Nx1; Nx2; : : : ; Nxn/.

29.1 Standard and slack forms

This section describes two formats, standard form and slack form, that are use-
ful when we specify and work with linear programs. In standard form, all the
constraints are inequalities, whereas in slack form, all constraints are equalities
(except for those that require the variables to be nonnegative).

Standard form

In standard form, we are given n real numbers c1; c2; : : : ; cn; m real numbers
b1; b2; : : : ; bm; and mn real numbers aij for i D 1; 2; : : : ; m and j D 1; 2; : : : ; n.
We wish to find n real numbers x1; x2; : : : ; xn that

29.1 Standard and slack forms 851

maximize
nX

j D1

cj xj (29.16)

subject to
nX

j D1

aij xj � bi for i D 1; 2; : : : ; m (29.17)

xj � 0 for j D 1; 2; : : : ; n : (29.18)

Generalizing the terminology we introduced for the two-variable linear program,
we call expression (29.16) the objective function and the n C m inequalities in
lines (29.17) and (29.18) the constraints. The n constraints in line (29.18) are the
nonnegativity constraints. An arbitrary linear program need not have nonnegativ-
ity constraints, but standard form requires them. Sometimes we find it convenient
to express a linear program in a more compact form. If we create an m 	 n matrix
A D .aij /, an m-vector b D .bi/, an n-vector c D .cj /, and an n-vector x D .xj /,
then we can rewrite the linear program defined in (29.16)–(29.18) as

maximize cTx (29.19)

subject to
Ax � b (29.20)

x � 0 : (29.21)

In line (29.19), cTx is the inner product of two vectors. In inequality (29.20), Ax

is a matrix-vector product, and in inequality (29.21), x � 0 means that each entry
of the vector x must be nonnegative. We see that we can specify a linear program
in standard form by a tuple .A; b; c/, and we shall adopt the convention that A, b,
and c always have the dimensions given above.

We now introduce terminology to describe solutions to linear programs. We used
some of this terminology in the earlier example of a two-variable linear program.
We call a setting of the variables Nx that satisfies all the constraints a feasible solu-
tion, whereas a setting of the variables Nx that fails to satisfy at least one constraint
is an infeasible solution. We say that a solution Nx has objective value cT Nx. A fea-
sible solution Nx whose objective value is maximum over all feasible solutions is an
optimal solution, and we call its objective value cT Nx the optimal objective value.
If a linear program has no feasible solutions, we say that the linear program is in-
feasible; otherwise it is feasible. If a linear program has some feasible solutions
but does not have a finite optimal objective value, we say that the linear program
is unbounded. Exercise 29.1-9 asks you to show that a linear program can have a
finite optimal objective value even if the feasible region is not bounded.

852 Chapter 29 Linear Programming

Converting linear programs into standard form

It is always possible to convert a linear program, given as minimizing or maxi-
mizing a linear function subject to linear constraints, into standard form. A linear
program might not be in standard form for any of four possible reasons:

1. The objective function might be a minimization rather than a maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints, which have an equal sign rather than a
less-than-or-equal-to sign.

4. There might be inequality constraints, but instead of having a less-than-or-
equal-to sign, they have a greater-than-or-equal-to sign.

When converting one linear program L into another linear program L0, we would
like the property that an optimal solution to L0 yields an optimal solution to L. To
capture this idea, we say that two maximization linear programs L and L0 are
equivalent if for each feasible solution Nx to L with objective value ´, there is
a corresponding feasible solution Nx 0 to L0 with objective value ´, and for each
feasible solution Nx 0 to L0 with objective value ´, there is a corresponding feasible
solution Nx to L with objective value ´. (This definition does not imply a one-to-
one correspondence between feasible solutions.) A minimization linear program L

and a maximization linear program L0 are equivalent if for each feasible solution Nx
to L with objective value ´, there is a corresponding feasible solution Nx 0 to L0 with
objective value �´, and for each feasible solution Nx 0 to L0 with objective value ´,
there is a corresponding feasible solution Nx to L with objective value �´.

We now show how to remove, one by one, each of the possible problems in the
list above. After removing each one, we shall argue that the new linear program is
equivalent to the old one.

To convert a minimization linear program L into an equivalent maximization lin-
ear program L0, we simply negate the coefficients in the objective function. Since
L and L0 have identical sets of feasible solutions and, for any feasible solution, the
objective value in L is the negative of the objective value in L0, these two linear
programs are equivalent. For example, if we have the linear program

minimize �2x1 C 3x2

subject to
x1 C x2 D 7

x1 � 2x2 � 4

x1 � 0 ;

and we negate the coefficients of the objective function, we obtain

29.1 Standard and slack forms 853

maximize 2x1 � 3x2

subject to
x1 C x2 D 7

x1 � 2x2 � 4

x1 � 0 :

Next, we show how to convert a linear program in which some of the variables
do not have nonnegativity constraints into one in which each variable has a non-
negativity constraint. Suppose that some variable xj does not have a nonnegativity
constraint. Then, we replace each occurrence of xj by x 0

j � x 00
j , and add the non-

negativity constraints x 0
j � 0 and x 00

j � 0. Thus, if the objective function has a
term cj xj , we replace it by cj x 0

j � cj x 00
j , and if constraint i has a term aij xj , we

replace it by aij x 0
j � aij x 00

j . Any feasible solution yx to the new linear program cor-
responds to a feasible solution Nx to the original linear program with Nxj D yx 0

j � yx 00
j

and with the same objective value. Also, any feasible solution Nx to the original
linear program corresponds to a feasible solution yx to the new linear program with
yx 0

j D Nxj and yx 00
j D 0 if Nxj � 0, or with yx 00

j D Nxj and yx 0
j D 0 if Nxj < 0. The two

linear programs have the same objective value regardless of the sign of Nxj . Thus,
the two linear programs are equivalent. We apply this conversion scheme to each
variable that does not have a nonnegativity constraint to yield an equivalent linear
program in which all variables have nonnegativity constraints.

Continuing the example, we want to ensure that each variable has a correspond-
ing nonnegativity constraint. Variable x1 has such a constraint, but variable x2 does
not. Therefore, we replace x2 by two variables x 0

2 and x 00
2 , and we modify the linear

program to obtain

maximize 2x1 � 3x 0
2 C 3x 00

2

subject to
x1 C x 0

2 � x 00
2 D 7 (29.22)

x1 � 2x 0
2 C 2x 00

2 � 4

x1; x 0
2; x 00

2 � 0 :

Next, we convert equality constraints into inequality constraints. Suppose that a
linear program has an equality constraint f .x1; x2; : : : ; xn/ D b. Since x D y if
and only if both x � y and x � y, we can replace this equality constraint by the
pair of inequality constraints f .x1; x2; : : : ; xn/ � b and f .x1; x2; : : : ; xn/ � b.
Repeating this conversion for each equality constraint yields a linear program in
which all constraints are inequalities.

Finally, we can convert the greater-than-or-equal-to constraints to less-than-or-
equal-to constraints by multiplying these constraints through by �1. That is, any
inequality of the form

854 Chapter 29 Linear Programming

nX
j D1

aij xj � bi

is equivalent to

nX
j D1

�aij xj � �bi :

Thus, by replacing each coefficient aij by�aij and each value bi by�bi , we obtain
an equivalent less-than-or-equal-to constraint.

Finishing our example, we replace the equality in constraint (29.22) by two in-
equalities, obtaining

maximize 2x1 � 3x 0
2 C 3x 00

2

subject to
x1 C x 0

2 � x 00
2 � 7

x1 C x 0
2 � x 00

2 � 7 (29.23)

x1 � 2x 0
2 C 2x 00

2 � 4

x1; x 0
2; x 00

2 � 0 :

Finally, we negate constraint (29.23). For consistency in variable names, we re-
name x 0

2 to x2 and x 00
2 to x3, obtaining the standard form

maximize 2x1 � 3x2 C 3x3 (29.24)

subject to
x1 C x2 � x3 � 7 (29.25)

�x1 � x2 C x3 � �7 (29.26)

x1 � 2x2 C 2x3 � 4 (29.27)

x1; x2; x3 � 0 : (29.28)

Converting linear programs into slack form

To efficiently solve a linear program with the simplex algorithm, we prefer to ex-
press it in a form in which some of the constraints are equality constraints. More
precisely, we shall convert it into a form in which the nonnegativity constraints are
the only inequality constraints, and the remaining constraints are equalities. Let

nX
j D1

aij xj � bi (29.29)

29.1 Standard and slack forms 855

be an inequality constraint. We introduce a new variable s and rewrite inequal-
ity (29.29) as the two constraints

s D bi �
nX

j D1

aij xj ; (29.30)

s � 0 : (29.31)

We call s a slack variable because it measures the slack, or difference, between
the left-hand and right-hand sides of equation (29.29). (We shall soon see why we
find it convenient to write the constraint with only the slack variable on the left-
hand side.) Because inequality (29.29) is true if and only if both equation (29.30)
and inequality (29.31) are true, we can convert each inequality constraint of a lin-
ear program in this way to obtain an equivalent linear program in which the only
inequality constraints are the nonnegativity constraints. When converting from
standard to slack form, we shall use xnCi (instead of s) to denote the slack variable
associated with the i th inequality. The i th constraint is therefore

xnCi D bi �
nX

j D1

aij xj ; (29.32)

along with the nonnegativity constraint xnCi � 0.
By converting each constraint of a linear program in standard form, we obtain a

linear program in a different form. For example, for the linear program described
in (29.24)–(29.28), we introduce slack variables x4, x5, and x6, obtaining

maximize 2x1 � 3x2 C 3x3 (29.33)

subject to
x4 D 7 � x1 � x2 C x3 (29.34)

x5 D �7 C x1 C x2 � x3 (29.35)

x6 D 4 � x1 C 2x2 � 2x3 (29.36)

x1; x2; x3; x4; x5; x6 � 0 : (29.37)

In this linear program, all the constraints except for the nonnegativity constraints
are equalities, and each variable is subject to a nonnegativity constraint. We write
each equality constraint with one of the variables on the left-hand side of the equal-
ity and all others on the right-hand side. Furthermore, each equation has the same
set of variables on the right-hand side, and these variables are also the only ones
that appear in the objective function. We call the variables on the left-hand side of
the equalities basic variables and those on the right-hand side nonbasic variables.

For linear programs that satisfy these conditions, we shall sometimes omit the
words “maximize” and “subject to,” as well as the explicit nonnegativity con-
straints. We shall also use the variable ´ to denote the value of the objective func-

856 Chapter 29 Linear Programming

tion. We call the resulting format slack form. If we write the linear program given
in (29.33)–(29.37) in slack form, we obtain

´ D 2x1 � 3x2 C 3x3 (29.38)

x4 D 7 � x1 � x2 C x3 (29.39)

x5 D �7 C x1 C x2 � x3 (29.40)

x6 D 4 � x1 C 2x2 � 2x3 : (29.41)

As with standard form, we find it convenient to have a more concise notation
for describing a slack form. As we shall see in Section 29.3, the sets of basic and
nonbasic variables will change as the simplex algorithm runs. We use N to denote
the set of indices of the nonbasic variables and B to denote the set of indices of
the basic variables. We always have that jN j D n, jBj D m, and N [B D
f1; 2; : : : ; nCmg. The equations are indexed by the entries of B , and the variables
on the right-hand sides are indexed by the entries of N . As in standard form, we use
bi , cj , and aij to denote constant terms and coefficients. We also use � to denote
an optional constant term in the objective function. (We shall see a little later that
including the constant term in the objective function makes it easy to determine the
value of the objective function.) Thus we can concisely define a slack form by a
tuple .N; B; A; b; c; �/, denoting the slack form

´ D � C
X
j 2N

cj xj (29.42)

xi D bi �
X
j 2N

aij xj for i 2 B ; (29.43)

in which all variables x are constrained to be nonnegative. Because we subtract
the sum

P
j 2N aij xj in (29.43), the values aij are actually the negatives of the

coefficients as they “appear” in the slack form.
For example, in the slack form

´ D 28 � x3

6
� x5

6
� 2x6

3

x1 D 8 C x3

6
C x5

6
� x6

3

x2 D 4 � 8x3

3
� 2x5

3
C x6

3

x4 D 18 � x3

2
C x5

2
;

we have B D f1; 2; 4g, N D f3; 5; 6g,

29.1 Standard and slack forms 857

A D
�

a13 a15 a16

a23 a25 a26

a43 a45 a46

�
D

� �1=6 �1=6 1=3

8=3 2=3 �1=3

1=2 �1=2 0

�
;

b D
�

b1

b2

b4

�
D

�
8

4

18

�
;

c D �
c3 c5 c6

�T D � �1=6 �1=6 �2=3
�T

, and � D 28. Note that the
indices into A, b, and c are not necessarily sets of contiguous integers; they depend
on the index sets B and N . As an example of the entries of A being the negatives
of the coefficients as they appear in the slack form, observe that the equation for x1

includes the term x3=6, yet the coefficient a13 is actually �1=6 rather than C1=6.

Exercises

29.1-1
If we express the linear program in (29.24)–(29.28) in the compact notation of
(29.19)–(29.21), what are n, m, A, b, and c?

29.1-2
Give three feasible solutions to the linear program in (29.24)–(29.28). What is the
objective value of each one?

29.1-3
For the slack form in (29.38)–(29.41), what are N , B , A, b, c, and �?

29.1-4
Convert the following linear program into standard form:

minimize 2x1 C 7x2 C x3

subject to
x1 � x3 D 7

3x1 C x2 � 24

x2 � 0

x3 � 0 :

858 Chapter 29 Linear Programming

29.1-5
Convert the following linear program into slack form:

maximize 2x1 � 6x3

subject to
x1 C x2 � x3 � 7

3x1 � x2 � 8

�x1 C 2x2 C 2x3 � 0

x1; x2; x3 � 0 :

What are the basic and nonbasic variables?

29.1-6
Show that the following linear program is infeasible:

maximize 3x1 � 2x2

subject to
x1 C x2 � 2

�2x1 � 2x2 � �10

x1; x2 � 0 :

29.1-7
Show that the following linear program is unbounded:

maximize x1 � x2

subject to
�2x1 C x2 � �1

�x1 � 2x2 � �2

x1; x2 � 0 :

29.1-8
Suppose that we have a general linear program with n variables and m constraints,
and suppose that we convert it into standard form. Give an upper bound on the
number of variables and constraints in the resulting linear program.

29.1-9
Give an example of a linear program for which the feasible region is not bounded,
but the optimal objective value is finite.

29.2 Formulating problems as linear programs 859

29.2 Formulating problems as linear programs

Although we shall focus on the simplex algorithm in this chapter, it is also impor-
tant to be able to recognize when we can formulate a problem as a linear program.
Once we cast a problem as a polynomial-sized linear program, we can solve it
in polynomial time by the ellipsoid algorithm or interior-point methods. Several
linear-programming software packages can solve problems efficiently, so that once
the problem is in the form of a linear program, such a package can solve it.

We shall look at several concrete examples of linear-programming problems. We
start with two problems that we have already studied: the single-source shortest-
paths problem (see Chapter 24) and the maximum-flow problem (see Chapter 26).
We then describe the minimum-cost-flow problem. Although the minimum-cost-
flow problem has a polynomial-time algorithm that is not based on linear program-
ming, we won’t describe the algorithm. Finally, we describe the multicommodity-
flow problem, for which the only known polynomial-time algorithm is based on
linear programming.

When we solved graph problems in Part VI, we used attribute notation, such
as �:d and .u; �/: f . Linear programs typically use subscripted variables rather
than objects with attached attributes, however. Therefore, when we express vari-
ables in linear programs, we shall indicate vertices and edges through subscripts.
For example, we denote the shortest-path weight for vertex � not by �:d but by d� .
Similarly, we denote the flow from vertex u to vertex � not by .u; �/: f but by fu� .
For quantities that are given as inputs to problems, such as edge weights or capac-
ities, we shall continue to use notations such as w.u; �/ and c.u:�/.

Shortest paths

We can formulate the single-source shortest-paths problem as a linear program.
In this section, we shall focus on how to formulate the single-pair shortest-path
problem, leaving the extension to the more general single-source shortest-paths
problem as Exercise 29.2-3.

In the single-pair shortest-path problem, we are given a weighted, directed graph
G D .V; E/, with weight function w W E ! R mapping edges to real-valued
weights, a source vertex s, and destination vertex t . We wish to compute the
value dt , which is the weight of a shortest path from s to t . To express this prob-
lem as a linear program, we need to determine a set of variables and constraints that
define when we have a shortest path from s to t . Fortunately, the Bellman-Ford al-
gorithm does exactly this. When the Bellman-Ford algorithm terminates, it has
computed, for each vertex �, a value d� (using subscript notation here rather than
attribute notation) such that for each edge .u; �/ 2 E, we have d� � duCw.u; �/.

860 Chapter 29 Linear Programming

The source vertex initially receives a value ds D 0, which never changes. Thus
we obtain the following linear program to compute the shortest-path weight from s

to t :

maximize dt (29.44)

subject to
d� � du Cw.u; �/ for each edge .u; �/ 2 E ; (29.45)

ds D 0 : (29.46)

You might be surprised that this linear program maximizes an objective function
when it is supposed to compute shortest paths. We do not want to minimize the
objective function, since then setting Nd� D 0 for all � 2 V would yield an optimal
solution to the linear program without solving the shortest-paths problem. We
maximize because an optimal solution to the shortest-paths problem sets each Nd�

to minuW.u;�/2E

˚ Ndu C w.u; �/

, so that Nd� is the largest value that is less than or

equal to all of the values in the set
˚ Ndu Cw.u; �/

. We want to maximize d�

for all vertices � on a shortest path from s to t subject to these constraints on all
vertices �, and maximizing dt achieves this goal.

This linear program has jV j variables d� , one for each vertex � 2 V . It also
has jEj C 1 constraints: one for each edge, plus the additional constraint that the
source vertex’s shortest-path weight always has the value 0.

Maximum flow

Next, we express the maximum-flow problem as a linear program. Recall that we
are given a directed graph G D .V; E/ in which each edge .u; �/ 2 E has a
nonnegative capacity c.u; �/ � 0, and two distinguished vertices: a source s and
a sink t . As defined in Section 26.1, a flow is a nonnegative real-valued function
f W V 	 V ! R that satisfies the capacity constraint and flow conservation. A
maximum flow is a flow that satisfies these constraints and maximizes the flow
value, which is the total flow coming out of the source minus the total flow into the
source. A flow, therefore, satisfies linear constraints, and the value of a flow is a
linear function. Recalling also that we assume that c.u; �/ D 0 if .u; �/ 62 E and
that there are no antiparallel edges, we can express the maximum-flow problem as
a linear program:

maximize
X
�2V

fs� �
X
�2V

f�s (29.47)

subject to
fu� � c.u; �/ for each u; � 2 V ; (29.48)X

�2V

f�u D
X
�2V

fu� for each u 2 V � fs; tg ; (29.49)

fu� � 0 for each u; � 2 V : (29.50)

29.2 Formulating problems as linear programs 861

This linear program has jV j2 variables, corresponding to the flow between each
pair of vertices, and it has 2 jV j2 C jV j � 2 constraints.

It is usually more efficient to solve a smaller-sized linear program. The linear
program in (29.47)–(29.50) has, for ease of notation, a flow and capacity of 0 for
each pair of vertices u; � with .u; �/ 62 E. It would be more efficient to rewrite the
linear program so that it has O.V C E/ constraints. Exercise 29.2-5 asks you to
do so.

Minimum-cost flow

In this section, we have used linear programming to solve problems for which we
already knew efficient algorithms. In fact, an efficient algorithm designed specif-
ically for a problem, such as Dijkstra’s algorithm for the single-source shortest-
paths problem, or the push-relabel method for maximum flow, will often be more
efficient than linear programming, both in theory and in practice.

The real power of linear programming comes from the ability to solve new prob-
lems. Recall the problem faced by the politician in the beginning of this chapter.
The problem of obtaining a sufficient number of votes, while not spending too
much money, is not solved by any of the algorithms that we have studied in this
book, yet we can solve it by linear programming. Books abound with such real-
world problems that linear programming can solve. Linear programming is also
particularly useful for solving variants of problems for which we may not already
know of an efficient algorithm.

Consider, for example, the following generalization of the maximum-flow prob-
lem. Suppose that, in addition to a capacity c.u; �/ for each edge .u; �/, we are
given a real-valued cost a.u; �/. As in the maximum-flow problem, we assume that
c.u; �/ D 0 if .u; �/ 62 E, and that there are no antiparallel edges. If we send fu�

units of flow over edge .u; �/, we incur a cost of a.u; �/fu�. We are also given a
flow demand d . We wish to send d units of flow from s to t while minimizing the
total cost

P
.u;�/2E a.u; �/fu� incurred by the flow. This problem is known as the

minimum-cost-flow problem.
Figure 29.3(a) shows an example of the minimum-cost-flow problem. We wish

to send 4 units of flow from s to t while incurring the minimum total cost. Any
particular legal flow, that is, a function f satisfying constraints (29.48)–(29.49),
incurs a total cost of

P
.u;�/2E a.u; �/fu�. We wish to find the particular 4-unit

flow that minimizes this cost. Figure 29.3(b) shows an optimal solution, with total
cost

P
.u;�/2E a.u; �/fu� D .2 � 2/C .5 � 2/C .3 � 1/C .7 � 1/C .1 � 3/ D 27:

There are polynomial-time algorithms specifically designed for the minimum-
cost-flow problem, but they are beyond the scope of this book. We can, however,
express the minimum-cost-flow problem as a linear program. The linear program
looks similar to the one for the maximum-flow problem with the additional con-

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5

a = 2

c = 4

a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5

a = 2

3/4

a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s

to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:

minimize
X

.u;�/2E

a.u; �/fu� (29.51)

subject to
fu� � c.u; �/ for each u; � 2 V ;X

�2V

f�u �
X
�2V

fu� D 0 for each u 2 V � fs; tg ;X
�2V

fs� �
X
�2V

f�s D d ;

fu� � 0 for each u; � 2 V : (29.52)

Multicommodity flow

As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; �/ 2 E

has a nonnegative capacity c.u; �/ � 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; �/ D 0 for .u; �/ 62 E, and that the graph has no antipar-

29.2 Formulating problems as linear programs 863

allel edges. In addition, we are given k different commodities, K1; K2; : : : ; Kk ,
where we specify commodity i by the triple Ki D .si ; ti ; di /. Here, vertex si is
the source of commodity i , vertex ti is the sink of commodity i , and di is the de-
mand for commodity i , which is the desired flow value for the commodity from si

to ti . We define a flow for commodity i , denoted by fi , (so that fiu� is the flow of
commodity i from vertex u to vertex �) to be a real-valued function that satisfies
the flow-conservation and capacity constraints. We now define fu�, the aggregate
flow, to be the sum of the various commodity flows, so that fu� D

Pk

iD1 fiu�. The
aggregate flow on edge .u; �/ must be no more than the capacity of edge .u; �/.
We are not trying to minimize any objective function in this problem; we need
only determine whether such a flow exists. Thus, we write a linear program with a
“null” objective function:

minimize 0

subject to
kX

iD1

fiu� � c.u; �/ for each u; � 2 V ;X
�2V

fiu� �
X
�2V

fi�u D 0 for each i D 1; 2; : : : ; k and

for each u 2 V � fsi ; tig ;X
�2V

fi;si ;� �
X
�2V

fi;�;si
D di for each i D 1; 2; : : : ; k ;

fiu� � 0 for each u; � 2 V and

for each i D 1; 2; : : : ; k :

The only known polynomial-time algorithm for this problem expresses it as a linear
program and then solves it with a polynomial-time linear-programming algorithm.

Exercises

29.2-1
Put the single-pair shortest-path linear program from (29.44)–(29.46) into standard
form.

29.2-2
Write out explicitly the linear program corresponding to finding the shortest path
from node s to node y in Figure 24.2(a).

29.2-3
In the single-source shortest-paths problem, we want to find the shortest-path
weights from a source vertex s to all vertices � 2 V . Given a graph G, write a

864 Chapter 29 Linear Programming

linear program for which the solution has the property that d� is the shortest-path
weight from s to � for each vertex � 2 V .

29.2-4
Write out explicitly the linear program corresponding to finding the maximum flow
in Figure 26.1(a).

29.2-5
Rewrite the linear program for maximum flow (29.47)–(29.50) so that it uses only
O.V CE/ constraints.

29.2-6
Write a linear program that, given a bipartite graph G D .V; E/, solves the maxi-
mum-bipartite-matching problem.

29.2-7
In the minimum-cost multicommodity-flow problem, we are given directed graph
G D .V; E/ in which each edge .u; �/ 2 E has a nonnegative capacity c.u; �/ � 0

and a cost a.u; �/. As in the multicommodity-flow problem, we are given k dif-
ferent commodities, K1; K2; : : : ; Kk , where we specify commodity i by the triple
Ki D .si ; ti ; di /. We define the flow fi for commodity i and the aggregate flow fu�

on edge .u; �/ as in the multicommodity-flow problem. A feasible flow is one
in which the aggregate flow on each edge .u; �/ is no more than the capacity of
edge .u; �/. The cost of a flow is

P
u;�2V a.u; �/fu� , and the goal is to find the

feasible flow of minimum cost. Express this problem as a linear program.

29.3 The simplex algorithm

The simplex algorithm is the classical method for solving linear programs. In con-
trast to most of the other algorithms in this book, its running time is not polynomial
in the worst case. It does yield insight into linear programs, however, and is often
remarkably fast in practice.

In addition to having a geometric interpretation, described earlier in this chapter,
the simplex algorithm bears some similarity to Gaussian elimination, discussed in
Section 28.1. Gaussian elimination begins with a system of linear equalities whose
solution is unknown. In each iteration, we rewrite this system in an equivalent
form that has some additional structure. After some number of iterations, we have
rewritten the system so that the solution is simple to obtain. The simplex algo-
rithm proceeds in a similar manner, and we can view it as Gaussian elimination for
inequalities.

29.3 The simplex algorithm 865

We now describe the main idea behind an iteration of the simplex algorithm.
Associated with each iteration will be a “basic solution” that we can easily obtain
from the slack form of the linear program: set each nonbasic variable to 0 and
compute the values of the basic variables from the equality constraints. An iteration
converts one slack form into an equivalent slack form. The objective value of the
associated basic feasible solution will be no less than that at the previous iteration,
and usually greater. To achieve this increase in the objective value, we choose a
nonbasic variable such that if we were to increase that variable’s value from 0, then
the objective value would increase, too. The amount by which we can increase
the variable is limited by the other constraints. In particular, we raise it until some
basic variable becomes 0. We then rewrite the slack form, exchanging the roles
of that basic variable and the chosen nonbasic variable. Although we have used a
particular setting of the variables to guide the algorithm, and we shall use it in our
proofs, the algorithm does not explicitly maintain this solution. It simply rewrites
the linear program until an optimal solution becomes “obvious.”

An example of the simplex algorithm

We begin with an extended example. Consider the following linear program in
standard form:

maximize 3x1 C x2 C 2x3 (29.53)

subject to
x1 C x2 C 3x3 � 30 (29.54)

2x1 C 2x2 C 5x3 � 24 (29.55)

4x1 C x2 C 2x3 � 36 (29.56)

x1; x2; x3 � 0 : (29.57)

In order to use the simplex algorithm, we must convert the linear program into
slack form; we saw how to do so in Section 29.1. In addition to being an algebraic
manipulation, slack is a useful algorithmic concept. Recalling from Section 29.1
that each variable has a corresponding nonnegativity constraint, we say that an
equality constraint is tight for a particular setting of its nonbasic variables if they
cause the constraint’s basic variable to become 0. Similarly, a setting of the non-
basic variables that would make a basic variable become negative violates that
constraint. Thus, the slack variables explicitly maintain how far each constraint is
from being tight, and so they help to determine how much we can increase values
of nonbasic variables without violating any constraints.

Associating the slack variables x4, x5, and x6 with inequalities (29.54)–(29.56),
respectively, and putting the linear program into slack form, we obtain

866 Chapter 29 Linear Programming

´ D 3x1 C x2 C 2x3 (29.58)

x4 D 30 � x1 � x2 � 3x3 (29.59)

x5 D 24 � 2x1 � 2x2 � 5x3 (29.60)

x6 D 36 � 4x1 � x2 � 2x3 : (29.61)

The system of constraints (29.59)–(29.61) has 3 equations and 6 variables. Any
setting of the variables x1, x2, and x3 defines values for x4, x5, and x6; therefore,
we have an infinite number of solutions to this system of equations. A solution is
feasible if all of x1; x2; : : : ; x6 are nonnegative, and there can be an infinite num-
ber of feasible solutions as well. The infinite number of possible solutions to a
system such as this one will be useful in later proofs. We focus on the basic solu-
tion: set all the (nonbasic) variables on the right-hand side to 0 and then compute
the values of the (basic) variables on the left-hand side. In this example, the ba-
sic solution is . Nx1; Nx2; : : : ; Nx6/ D .0; 0; 0; 30; 24; 36/ and it has objective value
´ D .3 � 0/C .1 � 0/C .2 � 0/ D 0. Observe that this basic solution sets Nxi D bi

for each i 2 B . An iteration of the simplex algorithm rewrites the set of equations
and the objective function so as to put a different set of variables on the right-
hand side. Thus, a different basic solution is associated with the rewritten problem.
We emphasize that the rewrite does not in any way change the underlying linear-
programming problem; the problem at one iteration has the identical set of feasible
solutions as the problem at the previous iteration. The problem does, however,
have a different basic solution than that of the previous iteration.

If a basic solution is also feasible, we call it a basic feasible solution. As we run
the simplex algorithm, the basic solution is almost always a basic feasible solution.
We shall see in Section 29.5, however, that for the first few iterations of the simplex
algorithm, the basic solution might not be feasible.

Our goal, in each iteration, is to reformulate the linear program so that the basic
solution has a greater objective value. We select a nonbasic variable xe whose
coefficient in the objective function is positive, and we increase the value of xe as
much as possible without violating any of the constraints. The variable xe becomes
basic, and some other variable xl becomes nonbasic. The values of other basic
variables and of the objective function may also change.

To continue the example, let’s think about increasing the value of x1. As we
increase x1, the values of x4, x5, and x6 all decrease. Because we have a nonnega-
tivity constraint for each variable, we cannot allow any of them to become negative.
If x1 increases above 30, then x4 becomes negative, and x5 and x6 become nega-
tive when x1 increases above 12 and 9, respectively. The third constraint (29.61) is
the tightest constraint, and it limits how much we can increase x1. Therefore, we
switch the roles of x1 and x6. We solve equation (29.61) for x1 and obtain

x1 D 9� x2

4
� x3

2
� x6

4
: (29.62)

29.3 The simplex algorithm 867

To rewrite the other equations with x6 on the right-hand side, we substitute for x1

using equation (29.62). Doing so for equation (29.59), we obtain

x4 D 30 � x1 � x2 � 3x3

D 30 �
�
9 � x2

4
� x3

2
� x6

4

�
� x2 � 3x3

D 21 � 3x2

4
� 5x3

2
C x6

4
: (29.63)

Similarly, we combine equation (29.62) with constraint (29.60) and with objective
function (29.58) to rewrite our linear program in the following form:

´ D 27 C x2

4
C x3

2
� 3x6

4
(29.64)

x1 D 9 � x2

4
� x3

2
� x6

4
(29.65)

x4 D 21 � 3x2

4
� 5x3

2
C x6

4
(29.66)

x5 D 6 � 3x2

2
� 4x3 C x6

2
: (29.67)

We call this operation a pivot. As demonstrated above, a pivot chooses a nonbasic
variable xe, called the entering variable, and a basic variable xl , called the leaving
variable, and exchanges their roles.

The linear program described in equations (29.64)–(29.67) is equivalent to the
linear program described in equations (29.58)–(29.61). We perform two operations
in the simplex algorithm: rewrite equations so that variables move between the left-
hand side and the right-hand side, and substitute one equation into another. The first
operation trivially creates an equivalent problem, and the second, by elementary
linear algebra, also creates an equivalent problem. (See Exercise 29.3-3.)

To demonstrate this equivalence, observe that our original basic solution .0; 0;

0; 30; 24; 36/ satisfies the new equations (29.65)–(29.67) and has objective value
27C .1=4/ � 0C .1=2/ � 0� .3=4/ � 36 D 0. The basic solution associated with the
new linear program sets the nonbasic values to 0 and is .9; 0; 0; 21; 6; 0/, with ob-
jective value ´ D 27. Simple arithmetic verifies that this solution also satisfies
equations (29.59)–(29.61) and, when plugged into objective function (29.58), has
objective value .3 � 9/C .1 � 0/C .2 � 0/ D 27.

Continuing the example, we wish to find a new variable whose value we wish to
increase. We do not want to increase x6, since as its value increases, the objective
value decreases. We can attempt to increase either x2 or x3; let us choose x3. How
far can we increase x3 without violating any of the constraints? Constraint (29.65)
limits it to 18, constraint (29.66) limits it to 42=5, and constraint (29.67) limits
it to 3=2. The third constraint is again the tightest one, and therefore we rewrite
the third constraint so that x3 is on the left-hand side and x5 is on the right-hand

868 Chapter 29 Linear Programming

side. We then substitute this new equation, x3 D 3=2� 3x2=8� x5=4C x6=8, into
equations (29.64)–(29.66) and obtain the new, but equivalent, system

´ D 111

4
C x2

16
� x5

8
� 11x6

16
(29.68)

x1 D
33

4
� x2

16
C x5

8
� 5x6

16
(29.69)

x3 D
3

2
� 3x2

8
� x5

4
C x6

8
(29.70)

x4 D 69

4
C 3x2

16
C 5x5

8
� x6

16
: (29.71)

This system has the associated basic solution .33=4; 0; 3=2; 69=4; 0; 0/, with ob-
jective value 111=4. Now the only way to increase the objective value is to in-
crease x2. The three constraints give upper bounds of 132, 4, and1, respectively.
(We get an upper bound of1 from constraint (29.71) because, as we increase x2,
the value of the basic variable x4 increases also. This constraint, therefore, places
no restriction on how much we can increase x2.) We increase x2 to 4, and it be-
comes nonbasic. Then we solve equation (29.70) for x2 and substitute in the other
equations to obtain

´ D 28 � x3

6
� x5

6
� 2x6

3
(29.72)

x1 D 8 C x3

6
C x5

6
� x6

3
(29.73)

x2 D 4 � 8x3

3
� 2x5

3
C x6

3
(29.74)

x4 D 18 � x3

2
C x5

2
: (29.75)

At this point, all coefficients in the objective function are negative. As we shall see
later in this chapter, this situation occurs only when we have rewritten the linear
program so that the basic solution is an optimal solution. Thus, for this problem,
the solution .8; 4; 0; 18; 0; 0/, with objective value 28, is optimal. We can now
return to our original linear program given in (29.53)–(29.57). The only variables
in the original linear program are x1, x2, and x3, and so our solution is x1 D 8,
x2 D 4, and x3 D 0, with objective value .3 � 8/ C .1 � 4/ C .2 � 0/ D 28. Note
that the values of the slack variables in the final solution measure how much slack
remains in each inequality. Slack variable x4 is 18, and in inequality (29.54), the
left-hand side, with value 8C 4C 0 D 12, is 18 less than the right-hand side of 30.
Slack variables x5 and x6 are 0 and indeed, in inequalities (29.55) and (29.56),
the left-hand and right-hand sides are equal. Observe also that even though the
coefficients in the original slack form are integral, the coefficients in the other
linear programs are not necessarily integral, and the intermediate solutions are not

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting

We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; �/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y�/ describing the new slack form. (Recall again that the entries of
the m	n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; �; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m 	 n matrix
3 ybe D bl=ale

4 for each j 2 N � feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B � flg
9 ybi D bi � aie

ybe

10 for each j 2 N � feg
11 yaij D aij � aieyaej

12 yai l D �aieyael

13 // Compute the objective function.
14 y� D � C ce

ybe

15 for each j 2 N � feg
16 ycj D cj � ceyaej

17 ycl D �ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N � feg [flg
20 yB D B � flg [feg
21 return . yN ; yB; yA; yb; yc; y�/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

870 Chapter 29 Linear Programming

sets of nonbasic and basic variables. Line 21 returns the new slack form. As given,
if ale D 0, PIVOT would cause an error by dividing by 0, but as we shall see in the
proofs of Lemmas 29.2 and 29.12, we call PIVOT only when ale ¤ 0.

We now summarize the effect that PIVOT has on the values of the variables in
the basic solution.

Lemma 29.1
Consider a call to PIVOT.N; B; A; b; c; �; l; e/ in which ale ¤ 0. Let the values
returned from the call be . yN ; yB; yA; yb; yc; y�/, and let Nx denote the basic solution after
the call. Then

1. Nxj D 0 for each j 2 yN .

2. Nxe D bl=ale .

3. Nxi D bi � aie
ybe for each i 2 yB � feg.

Proof The first statement is true because the basic solution always sets all non-
basic variables to 0. When we set each nonbasic variable to 0 in a constraint

xi D ybi �
X
j 2 yN
yaij xj ;

we have that Nxi D ybi for each i 2 yB . Since e 2 yB , line 3 of PIVOT gives

Nxe D ybe D bl=ale ;

which proves the second statement. Similarly, using line 9 for each i 2 yB � feg,
we have

Nxi D ybi D bi � aie
ybe ;

which proves the third statement.

The formal simplex algorithm

We are now ready to formalize the simplex algorithm, which we demonstrated by
example. That example was a particularly nice one, and we could have had several
other issues to address:
� How do we determine whether a linear program is feasible?
� What do we do if the linear program is feasible, but the initial basic solution is

not feasible?
� How do we determine whether a linear program is unbounded?
� How do we choose the entering and leaving variables?

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/

that takes as input a linear program in standard form, that is, an m 	 n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; �/ D INITIALIZE-SIMPLEX.A; b; c/

2 let � be a new vector of length n

3 while some index j 2 N has cj > 0

4 choose an index e 2 N for which ce > 0

5 for each index i 2 B

6 if aie > 0

7 �i D bi=aie

8 else �i D 1
9 choose an index l 2 B that minimizes �i

10 if �l ==1
11 return “unbounded”
12 else .N; B; A; b; c; �/ D PIVOT.N; B; A; b; c; �; l; e/

13 for i D 1 to n

14 if i 2 B

15 Nxi D bi

16 else Nxi D 0

17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

872 Chapter 29 Linear Programming

ity constraints; the basic variable associated with this constraint is xl . Again, we
are free to choose one of several variables as the leaving variable, but we assume
that we use some prespecified deterministic rule. If none of the constraints lim-
its the amount by which the entering variable can increase, the algorithm returns
“unbounded” in line 11. Otherwise, line 12 exchanges the roles of the entering
and leaving variables by calling PIVOT.N; B; A; b; c; �; l; e/, as described above.
Lines 13–16 compute a solution Nx1; Nx2; : : : ; Nxn for the original linear-programming
variables by setting all the nonbasic variables to 0 and each basic variable Nxi to bi ,
and line 17 returns these values.

To show that SIMPLEX is correct, we first show that if SIMPLEX has an initial
feasible solution and eventually terminates, then it either returns a feasible solution
or determines that the linear program is unbounded. Then, we show that SIMPLEX

terminates. Finally, in Section 29.4 (Theorem 29.10) we show that the solution
returned is optimal.

Lemma 29.2
Given a linear program .A; b; c/, suppose that the call to INITIALIZE-SIMPLEX in
line 1 of SIMPLEX returns a slack form for which the basic solution is feasible.
Then if SIMPLEX returns a solution in line 17, that solution is a feasible solution to
the linear program. If SIMPLEX returns “unbounded” in line 11, the linear program
is unbounded.

Proof We use the following three-part loop invariant:

At the start of each iteration of the while loop of lines 3–12,

1. the slack form is equivalent to the slack form returned by the call of
INITIALIZE-SIMPLEX,

2. for each i 2 B , we have bi � 0, and

3. the basic solution associated with the slack form is feasible.

Initialization: The equivalence of the slack forms is trivial for the first itera-
tion. We assume, in the statement of the lemma, that the call to INITIALIZE-
SIMPLEX in line 1 of SIMPLEX returns a slack form for which the basic solution
is feasible. Thus, the third part of the invariant is true. Because the basic so-
lution is feasible, each basic variable xi is nonnegative. Furthermore, since the
basic solution sets each basic variable xi to bi , we have that bi � 0 for all
i 2 B . Thus, the second part of the invariant holds.

Maintenance: We shall show that each iteration of the while loop maintains the
loop invariant, assuming that the return statement in line 11 does not execute.
We shall handle the case in which line 11 executes when we discuss termination.

29.3 The simplex algorithm 873

An iteration of the while loop exchanges the role of a basic and a nonbasic
variable by calling the PIVOT procedure. By Exercise 29.3-3, the slack form is
equivalent to the one from the previous iteration which, by the loop invariant,
is equivalent to the initial slack form.

We now demonstrate the second part of the loop invariant. We assume that at
the start of each iteration of the while loop, bi � 0 for each i 2 B , and we shall
show that these inequalities remain true after the call to PIVOT in line 12. Since
the only changes to the variables bi and the set B of basic variables occur in this
assignment, it suffices to show that line 12 maintains this part of the invariant.
We let bi , aij , and B refer to values before the call of PIVOT, and ybi refer to
values returned from PIVOT.

First, we observe that ybe � 0 because bl � 0 by the loop invariant, ale > 0 by
lines 6 and 9 of SIMPLEX, and ybe D bl=ale by line 3 of PIVOT.

For the remaining indices i 2 B � flg, we have that

ybi D bi � aie
ybe (by line 9 of PIVOT)

D bi � aie.bl=ale/ (by line 3 of PIVOT) . (29.76)

We have two cases to consider, depending on whether aie > 0 or aie � 0.
If aie > 0, then since we chose l such that

bl=ale � bi=aie for all i 2 B ; (29.77)

we have

ybi D bi � aie.bl=ale/ (by equation (29.76))

� bi � aie.bi=aie/ (by inequality (29.77))

D bi � bi

D 0 ;

and thus ybi � 0. If aie � 0, then because ale, bi , and bl are all nonnegative,
equation (29.76) implies that ybi must be nonnegative, too.

We now argue that the basic solution is feasible, i.e., that all variables have non-
negative values. The nonbasic variables are set to 0 and thus are nonnegative.
Each basic variable xi is defined by the equation

xi D bi �
X
j 2N

aij xj :

The basic solution sets Nxi D bi . Using the second part of the loop invariant, we
conclude that each basic variable Nxi is nonnegative.

874 Chapter 29 Linear Programming

Termination: The while loop can terminate in one of two ways. If it terminates
because of the condition in line 3, then the current basic solution is feasible and
line 17 returns this solution. The other way it terminates is by returning “un-
bounded” in line 11. In this case, for each iteration of the for loop in lines 5–8,
when line 6 is executed, we find that aie � 0. Consider the solution Nx defined as

Nxi D

�
1 if i D e ;

0 if i 2 N � feg ;

bi �
P

j 2N aij Nxj if i 2 B :

We now show that this solution is feasible, i.e., that all variables are nonneg-
ative. The nonbasic variables other than Nxe are 0, and Nxe D 1 > 0; thus all
nonbasic variables are nonnegative. For each basic variable Nxi , we have

Nxi D bi �
X
j 2N

aij Nxj

D bi � aie Nxe :

The loop invariant implies that bi � 0, and we have aie � 0 and Nxe D 1 > 0.
Thus, Nxi � 0.

Now we show that the objective value for the solution Nx is unbounded. From
equation (29.42), the objective value is

´ D � C
X
j 2N

cj Nxj

D � C ce Nxe :

Since ce > 0 (by line 4 of SIMPLEX) and Nxe D 1, the objective value is1,
and thus the linear program is unbounded.

It remains to show that SIMPLEX terminates, and when it does terminate, the
solution it returns is optimal. Section 29.4 will address optimality. We now discuss
termination.

Termination

In the example given in the beginning of this section, each iteration of the simplex
algorithm increased the objective value associated with the basic solution. As Ex-
ercise 29.3-2 asks you to show, no iteration of SIMPLEX can decrease the objective
value associated with the basic solution. Unfortunately, it is possible that an itera-
tion leaves the objective value unchanged. This phenomenon is called degeneracy,
and we shall now study it in greater detail.

29.3 The simplex algorithm 875

The assignment in line 14 of PIVOT, y� D �C ce
ybe, changes the objective value.

Since SIMPLEX calls PIVOT only when ce > 0, the only way for the objective
value to remain unchanged (i.e., y� D �) is for ybe to be 0. This value is assigned
as ybe D bl=ale in line 3 of PIVOT. Since we always call PIVOT with ale ¤ 0, we
see that for ybe to equal 0, and hence the objective value to be unchanged, we must
have bl D 0.

Indeed, this situation can occur. Consider the linear program

´ D x1 C x2 C x3

x4 D 8 � x1 � x2

x5 D x2 � x3 :

Suppose that we choose x1 as the entering variable and x4 as the leaving variable.
After pivoting, we obtain

´ D 8 C x3 � x4

x1 D 8 � x2 � x4

x5 D x2 � x3 :

At this point, our only choice is to pivot with x3 entering and x5 leaving. Since
b5 D 0, the objective value of 8 remains unchanged after pivoting:

´ D 8 C x2 � x4 � x5

x1 D 8 � x2 � x4

x3 D x2 � x5 :

The objective value has not changed, but our slack form has. Fortunately, if we
pivot again, with x2 entering and x1 leaving, the objective value increases (to 16),
and the simplex algorithm can continue.

Degeneracy can prevent the simplex algorithm from terminating, because it can
lead to a phenomenon known as cycling: the slack forms at two different itera-
tions of SIMPLEX are identical. Because of degeneracy, SIMPLEX could choose a
sequence of pivot operations that leave the objective value unchanged but repeat
a slack form within the sequence. Since SIMPLEX is a deterministic algorithm, if
it cycles, then it will cycle through the same series of slack forms forever, never
terminating.

Cycling is the only reason that SIMPLEX might not terminate. To show this fact,
we must first develop some additional machinery.

At each iteration, SIMPLEX maintains A, b, c, and � in addition to the sets
N and B . Although we need to explicitly maintain A, b, c, and � in order to
implement the simplex algorithm efficiently, we can get by without maintaining
them. In other words, the sets of basic and nonbasic variables suffice to uniquely
determine the slack form. Before proving this fact, we prove a useful algebraic
lemma.

876 Chapter 29 Linear Programming

Lemma 29.3
Let I be a set of indices. For each j 2 I , let j̨ and ǰ be real numbers, and let xj

be a real-valued variable. Let
 be any real number. Suppose that for any settings
of the xj , we haveX
j 2I

j̨ xj D
 C
X
j 2I

ǰ xj : (29.78)

Then j̨ D ǰ for each j 2 I , and
 D 0.

Proof Since equation (29.78) holds for any values of the xj , we can use particular
values to draw conclusions about ˛, ˇ, and
 . If we let xj D 0 for each j 2 I ,
we conclude that
 D 0. Now pick an arbitrary index j 2 I , and set xj D 1 and
xk D 0 for all k ¤ j . Then we must have j̨ D ǰ . Since we picked j as any
index in I , we conclude that j̨ D ǰ for each j 2 I .

A particular linear program has many different slack forms; recall that each slack
form has the same set of feasible and optimal solutions as the original linear pro-
gram. We now show that the slack form of a linear program is uniquely determined
by the set of basic variables. That is, given the set of basic variables, a unique slack
form (unique set of coefficients and right-hand sides) is associated with those basic
variables.

Lemma 29.4
Let .A; b; c/ be a linear program in standard form. Given a set B of basic variables,
the associated slack form is uniquely determined.

Proof Assume for the purpose of contradiction that there are two different slack
forms with the same set B of basic variables. The slack forms must also have
identical sets N D f1; 2; : : : ; nCmg �B of nonbasic variables. We write the first
slack form as

´ D � C
X
j 2N

cj xj (29.79)

xi D bi �
X
j 2N

aij xj for i 2 B ; (29.80)

and the second as

´ D � 0 C
X
j 2N

c 0
j xj (29.81)

xi D b0
i �

X
j 2N

a0
ij xj for i 2 B : (29.82)

29.3 The simplex algorithm 877

Consider the system of equations formed by subtracting each equation in
line (29.82) from the corresponding equation in line (29.80). The resulting sys-
tem is

0 D .bi � b0
i/ �

X
j 2N

.aij � a0
ij /xj for i 2 B

or, equivalently,X
j 2N

aij xj D .bi � b0
i /C

X
j 2N

a0
ij xj for i 2 B :

Now, for each i 2 B , apply Lemma 29.3 with j̨ D aij , ǰ D a0
ij ,
 D bi �b0

i , and
I D N . Since ˛i D ˇi , we have that aij D a0

ij for each j 2 N , and since
 D 0,
we have that bi D b0

i . Thus, for the two slack forms, A and b are identical to A0

and b0. Using a similar argument, Exercise 29.3-1 shows that it must also be the
case that c D c 0 and � D � 0, and hence that the slack forms must be identical.

We can now show that cycling is the only possible reason that SIMPLEX might
not terminate.

Lemma 29.5
If SIMPLEX fails to terminate in at most

�
nCm

m

�
iterations, then it cycles.

Proof By Lemma 29.4, the set B of basic variables uniquely determines a slack
form. There are n C m variables and jBj D m, and therefore, there are at most�

nCm

m

�
ways to choose B . Thus, there are only at most

�
nCm

m

�
unique slack forms.

Therefore, if SIMPLEX runs for more than
�

nCm

m

�
iterations, it must cycle.

Cycling is theoretically possible, but extremely rare. We can prevent it by choos-
ing the entering and leaving variables somewhat more carefully. One option is to
perturb the input slightly so that it is impossible to have two solutions with the
same objective value. Another option is to break ties by always choosing the vari-
able with the smallest index, a strategy known as Bland’s rule. We omit the proof
that these strategies avoid cycling.

Lemma 29.6
If lines 4 and 9 of SIMPLEX always break ties by choosing the variable with the
smallest index, then SIMPLEX must terminate.

We conclude this section with the following lemma.

878 Chapter 29 Linear Programming

Lemma 29.7
Assuming that INITIALIZE-SIMPLEX returns a slack form for which the basic so-
lution is feasible, SIMPLEX either reports that a linear program is unbounded, or it
terminates with a feasible solution in at most

�
nCm

m

�
iterations.

Proof Lemmas 29.2 and 29.6 show that if INITIALIZE-SIMPLEX returns a slack
form for which the basic solution is feasible, SIMPLEX either reports that a linear
program is unbounded, or it terminates with a feasible solution. By the contra-
positive of Lemma 29.5, if SIMPLEX terminates with a feasible solution, then it
terminates in at most

�
nCm

m

�
iterations.

Exercises

29.3-1
Complete the proof of Lemma 29.4 by showing that it must be the case that c D c 0

and � D � 0.

29.3-2
Show that the call to PIVOT in line 12 of SIMPLEX never decreases the value of �.

29.3-3
Prove that the slack form given to the PIVOT procedure and the slack form that the
procedure returns are equivalent.

29.3-4
Suppose we convert a linear program .A; b; c/ in standard form to slack form.
Show that the basic solution is feasible if and only if bi � 0 for i D 1; 2; : : : ; m.

29.3-5
Solve the following linear program using SIMPLEX:

maximize 18x1 C 12:5x2

subject to
x1 C x2 � 20

x1 � 12

x2 � 16

x1; x2 � 0 :

29.4 Duality 879

29.3-6
Solve the following linear program using SIMPLEX:

maximize 5x1 � 3x2

subject to
x1 � x2 � 1

2x1 C x2 � 2

x1; x2 � 0 :

29.3-7
Solve the following linear program using SIMPLEX:

minimize x1 C x2 C x3

subject to
2x1 C 7:5x2 C 3x3 � 10000

20x1 C 5x2 C 10x3 � 30000

x1; x2; x3 � 0 :

29.3-8
In the proof of Lemma 29.5, we argued that there are at most

�
mCn

n

�
ways to choose

a set B of basic variables. Give an example of a linear program in which there are
strictly fewer than

�
mCn

n

�
ways to choose the set B .

29.4 Duality

We have proven that, under certain assumptions, SIMPLEX terminates. We have not
yet shown that it actually finds an optimal solution to a linear program, however.
In order to do so, we introduce a powerful concept called linear-programming
duality.

Duality enables us to prove that a solution is indeed optimal. We saw an exam-
ple of duality in Chapter 26 with Theorem 26.6, the max-flow min-cut theorem.
Suppose that, given an instance of a maximum-flow problem, we find a flow f

with value jf j. How do we know whether f is a maximum flow? By the max-flow
min-cut theorem, if we can find a cut whose value is also jf j, then we have ver-
ified that f is indeed a maximum flow. This relationship provides an example of
duality: given a maximization problem, we define a related minimization problem
such that the two problems have the same optimal objective values.

Given a linear program in which the objective is to maximize, we shall describe
how to formulate a dual linear program in which the objective is to minimize and

880 Chapter 29 Linear Programming

whose optimal value is identical to that of the original linear program. When refer-
ring to dual linear programs, we call the original linear program the primal.

Given a primal linear program in standard form, as in (29.16)–(29.18), we define
the dual linear program as

minimize
mX

iD1

biyi (29.83)

subject to
mX

iD1

aij yi � cj for j D 1; 2; : : : ; n ; (29.84)

yi � 0 for i D 1; 2; : : : ; m : (29.85)

To form the dual, we change the maximization to a minimization, exchange the
roles of coefficients on the right-hand sides and the objective function, and replace
each less-than-or-equal-to by a greater-than-or-equal-to. Each of the m constraints
in the primal has an associated variable yi in the dual, and each of the n constraints
in the dual has an associated variable xj in the primal. For example, consider the
linear program given in (29.53)–(29.57). The dual of this linear program is

minimize 30y1 C 24y2 C 36y3 (29.86)

subject to
y1 C 2y2 C 4y3 � 3 (29.87)

y1 C 2y2 C y3 � 1 (29.88)

3y1 C 5y2 C 2y3 � 2 (29.89)

y1; y2; y3 � 0 : (29.90)

We shall show in Theorem 29.10 that the optimal value of the dual linear pro-
gram is always equal to the optimal value of the primal linear program. Further-
more, the simplex algorithm actually implicitly solves both the primal and the dual
linear programs simultaneously, thereby providing a proof of optimality.

We begin by demonstrating weak duality, which states that any feasible solu-
tion to the primal linear program has a value no greater than that of any feasible
solution to the dual linear program.

Lemma 29.8 (Weak linear-programming duality)
Let Nx be any feasible solution to the primal linear program in (29.16)–(29.18) and
let Ny be any feasible solution to the dual linear program in (29.83)–(29.85). Then,
we have

nX
j D1

cj Nxj �
mX

iD1

bi Nyi :

29.4 Duality 881

Proof We have
nX

j D1

cj Nxj �
nX

j D1

mX

iD1

aij Nyi

!
Nxj (by inequalities (29.84))

D
mX

iD1

nX

j D1

aij Nxj

!
Nyi

�
mX

iD1

bi Nyi (by inequalities (29.17)) .

Corollary 29.9
Let Nx be a feasible solution to a primal linear program .A; b; c/, and let Ny be a
feasible solution to the corresponding dual linear program. If

nX
j D1

cj Nxj D
mX

iD1

bi Nyi ;

then Nx and Ny are optimal solutions to the primal and dual linear programs, respec-
tively.

Proof By Lemma 29.8, the objective value of a feasible solution to the primal
cannot exceed that of a feasible solution to the dual. The primal linear program is
a maximization problem and the dual is a minimization problem. Thus, if feasible
solutions Nx and Ny have the same objective value, neither can be improved.

Before proving that there always is a dual solution whose value is equal to that
of an optimal primal solution, we describe how to find such a solution. When
we ran the simplex algorithm on the linear program in (29.53)–(29.57), the final
iteration yielded the slack form (29.72)–(29.75) with objective ´ D 28 � x3=6 �
x5=6�2x6=3, B D f1; 2; 4g, and N D f3; 5; 6g. As we shall show below, the basic
solution associated with the final slack form is indeed an optimal solution to the
linear program; an optimal solution to linear program (29.53)–(29.57) is therefore
. Nx1; Nx2; Nx3/ D .8; 4; 0/, with objective value .3 � 8/ C .1 � 4/ C .2 � 0/ D 28. As
we also show below, we can read off an optimal dual solution: the negatives of the
coefficients of the primal objective function are the values of the dual variables.
More precisely, suppose that the last slack form of the primal is

´ D � 0 C
X
j 2N

c 0
j xj

xi D b0
i �

X
j 2N

a0
ij xj for i 2 B :

882 Chapter 29 Linear Programming

Then, to produce an optimal dual solution, we set

Nyi D
(
�c 0

nCi if .nC i/ 2 N ;

0 otherwise :
(29.91)

Thus, an optimal solution to the dual linear program defined in (29.86)–(29.90)
is Ny1 D 0 (since n C 1 D 4 2 B), Ny2 D �c 0

5 D 1=6, and Ny3 D �c 0
6 D 2=3.

Evaluating the dual objective function (29.86), we obtain an objective value of
.30 � 0/C .24 � .1=6//C .36 � .2=3// D 28, which confirms that the objective value
of the primal is indeed equal to the objective value of the dual. Combining these
calculations with Lemma 29.8 yields a proof that the optimal objective value of the
primal linear program is 28. We now show that this approach applies in general:
we can find an optimal solution to the dual and simultaneously prove that a solution
to the primal is optimal.

Theorem 29.10 (Linear-programming duality)
Suppose that SIMPLEX returns values Nx D . Nx1; Nx2; : : : ; Nxn/ for the primal lin-
ear program .A; b; c/. Let N and B denote the nonbasic and basic variables for
the final slack form, let c 0 denote the coefficients in the final slack form, and let
Ny D . Ny1; Ny2; : : : ; Nym/ be defined by equation (29.91). Then Nx is an optimal so-
lution to the primal linear program, Ny is an optimal solution to the dual linear
program, and

nX
j D1

cj Nxj D
mX

iD1

bi Nyi : (29.92)

Proof By Corollary 29.9, if we can find feasible solutions Nx and Ny that satisfy
equation (29.92), then Nx and Ny must be optimal primal and dual solutions. We
shall now show that the solutions Nx and Ny described in the statement of the theorem
satisfy equation (29.92).

Suppose that we run SIMPLEX on a primal linear program, as given in lines
(29.16)–(29.18). The algorithm proceeds through a series of slack forms until it
terminates with a final slack form with objective function

´ D � 0 C
X
j 2N

c 0
j xj : (29.93)

Since SIMPLEX terminated with a solution, by the condition in line 3 we know that

c 0
j � 0 for all j 2 N : (29.94)

29.4 Duality 883

If we define

c 0
j D 0 for all j 2 B ; (29.95)

we can rewrite equation (29.93) as

´ D � 0 C
X
j 2N

c 0
j xj

D � 0 C
X
j 2N

c 0
j xj C

X
j 2B

c 0
j xj (because c 0

j D 0 if j 2 B)

D � 0 C
nCmX
j D1

c 0
j xj (because N [B D f1; 2; : : : ; nCmg) . (29.96)

For the basic solution Nx associated with this final slack form, Nxj D 0 for all j 2 N ,
and ´ D � 0. Since all slack forms are equivalent, if we evaluate the original objec-
tive function on Nx, we must obtain the same objective value:

nX
j D1

cj Nxj D � 0 C
nCmX
j D1

c 0
j Nxj (29.97)

D � 0 C
X
j 2N

c 0
j Nxj C

X
j 2B

c 0
j Nxj

D � 0 C
X
j 2N

.c 0
j � 0/C

X
j 2B

.0 � Nxj / (29.98)

D � 0 :

We shall now show that Ny, defined by equation (29.91), is feasible for the dual
linear program and that its objective value

Pm

iD1 bi Nyi equals
Pn

j D1 cj Nxj . Equa-
tion (29.97) says that the first and last slack forms, evaluated at Nx, are equal. More
generally, the equivalence of all slack forms implies that for any set of values
x D .x1; x2; : : : ; xn/, we have

nX
j D1

cj xj D � 0 C
nCmX
j D1

c 0
j xj :

Therefore, for any particular set of values Nx D . Nx1; Nx2; : : : ; Nxn/, we have

884 Chapter 29 Linear Programming

nX
j D1

cj Nxj

D � 0 C
nCmX
j D1

c 0
j Nxj

D � 0 C
nX

j D1

c 0
j Nxj C

nCmX
j DnC1

c 0
j Nxj

D � 0 C
nX

j D1

c 0
j Nxj C

mX
iD1

c 0
nCi NxnCi

D � 0 C
nX

j D1

c 0
j Nxj C

mX
iD1

.� Nyi/ NxnCi (by equations (29.91) and (29.95))

D � 0 C
nX

j D1

c 0
j Nxj C

mX
iD1

.� Nyi/

bi �

nX
j D1

aij Nxj

!
(by equation (29.32))

D � 0 C
nX

j D1

c 0
j Nxj �

mX
iD1

bi Nyi C
mX

iD1

nX
j D1

.aij Nxj / Nyi

D � 0 C
nX

j D1

c 0
j Nxj �

mX
iD1

bi Nyi C
nX

j D1

mX
iD1

.aij Nyi/ Nxj

D

� 0 �
mX

iD1

bi Nyi

!
C

nX
j D1

c 0

j C
mX

iD1

aij Nyi

!
Nxj ;

so that
nX

j D1

cj Nxj D

� 0 �
mX

iD1

bi Nyi

!
C

nX
j D1

c 0

j C
mX

iD1

aij Nyi

!
Nxj : (29.99)

Applying Lemma 29.3 to equation (29.99), we obtain

� 0 �
mX

iD1

bi Nyi D 0 ; (29.100)

c 0
j C

mX
iD1

aij Nyi D cj for j D 1; 2; : : : ; n : (29.101)

By equation (29.100), we have that
Pm

iD1 bi Nyi D � 0, and hence the objective value

of the dual
�Pm

iD1 bi Nyi

�
is equal to that of the primal (� 0). It remains to show

29.4 Duality 885

that the solution Ny is feasible for the dual problem. From inequalities (29.94) and
equations (29.95), we have that c 0

j � 0 for all j D 1; 2; : : : ; nCm. Hence, for any
j D 1; 2; : : : ; n, equations (29.101) imply that

cj D c 0
j C

mX
iD1

aij Nyi

�
mX

iD1

aij Nyi ;

which satisfies the constraints (29.84) of the dual. Finally, since c 0
j � 0 for each

j 2 N[B , when we set Ny according to equation (29.91), we have that each Nyi � 0,
and so the nonnegativity constraints are satisfied as well.

We have shown that, given a feasible linear program, if INITIALIZE-SIMPLEX

returns a feasible solution, and if SIMPLEX terminates without returning “un-
bounded,” then the solution returned is indeed an optimal solution. We have also
shown how to construct an optimal solution to the dual linear program.

Exercises

29.4-1
Formulate the dual of the linear program given in Exercise 29.3-5.

29.4-2
Suppose that we have a linear program that is not in standard form. We could
produce the dual by first converting it to standard form, and then taking the dual.
It would be more convenient, however, to be able to produce the dual directly.
Explain how we can directly take the dual of an arbitrary linear program.

29.4-3
Write down the dual of the maximum-flow linear program, as given in lines
(29.47)–(29.50) on page 860. Explain how to interpret this formulation as a
minimum-cut problem.

29.4-4
Write down the dual of the minimum-cost-flow linear program, as given in lines
(29.51)–(29.52) on page 862. Explain how to interpret this problem in terms of
graphs and flows.

29.4-5
Show that the dual of the dual of a linear program is the primal linear program.

886 Chapter 29 Linear Programming

29.4-6
Which result from Chapter 26 can be interpreted as weak duality for the maximum-
flow problem?

29.5 The initial basic feasible solution

In this section, we first describe how to test whether a linear program is feasible,
and if it is, how to produce a slack form for which the basic solution is feasible.
We conclude by proving the fundamental theorem of linear programming, which
says that the SIMPLEX procedure always produces the correct result.

Finding an initial solution

In Section 29.3, we assumed that we had a procedure INITIALIZE-SIMPLEX that
determines whether a linear program has any feasible solutions, and if it does, gives
a slack form for which the basic solution is feasible. We describe this procedure
here.

A linear program can be feasible, yet the initial basic solution might not be
feasible. Consider, for example, the following linear program:

maximize 2x1 � x2 (29.102)

subject to
2x1 � x2 � 2 (29.103)

x1 � 5x2 � �4 (29.104)

x1; x2 � 0 : (29.105)

If we were to convert this linear program to slack form, the basic solution would
set x1 D 0 and x2 D 0. This solution violates constraint (29.104), and so it is not a
feasible solution. Thus, INITIALIZE-SIMPLEX cannot just return the obvious slack
form. In order to determine whether a linear program has any feasible solutions,
we will formulate an auxiliary linear program. For this auxiliary linear program,
we can find (with a little work) a slack form for which the basic solution is feasible.
Furthermore, the solution of this auxiliary linear program determines whether the
initial linear program is feasible and if so, it provides a feasible solution with which
we can initialize SIMPLEX.

Lemma 29.11
Let L be a linear program in standard form, given as in (29.16)–(29.18). Let x0 be
a new variable, and let Laux be the following linear program with nC 1 variables:

29.5 The initial basic feasible solution 887

maximize �x0 (29.106)

subject to
nX

j D1

aij xj � x0 � bi for i D 1; 2; : : : ; m ; (29.107)

xj � 0 for j D 0; 1; : : : ; n : (29.108)

Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 � 0 is a constraint of Laux and the objective function is to
maximize �x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk � 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/

4 form Laux by adding �x0 to the left-hand side of each constraint
and setting the objective function to �x0

5 let .N; B; A; b; c; �/ be the resulting slack form for Laux

6 l D nC k

7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; �/ D PIVOT.N; B; A; b; c; �; l; 0/

9 // The basic solution is now feasible for Laux.
10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution

to Laux is found
11 if the optimal solution to Laux sets Nx0 to 0

12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

888 Chapter 29 Linear Programming

INITIALIZE-SIMPLEX works as follows. In lines 1–3, we implicitly test the
basic solution to the initial slack form for L given by N D f1; 2; : : : ; ng, B D
fnC 1; nC 2; : : : ; nCmg, Nxi D bi for all i 2 B , and Nxj D 0 for all j 2 N .
(Creating the slack form requires no explicit effort, as the values of A, b, and c are
the same in both slack and standard forms.) If line 2 finds this basic solution to be
feasible—that is, Nxi � 0 for all i 2 N [B—then line 3 returns the slack form.
Otherwise, in line 4, we form the auxiliary linear program Laux as in Lemma 29.11.
Since the initial basic solution to L is not feasible, the initial basic solution to the
slack form for Laux cannot be feasible either. To find a basic feasible solution, we
perform a single pivot operation. Line 6 selects l D n C k as the index of the
basic variable that will be the leaving variable in the upcoming pivot operation.
Since the basic variables are xnC1; xnC2; : : : ; xnCm, the leaving variable xl will be
the one with the most negative value. Line 8 performs that call of PIVOT, with
x0 entering and xl leaving. We shall see shortly that the basic solution resulting
from this call of PIVOT will be feasible. Now that we have a slack form for which
the basic solution is feasible, we can, in line 10, repeatedly call PIVOT to fully
solve the auxiliary linear program. As the test in line 11 demonstrates, if we find
an optimal solution to Laux with objective value 0, then in lines 12–14, we create
a slack form for L for which the basic solution is feasible. To do so, we first,
in lines 12–13, handle the degenerate case in which x0 may still be basic with
value Nx0 D 0. In this case, we perform a pivot step to remove x0 from the basis,
using any e 2 N such that a0e ¤ 0 as the entering variable. The new basic
solution remains feasible; the degenerate pivot does not change the value of any
variable. Next we delete all x0 terms from the constraints and restore the original
objective function for L. The original objective function may contain both basic
and nonbasic variables. Therefore, in the objective function we replace each basic
variable by the right-hand side of its associated constraint. Line 15 then returns
this modified slack form. If, on the other hand, line 11 discovers that the original
linear program L is infeasible, then line 16 returns this information.

We now demonstrate the operation of INITIALIZE-SIMPLEX on the linear pro-
gram (29.102)–(29.105). This linear program is feasible if we can find nonneg-
ative values for x1 and x2 that satisfy inequalities (29.103) and (29.104). Using
Lemma 29.11, we formulate the auxiliary linear program

maximize �x0 (29.109)

subject to
2x1 � x2 � x0 � 2 (29.110)

x1 � 5x2 � x0 � �4 (29.111)

x1; x2; x0 � 0 :

By Lemma 29.11, if the optimal objective value of this auxiliary linear program
is 0, then the original linear program has a feasible solution. If the optimal objective

29.5 The initial basic feasible solution 889

value of this auxiliary linear program is negative, then the original linear program
does not have a feasible solution.

We write this linear program in slack form, obtaining

´ D � x0

x3 D 2 � 2x1 C x2 C x0

x4 D �4 � x1 C 5x2 C x0 :

We are not out of the woods yet, because the basic solution, which would set
x4 D �4, is not feasible for this auxiliary linear program. We can, however, with
one call to PIVOT, convert this slack form into one in which the basic solution is
feasible. As line 8 indicates, we choose x0 to be the entering variable. In line 6, we
choose as the leaving variable x4, which is the basic variable whose value in the
basic solution is most negative. After pivoting, we have the slack form

´ D �4 � x1 C 5x2 � x4

x0 D 4 C x1 � 5x2 C x4

x3 D 6 � x1 � 4x2 C x4 :

The associated basic solution is . Nx0; Nx1; Nx2; Nx3; Nx4/ D .4; 0; 0; 6; 0/, which is feasi-
ble. We now repeatedly call PIVOT until we obtain an optimal solution to Laux. In
this case, one call to PIVOT with x2 entering and x0 leaving yields

´ D � x0

x2 D 4

5
� x0

5
C x1

5
C x4

5

x3 D 14

5
C 4x0

5
� 9x1

5
C x4

5
:

This slack form is the final solution to the auxiliary problem. Since this solution
has x0 D 0, we know that our initial problem was feasible. Furthermore, since
x0 D 0, we can just remove it from the set of constraints. We then restore the
original objective function, with appropriate substitutions made to include only
nonbasic variables. In our example, we get the objective function

2x1 � x2 D 2x1 �
�

4

5
� x0

5
C x1

5
C x4

5

�
:

Setting x0 D 0 and simplifying, we get the objective function

�4

5
C 9x1

5
� x4

5
;

and the slack form

890 Chapter 29 Linear Programming

´ D �4

5
C 9x1

5
� x4

5

x2 D
4

5
C x1

5
C x4

5

x3 D
14

5
� 9x1

5
C x4

5
:

This slack form has a feasible basic solution, and we can return it to procedure
SIMPLEX.

We now formally show the correctness of INITIALIZE-SIMPLEX.

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns
“infeasible.” Otherwise, it returns a valid slack form for which the basic solution
is feasible.

Proof First suppose that the linear program L has no feasible solution. Then by
Lemma 29.11, the optimal objective value of Laux, defined in (29.106)–(29.108),
is nonzero, and by the nonnegativity constraint on x0, the optimal objective value
must be negative. Furthermore, this objective value must be finite, since setting
xi D 0, for i D 1; 2; : : : ; n, and x0 D jminm

iD1 fbigj is feasible, and this solution
has objective value � jminm

iD1 fbigj. Therefore, line 10 of INITIALIZE-SIMPLEX

finds a solution with a nonpositive objective value. Let Nx be the basic solution
associated with the final slack form. We cannot have Nx0 D 0, because then Laux

would have objective value 0, which contradicts that the objective value is negative.
Thus the test in line 11 results in line 16 returning “infeasible.”

Suppose now that the linear program L does have a feasible solution. From
Exercise 29.3-4, we know that if bi � 0 for i D 1; 2; : : : ; m, then the basic solution
associated with the initial slack form is feasible. In this case, lines 2–3 return the
slack form associated with the input. (Converting the standard form to slack form
is easy, since A, b, and c are the same in both.)

In the remainder of the proof, we handle the case in which the linear program is
feasible but we do not return in line 3. We argue that in this case, lines 4–10 find a
feasible solution to Laux with objective value 0. First, by lines 1–2, we must have

bk < 0 ;

and

bk � bi for each i 2 B : (29.112)

In line 8, we perform one pivot operation in which the leaving variable xl (recall
that l D n C k, so that bl < 0) is the left-hand side of the equation with mini-
mum bi , and the entering variable is x0, the extra added variable. We now show

29.5 The initial basic feasible solution 891

that after this pivot, all entries of b are nonnegative, and hence the basic solution
to Laux is feasible. Letting Nx be the basic solution after the call to PIVOT, and
letting yb and yB be values returned by PIVOT, Lemma 29.1 implies that

Nxi D
(

bi � aie
ybe if i 2 yB � feg ;

bl=ale if i D e :
(29.113)

The call to PIVOT in line 8 has e D 0. If we rewrite inequalities (29.107), to
include coefficients ai0,

nX
j D0

aij xj � bi for i D 1; 2; : : : ; m ; (29.114)

then

ai0 D aie D �1 for each i 2 B : (29.115)

(Note that ai0 is the coefficient of x0 as it appears in inequalities (29.114), not
the negation of the coefficient, because Laux is in standard rather than slack form.)
Since l 2 B , we also have that ale D �1. Thus, bl=ale > 0, and so Nxe > 0. For
the remaining basic variables, we have

Nxi D bi � aie
ybe (by equation (29.113))

D bi � aie.bl=ale/ (by line 3 of PIVOT)

D bi � bl (by equation (29.115) and ale D �1)

� 0 (by inequality (29.112)) ,

which implies that each basic variable is now nonnegative. Hence the basic solu-
tion after the call to PIVOT in line 8 is feasible. We next execute line 10, which
solves Laux. Since we have assumed that L has a feasible solution, Lemma 29.11
implies that Laux has an optimal solution with objective value 0. Since all the slack
forms are equivalent, the final basic solution to Laux must have Nx0 D 0, and after
removing x0 from the linear program, we obtain a slack form that is feasible for L.
Line 15 then returns this slack form.

Fundamental theorem of linear programming

We conclude this chapter by showing that the SIMPLEX procedure works. In par-
ticular, any linear program either is infeasible, is unbounded, or has an optimal
solution with a finite objective value. In each case, SIMPLEX acts appropriately.

892 Chapter 29 Linear Programming

Theorem 29.13 (Fundamental theorem of linear programming)
Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,

2. is infeasible, or

3. is unbounded.

If L is infeasible, SIMPLEX returns “infeasible.” If L is unbounded, SIMPLEX

returns “unbounded.” Otherwise, SIMPLEX returns an optimal solution with a finite
objective value.

Proof By Lemma 29.12, if linear program L is infeasible, then SIMPLEX returns
“infeasible.” Now suppose that the linear program L is feasible. By Lemma 29.12,
INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible.
By Lemma 29.7, therefore, SIMPLEX either returns “unbounded” or terminates
with a feasible solution. If it terminates with a finite solution, then Theorem 29.10
tells us that this solution is optimal. On the other hand, if SIMPLEX returns “un-
bounded,” Lemma 29.2 tells us the linear program L is indeed unbounded. Since
SIMPLEX always terminates in one of these ways, the proof is complete.

Exercises

29.5-1
Give detailed pseudocode to implement lines 5 and 14 of INITIALIZE-SIMPLEX.

29.5-2
Show that when the main loop of SIMPLEX is run by INITIALIZE-SIMPLEX, it can
never return “unbounded.”

29.5-3
Suppose that we are given a linear program L in standard form, and suppose that
for both L and the dual of L, the basic solutions associated with the initial slack
forms are feasible. Show that the optimal objective value of L is 0.

29.5-4
Suppose that we allow strict inequalities in a linear program. Show that in this
case, the fundamental theorem of linear programming does not hold.

29.5 The initial basic feasible solution 893

29.5-5
Solve the following linear program using SIMPLEX:

maximize x1 C 3x2

subject to
x1 � x2 � 8

�x1 � x2 � �3

�x1 C 4x2 � 2

x1; x2 � 0 :

29.5-6
Solve the following linear program using SIMPLEX:

maximize x1 � 2x2

subject to
x1 C 2x2 � 4

�2x1 � 6x2 � �12

x2 � 1

x1; x2 � 0 :

29.5-7
Solve the following linear program using SIMPLEX:

maximize x1 C 3x2

subject to
�x1 C x2 � �1

�x1 � x2 � �3

�x1 C 4x2 � 2

x1; x2 � 0 :

29.5-8
Solve the linear program given in (29.6)–(29.10).

29.5-9
Consider the following 1-variable linear program, which we call P :

maximize tx

subject to
rx � s

x � 0 ;

where r , s, and t are arbitrary real numbers. Let D be the dual of P .

894 Chapter 29 Linear Programming

State for which values of r , s, and t you can assert that

1. Both P and D have optimal solutions with finite objective values.

2. P is feasible, but D is infeasible.

3. D is feasible, but P is infeasible.

4. Neither P nor D is feasible.

Problems

29-1 Linear-inequality feasibility
Given a set of m linear inequalities on n variables x1; x2; : : : ; xn, the linear-
inequality feasibility problem asks whether there is a setting of the variables that
simultaneously satisfies each of the inequalities.

a. Show that if we have an algorithm for linear programming, we can use it to
solve a linear-inequality feasibility problem. The number of variables and con-
straints that you use in the linear-programming problem should be polynomial
in n and m.

b. Show that if we have an algorithm for the linear-inequality feasibility problem,
we can use it to solve a linear-programming problem. The number of variables
and linear inequalities that you use in the linear-inequality feasibility problem
should be polynomial in n and m, the number of variables and constraints in
the linear program.

29-2 Complementary slackness
Complementary slackness describes a relationship between the values of primal
variables and dual constraints and between the values of dual variables and pri-
mal constraints. Let Nx be a feasible solution to the primal linear program given
in (29.16)–(29.18), and let Ny be a feasible solution to the dual linear program given
in (29.83)–(29.85). Complementary slackness states that the following conditions
are necessary and sufficient for Nx and Ny to be optimal:

mX
iD1

aij Nyi D cj or Nxj D 0 for j D 1; 2; : : : ; n

and
nX

j D1

aij Nxj D bi or Nyi D 0 for i D 1; 2; : : : ; m :

Problems for Chapter 29 895

a. Verify that complementary slackness holds for the linear program in lines
(29.53)–(29.57).

b. Prove that complementary slackness holds for any primal linear program and
its corresponding dual.

c. Prove that a feasible solution Nx to a primal linear program given in lines
(29.16)–(29.18) is optimal if and only if there exist values Ny D . Ny1; Ny2; : : : ; Nym/

such that

1. Ny is a feasible solution to the dual linear program given in (29.83)–(29.85),

2.
Pm

iD1 aij Nyi D cj for all j such that Nxj > 0, and

3. Nyi D 0 for all i such that
Pn

j D1 aij Nxj < bi .

29-3 Integer linear programming
An integer linear-programming problem is a linear-programming problem with
the additional constraint that the variables x must take on integral values. Exer-
cise 34.5-3 shows that just determining whether an integer linear program has a
feasible solution is NP-hard, which means that there is no known polynomial-time
algorithm for this problem.

a. Show that weak duality (Lemma 29.8) holds for an integer linear program.

b. Show that duality (Theorem 29.10) does not always hold for an integer linear
program.

c. Given a primal linear program in standard form, let us define P to be the opti-
mal objective value for the primal linear program, D to be the optimal objective
value for its dual, IP to be the optimal objective value for the integer version of
the primal (that is, the primal with the added constraint that the variables take
on integer values), and ID to be the optimal objective value for the integer ver-
sion of the dual. Assuming that both the primal integer program and the dual
integer program are feasible and bounded, show that

IP � P D D � ID :

29-4 Farkas’s lemma
Let A be an m 	 n matrix and c be an n-vector. Then Farkas’s lemma states that
exactly one of the systems

896 Chapter 29 Linear Programming

Ax � 0 ;

cTx > 0

and

ATy D c ;

y � 0

is solvable, where x is an n-vector and y is an m-vector. Prove Farkas’s lemma.

29-5 Minimum-cost circulation
In this problem, we consider a variant of the minimum-cost-flow problem from
Section 29.2 in which we are not given a demand, a source, or a sink. Instead,
we are given, as before, a flow network and edge costs a.u; �/. A flow is feasible
if it satisfies the capacity constraint on every edge and flow conservation at every
vertex. The goal is to find, among all feasible flows, the one of minimum cost. We
call this problem the minimum-cost-circulation problem.

a. Formulate the minimum-cost-circulation problem as a linear program.

b. Suppose that for all edges .u; �/ 2 E, we have a.u; �/ > 0. Characterize an
optimal solution to the minimum-cost-circulation problem.

c. Formulate the maximum-flow problem as a minimum-cost-circulation problem
linear program. That is given a maximum-flow problem instance G D .V; E/

with source s, sink t and edge capacities c, create a minimum-cost-circulation
problem by giving a (possibly different) network G0 D .V 0; E 0/ with edge
capacities c 0 and edge costs a0 such that you can discern a solution to the
maximum-flow problem from a solution to the minimum-cost-circulation prob-
lem.

d. Formulate the single-source shortest-path problem as a minimum-cost-circu-
lation problem linear program.

Chapter notes

This chapter only begins to study the wide field of linear programming. A num-
ber of books are devoted exclusively to linear programming, including those by
Chvátal [69], Gass [130], Karloff [197], Schrijver [303], and Vanderbei [344].
Many other books give a good coverage of linear programming, including those
by Papadimitriou and Steiglitz [271] and Ahuja, Magnanti, and Orlin [7]. The
coverage in this chapter draws on the approach taken by Chvátal.

Notes for Chapter 29 897

The simplex algorithm for linear programming was invented by G. Dantzig
in 1947. Shortly after, researchers discovered how to formulate a number of prob-
lems in a variety of fields as linear programs and solve them with the simplex
algorithm. As a result, applications of linear programming flourished, along with
several algorithms. Variants of the simplex algorithm remain the most popular
methods for solving linear-programming problems. This history appears in a num-
ber of places, including the notes in [69] and [197].

The ellipsoid algorithm was the first polynomial-time algorithm for linear pro-
gramming and is due to L. G. Khachian in 1979; it was based on earlier work by
N. Z. Shor, D. B. Judin, and A. S. Nemirovskii. Grötschel, Lovász, and Schrijver
[154] describe how to use the ellipsoid algorithm to solve a variety of problems in
combinatorial optimization. To date, the ellipsoid algorithm does not appear to be
competitive with the simplex algorithm in practice.

Karmarkar’s paper [198] includes a description of the first interior-point algo-
rithm. Many subsequent researchers designed interior-point algorithms. Good sur-
veys appear in the article of Goldfarb and Todd [141] and the book by Ye [361].

Analysis of the simplex algorithm remains an active area of research. V. Klee
and G. J. Minty constructed an example on which the simplex algorithm runs
through 2n � 1 iterations. The simplex algorithm usually performs very well in
practice and many researchers have tried to give theoretical justification for this
empirical observation. A line of research begun by K. H. Borgwardt, and carried
on by many others, shows that under certain probabilistic assumptions on the in-
put, the simplex algorithm converges in expected polynomial time. Spielman and
Teng [322] made progress in this area, introducing the “smoothed analysis of algo-
rithms” and applying it to the simplex algorithm.

The simplex algorithm is known to run efficiently in certain special cases. Par-
ticularly noteworthy is the network-simplex algorithm, which is the simplex al-
gorithm, specialized to network-flow problems. For certain network problems,
including the shortest-paths, maximum-flow, and minimum-cost-flow problems,
variants of the network-simplex algorithm run in polynomial time. See, for exam-
ple, the article by Orlin [268] and the citations therein.

30 Polynomials and the FFT

The straightforward method of adding two polynomials of degree n takes ‚.n/

time, but the straightforward method of multiplying them takes ‚.n2/ time. In this
chapter, we shall show how the fast Fourier transform, or FFT, can reduce the time
to multiply polynomials to ‚.n lg n/.

The most common use for Fourier transforms, and hence the FFT, is in signal
processing. A signal is given in the time domain: as a function mapping time to
amplitude. Fourier analysis allows us to express the signal as a weighted sum of
phase-shifted sinusoids of varying frequencies. The weights and phases associated
with the frequencies characterize the signal in the frequency domain. Among the
many everyday applications of FFT’s are compression techniques used to encode
digital video and audio information, including MP3 files. Several fine books delve
into the rich area of signal processing; the chapter notes reference a few of them.

Polynomials

A polynomial in the variable x over an algebraic field F represents a function A.x/

as a formal sum:

A.x/ D
n�1X
j D0

aj xj :

We call the values a0; a1; : : : ; an�1 the coefficients of the polynomial. The co-
efficients are drawn from a field F , typically the set C of complex numbers. A
polynomial A.x/ has degree k if its highest nonzero coefficient is ak; we write
that degree.A/ D k. Any integer strictly greater than the degree of a polynomial
is a degree-bound of that polynomial. Therefore, the degree of a polynomial of
degree-bound n may be any integer between 0 and n � 1, inclusive.

We can define a variety of operations on polynomials. For polynomial addi-
tion, if A.x/ and B.x/ are polynomials of degree-bound n, their sum is a polyno-

Chapter 30 Polynomials and the FFT 899

mial C.x/, also of degree-bound n, such that C.x/ D A.x/C B.x/ for all x in the
underlying field. That is, if

A.x/ D
n�1X
j D0

aj xj

and

B.x/ D
n�1X
j D0

bj xj ;

then

C.x/ D
n�1X
j D0

cj xj ;

where cj D aj C bj for j D 0; 1; : : : ; n � 1. For example, if we have the
polynomials A.x/ D 6x3 C 7x2 � 10x C 9 and B.x/ D �2x3 C 4x � 5, then
C.x/ D 4x3 C 7x2 � 6x C 4.

For polynomial multiplication, if A.x/ and B.x/ are polynomials of degree-
bound n, their product C.x/ is a polynomial of degree-bound 2n � 1 such that
C.x/ D A.x/B.x/ for all x in the underlying field. You probably have multi-
plied polynomials before, by multiplying each term in A.x/ by each term in B.x/

and then combining terms with equal powers. For example, we can multiply
A.x/ D 6x3 C 7x2 � 10x C 9 and B.x/ D �2x3 C 4x � 5 as follows:

6x3 C 7x2 � 10x C 9

� 2x3 C 4x � 5

� 30x3 � 35x2 C 50x � 45

24x4 C 28x3 � 40x2 C 36x

� 12x6 � 14x5 C 20x4 � 18x3

� 12x6 � 14x5 C 44x4 � 20x3 � 75x2 C 86x � 45

Another way to express the product C.x/ is

C.x/ D
2n�2X
j D0

cj xj ; (30.1)

where

cj D
jX

kD0

akbj �k : (30.2)

900 Chapter 30 Polynomials and the FFT

Note that degree.C / D degree.A/ C degree.B/, implying that if A is a polyno-
mial of degree-bound na and B is a polynomial of degree-bound nb, then C is a
polynomial of degree-bound na C nb � 1. Since a polynomial of degree-bound k

is also a polynomial of degree-bound k C 1, we will normally say that the product
polynomial C is a polynomial of degree-bound na C nb.

Chapter outline

Section 30.1 presents two ways to represent polynomials: the coefficient represen-
tation and the point-value representation. The straightforward methods for multi-
plying polynomials—equations (30.1) and (30.2)—take ‚.n2/ time when we rep-
resent polynomials in coefficient form, but only ‚.n/ time when we represent them
in point-value form. We can, however, multiply polynomials using the coefficient
representation in only ‚.n lg n/ time by converting between the two representa-
tions. To see why this approach works, we must first study complex roots of unity,
which we do in Section 30.2. Then, we use the FFT and its inverse, also described
in Section 30.2, to perform the conversions. Section 30.3 shows how to implement
the FFT quickly in both serial and parallel models.

This chapter uses complex numbers extensively, and within this chapter we use
the symbol i exclusively to denote

p�1.

30.1 Representing polynomials

The coefficient and point-value representations of polynomials are in a sense equiv-
alent; that is, a polynomial in point-value form has a unique counterpart in co-
efficient form. In this section, we introduce the two representations and show
how to combine them so that we can multiply two degree-bound n polynomials
in ‚.n lg n/ time.

Coefficient representation

A coefficient representation of a polynomial A.x/ D Pn�1

j D0 aj xj of degree-
bound n is a vector of coefficients a D .a0; a1; : : : ; an�1/. In matrix equations
in this chapter, we shall generally treat vectors as column vectors.

The coefficient representation is convenient for certain operations on polyno-
mials. For example, the operation of evaluating the polynomial A.x/ at a given
point x0 consists of computing the value of A.x0/. We can evaluate a polynomial
in ‚.n/ time using Horner’s rule:

A.x0/ D a0 C x0.a1 C x0.a2 C � � � C x0.an�2 C x0.an�1// � � �// :

30.1 Representing polynomials 901

Similarly, adding two polynomials represented by the coefficient vectors a D
.a0; a1; : : : ; an�1/ and b D .b0; b1; : : : ; bn�1/ takes ‚.n/ time: we just produce
the coefficient vector c D .c0; c1; : : : ; cn�1/, where cj D aj C bj for j D
0; 1; : : : ; n � 1.

Now, consider multiplying two degree-bound n polynomials A.x/ and B.x/ rep-
resented in coefficient form. If we use the method described by equations (30.1)
and (30.2), multiplying polynomials takes time ‚.n2/, since we must multiply
each coefficient in the vector a by each coefficient in the vector b. The operation
of multiplying polynomials in coefficient form seems to be considerably more diffi-
cult than that of evaluating a polynomial or adding two polynomials. The resulting
coefficient vector c, given by equation (30.2), is also called the convolution of the
input vectors a and b, denoted c D a ˝ b. Since multiplying polynomials and
computing convolutions are fundamental computational problems of considerable
practical importance, this chapter concentrates on efficient algorithms for them.

Point-value representation

A point-value representation of a polynomial A.x/ of degree-bound n is a set of
n point-value pairs

f.x0; y0/; .x1; y1/; : : : ; .xn�1; yn�1/g
such that all of the xk are distinct and

yk D A.xk/ (30.3)

for k D 0; 1; : : : ; n � 1. A polynomial has many different point-value representa-
tions, since we can use any set of n distinct points x0; x1; : : : ; xn�1 as a basis for
the representation.

Computing a point-value representation for a polynomial given in coefficient
form is in principle straightforward, since all we have to do is select n distinct
points x0; x1; : : : ; xn�1 and then evaluate A.xk/ for k D 0; 1; : : : ; n � 1. With
Horner’s method, evaluating a polynomial at n points takes time ‚.n2/. We shall
see later that if we choose the points xk cleverly, we can accelerate this computation
to run in time ‚.n lg n/.

The inverse of evaluation—determining the coefficient form of a polynomial
from a point-value representation—is interpolation. The following theorem shows
that interpolation is well defined when the desired interpolating polynomial must
have a degree-bound equal to the given number of point-value pairs.

Theorem 30.1 (Uniqueness of an interpolating polynomial)
For any set f.x0; y0/; .x1; y1/; : : : ; .xn�1; yn�1/g of n point-value pairs such that
all the xk values are distinct, there is a unique polynomial A.x/ of degree-bound n

such that yk D A.xk/ for k D 0; 1; : : : ; n � 1.

902 Chapter 30 Polynomials and the FFT

Proof The proof relies on the existence of the inverse of a certain matrix. Equa-
tion (30.3) is equivalent to the matrix equation˙

1 x0 x2
0 � � � xn�1

0

1 x1 x2
1 � � � xn�1

1
:::

:::
:::

: : :
:::

1 xn�1 x2
n�1 � � � xn�1

n�1

�˙
a0

a1

:::

an�1

�
D

˙
y0

y1

:::

yn�1

�
: (30.4)

The matrix on the left is denoted V.x0; x1; : : : ; xn�1/ and is known as a Vander-
monde matrix. By Problem D-1, this matrix has determinantY
0�j <k�n�1

.xk � xj / ;

and therefore, by Theorem D.5, it is invertible (that is, nonsingular) if the xk are
distinct. Thus, we can solve for the coefficients aj uniquely given the point-value
representation:

a D V.x0; x1; : : : ; xn�1/�1y :

The proof of Theorem 30.1 describes an algorithm for interpolation based on
solving the set (30.4) of linear equations. Using the LU decomposition algorithms
of Chapter 28, we can solve these equations in time O.n3/.

A faster algorithm for n-point interpolation is based on Lagrange’s formula:

A.x/ D
n�1X
kD0

yk

Y
j ¤k

.x � xj /

Y
j ¤k

.xk � xj /
: (30.5)

You may wish to verify that the right-hand side of equation (30.5) is a polynomial
of degree-bound n that satisfies A.xk/ D yk for all k. Exercise 30.1-5 asks you
how to compute the coefficients of A using Lagrange’s formula in time ‚.n2/.

Thus, n-point evaluation and interpolation are well-defined inverse operations
that transform between the coefficient representation of a polynomial and a point-
value representation.1 The algorithms described above for these problems take
time ‚.n2/.

The point-value representation is quite convenient for many operations on poly-
nomials. For addition, if C.x/ D A.x/CB.x/, then C.xk/ D A.xk/CB.xk/ for
any point xk. More precisely, if we have a point-value representation for A,

1Interpolation is a notoriously tricky problem from the point of view of numerical stability. Although
the approaches described here are mathematically correct, small differences in the inputs or round-off
errors during computation can cause large differences in the result.

30.1 Representing polynomials 903

f.x0; y0/; .x1; y1/; : : : ; .xn�1; yn�1/g ;

and for B ,

f.x0; y 0
0/; .x1; y 0

1/; : : : ; .xn�1; y 0
n�1/g

(note that A and B are evaluated at the same n points), then a point-value repre-
sentation for C is

f.x0; y0 C y 0
0/; .x1; y1 C y 0

1/; : : : ; .xn�1; yn�1 C y 0
n�1/g :

Thus, the time to add two polynomials of degree-bound n in point-value form
is ‚.n/.

Similarly, the point-value representation is convenient for multiplying polyno-
mials. If C.x/ D A.x/B.x/, then C.xk/ D A.xk/B.xk/ for any point xk, and
we can pointwise multiply a point-value representation for A by a point-value rep-
resentation for B to obtain a point-value representation for C . We must face the
problem, however, that degree.C / D degree.A/ C degree.B/; if A and B are of
degree-bound n, then C is of degree-bound 2n. A standard point-value represen-
tation for A and B consists of n point-value pairs for each polynomial. When we
multiply these together, we get n point-value pairs, but we need 2n pairs to interpo-
late a unique polynomial C of degree-bound 2n. (See Exercise 30.1-4.) We must
therefore begin with “extended” point-value representations for A and for B con-
sisting of 2n point-value pairs each. Given an extended point-value representation
for A,

f.x0; y0/; .x1; y1/; : : : ; .x2n�1; y2n�1/g ;

and a corresponding extended point-value representation for B ,

f.x0; y 0
0/; .x1; y 0

1/; : : : ; .x2n�1; y 0
2n�1/g ;

then a point-value representation for C is

f.x0; y0y 0
0/; .x1; y1y 0

1/; : : : ; .x2n�1; y2n�1y 0
2n�1/g :

Given two input polynomials in extended point-value form, we see that the time to
multiply them to obtain the point-value form of the result is ‚.n/, much less than
the time required to multiply polynomials in coefficient form.

Finally, we consider how to evaluate a polynomial given in point-value form at a
new point. For this problem, we know of no simpler approach than converting the
polynomial to coefficient form first, and then evaluating it at the new point.

Fast multiplication of polynomials in coefficient form

Can we use the linear-time multiplication method for polynomials in point-value
form to expedite polynomial multiplication in coefficient form? The answer hinges

904 Chapter 30 Polynomials and the FFT

a0; a1; : : : ; an�1

b0; b1; : : : ; bn�1

c0; c1; : : : ; c2n�2
Ordinary multiplication

Time ‚.n2/

Evaluation

Time ‚.n lg n/Time ‚.n lg n/

Interpolation

Pointwise multiplication

Time ‚.n/

A.!0
2n/; B.!0

2n/

A.!1
2n/; B.!1

2n/

A.!2n�1
2n /; B.!2n�1

2n /

:::
:::

C.!0
2n/

C.!1
2n/

C.!2n�1
2n /

Coefficient

Point-value
representations

representations

Figure 30.1 A graphical outline of an efficient polynomial-multiplication process. Representations
on the top are in coefficient form, while those on the bottom are in point-value form. The arrows
from left to right correspond to the multiplication operation. The !2n terms are complex .2n/th roots
of unity.

on whether we can convert a polynomial quickly from coefficient form to point-
value form (evaluate) and vice versa (interpolate).

We can use any points we want as evaluation points, but by choosing the eval-
uation points carefully, we can convert between representations in only ‚.n lg n/

time. As we shall see in Section 30.2, if we choose “complex roots of unity” as
the evaluation points, we can produce a point-value representation by taking the
discrete Fourier transform (or DFT) of a coefficient vector. We can perform the
inverse operation, interpolation, by taking the “inverse DFT” of point-value pairs,
yielding a coefficient vector. Section 30.2 will show how the FFT accomplishes
the DFT and inverse DFT operations in ‚.n lg n/ time.

Figure 30.1 shows this strategy graphically. One minor detail concerns degree-
bounds. The product of two polynomials of degree-bound n is a polynomial of
degree-bound 2n. Before evaluating the input polynomials A and B , therefore,
we first double their degree-bounds to 2n by adding n high-order coefficients of 0.
Because the vectors have 2n elements, we use “complex .2n/th roots of unity,”
which are denoted by the !2n terms in Figure 30.1.

Given the FFT, we have the following ‚.n lg n/-time procedure for multiplying
two polynomials A.x/ and B.x/ of degree-bound n, where the input and output
representations are in coefficient form. We assume that n is a power of 2; we can
always meet this requirement by adding high-order zero coefficients.

1. Double degree-bound: Create coefficient representations of A.x/ and B.x/ as
degree-bound 2n polynomials by adding n high-order zero coefficients to each.

30.1 Representing polynomials 905

2. Evaluate: Compute point-value representations of A.x/ and B.x/ of length 2n

by applying the FFT of order 2n on each polynomial. These representations
contain the values of the two polynomials at the .2n/th roots of unity.

3. Pointwise multiply: Compute a point-value representation for the polynomial
C.x/ D A.x/B.x/ by multiplying these values together pointwise. This repre-
sentation contains the value of C.x/ at each .2n/th root of unity.

4. Interpolate: Create the coefficient representation of the polynomial C.x/ by
applying the FFT on 2n point-value pairs to compute the inverse DFT.

Steps (1) and (3) take time ‚.n/, and steps (2) and (4) take time ‚.n lg n/. Thus,
once we show how to use the FFT, we will have proven the following.

Theorem 30.2
We can multiply two polynomials of degree-bound n in time ‚.n lg n/, with both
the input and output representations in coefficient form.

Exercises

30.1-1
Multiply the polynomials A.x/ D 7x3 � x2 C x � 10 and B.x/ D 8x3 � 6x C 3

using equations (30.1) and (30.2).

30.1-2
Another way to evaluate a polynomial A.x/ of degree-bound n at a given point x0

is to divide A.x/ by the polynomial .x�x0/, obtaining a quotient polynomial q.x/

of degree-bound n � 1 and a remainder r , such that

A.x/ D q.x/.x � x0/C r :

Clearly, A.x0/ D r . Show how to compute the remainder r and the coefficients
of q.x/ in time ‚.n/ from x0 and the coefficients of A.

30.1-3
Derive a point-value representation for Arev.x/ D Pn�1

j D0 an�1�j xj from a point-

value representation for A.x/ DPn�1

j D0 aj xj , assuming that none of the points is 0.

30.1-4
Prove that n distinct point-value pairs are necessary to uniquely specify a polyno-
mial of degree-bound n, that is, if fewer than n distinct point-value pairs are given,
they fail to specify a unique polynomial of degree-bound n. (Hint: Using Theo-
rem 30.1, what can you say about a set of n� 1 point-value pairs to which you add
one more arbitrarily chosen point-value pair?)

906 Chapter 30 Polynomials and the FFT

30.1-5
Show how to use equation (30.5) to interpolate in time ‚.n2/. (Hint: First compute
the coefficient representation of the polynomial

Q
j .x � xj / and then divide by

.x�xk/ as necessary for the numerator of each term; see Exercise 30.1-2. You can
compute each of the n denominators in time O.n/.)

30.1-6
Explain what is wrong with the “obvious” approach to polynomial division using
a point-value representation, i.e., dividing the corresponding y values. Discuss
separately the case in which the division comes out exactly and the case in which
it doesn’t.

30.1-7
Consider two sets A and B , each having n integers in the range from 0 to 10n. We
wish to compute the Cartesian sum of A and B , defined by

C D fx C y W x 2 A and y 2 Bg :

Note that the integers in C are in the range from 0 to 20n. We want to find the
elements of C and the number of times each element of C is realized as a sum of
elements in A and B . Show how to solve the problem in O.n lg n/ time. (Hint:
Represent A and B as polynomials of degree at most 10n.)

30.2 The DFT and FFT

In Section 30.1, we claimed that if we use complex roots of unity, we can evaluate
and interpolate polynomials in ‚.n lg n/ time. In this section, we define complex
roots of unity and study their properties, define the DFT, and then show how the
FFT computes the DFT and its inverse in ‚.n lg n/ time.

Complex roots of unity

A complex nth root of unity is a complex number ! such that

!n D 1 :

There are exactly n complex nth roots of unity: e2�ik=n for k D 0; 1; : : : ; n � 1.
To interpret this formula, we use the definition of the exponential of a complex
number:

eiu D cos.u/C i sin.u/ :

Figure 30.2 shows that the n complex roots of unity are equally spaced around the
circle of unit radius centered at the origin of the complex plane. The value

30.2 The DFT and FFT 907

1�1

i

�i

!0
8 D !8

8

!1
8

!2
8

!3
8

!4
8

!5
8

!6
8

!7
8

Figure 30.2 The values of !0
8 ; !1

8 ; : : : ; !7
8 in the complex plane, where !8 D e2�i=8 is the prin-

cipal 8th root of unity.

!n D e2�i=n (30.6)

is the principal nth root of unity;2 all other complex nth roots of unity are powers
of !n.

The n complex nth roots of unity,

!0
n; !1

n; : : : ; !n�1
n ;

form a group under multiplication (see Section 31.3). This group has the same
structure as the additive group .Zn;C/ modulo n, since !n

n D !0
n D 1 implies that

!j
n!k

n D !j Ck
n D !.j Ck/ mod n

n . Similarly, !�1
n D !n�1

n . The following lemmas
furnish some essential properties of the complex nth roots of unity.

Lemma 30.3 (Cancellation lemma)
For any integers n � 0, k � 0, and d > 0,

!dk
dn D !k

n : (30.7)

Proof The lemma follows directly from equation (30.6), since

!dk
dn D �

e2�i=dn
�dk

D �
e2�i=n

�k
D !k

n :

2Many other authors define !n differently: !n D e�2�i=n. This alternative definition tends to be
used for signal-processing applications. The underlying mathematics is substantially the same with
either definition of !n.

908 Chapter 30 Polynomials and the FFT

Corollary 30.4
For any even integer n > 0,

!n=2
n D !2 D �1 :

Proof The proof is left as Exercise 30.2-1.

Lemma 30.5 (Halving lemma)
If n > 0 is even, then the squares of the n complex nth roots of unity are the n=2

complex .n=2/th roots of unity.

Proof By the cancellation lemma, we have .!k
n/2 D !k

n=2
, for any nonnegative

integer k. Note that if we square all of the complex nth roots of unity, then we
obtain each .n=2/th root of unity exactly twice, since

.!kCn=2
n /2 D !2kCn

n

D !2k
n !n

n

D !2k
n

D .!k
n/2 :

Thus, !k
n and !kCn=2

n have the same square. We could also have used Corol-
lary 30.4 to prove this property, since !n=2

n D �1 implies !kCn=2
n D �!k

n , and
thus .!kCn=2

n /2 D .!k
n/2.

As we shall see, the halving lemma is essential to our divide-and-conquer ap-
proach for converting between coefficient and point-value representations of poly-
nomials, since it guarantees that the recursive subproblems are only half as large.

Lemma 30.6 (Summation lemma)
For any integer n � 1 and nonzero integer k not divisible by n,

n�1X
j D0

�
!k

n

�j D 0 :

Proof Equation (A.5) applies to complex values as well as to reals, and so we
have

30.2 The DFT and FFT 909

n�1X
j D0

�
!k

n

�j D .!k
n/n � 1

!k
n � 1

D .!n
n/k � 1

!k
n � 1

D .1/k � 1

!k
n � 1

D 0 :

Because we require that k is not divisible by n, and because !k
n D 1 only when k

is divisible by n, we ensure that the denominator is not 0.

The DFT

Recall that we wish to evaluate a polynomial

A.x/ D
n�1X
j D0

aj xj

of degree-bound n at !0
n; !1

n; !2
n; : : : ; !n�1

n (that is, at the n complex nth roots of
unity).3 We assume that A is given in coefficient form: a D .a0; a1; : : : ; an�1/. Let
us define the results yk, for k D 0; 1; : : : ; n � 1, by

yk D A.!k
n/

D
n�1X
j D0

aj !kj
n : (30.8)

The vector y D .y0; y1; : : : ; yn�1/ is the discrete Fourier transform (DFT) of the
coefficient vector a D .a0; a1; : : : ; an�1/. We also write y D DFTn.a/.

The FFT

By using a method known as the fast Fourier transform (FFT), which takes ad-
vantage of the special properties of the complex roots of unity, we can compute
DFTn.a/ in time ‚.n lg n/, as opposed to the ‚.n2/ time of the straightforward
method. We assume throughout that n is an exact power of 2. Although strategies

3The length n is actually what we referred to as 2n in Section 30.1, since we double the degree-bound
of the given polynomials prior to evaluation. In the context of polynomial multiplication, therefore,
we are actually working with complex .2n/th roots of unity.

910 Chapter 30 Polynomials and the FFT

for dealing with non-power-of-2 sizes are known, they are beyond the scope of this
book.

The FFT method employs a divide-and-conquer strategy, using the even-indexed
and odd-indexed coefficients of A.x/ separately to define the two new polynomials
AŒ0�.x/ and AŒ1�.x/ of degree-bound n=2:

AŒ0�.x/ D a0 C a2x C a4x2 C � � � C an�2xn=2�1 ;

AŒ1�.x/ D a1 C a3x C a5x2 C � � � C an�1xn=2�1 :

Note that AŒ0� contains all the even-indexed coefficients of A (the binary represen-
tation of the index ends in 0) and AŒ1� contains all the odd-indexed coefficients (the
binary representation of the index ends in 1). It follows that

A.x/ D AŒ0�.x2/C xAŒ1�.x2/ ; (30.9)

so that the problem of evaluating A.x/ at !0
n; !1

n; : : : ; !n�1
n reduces to

1. evaluating the degree-bound n=2 polynomials AŒ0�.x/ and AŒ1�.x/ at the points

.!0
n/2; .!1

n/2; : : : ; .!n�1
n /2 ; (30.10)

and then

2. combining the results according to equation (30.9).

By the halving lemma, the list of values (30.10) consists not of n distinct val-
ues but only of the n=2 complex .n=2/th roots of unity, with each root occurring
exactly twice. Therefore, we recursively evaluate the polynomials AŒ0� and AŒ1�

of degree-bound n=2 at the n=2 complex .n=2/th roots of unity. These subprob-
lems have exactly the same form as the original problem, but are half the size.
We have now successfully divided an n-element DFTn computation into two n=2-
element DFTn=2 computations. This decomposition is the basis for the follow-
ing recursive FFT algorithm, which computes the DFT of an n-element vector
a D .a0; a1; : : : ; an�1/, where n is a power of 2.

30.2 The DFT and FFT 911

RECURSIVE-FFT.a/

1 n D a: length // n is a power of 2

2 if n == 1

3 return a

4 !n D e2�i=n

5 ! D 1

6 aŒ0� D .a0; a2; : : : ; an�2/

7 aŒ1� D .a1; a3; : : : ; an�1/

8 yŒ0� D RECURSIVE-FFT.aŒ0�/

9 yŒ1� D RECURSIVE-FFT.aŒ1�/

10 for k D 0 to n=2 � 1

11 yk D y
Œ0�

k
C ! y

Œ1�

k

12 ykC.n=2/ D y
Œ0�

k
� ! y

Œ1�

k

13 ! D ! !n

14 return y // y is assumed to be a column vector

The RECURSIVE-FFT procedure works as follows. Lines 2–3 represent the basis
of the recursion; the DFT of one element is the element itself, since in this case

y0 D a0 !0
1

D a0 � 1
D a0 :

Lines 6–7 define the coefficient vectors for the polynomials AŒ0� and AŒ1�. Lines
4, 5, and 13 guarantee that ! is updated properly so that whenever lines 11–12
are executed, we have ! D !k

n . (Keeping a running value of ! from iteration
to iteration saves time over computing !k

n from scratch each time through the for
loop.) Lines 8–9 perform the recursive DFTn=2 computations, setting, for k D
0; 1; : : : ; n=2 � 1,

y
Œ0�

k
D AŒ0�.!k

n=2/ ;

y
Œ1�

k
D AŒ1�.!k

n=2/ ;

or, since !k
n=2
D !2k

n by the cancellation lemma,

y
Œ0�

k
D AŒ0�.!2k

n / ;

y
Œ1�

k
D AŒ1�.!2k

n / :

912 Chapter 30 Polynomials and the FFT

Lines 11–12 combine the results of the recursive DFTn=2 calculations. For y0; y1;

: : : ; yn=2�1, line 11 yields

yk D y
Œ0�

k
C !k

ny
Œ1�

k

D AŒ0�.!2k
n /C !k

nAŒ1�.!2k
n /

D A.!k
n/ (by equation (30.9)) .

For yn=2; yn=2C1; : : : ; yn�1, letting k D 0; 1; : : : ; n=2 � 1, line 12 yields

ykC.n=2/ D y
Œ0�

k
� !k

ny
Œ1�

k

D y
Œ0�

k
C !kC.n=2/

n y
Œ1�

k
(since !kC.n=2/

n D �!k
n)

D AŒ0�.!2k
n /C !kC.n=2/

n AŒ1�.!2k
n /

D AŒ0�.!2kCn
n /C !kC.n=2/

n AŒ1�.!2kCn
n / (since !2kCn

n D !2k
n)

D A.!kC.n=2/
n / (by equation (30.9)) .

Thus, the vector y returned by RECURSIVE-FFT is indeed the DFT of the input
vector a.

Lines 11 and 12 multiply each value y
Œ1�

k
by !k

n , for k D 0; 1; : : : ; n=2 � 1.
Line 11 adds this product to y

Œ0�

k
, and line 12 subtracts it. Because we use each

factor !k
n in both its positive and negative forms, we call the factors !k

n twiddle
factors.

To determine the running time of procedure RECURSIVE-FFT, we note that
exclusive of the recursive calls, each invocation takes time ‚.n/, where n is the
length of the input vector. The recurrence for the running time is therefore

T .n/ D 2T .n=2/C‚.n/

D ‚.n lg n/ :

Thus, we can evaluate a polynomial of degree-bound n at the complex nth roots of
unity in time ‚.n lg n/ using the fast Fourier transform.

Interpolation at the complex roots of unity

We now complete the polynomial multiplication scheme by showing how to in-
terpolate the complex roots of unity by a polynomial, which enables us to convert
from point-value form back to coefficient form. We interpolate by writing the DFT
as a matrix equation and then looking at the form of the matrix inverse.

From equation (30.4), we can write the DFT as the matrix product y D Vna,
where Vn is a Vandermonde matrix containing the appropriate powers of !n:

30.2 The DFT and FFT 913�
y0

y1

y2

y3

:::

yn�1

�
D

�
1 1 1 1 � � � 1

1 !n !2
n !3

n � � � !n�1
n

1 !2
n !4

n !6
n � � � !2.n�1/

n

1 !3
n !6

n !9
n � � � !3.n�1/

n
:::

:::
:::

:::
: : :

:::

1 !n�1
n !2.n�1/

n !3.n�1/
n � � � !.n�1/.n�1/

n

��
a0

a1

a2

a3

:::

an�1

�
:

The .k; j / entry of Vn is !kj
n , for j; k D 0; 1; : : : ; n � 1. The exponents of the

entries of Vn form a multiplication table.
For the inverse operation, which we write as a D DFT�1

n .y/, we proceed by
multiplying y by the matrix V �1

n , the inverse of Vn.

Theorem 30.7
For j; k D 0; 1; : : : ; n � 1, the .j; k/ entry of V �1

n is !�kj
n =n.

Proof We show that V �1
n Vn D In, the n 	 n identity matrix. Consider the .j; j 0/

entry of V �1
n Vn:

ŒV �1
n Vn�jj 0 D

n�1X
kD0

.!�kj
n =n/.!kj 0

n /

D
n�1X
kD0

!k.j 0�j /
n =n :

This summation equals 1 if j 0 D j , and it is 0 otherwise by the summation lemma
(Lemma 30.6). Note that we rely on �.n � 1/ � j 0 � j � n � 1, so that j 0 � j is
not divisible by n, in order for the summation lemma to apply.

Given the inverse matrix V �1
n , we have that DFT�1

n .y/ is given by

aj D 1

n

n�1X
kD0

yk!�kj
n (30.11)

for j D 0; 1; : : : ; n � 1. By comparing equations (30.8) and (30.11), we see that
by modifying the FFT algorithm to switch the roles of a and y, replace !n by !�1

n ,
and divide each element of the result by n, we compute the inverse DFT (see Ex-
ercise 30.2-4). Thus, we can compute DFT�1

n in ‚.n lg n/ time as well.
We see that, by using the FFT and the inverse FFT, we can transform a poly-

nomial of degree-bound n back and forth between its coefficient representation
and a point-value representation in time ‚.n lg n/. In the context of polynomial
multiplication, we have shown the following.

914 Chapter 30 Polynomials and the FFT

Theorem 30.8 (Convolution theorem)
For any two vectors a and b of length n, where n is a power of 2,

a˝ b D DFT�1
2n .DFT2n.a/ � DFT2n.b// ;

where the vectors a and b are padded with 0s to length 2n and � denotes the com-
ponentwise product of two 2n-element vectors.

Exercises

30.2-1
Prove Corollary 30.4.

30.2-2
Compute the DFT of the vector .0; 1; 2; 3/.

30.2-3
Do Exercise 30.1-1 by using the ‚.n lg n/-time scheme.

30.2-4
Write pseudocode to compute DFT�1

n in ‚.n lg n/ time.

30.2-5
Describe the generalization of the FFT procedure to the case in which n is a power
of 3. Give a recurrence for the running time, and solve the recurrence.

30.2-6 ?

Suppose that instead of performing an n-element FFT over the field of complex
numbers (where n is even), we use the ring Zm of integers modulo m, where
m D 2tn=2 C 1 and t is an arbitrary positive integer. Use ! D 2t instead of !n

as a principal nth root of unity, modulo m. Prove that the DFT and the inverse DFT
are well defined in this system.

30.2-7
Given a list of values ´0; ´1; : : : ; ´n�1 (possibly with repetitions), show how to find
the coefficients of a polynomial P.x/ of degree-bound n C 1 that has zeros only
at ´0; ´1; : : : ; ´n�1 (possibly with repetitions). Your procedure should run in time
O.n lg2 n/. (Hint: The polynomial P.x/ has a zero at j́ if and only if P.x/ is a
multiple of .x � j́ /.)

30.2-8 ?

The chirp transform of a vector a D .a0; a1; : : : ; an�1/ is the vector y D
.y0; y1; : : : ; yn�1/, where yk D

Pn�1

j D0 aj ´kj and ´ is any complex number. The

30.3 Efficient FFT implementations 915

DFT is therefore a special case of the chirp transform, obtained by taking ´ D !n.
Show how to evaluate the chirp transform in time O.n lg n/ for any complex num-
ber ´. (Hint: Use the equation

yk D ´k2=2

n�1X
j D0

�
aj ´j 2=2

� �
´�.k�j /2=2

�
to view the chirp transform as a convolution.)

30.3 Efficient FFT implementations

Since the practical applications of the DFT, such as signal processing, demand the
utmost speed, this section examines two efficient FFT implementations. First, we
shall examine an iterative version of the FFT algorithm that runs in ‚.n lg n/ time
but can have a lower constant hidden in the ‚-notation than the recursive version
in Section 30.2. (Depending on the exact implementation, the recursive version
may use the hardware cache more efficiently.) Then, we shall use the insights that
led us to the iterative implementation to design an efficient parallel FFT circuit.

An iterative FFT implementation

We first note that the for loop of lines 10–13 of RECURSIVE-FFT involves com-
puting the value !k

n y
Œ1�

k
twice. In compiler terminology, we call such a value a

common subexpression. We can change the loop to compute it only once, storing
it in a temporary variable t .

for k D 0 to n=2 � 1

t D ! y
Œ1�

k

yk D y
Œ0�

k
C t

ykC.n=2/ D y
Œ0�

k
� t

! D ! !n

The operation in this loop, multiplying the twiddle factor ! D !k
n by y

Œ1�

k
, storing

the product into t , and adding and subtracting t from y
Œ0�

k
, is known as a butterfly

operation and is shown schematically in Figure 30.3.
We now show how to make the FFT algorithm iterative rather than recursive

in structure. In Figure 30.4, we have arranged the input vectors to the recursive
calls in an invocation of RECURSIVE-FFT in a tree structure, where the initial
call is for n D 8. The tree has one node for each call of the procedure, labeled

916 Chapter 30 Polynomials and the FFT

+

–•

(a) (b)

y
Œ0�

k
y

Œ0�

k

y
Œ1�

k
y

Œ1�

k

!k
n!k

n

y
Œ0�

k
C !k

ny
Œ1�

k
y

Œ0�

k
C !k

ny
Œ1�

k

y
Œ0�

k
� !k

ny
Œ1�

k
y

Œ0�

k
� !k

ny
Œ1�

k

Figure 30.3 A butterfly operation. (a) The two input values enter from the left, the twiddle fac-

tor !k
n is multiplied by y

Œ1�
k

, and the sum and difference are output on the right. (b) A simplified
drawing of a butterfly operation. We will use this representation in a parallel FFT circuit.

(a0,a1,a2,a3,a4,a5,a6,a7)

(a0,a2,a4,a6)

(a0,a4) (a2,a6)

(a0) (a4) (a2) (a6)

(a1,a3,a5,a7)

(a1,a5)

(a1) (a5)

(a3,a7)

(a3) (a7)

Figure 30.4 The tree of input vectors to the recursive calls of the RECURSIVE-FFT procedure. The
initial invocation is for n D 8.

by the corresponding input vector. Each RECURSIVE-FFT invocation makes two
recursive calls, unless it has received a 1-element vector. The first call appears in
the left child, and the second call appears in the right child.

Looking at the tree, we observe that if we could arrange the elements of the
initial vector a into the order in which they appear in the leaves, we could trace
the execution of the RECURSIVE-FFT procedure, but bottom up instead of top
down. First, we take the elements in pairs, compute the DFT of each pair using
one butterfly operation, and replace the pair with its DFT. The vector then holds
n=2 2-element DFTs. Next, we take these n=2 DFTs in pairs and compute the
DFT of the four vector elements they come from by executing two butterfly oper-
ations, replacing two 2-element DFTs with one 4-element DFT. The vector then
holds n=4 4-element DFTs. We continue in this manner until the vector holds two
.n=2/-element DFTs, which we combine using n=2 butterfly operations into the
final n-element DFT.

To turn this bottom-up approach into code, we use an array AŒ0 : : n � 1� that
initially holds the elements of the input vector a in the order in which they appear

30.3 Efficient FFT implementations 917

in the leaves of the tree of Figure 30.4. (We shall show later how to determine this
order, which is known as a bit-reversal permutation.) Because we have to combine
DFTs on each level of the tree, we introduce a variable s to count the levels, ranging
from 1 (at the bottom, when we are combining pairs to form 2-element DFTs)
to lg n (at the top, when we are combining two .n=2/-element DFTs to produce the
final result). The algorithm therefore has the following structure:

1 for s D 1 to lg n

2 for k D 0 to n � 1 by 2s

3 combine the two 2s�1-element DFTs in
AŒk : : k C 2s�1 � 1� and AŒk C 2s�1 : : k C 2s � 1�

into one 2s-element DFT in AŒk : : k C 2s � 1�

We can express the body of the loop (line 3) as more precise pseudocode. We
copy the for loop from the RECURSIVE-FFT procedure, identifying yŒ0� with
AŒk : : k C 2s�1 � 1� and yŒ1� with AŒk C 2s�1 : : k C 2s � 1�. The twiddle fac-
tor used in each butterfly operation depends on the value of s; it is a power of !m,
where m D 2s . (We introduce the variable m solely for the sake of readability.)
We introduce another temporary variable u that allows us to perform the butterfly
operation in place. When we replace line 3 of the overall structure by the loop
body, we get the following pseudocode, which forms the basis of the parallel im-
plementation we shall present later. The code first calls the auxiliary procedure
BIT-REVERSE-COPY.a; A/ to copy vector a into array A in the initial order in
which we need the values.

ITERATIVE-FFT.a/

1 BIT-REVERSE-COPY.a; A/

2 n D a: length // n is a power of 2

3 for s D 1 to lg n

4 m D 2s

5 !m D e2�i=m

6 for k D 0 to n � 1 by m

7 ! D 1

8 for j D 0 to m=2 � 1

9 t D ! AŒk C j Cm=2�

10 u D AŒk C j �

11 AŒk C j � D uC t

12 AŒk C j Cm=2� D u � t

13 ! D ! !m

14 return A

How does BIT-REVERSE-COPY get the elements of the input vector a into the
desired order in the array A? The order in which the leaves appear in Figure 30.4

918 Chapter 30 Polynomials and the FFT

is a bit-reversal permutation. That is, if we let rev.k/ be the lg n-bit integer
formed by reversing the bits of the binary representation of k, then we want to
place vector element ak in array position AŒrev.k/�. In Figure 30.4, for exam-
ple, the leaves appear in the order 0; 4; 2; 6; 1; 5; 3; 7; this sequence in binary is
000; 100; 010; 110; 001; 101; 011; 111, and when we reverse the bits of each value
we get the sequence 000; 001; 010; 011; 100; 101; 110; 111. To see that we want a
bit-reversal permutation in general, we note that at the top level of the tree, indices
whose low-order bit is 0 go into the left subtree and indices whose low-order bit
is 1 go into the right subtree. Stripping off the low-order bit at each level, we con-
tinue this process down the tree, until we get the order given by the bit-reversal
permutation at the leaves.

Since we can easily compute the function rev.k/, the BIT-REVERSE-COPY pro-
cedure is simple:

BIT-REVERSE-COPY.a; A/

1 n D a: length
2 for k D 0 to n � 1

3 AŒrev.k/� D ak

The iterative FFT implementation runs in time ‚.n lg n/. The call to BIT-
REVERSE-COPY.a; A/ certainly runs in O.n lg n/ time, since we iterate n times
and can reverse an integer between 0 and n � 1, with lg n bits, in O.lg n/ time.
(In practice, because we usually know the initial value of n in advance, we would
probably code a table mapping k to rev.k/, making BIT-REVERSE-COPY run in
‚.n/ time with a low hidden constant. Alternatively, we could use the clever amor-
tized reverse binary counter scheme described in Problem 17-1.) To complete the
proof that ITERATIVE-FFT runs in time ‚.n lg n/, we show that L.n/, the number
of times the body of the innermost loop (lines 8–13) executes, is ‚.n lg n/. The
for loop of lines 6–13 iterates n=m D n=2s times for each value of s, and the
innermost loop of lines 8–13 iterates m=2 D 2s�1 times. Thus,

L.n/ D
lg nX
sD1

n

2s
� 2s�1

D
lg nX
sD1

n

2

D ‚.n lg n/ :

30.3 Efficient FFT implementations 919

a0

a1

a2

a3

a4

a5

a6

a7

y0

y1

y2

y3

y4

y5

y6

y7

stage s D 1 stage s D 2 stage s D 3

!0
2

!0
2

!0
2

!0
2

!0
4

!0
4

!1
4

!1
4

!0
8

!1
8

!2
8

!3
8

Figure 30.5 A circuit that computes the FFT in parallel, here shown on n D 8 inputs. Each
butterfly operation takes as input the values on two wires, along with a twiddle factor, and it produces
as outputs the values on two wires. The stages of butterflies are labeled to correspond to iterations
of the outermost loop of the ITERATIVE-FFT procedure. Only the top and bottom wires passing
through a butterfly interact with it; wires that pass through the middle of a butterfly do not affect
that butterfly, nor are their values changed by that butterfly. For example, the top butterfly in stage 2

has nothing to do with wire 1 (the wire whose output is labeled y1); its inputs and outputs are only
on wires 0 and 2 (labeled y0 and y2, respectively). This circuit has depth ‚.lg n/ and performs
‚.n lg n/ butterfly operations altogether.

A parallel FFT circuit

We can exploit many of the properties that allowed us to implement an efficient
iterative FFT algorithm to produce an efficient parallel algorithm for the FFT. We
will express the parallel FFT algorithm as a circuit. Figure 30.5 shows a parallel
FFT circuit, which computes the FFT on n inputs, for n D 8. The circuit begins
with a bit-reverse permutation of the inputs, followed by lg n stages, each stage
consisting of n=2 butterflies executed in parallel. The depth of the circuit—the
maximum number of computational elements between any output and any input
that can reach it—is therefore ‚.lg n/.

The leftmost part of the parallel FFT circuit performs the bit-reverse permuta-
tion, and the remainder mimics the iterative ITERATIVE-FFT procedure. Because
each iteration of the outermost for loop performs n=2 independent butterfly opera-
tions, the circuit performs them in parallel. The value of s in each iteration within

920 Chapter 30 Polynomials and the FFT

ITERATIVE-FFT corresponds to a stage of butterflies shown in Figure 30.5. For
s D 1; 2; : : : ; lg n, stage s consists of n=2s groups of butterflies (corresponding to
each value of k in ITERATIVE-FFT), with 2s�1 butterflies per group (corresponding
to each value of j in ITERATIVE-FFT). The butterflies shown in Figure 30.5 corre-
spond to the butterfly operations of the innermost loop (lines 9–12 of ITERATIVE-
FFT). Note also that the twiddle factors used in the butterflies correspond to those
used in ITERATIVE-FFT: in stage s, we use !0

m; !1
m; : : : ; !m=2�1

m , where m D 2s .

Exercises

30.3-1
Show how ITERATIVE-FFT computes the DFT of the input vector .0; 2; 3;�1; 4;

5; 7; 9/.

30.3-2
Show how to implement an FFT algorithm with the bit-reversal permutation occur-
ring at the end, rather than at the beginning, of the computation. (Hint: Consider
the inverse DFT.)

30.3-3
How many times does ITERATIVE-FFT compute twiddle factors in each stage?
Rewrite ITERATIVE-FFT to compute twiddle factors only 2s�1 times in stage s.

30.3-4 ?

Suppose that the adders within the butterfly operations of the FFT circuit some-
times fail in such a manner that they always produce a zero output, independent
of their inputs. Suppose that exactly one adder has failed, but that you don’t know
which one. Describe how you can identify the failed adder by supplying inputs to
the overall FFT circuit and observing the outputs. How efficient is your method?

Problems

30-1 Divide-and-conquer multiplication
a. Show how to multiply two linear polynomials ax C b and cx C d using only

three multiplications. (Hint: One of the multiplications is .aC b/ � .c C d/.)

b. Give two divide-and-conquer algorithms for multiplying two polynomials of
degree-bound n in ‚.nlg 3/ time. The first algorithm should divide the input
polynomial coefficients into a high half and a low half, and the second algorithm
should divide them according to whether their index is odd or even.

Problems for Chapter 30 921

c. Show how to multiply two n-bit integers in O.nlg 3/ steps, where each step
operates on at most a constant number of 1-bit values.

30-2 Toeplitz matrices
A Toeplitz matrix is an n 	 n matrix A D .aij / such that aij D ai�1;j �1 for
i D 2; 3; : : : ; n and j D 2; 3; : : : ; n.

a. Is the sum of two Toeplitz matrices necessarily Toeplitz? What about the prod-
uct?

b. Describe how to represent a Toeplitz matrix so that you can add two n 	 n

Toeplitz matrices in O.n/ time.

c. Give an O.n lg n/-time algorithm for multiplying an n	n Toeplitz matrix by a
vector of length n. Use your representation from part (b).

d. Give an efficient algorithm for multiplying two n	n Toeplitz matrices. Analyze
its running time.

30-3 Multidimensional fast Fourier transform
We can generalize the 1-dimensional discrete Fourier transform defined by equa-
tion (30.8) to d dimensions. The input is a d -dimensional array A D .aj1;j2;:::;jd

/

whose dimensions are n1; n2; : : : ; nd , where n1n2 � � � nd D n. We define the
d -dimensional discrete Fourier transform by the equation

yk1;k2;:::;kd
D

n1�1X
j1D0

n2�1X
j2D0

� � �
nd �1X
jd D0

aj1;j2;:::;jd
!j1k1

n1
!j2k2

n2
� � �!jd kd

nd

for 0 � k1 < n1, 0 � k2 < n2, . . . , 0 � kd < nd .

a. Show that we can compute a d -dimensional DFT by computing 1-dimensional
DFTs on each dimension in turn. That is, we first compute n=n1 separate
1-dimensional DFTs along dimension 1. Then, using the result of the DFTs
along dimension 1 as the input, we compute n=n2 separate 1-dimensional DFTs
along dimension 2. Using this result as the input, we compute n=n3 separate
1-dimensional DFTs along dimension 3, and so on, through dimension d .

b. Show that the ordering of dimensions does not matter, so that we can compute
a d -dimensional DFT by computing the 1-dimensional DFTs in any order of
the d dimensions.

922 Chapter 30 Polynomials and the FFT

c. Show that if we compute each 1-dimensional DFT by computing the fast Four-
ier transform, the total time to compute a d -dimensional DFT is O.n lg n/,
independent of d .

30-4 Evaluating all derivatives of a polynomial at a point
Given a polynomial A.x/ of degree-bound n, we define its t th derivative by

A.t/.x/ D

„
A.x/ if t D 0 ;

d
dx

A.t�1/.x/ if 1 � t � n � 1 ;

0 if t � n :

From the coefficient representation .a0; a1; : : : ; an�1/ of A.x/ and a given point x0,
we wish to determine A.t/.x0/ for t D 0; 1; : : : ; n � 1.

a. Given coefficients b0; b1; : : : ; bn�1 such that

A.x/ D
n�1X
j D0

bj .x � x0/j ;

show how to compute A.t/.x0/, for t D 0; 1; : : : ; n � 1, in O.n/ time.

b. Explain how to find b0; b1; : : : ; bn�1 in O.n lg n/ time, given A.x0 C !k
n/ for

k D 0; 1; : : : ; n � 1.

c. Prove that

A.x0 C !k
n/ D

n�1X
rD0

!kr

n

rŠ

n�1X
j D0

f .j /g.r � j /

!
;

where f .j / D aj � j Š and

g.l/ D
(

x�l
0 =.�l/Š if �.n� 1/ � l � 0 ;

0 if 1 � l � n � 1 :

d. Explain how to evaluate A.x0 C !k
n/ for k D 0; 1; : : : ; n � 1 in O.n lg n/

time. Conclude that we can evaluate all nontrivial derivatives of A.x/ at x0 in
O.n lg n/ time.

Problems for Chapter 30 923

30-5 Polynomial evaluation at multiple points
We have seen how to evaluate a polynomial of degree-bound n at a single point in
O.n/ time using Horner’s rule. We have also discovered how to evaluate such a
polynomial at all n complex roots of unity in O.n lg n/ time using the FFT. We
shall now show how to evaluate a polynomial of degree-bound n at n arbitrary
points in O.n lg2 n/ time.

To do so, we shall assume that we can compute the polynomial remainder when
one such polynomial is divided by another in O.n lg n/ time, a result that we state
without proof. For example, the remainder of 3x3C x2 � 3x C 1 when divided by
x2 C x C 2 is

.3x3 C x2 � 3x C 1/ mod .x2 C x C 2/ D �7x C 5 :

Given the coefficient representation of a polynomial A.x/ D Pn�1

kD0 akxk and
n points x0; x1; : : : ; xn�1, we wish to compute the n values A.x0/; A.x1/; : : : ;

A.xn�1/. For 0 � i � j � n � 1, define the polynomials Pij .x/ D Qj

kDi.x � xk/

and Qij .x/ D A.x/ mod Pij .x/. Note that Qij .x/ has degree at most j � i .

a. Prove that A.x/ mod .x � ´/ D A.´/ for any point ´.

b. Prove that Qkk.x/ D A.xk/ and that Q0;n�1.x/ D A.x/.

c. Prove that for i � k � j , we have Qik.x/ D Qij .x/ mod Pik.x/ and
Qkj .x/ D Qij .x/ mod Pkj .x/.

d. Give an O.n lg2 n/-time algorithm to evaluate A.x0/; A.x1/; : : : ; A.xn�1/.

30-6 FFT using modular arithmetic
As defined, the discrete Fourier transform requires us to compute with complex
numbers, which can result in a loss of precision due to round-off errors. For some
problems, the answer is known to contain only integers, and by using a variant of
the FFT based on modular arithmetic, we can guarantee that the answer is calcu-
lated exactly. An example of such a problem is that of multiplying two polynomials
with integer coefficients. Exercise 30.2-6 gives one approach, using a modulus of
length �.n/ bits to handle a DFT on n points. This problem gives another ap-
proach, which uses a modulus of the more reasonable length O.lg n/; it requires
that you understand the material of Chapter 31. Let n be a power of 2.

a. Suppose that we search for the smallest k such that p D knC 1 is prime. Give
a simple heuristic argument why we might expect k to be approximately ln n.
(The value of k might be much larger or smaller, but we can reasonably expect
to examine O.lg n/ candidate values of k on average.) How does the expected
length of p compare to the length of n?

924 Chapter 30 Polynomials and the FFT

Let g be a generator of Z
�
p , and let w D gk mod p.

b. Argue that the DFT and the inverse DFT are well-defined inverse operations
modulo p, where w is used as a principal nth root of unity.

c. Show how to make the FFT and its inverse work modulo p in time O.n lg n/,
where operations on words of O.lg n/ bits take unit time. Assume that the
algorithm is given p and w.

d. Compute the DFT modulo p D 17 of the vector .0; 5; 3; 7; 7; 2; 1; 6/. Note that
g D 3 is a generator of Z

�
17.

Chapter notes

Van Loan’s book [343] provides an outstanding treatment of the fast Fourier trans-
form. Press, Teukolsky, Vetterling, and Flannery [283, 284] have a good descrip-
tion of the fast Fourier transform and its applications. For an excellent introduction
to signal processing, a popular FFT application area, see the texts by Oppenheim
and Schafer [266] and Oppenheim and Willsky [267]. The Oppenheim and Schafer
book also shows how to handle cases in which n is not an integer power of 2.

Fourier analysis is not limited to 1-dimensional data. It is widely used in image
processing to analyze data in 2 or more dimensions. The books by Gonzalez and
Woods [146] and Pratt [281] discuss multidimensional Fourier transforms and their
use in image processing, and books by Tolimieri, An, and Lu [338] and Van Loan
[343] discuss the mathematics of multidimensional fast Fourier transforms.

Cooley and Tukey [76] are widely credited with devising the FFT in the 1960s.
The FFT had in fact been discovered many times previously, but its importance was
not fully realized before the advent of modern digital computers. Although Press,
Teukolsky, Vetterling, and Flannery attribute the origins of the method to Runge
and König in 1924, an article by Heideman, Johnson, and Burrus [163] traces the
history of the FFT as far back as C. F. Gauss in 1805.

Frigo and Johnson [117] developed a fast and flexible implementation of the
FFT, called FFTW (“fastest Fourier transform in the West”). FFTW is designed for
situations requiring multiple DFT computations on the same problem size. Before
actually computing the DFTs, FFTW executes a “planner,” which, by a series of
trial runs, determines how best to decompose the FFT computation for the given
problem size on the host machine. FFTW adapts to use the hardware cache ef-
ficiently, and once subproblems are small enough, FFTW solves them with opti-
mized, straight-line code. Furthermore, FFTW has the unusual advantage of taking
‚.n lg n/ time for any problem size n, even when n is a large prime.

Notes for Chapter 30 925

Although the standard Fourier transform assumes that the input represents points
that are uniformly spaced in the time domain, other techniques can approximate the
FFT on “nonequispaced” data. The article by Ware [348] provides an overview.

31 Number-Theoretic Algorithms

Number theory was once viewed as a beautiful but largely useless subject in pure
mathematics. Today number-theoretic algorithms are used widely, due in large part
to the invention of cryptographic schemes based on large prime numbers. These
schemes are feasible because we can find large primes easily, and they are secure
because we do not know how to factor the product of large primes (or solve related
problems, such as computing discrete logarithms) efficiently. This chapter presents
some of the number theory and related algorithms that underlie such applications.

Section 31.1 introduces basic concepts of number theory, such as divisibility,
modular equivalence, and unique factorization. Section 31.2 studies one of the
world’s oldest algorithms: Euclid’s algorithm for computing the greatest common
divisor of two integers. Section 31.3 reviews concepts of modular arithmetic. Sec-
tion 31.4 then studies the set of multiples of a given number a, modulo n, and shows
how to find all solutions to the equation ax � b .mod n/ by using Euclid’s algo-
rithm. The Chinese remainder theorem is presented in Section 31.5. Section 31.6
considers powers of a given number a, modulo n, and presents a repeated-squaring
algorithm for efficiently computing ab mod n, given a, b, and n. This operation is
at the heart of efficient primality testing and of much modern cryptography. Sec-
tion 31.7 then describes the RSA public-key cryptosystem. Section 31.8 examines
a randomized primality test. We can use this test to find large primes efficiently,
which we need to do in order to create keys for the RSA cryptosystem. Finally,
Section 31.9 reviews a simple but effective heuristic for factoring small integers. It
is a curious fact that factoring is one problem people may wish to be intractable,
since the security of RSA depends on the difficulty of factoring large integers.

Size of inputs and cost of arithmetic computations

Because we shall be working with large integers, we need to adjust how we think
about the size of an input and about the cost of elementary arithmetic operations.

In this chapter, a “large input” typically means an input containing “large in-
tegers” rather than an input containing “many integers” (as for sorting). Thus,

31.1 Elementary number-theoretic notions 927

we shall measure the size of an input in terms of the number of bits required to
represent that input, not just the number of integers in the input. An algorithm
with integer inputs a1; a2; : : : ; ak is a polynomial-time algorithm if it runs in time
polynomial in lg a1; lg a2; : : : ; lg ak, that is, polynomial in the lengths of its binary-
encoded inputs.

In most of this book, we have found it convenient to think of the elemen-
tary arithmetic operations (multiplications, divisions, or computing remainders)
as primitive operations that take one unit of time. By counting the number of such
arithmetic operations that an algorithm performs, we have a basis for making a
reasonable estimate of the algorithm’s actual running time on a computer. Elemen-
tary operations can be time-consuming, however, when their inputs are large. It
thus becomes convenient to measure how many bit operations a number-theoretic
algorithm requires. In this model, multiplying two ˇ-bit integers by the ordinary
method uses ‚.ˇ2/ bit operations. Similarly, we can divide a ˇ-bit integer by a
shorter integer or take the remainder of a ˇ-bit integer when divided by a shorter in-
teger in time ‚.ˇ2/ by simple algorithms. (See Exercise 31.1-12.) Faster methods
are known. For example, a simple divide-and-conquer method for multiplying two
ˇ-bit integers has a running time of ‚.ˇlg 3/, and the fastest known method has
a running time of ‚.ˇ lg ˇ lg lg ˇ/. For practical purposes, however, the ‚.ˇ2/

algorithm is often best, and we shall use this bound as a basis for our analyses.
We shall generally analyze algorithms in this chapter in terms of both the number

of arithmetic operations and the number of bit operations they require.

31.1 Elementary number-theoretic notions

This section provides a brief review of notions from elementary number theory
concerning the set Z D f: : : ;�2;�1; 0; 1; 2; : : :g of integers and the set N D
f0; 1; 2; : : :g of natural numbers.

Divisibility and divisors

The notion of one integer being divisible by another is key to the theory of numbers.
The notation d j a (read “d divides a”) means that a D kd for some integer k.
Every integer divides 0. If a > 0 and d j a, then jd j � jaj. If d j a, then we also
say that a is a multiple of d . If d does not divide a, we write d − a.

If d j a and d � 0, we say that d is a divisor of a. Note that d j a if and only
if �d j a, so that no generality is lost by defining the divisors to be nonnegative,
with the understanding that the negative of any divisor of a also divides a. A

928 Chapter 31 Number-Theoretic Algorithms

divisor of a nonzero integer a is at least 1 but not greater than jaj. For example, the
divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

Every positive integer a is divisible by the trivial divisors 1 and a. The nontrivial
divisors of a are the factors of a. For example, the factors of 20 are 2, 4, 5, and 10.

Prime and composite numbers

An integer a > 1 whose only divisors are the trivial divisors 1 and a is a prime
number or, more simply, a prime. Primes have many special properties and play a
critical role in number theory. The first 20 primes, in order, are

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71 :

Exercise 31.1-2 asks you to prove that there are infinitely many primes. An integer
a > 1 that is not prime is a composite number or, more simply, a composite. For
example, 39 is composite because 3 j 39. We call the integer 1 a unit, and it is
neither prime nor composite. Similarly, the integer 0 and all negative integers are
neither prime nor composite.

The division theorem, remainders, and modular equivalence

Given an integer n, we can partition the integers into those that are multiples of n

and those that are not multiples of n. Much number theory is based upon refining
this partition by classifying the nonmultiples of n according to their remainders
when divided by n. The following theorem provides the basis for this refinement.
We omit the proof (but see, for example, Niven and Zuckerman [265]).

Theorem 31.1 (Division theorem)
For any integer a and any positive integer n, there exist unique integers q and r

such that 0 � r < n and a D qnC r .

The value q D ba=nc is the quotient of the division. The value r D a mod n

is the remainder (or residue) of the division. We have that n j a if and only if
a mod n D 0.

We can partition the integers into n equivalence classes according to their re-
mainders modulo n. The equivalence class modulo n containing an integer a is

Œa�n D faC kn W k 2 Zg :

For example, Œ3�7 D f: : : ;�11;�4; 3; 10; 17; : : :g; we can also denote this set by
Œ�4�7 and Œ10�7. Using the notation defined on page 54, we can say that writing
a 2 Œb�n is the same as writing a � b .mod n/. The set of all such equivalence
classes is

31.1 Elementary number-theoretic notions 929

Zn D fŒa�n W 0 � a � n � 1g : (31.1)

When you see the definition

Zn D f0; 1; : : : ; n � 1g ; (31.2)

you should read it as equivalent to equation (31.1) with the understanding that 0

represents Œ0�n, 1 represents Œ1�n, and so on; each class is represented by its smallest
nonnegative element. You should keep the underlying equivalence classes in mind,
however. For example, if we refer to �1 as a member of Zn, we are really referring
to Œn � 1�n, since �1 � n � 1 .mod n/.

Common divisors and greatest common divisors

If d is a divisor of a and d is also a divisor of b, then d is a common divisor of a

and b. For example, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30, and so the
common divisors of 24 and 30 are 1, 2, 3, and 6. Note that 1 is a common divisor
of any two integers.

An important property of common divisors is that

d j a and d j b implies d j .aC b/ and d j .a � b/ : (31.3)

More generally, we have that

d j a and d j b implies d j .ax C by/ (31.4)

for any integers x and y. Also, if a j b, then either jaj � jbj or b D 0, which
implies that

a j b and b j a implies a D ˙b : (31.5)

The greatest common divisor of two integers a and b, not both zero, is the
largest of the common divisors of a and b; we denote it by gcd.a; b/. For example,
gcd.24; 30/ D 6, gcd.5; 7/ D 1, and gcd.0; 9/ D 9. If a and b are both nonzero,
then gcd.a; b/ is an integer between 1 and min.jaj ; jbj/. We define gcd.0; 0/ to
be 0; this definition is necessary to make standard properties of the gcd function
(such as equation (31.9) below) universally valid.

The following are elementary properties of the gcd function:

gcd.a; b/ D gcd.b; a/ ; (31.6)

gcd.a; b/ D gcd.�a; b/ ; (31.7)

gcd.a; b/ D gcd.jaj ; jbj/ ; (31.8)

gcd.a; 0/ D jaj ; (31.9)

gcd.a; ka/ D jaj for any k 2 Z : (31.10)

The following theorem provides an alternative and useful characterization of
gcd.a; b/.

930 Chapter 31 Number-Theoretic Algorithms

Theorem 31.2
If a and b are any integers, not both zero, then gcd.a; b/ is the smallest positive
element of the set fax C by W x; y 2 Zg of linear combinations of a and b.

Proof Let s be the smallest positive such linear combination of a and b, and let
s D ax C by for some x; y 2 Z. Let q D ba=sc. Equation (3.8) then implies

a mod s D a � qs

D a � q.ax C by/

D a .1 � qx/C b .�qy/ ;

and so a mod s is a linear combination of a and b as well. But, since 0 �
a mod s < s, we have that a mod s D 0, because s is the smallest positive such lin-
ear combination. Therefore, we have that s j a and, by analogous reasoning, s j b.
Thus, s is a common divisor of a and b, and so gcd.a; b/ � s. Equation (31.4)
implies that gcd.a; b/ j s, since gcd.a; b/ divides both a and b and s is a linear
combination of a and b. But gcd.a; b/ j s and s > 0 imply that gcd.a; b/ � s.
Combining gcd.a; b/ � s and gcd.a; b/ � s yields gcd.a; b/ D s. We conclude
that s is the greatest common divisor of a and b.

Corollary 31.3
For any integers a and b, if d j a and d j b, then d j gcd.a; b/.

Proof This corollary follows from equation (31.4), because gcd.a; b/ is a linear
combination of a and b by Theorem 31.2.

Corollary 31.4
For all integers a and b and any nonnegative integer n,

gcd.an; bn/ D n gcd.a; b/ :

Proof If n D 0, the corollary is trivial. If n > 0, then gcd.an; bn/ is the smallest
positive element of the set fanx C bny W x; y 2 Zg, which is n times the smallest
positive element of the set fax C by W x; y 2 Zg.

Corollary 31.5
For all positive integers n, a, and b, if n j ab and gcd.a; n/ D 1, then n j b.

Proof We leave the proof as Exercise 31.1-5.

31.1 Elementary number-theoretic notions 931

Relatively prime integers

Two integers a and b are relatively prime if their only common divisor is 1, that
is, if gcd.a; b/ D 1. For example, 8 and 15 are relatively prime, since the divisors
of 8 are 1, 2, 4, and 8, and the divisors of 15 are 1, 3, 5, and 15. The following
theorem states that if two integers are each relatively prime to an integer p, then
their product is relatively prime to p.

Theorem 31.6
For any integers a, b, and p, if both gcd.a; p/ D 1 and gcd.b; p/ D 1, then
gcd.ab; p/ D 1.

Proof It follows from Theorem 31.2 that there exist integers x, y, x 0, and y 0 such
that

ax C py D 1 ;

bx 0C py 0 D 1 :

Multiplying these equations and rearranging, we have

ab.xx 0/C p.ybx 0C y 0ax C pyy 0/ D 1 :

Since 1 is thus a positive linear combination of ab and p, an appeal to Theo-
rem 31.2 completes the proof.

Integers n1, n2, . . . , nk are pairwise relatively prime if, whenever i ¤ j , we
have gcd.ni ; nj / D 1.

Unique factorization

An elementary but important fact about divisibility by primes is the following.

Theorem 31.7
For all primes p and all integers a and b, if p j ab, then p j a or p j b (or both).

Proof Assume for the purpose of contradiction that p j ab, but that p − a and
p − b. Thus, gcd.a; p/ D 1 and gcd.b; p/ D 1, since the only divisors of p are 1

and p, and we assume that p divides neither a nor b. Theorem 31.6 then implies
that gcd.ab; p/ D 1, contradicting our assumption that p j ab, since p j ab

implies gcd.ab; p/ D p. This contradiction completes the proof.

A consequence of Theorem 31.7 is that we can uniquely factor any composite
integer into a product of primes.

932 Chapter 31 Number-Theoretic Algorithms

Theorem 31.8 (Unique factorization)
There is exactly one way to write any composite integer a as a product of the form

a D p
e1

1 p
e2

2 � � �per

r ;

where the pi are prime, p1 < p2 < � � � < pr , and the ei are positive integers.

Proof We leave the proof as Exercise 31.1-11.

As an example, the number 6000 is uniquely factored into primes as 24 � 3 � 53.

Exercises

31.1-1
Prove that if a > b > 0 and c D aC b, then c mod a D b.

31.1-2
Prove that there are infinitely many primes. (Hint: Show that none of the primes
p1; p2; : : : ; pk divide .p1p2 � � �pk/C 1.)

31.1-3
Prove that if a j b and b j c, then a j c.

31.1-4
Prove that if p is prime and 0 < k < p, then gcd.k; p/ D 1.

31.1-5
Prove Corollary 31.5.

31.1-6
Prove that if p is prime and 0 < k < p, then p j �p

k

�
. Conclude that for all integers

a and b and all primes p,

.aC b/p � ap C bp .mod p/ :

31.1-7
Prove that if a and b are any positive integers such that a j b, then

.x mod b/ mod a D x mod a

for any x. Prove, under the same assumptions, that

x � y .mod b/ implies x � y .mod a/

for any integers x and y.

31.2 Greatest common divisor 933

31.1-8
For any integer k > 0, an integer n is a kth power if there exists an integer a such
that ak D n. Furthermore, n > 1 is a nontrivial power if it is a kth power for
some integer k > 1. Show how to determine whether a given ˇ-bit integer n is a
nontrivial power in time polynomial in ˇ.

31.1-9
Prove equations (31.6)–(31.10).

31.1-10
Show that the gcd operator is associative. That is, prove that for all integers a, b,
and c,

gcd.a; gcd.b; c// D gcd.gcd.a; b/; c/ :

31.1-11 ?

Prove Theorem 31.8.

31.1-12
Give efficient algorithms for the operations of dividing a ˇ-bit integer by a shorter
integer and of taking the remainder of a ˇ-bit integer when divided by a shorter
integer. Your algorithms should run in time ‚.ˇ2/.

31.1-13
Give an efficient algorithm to convert a given ˇ-bit (binary) integer to a decimal
representation. Argue that if multiplication or division of integers whose length
is at most ˇ takes time M.ˇ/, then we can convert binary to decimal in time
‚.M.ˇ/ lg ˇ/. (Hint: Use a divide-and-conquer approach, obtaining the top and
bottom halves of the result with separate recursions.)

31.2 Greatest common divisor

In this section, we describe Euclid’s algorithm for efficiently computing the great-
est common divisor of two integers. When we analyze the running time, we shall
see a surprising connection with the Fibonacci numbers, which yield a worst-case
input for Euclid’s algorithm.

We restrict ourselves in this section to nonnegative integers. This restriction is
justified by equation (31.8), which states that gcd.a; b/ D gcd.jaj ; jbj/.

934 Chapter 31 Number-Theoretic Algorithms

In principle, we can compute gcd.a; b/ for positive integers a and b from the
prime factorizations of a and b. Indeed, if

a D p
e1

1 p
e2

2 � � �per

r ; (31.11)

b D p
f1

1 p
f2

2 � � �pfr

r ; (31.12)

with zero exponents being used to make the set of primes p1; p2; : : : ; pr the same
for both a and b, then, as Exercise 31.2-1 asks you to show,

gcd.a; b/ D p
min.e1;f1/
1 p

min.e2;f2/
2 � � �pmin.er ;fr /

r : (31.13)

As we shall show in Section 31.9, however, the best algorithms to date for factoring
do not run in polynomial time. Thus, this approach to computing greatest common
divisors seems unlikely to yield an efficient algorithm.

Euclid’s algorithm for computing greatest common divisors relies on the follow-
ing theorem.

Theorem 31.9 (GCD recursion theorem)
For any nonnegative integer a and any positive integer b,

gcd.a; b/ D gcd.b; a mod b/ :

Proof We shall show that gcd.a; b/ and gcd.b; a mod b/ divide each other, so
that by equation (31.5) they must be equal (since they are both nonnegative).

We first show that gcd.a; b/ j gcd.b; a mod b/. If we let d D gcd.a; b/, then
d j a and d j b. By equation (3.8), a mod b D a � qb, where q D ba=bc.
Since a mod b is thus a linear combination of a and b, equation (31.4) implies that
d j .a mod b/. Therefore, since d j b and d j .a mod b/, Corollary 31.3 implies
that d j gcd.b; a mod b/ or, equivalently, that

gcd.a; b/ j gcd.b; a mod b/: (31.14)

Showing that gcd.b; a mod b/ j gcd.a; b/ is almost the same. If we now let
d D gcd.b; a mod b/, then d j b and d j .a mod b/. Since a D qb C .a mod b/,
where q D ba=bc, we have that a is a linear combination of b and .a mod b/. By
equation (31.4), we conclude that d j a. Since d j b and d j a, we have that
d j gcd.a; b/ by Corollary 31.3 or, equivalently, that

gcd.b; a mod b/ j gcd.a; b/: (31.15)

Using equation (31.5) to combine equations (31.14) and (31.15) completes the
proof.

31.2 Greatest common divisor 935

Euclid’s algorithm

The Elements of Euclid (circa 300 B.C.) describes the following gcd algorithm,
although it may be of even earlier origin. We express Euclid’s algorithm as a
recursive program based directly on Theorem 31.9. The inputs a and b are arbitrary
nonnegative integers.

EUCLID.a; b/

1 if b == 0

2 return a

3 else return EUCLID.b; a mod b/

As an example of the running of EUCLID, consider the computation of gcd.30; 21/:

EUCLID.30; 21/ D EUCLID.21; 9/

D EUCLID.9; 3/

D EUCLID.3; 0/

D 3 :

This computation calls EUCLID recursively three times.
The correctness of EUCLID follows from Theorem 31.9 and the property that if

the algorithm returns a in line 2, then b D 0, so that equation (31.9) implies that
gcd.a; b/ D gcd.a; 0/ D a. The algorithm cannot recurse indefinitely, since the
second argument strictly decreases in each recursive call and is always nonnegative.
Therefore, EUCLID always terminates with the correct answer.

The running time of Euclid’s algorithm

We analyze the worst-case running time of EUCLID as a function of the size of
a and b. We assume with no loss of generality that a > b � 0. To justify this
assumption, observe that if b > a � 0, then EUCLID.a; b/ immediately makes the
recursive call EUCLID.b; a/. That is, if the first argument is less than the second
argument, EUCLID spends one recursive call swapping its arguments and then pro-
ceeds. Similarly, if b D a > 0, the procedure terminates after one recursive call,
since a mod b D 0.

The overall running time of EUCLID is proportional to the number of recursive
calls it makes. Our analysis makes use of the Fibonacci numbers Fk , defined by
the recurrence (3.22).

Lemma 31.10
If a > b � 1 and the call EUCLID.a; b/ performs k � 1 recursive calls, then
a � FkC2 and b � FkC1.

936 Chapter 31 Number-Theoretic Algorithms

Proof The proof proceeds by induction on k. For the basis of the induction, let
k D 1. Then, b � 1 D F2, and since a > b, we must have a � 2 D F3. Since
b > .a mod b/, in each recursive call the first argument is strictly larger than the
second; the assumption that a > b therefore holds for each recursive call.

Assume inductively that the lemma holds if k � 1 recursive calls are made; we
shall then prove that the lemma holds for k recursive calls. Since k > 0, we have
b > 0, and EUCLID.a; b/ calls EUCLID.b; a mod b/ recursively, which in turn
makes k � 1 recursive calls. The inductive hypothesis then implies that b � FkC1

(thus proving part of the lemma), and a mod b � Fk . We have

b C .a mod b/ D b C .a � b ba=bc/
� a ;

since a > b > 0 implies ba=bc � 1. Thus,

a � b C .a mod b/

� FkC1 C Fk

D FkC2 :

The following theorem is an immediate corollary of this lemma.

Theorem 31.11 (Lamé’s theorem)
For any integer k � 1, if a > b � 1 and b < FkC1, then the call EUCLID.a; b/

makes fewer than k recursive calls.

We can show that the upper bound of Theorem 31.11 is the best possible by
showing that the call EUCLID.FkC1; Fk/ makes exactly k � 1 recursive calls
when k � 2. We use induction on k. For the base case, k D 2, and the call
EUCLID.F3; F2/ makes exactly one recursive call, to EUCLID.1; 0/. (We have to
start at k D 2, because when k D 1 we do not have F2 > F1.) For the induc-
tive step, assume that EUCLID.Fk; Fk�1/ makes exactly k � 2 recursive calls. For
k > 2, we have Fk > Fk�1 > 0 and FkC1 D FkCFk�1, and so by Exercise 31.1-1,
we have FkC1 mod Fk D Fk�1. Thus, we have

gcd.FkC1; Fk/ D gcd.Fk; FkC1 mod Fk/

D gcd.Fk; Fk�1/ :

Therefore, the call EUCLID.FkC1; Fk/ recurses one time more than the call
EUCLID.Fk ; Fk�1/, or exactly k � 1 times, meeting the upper bound of Theo-
rem 31.11.

Since Fk is approximately �k=
p

5, where � is the golden ratio .1Cp5/=2 de-
fined by equation (3.24), the number of recursive calls in EUCLID is O.lg b/. (See

31.2 Greatest common divisor 937

a b ba=bc d x y

99 78 1 3 �11 14

78 21 3 3 3 �11

21 15 1 3 �2 3

15 6 2 3 1 �2

6 3 2 3 0 1
3 0 — 3 1 0

Figure 31.1 How EXTENDED-EUCLID computes gcd.99; 78/. Each line shows one level of the
recursion: the values of the inputs a and b, the computed value ba=bc, and the values d , x, and y

returned. The triple .d; x; y/ returned becomes the triple .d 0; x0; y0/ used at the next higher level
of recursion. The call EXTENDED-EUCLID.99; 78/ returns .3;�11; 14/, so that gcd.99; 78/ D 3 D
99 � .�11/C 78 � 14.

Exercise 31.2-5 for a tighter bound.) Therefore, if we call EUCLID on two ˇ-bit
numbers, then it performs O.ˇ/ arithmetic operations and O.ˇ3/ bit operations
(assuming that multiplication and division of ˇ-bit numbers take O.ˇ2/ bit oper-
ations). Problem 31-2 asks you to show an O.ˇ2/ bound on the number of bit
operations.

The extended form of Euclid’s algorithm

We now rewrite Euclid’s algorithm to compute additional useful information.
Specifically, we extend the algorithm to compute the integer coefficients x and y

such that

d D gcd.a; b/ D ax C by : (31.16)

Note that x and y may be zero or negative. We shall find these coefficients useful
later for computing modular multiplicative inverses. The procedure EXTENDED-
EUCLID takes as input a pair of nonnegative integers and returns a triple of the
form .d; x; y/ that satisfies equation (31.16).

EXTENDED-EUCLID.a; b/

1 if b == 0

2 return .a; 1; 0/

3 else .d 0; x 0; y 0/ D EXTENDED-EUCLID.b; a mod b/

4 .d; x; y/ D .d 0; y 0; x 0 � ba=bc y 0/
5 return .d; x; y/

Figure 31.1 illustrates how EXTENDED-EUCLID computes gcd.99; 78/.
The EXTENDED-EUCLID procedure is a variation of the EUCLID procedure.

Line 1 is equivalent to the test “b == 0” in line 1 of EUCLID. If b D 0, then

938 Chapter 31 Number-Theoretic Algorithms

EXTENDED-EUCLID returns not only d D a in line 2, but also the coefficients
x D 1 and y D 0, so that a D ax C by. If b ¤ 0, EXTENDED-EUCLID first
computes .d 0; x 0; y 0/ such that d 0 D gcd.b; a mod b/ and

d 0 D bx 0 C .a mod b/y 0 : (31.17)

As for EUCLID, we have in this case d D gcd.a; b/ D d 0 D gcd.b; a mod b/.
To obtain x and y such that d D ax C by, we start by rewriting equation (31.17)
using the equation d D d 0 and equation (3.8):

d D bx 0 C .a � b ba=bc/y 0

D ay 0 C b.x 0 � ba=bc y 0/ :

Thus, choosing x D y 0 and y D x 0�ba=bc y 0 satisfies the equation d D axCby,
proving the correctness of EXTENDED-EUCLID.

Since the number of recursive calls made in EUCLID is equal to the number
of recursive calls made in EXTENDED-EUCLID, the running times of EUCLID

and EXTENDED-EUCLID are the same, to within a constant factor. That is, for
a > b > 0, the number of recursive calls is O.lg b/.

Exercises

31.2-1
Prove that equations (31.11) and (31.12) imply equation (31.13).

31.2-2
Compute the values .d; x; y/ that the call EXTENDED-EUCLID.899; 493/ returns.

31.2-3
Prove that for all integers a, k, and n,

gcd.a; n/ D gcd.aC kn; n/ :

31.2-4
Rewrite EUCLID in an iterative form that uses only a constant amount of memory
(that is, stores only a constant number of integer values).

31.2-5
If a > b � 0, show that the call EUCLID.a; b/ makes at most 1C log� b recursive
calls. Improve this bound to 1C log�.b= gcd.a; b//.

31.2-6
What does EXTENDED-EUCLID.FkC1; Fk/ return? Prove your answer correct.

31.3 Modular arithmetic 939

31.2-7
Define the gcd function for more than two arguments by the recursive equation
gcd.a0; a1; : : : ; an/ D gcd.a0; gcd.a1; a2; : : : ; an//. Show that the gcd function
returns the same answer independent of the order in which its arguments are speci-
fied. Also show how to find integers x0; x1; : : : ; xn such that gcd.a0; a1; : : : ; an/ D
a0x0 C a1x1 C � � � C anxn. Show that the number of divisions performed by your
algorithm is O.nC lg.max fa0; a1; : : : ; ang//.
31.2-8
Define lcm.a1; a2; : : : ; an/ to be the least common multiple of the n integers
a1; a2; : : : ; an, that is, the smallest nonnegative integer that is a multiple of each ai .
Show how to compute lcm.a1; a2; : : : ; an/ efficiently using the (two-argument) gcd
operation as a subroutine.

31.2-9
Prove that n1, n2, n3, and n4 are pairwise relatively prime if and only if

gcd.n1n2; n3n4/ D gcd.n1n3; n2n4/ D 1 :

More generally, show that n1; n2; : : : ; nk are pairwise relatively prime if and only
if a set of dlg ke pairs of numbers derived from the ni are relatively prime.

31.3 Modular arithmetic

Informally, we can think of modular arithmetic as arithmetic as usual over the
integers, except that if we are working modulo n, then every result x is replaced
by the element of f0; 1; : : : ; n � 1g that is equivalent to x, modulo n (that is, x is
replaced by x mod n). This informal model suffices if we stick to the operations
of addition, subtraction, and multiplication. A more formal model for modular
arithmetic, which we now give, is best described within the framework of group
theory.

Finite groups

A group .S;˚/ is a set S together with a binary operation ˚ defined on S for
which the following properties hold:

1. Closure: For all a, b 2 S , we have a˚ b 2 S .

2. Identity: There exists an element e 2 S , called the identity of the group, such
that e ˚ a D a˚ e D a for all a 2 S .

3. Associativity: For all a, b, c 2 S , we have .a˚ b/˚ c D a˚ .b ˚ c/.

940 Chapter 31 Number-Theoretic Algorithms

4. Inverses: For each a 2 S , there exists a unique element b 2 S , called the
inverse of a, such that a˚ b D b ˚ a D e.

As an example, consider the familiar group .Z;C/ of the integers Z under the
operation of addition: 0 is the identity, and the inverse of a is�a. If a group .S;˚/

satisfies the commutative law a˚ b D b˚ a for all a; b 2 S , then it is an abelian
group. If a group .S;˚/ satisfies jS j <1, then it is a finite group.

The groups defined by modular addition and multiplication

We can form two finite abelian groups by using addition and multiplication mod-
ulo n, where n is a positive integer. These groups are based on the equivalence
classes of the integers modulo n, defined in Section 31.1.

To define a group on Zn, we need to have suitable binary operations, which
we obtain by redefining the ordinary operations of addition and multiplication.
We can easily define addition and multiplication operations for Zn, because the
equivalence class of two integers uniquely determines the equivalence class of their
sum or product. That is, if a � a0 .mod n/ and b � b0 .mod n/, then

aC b � a0 C b0 .mod n/ ;

ab � a0b0 .mod n/ :

Thus, we define addition and multiplication modulo n, denoted Cn and �n, by

Œa�n Cn Œb�n D ŒaC b�n ; (31.18)

Œa�n �n Œb�n D Œab�n :

(We can define subtraction similarly on Zn by Œa�n �n Œb�n D Œa � b�n, but divi-
sion is more complicated, as we shall see.) These facts justify the common and
convenient practice of using the smallest nonnegative element of each equivalence
class as its representative when performing computations in Zn. We add, subtract,
and multiply as usual on the representatives, but we replace each result x by the
representative of its class, that is, by x mod n.

Using this definition of addition modulo n, we define the additive group
modulo n as .Zn;Cn/. The size of the additive group modulo n is jZnj D n.
Figure 31.2(a) gives the operation table for the group .Z6;C6/.

Theorem 31.12
The system .Zn;Cn/ is a finite abelian group.

Proof Equation (31.18) shows that .Zn;Cn/ is closed. Associativity and com-
mutativity ofCn follow from the associativity and commutativity ofC:

31.3 Modular arithmetic 941

0 1 2 3 4 5

0

1

2

3

4

5

01 2 3 4 5

0 12 3 4 5

0 1 2 3 4 5

0 1 23 4 5

0 1 2 34 5

0 1 2 3 45

(a)

1 2 4 7 8 11 13 14

1

2

4

7

8

11

13

14

1 2 4 7 8 11 13 14

2 4 8 14 1 7 11 13

4 8 1 13 2 14 7 11

7 14 13 4 11 2 1 8

8 1 2 11 4 13 14 7

11 7 14 2 13 1 8 4

13 11 7 1 14 8 4 2

14 13 11 8 7 4 2 1

(b)

+6 ·15

Figure 31.2 Two finite groups. Equivalence classes are denoted by their representative elements.
(a) The group .Z6;C6/. (b) The group .Z�

15; �15/.

.Œa�n Cn Œb�n/Cn Œc�n D ŒaC b�n Cn Œc�n

D Œ.aC b/C c�n

D ŒaC .b C c/�n

D Œa�n Cn Œb C c�n

D Œa�n Cn .Œb�n Cn Œc�n/ ;

Œa�n Cn Œb�n D ŒaC b�n

D Œb C a�n

D Œb�n Cn Œa�n :

The identity element of .Zn;Cn/ is 0 (that is, Œ0�n). The (additive) inverse of
an element a (that is, of Œa�n) is the element �a (that is, Œ�a�n or Œn � a�n), since
Œa�n Cn Œ�a�n D Œa � a�n D Œ0�n.

Using the definition of multiplication modulo n, we define the multiplicative
group modulo n as .Z�

n; �n/. The elements of this group are the set Z
�
n of elements

in Zn that are relatively prime to n, so that each one has a unique inverse, modulo n:

Z
�
n D fŒa�n 2 Zn W gcd.a; n/ D 1g :

To see that Z
�
n is well defined, note that for 0 � a < n, we have a � .a C kn/

.mod n/ for all integers k. By Exercise 31.2-3, therefore, gcd.a; n/ D 1 implies
gcd.aC kn; n/ D 1 for all integers k. Since Œa�n D faC kn W k 2 Zg, the set Z

�
n

is well defined. An example of such a group is

Z
�
15 D f1; 2; 4; 7; 8; 11; 13; 14g ;

942 Chapter 31 Number-Theoretic Algorithms

where the group operation is multiplication modulo 15. (Here we denote an el-
ement Œa�15 as a; for example, we denote Œ7�15 as 7.) Figure 31.2(b) shows the
group .Z�

15; �15/. For example, 8 � 11 � 13 .mod 15/, working in Z
�
15. The iden-

tity for this group is 1.

Theorem 31.13
The system .Z�

n; �n/ is a finite abelian group.

Proof Theorem 31.6 implies that .Z�
n; �n/ is closed. Associativity and commu-

tativity can be proved for �n as they were for Cn in the proof of Theorem 31.12.
The identity element is Œ1�n. To show the existence of inverses, let a be an element
of Z

�
n and let .d; x; y/ be returned by EXTENDED-EUCLID.a; n/. Then, d D 1,

since a 2 Z
�
n, and

ax C ny D 1 (31.19)

or, equivalently,

ax � 1 .mod n/ :

Thus, Œx�n is a multiplicative inverse of Œa�n, modulo n. Furthermore, we claim
that Œx�n 2 Z

�
n. To see why, equation (31.19) demonstrates that the smallest pos-

itive linear combination of x and n must be 1. Therefore, Theorem 31.2 implies
that gcd.x; n/ D 1. We defer the proof that inverses are uniquely defined until
Corollary 31.26.

As an example of computing multiplicative inverses, suppose that a D 5 and
n D 11. Then EXTENDED-EUCLID.a; n/ returns .d; x; y/ D .1;�2; 1/, so that
1 D 5 � .�2/C 11 � 1. Thus, Œ�2�11 (i.e., Œ9�11) is the multiplicative inverse of Œ5�11.

When working with the groups .Zn;Cn/ and .Z�
n; �n/ in the remainder of this

chapter, we follow the convenient practice of denoting equivalence classes by their
representative elements and denoting the operations Cn and �n by the usual arith-
metic notations C and � (or juxtaposition, so that ab D a � b) respectively. Also,
equivalences modulo n may also be interpreted as equations in Zn. For example,
the following two statements are equivalent:

ax � b .mod n/ ;

Œa�n �n Œx�n D Œb�n :

As a further convenience, we sometimes refer to a group .S;˚/ merely as S

when the operation ˚ is understood from context. We may thus refer to the groups
.Zn;Cn/ and .Z�

n; �n/ as Zn and Z
�
n, respectively.

We denote the (multiplicative) inverse of an element a by .a�1 mod n/. Division
in Z

�
n is defined by the equation a=b � ab�1 .mod n/. For example, in Z

�
15

31.3 Modular arithmetic 943

we have that 7�1 � 13 .mod 15/, since 7 � 13 D 91 � 1 .mod 15/, so that
4=7 � 4 � 13 � 7 .mod 15/.

The size of Z
�
n is denoted �.n/. This function, known as Euler’s phi function,

satisfies the equation

�.n/ D n
Y

p W p is prime and p j n

�
1 � 1

p

�
; (31.20)

so that p runs over all the primes dividing n (including n itself, if n is prime).
We shall not prove this formula here. Intuitively, we begin with a list of the n

remainders f0; 1; : : : ; n � 1g and then, for each prime p that divides n, cross out
every multiple of p in the list. For example, since the prime divisors of 45 are 3
and 5,

�.45/ D 45

�
1� 1

3

��
1� 1

5

�
D 45

�
2

3

��
4

5

�
D 24 :

If p is prime, then Z
�
p D f1; 2; : : : ; p � 1g, and

�.p/ D p

�
1� 1

p

�
D p � 1 : (31.21)

If n is composite, then �.n/ < n � 1, although it can be shown that

�.n/ >
n

e� ln ln nC 3
ln ln n

(31.22)

for n � 3, where
 D 0:5772156649 : : : is Euler’s constant. A somewhat simpler
(but looser) lower bound for n > 5 is

�.n/ >
n

6 ln ln n
: (31.23)

The lower bound (31.22) is essentially the best possible, since

lim inf
n!1

�.n/

n= ln ln n
D e�� : (31.24)

Subgroups

If .S;˚/ is a group, S 0 � S , and .S 0;˚/ is also a group, then .S 0;˚/ is a subgroup
of .S;˚/. For example, the even integers form a subgroup of the integers under the
operation of addition. The following theorem provides a useful tool for recognizing
subgroups.

944 Chapter 31 Number-Theoretic Algorithms

Theorem 31.14 (A nonempty closed subset of a finite group is a subgroup)
If .S;˚/ is a finite group and S 0 is any nonempty subset of S such that a˚ b 2 S 0

for all a; b 2 S 0, then .S 0;˚/ is a subgroup of .S;˚/.

Proof We leave the proof as Exercise 31.3-3.

For example, the set f0; 2; 4; 6g forms a subgroup of Z8, since it is nonempty
and closed under the operation C (that is, it is closed under C8).

The following theorem provides an extremely useful constraint on the size of a
subgroup; we omit the proof.

Theorem 31.15 (Lagrange’s theorem)
If .S;˚/ is a finite group and .S 0;˚/ is a subgroup of .S;˚/, then jS 0j is a divisor
of jS j.

A subgroup S 0 of a group S is a proper subgroup if S 0 ¤ S . We shall use the
following corollary in our analysis in Section 31.8 of the Miller-Rabin primality
test procedure.

Corollary 31.16
If S 0 is a proper subgroup of a finite group S , then jS 0j � jS j =2.

Subgroups generated by an element

Theorem 31.14 gives us an easy way to produce a subgroup of a finite group .S;˚/:
choose an element a and take all elements that can be generated from a using the
group operation. Specifically, define a.k/ for k � 1 by

a.k/ D
kM

iD1

a D a˚ a˚ � � � ˚ aœ
k

:

For example, if we take a D 2 in the group Z6, the sequence a.1/; a.2/; a.3/; : : : is

2; 4; 0; 2; 4; 0; 2; 4; 0; : : : :

In the group Zn, we have a.k/ D ka mod n, and in the group Z
�
n, we have a.k/ D

ak mod n. We define the subgroup generated by a, denoted hai or .hai;˚/, by

hai D fa.k/ W k � 1g :

We say that a generates the subgroup hai or that a is a generator of hai. Since S is
finite, hai is a finite subset of S , possibly including all of S . Since the associativity
of ˚ implies

31.3 Modular arithmetic 945

a.i/ ˚ a.j / D a.iCj / ;

hai is closed and therefore, by Theorem 31.14, hai is a subgroup of S . For example,
in Z6, we have

h0i D f0g ;

h1i D f0; 1; 2; 3; 4; 5g ;

h2i D f0; 2; 4g :

Similarly, in Z
�
7 , we have

h1i D f1g ;

h2i D f1; 2; 4g ;

h3i D f1; 2; 3; 4; 5; 6g :

The order of a (in the group S), denoted ord.a/, is defined as the smallest posi-
tive integer t such that a.t/ D e.

Theorem 31.17
For any finite group .S;˚/ and any a 2 S , the order of a is equal to the size of the
subgroup it generates, or ord.a/ D jhaij.

Proof Let t D ord.a/. Since a.t/ D e and a.tCk/ D a.t/ ˚ a.k/ D a.k/ for
k � 1, if i > t , then a.i/ D a.j / for some j < i . Thus, as we generate ele-
ments by a, we see no new elements after a.t/. Thus, hai D fa.1/; a.2/; : : : ; a.t/g,
and so jhaij � t . To show that jhaij � t , we show that each element of the se-
quence a.1/; a.2/; : : : ; a.t/ is distinct. Suppose for the purpose of contradiction that
a.i/ D a.j / for some i and j satisfying 1 � i < j � t . Then, a.iCk/ D a.j Ck/

for k � 0. But this equality implies that a.iC.t�j // D a.j C.t�j // D e, a contradic-
tion, since iC.t�j / < t but t is the least positive value such that a.t/ D e. There-
fore, each element of the sequence a.1/; a.2/; : : : ; a.t/ is distinct, and jhaij � t . We
conclude that ord.a/ D jhaij.

Corollary 31.18
The sequence a.1/; a.2/; : : : is periodic with period t D ord.a/; that is, a.i/ D a.j /

if and only if i � j .mod t/.

Consistent with the above corollary, we define a.0/ as e and a.i/ as a.i mod t/,
where t D ord.a/, for all integers i .

Corollary 31.19
If .S;˚/ is a finite group with identity e, then for all a 2 S ,

a.jS j/ D e :

946 Chapter 31 Number-Theoretic Algorithms

Proof Lagrange’s theorem (Theorem 31.15) implies that ord.a/ j jS j, and so
jS j � 0 .mod t/, where t D ord.a/. Therefore, a.jS j/ D a.0/ D e.

Exercises

31.3-1
Draw the group operation tables for the groups .Z4;C4/ and .Z�

5; �5/. Show that
these groups are isomorphic by exhibiting a one-to-one correspondence ˛ between
their elements such that a C b � c .mod 4/ if and only if ˛.a/ � ˛.b/ � ˛.c/

.mod 5/.

31.3-2
List all subgroups of Z9 and of Z

�
13.

31.3-3
Prove Theorem 31.14.

31.3-4
Show that if p is prime and e is a positive integer, then

�.pe/ D pe�1.p � 1/ :

31.3-5
Show that for any integer n > 1 and for any a 2 Z

�
n, the function fa W Z�

n ! Z
�
n

defined by fa.x/ D ax mod n is a permutation of Z
�
n.

31.4 Solving modular linear equations

We now consider the problem of finding solutions to the equation

ax � b .mod n/ ; (31.25)

where a > 0 and n > 0. This problem has several applications; for example,
we shall use it as part of the procedure for finding keys in the RSA public-key
cryptosystem in Section 31.7. We assume that a, b, and n are given, and we wish
to find all values of x, modulo n, that satisfy equation (31.25). The equation may
have zero, one, or more than one such solution.

Let hai denote the subgroup of Zn generated by a. Since hai D fa.x/ W x > 0g D
fax mod n W x > 0g, equation (31.25) has a solution if and only if Œb� 2 hai. La-
grange’s theorem (Theorem 31.15) tells us that jhaij must be a divisor of n. The
following theorem gives us a precise characterization of hai.

31.4 Solving modular linear equations 947

Theorem 31.20
For any positive integers a and n, if d D gcd.a; n/, then

hai D hd i D f0; d; 2d; : : : ; ..n=d/ � 1/dg (31.26)

in Zn, and thus

jhaij D n=d :

Proof We begin by showing that d 2 hai. Recall that EXTENDED-EUCLID.a; n/

produces integers x 0 and y 0 such that ax 0C ny 0 D d . Thus, ax 0 � d .mod n/, so
that d 2 hai. In other words, d is a multiple of a in Zn.

Since d 2 hai, it follows that every multiple of d belongs to hai, because any
multiple of a multiple of a is itself a multiple of a. Thus, hai contains every element
in f0; d; 2d; : : : ; ..n=d/ � 1/dg. That is, hd i � hai.

We now show that hai � hd i. If m 2 hai, then m D ax mod n for some
integer x, and so m D axC ny for some integer y. However, d j a and d j n, and
so d j m by equation (31.4). Therefore, m 2 hd i.

Combining these results, we have that hai D hd i. To see that jhaij D n=d ,
observe that there are exactly n=d multiples of d between 0 and n�1, inclusive.

Corollary 31.21
The equation ax � b .mod n/ is solvable for the unknown x if and only if d j b,
where d D gcd.a; n/.

Proof The equation ax � b .mod n/ is solvable if and only if Œb� 2 hai, which
is the same as saying

.b mod n/ 2 f0; d; 2d; : : : ; ..n=d/ � 1/dg ;

by Theorem 31.20. If 0 � b < n, then b 2 hai if and only if d j b, since the
members of hai are precisely the multiples of d . If b < 0 or b � n, the corollary
then follows from the observation that d j b if and only if d j .b mod n/, since b

and b mod n differ by a multiple of n, which is itself a multiple of d .

Corollary 31.22
The equation ax � b .mod n/ either has d distinct solutions modulo n, where
d D gcd.a; n/, or it has no solutions.

Proof If ax � b .mod n/ has a solution, then b 2 hai. By Theorem 31.17,
ord.a/ D jhaij, and so Corollary 31.18 and Theorem 31.20 imply that the sequence
ai mod n, for i D 0; 1; : : :, is periodic with period jhaij D n=d . If b 2 hai, then b

appears exactly d times in the sequence ai mod n, for i D 0; 1; : : : ; n � 1, since

948 Chapter 31 Number-Theoretic Algorithms

the length-.n=d/ block of values hai repeats exactly d times as i increases from 0

to n�1. The indices x of the d positions for which ax mod n D b are the solutions
of the equation ax � b .mod n/.

Theorem 31.23
Let d D gcd.a; n/, and suppose that d D ax 0 C ny 0 for some integers x 0 and y 0

(for example, as computed by EXTENDED-EUCLID). If d j b, then the equation
ax � b .mod n/ has as one of its solutions the value x0, where

x0 D x 0.b=d/ mod n :

Proof We have

ax0 � ax 0.b=d/ .mod n/

� d.b=d/ .mod n/ (because ax 0 � d .mod n/)

� b .mod n/ ;

and thus x0 is a solution to ax � b .mod n/.

Theorem 31.24
Suppose that the equation ax � b .mod n/ is solvable (that is, d j b, where
d D gcd.a; n/) and that x0 is any solution to this equation. Then, this equa-
tion has exactly d distinct solutions, modulo n, given by xi D x0 C i.n=d/ for
i D 0; 1; : : : ; d � 1.

Proof Because n=d > 0 and 0 � i.n=d/ < n for i D 0; 1; : : : ; d � 1, the
values x0; x1; : : : ; xd�1 are all distinct, modulo n. Since x0 is a solution of ax � b

.mod n/, we have ax0 mod n � b .mod n/. Thus, for i D 0; 1; : : : ; d � 1, we
have

axi mod n D a.x0 C in=d/ mod n

D .ax0 C ain=d/ mod n

D ax0 mod n (because d j a implies that ain=d is a multiple of n)

� b .mod n/ ;

and hence axi � b .mod n/, making xi a solution, too. By Corollary 31.22, the
equation ax � b .mod n/ has exactly d solutions, so that x0; x1; : : : ; xd�1 must
be all of them.

We have now developed the mathematics needed to solve the equation ax � b

.mod n/; the following algorithm prints all solutions to this equation. The inputs
a and n are arbitrary positive integers, and b is an arbitrary integer.

31.4 Solving modular linear equations 949

MODULAR-LINEAR-EQUATION-SOLVER.a; b; n/

1 .d; x 0; y 0/ D EXTENDED-EUCLID.a; n/

2 if d j b
3 x0 D x 0.b=d/ mod n

4 for i D 0 to d � 1

5 print .x0 C i.n=d// mod n

6 else print “no solutions”

As an example of the operation of this procedure, consider the equation 14x �
30 .mod 100/ (here, a D 14, b D 30, and n D 100). Calling EXTENDED-
EUCLID in line 1, we obtain .d; x 0; y 0/ D .2;�7; 1/. Since 2 j 30, lines 3–5
execute. Line 3 computes x0 D .�7/.15/ mod 100 D 95. The loop on lines 4–5
prints the two solutions 95 and 45.

The procedure MODULAR-LINEAR-EQUATION-SOLVER works as follows.
Line 1 computes d D gcd.a; n/, along with two values x 0 and y 0 such that d D
ax 0 C ny 0, demonstrating that x 0 is a solution to the equation ax 0 � d .mod n/.
If d does not divide b, then the equation ax � b .mod n/ has no solution, by
Corollary 31.21. Line 2 checks to see whether d j b; if not, line 6 reports that there
are no solutions. Otherwise, line 3 computes a solution x0 to ax � b .mod n/,
in accordance with Theorem 31.23. Given one solution, Theorem 31.24 states that
adding multiples of .n=d/, modulo n, yields the other d � 1 solutions. The for
loop of lines 4–5 prints out all d solutions, beginning with x0 and spaced n=d

apart, modulo n.
MODULAR-LINEAR-EQUATION-SOLVER performs O.lg n C gcd.a; n// arith-

metic operations, since EXTENDED-EUCLID performs O.lg n/ arithmetic opera-
tions, and each iteration of the for loop of lines 4–5 performs a constant number of
arithmetic operations.

The following corollaries of Theorem 31.24 give specializations of particular
interest.

Corollary 31.25
For any n > 1, if gcd.a; n/ D 1, then the equation ax � b .mod n/ has a unique
solution, modulo n.

If b D 1, a common case of considerable interest, the x we are looking for is a
multiplicative inverse of a, modulo n.

Corollary 31.26
For any n > 1, if gcd.a; n/ D 1, then the equation ax � 1 .mod n/ has a unique
solution, modulo n. Otherwise, it has no solution.

950 Chapter 31 Number-Theoretic Algorithms

Thanks to Corollary 31.26, we can use the notation a�1 mod n to refer to the
multiplicative inverse of a, modulo n, when a and n are relatively prime. If
gcd.a; n/ D 1, then the unique solution to the equation ax � 1 .mod n/ is the
integer x returned by EXTENDED-EUCLID, since the equation

gcd.a; n/ D 1 D ax C ny

implies ax � 1 .mod n/. Thus, we can compute a�1 mod n efficiently using
EXTENDED-EUCLID.

Exercises

31.4-1
Find all solutions to the equation 35x � 10 .mod 50/.

31.4-2
Prove that the equation ax � ay .mod n/ implies x � y .mod n/ whenever
gcd.a; n/ D 1. Show that the condition gcd.a; n/ D 1 is necessary by supplying a
counterexample with gcd.a; n/ > 1.

31.4-3
Consider the following change to line 3 of the procedure MODULAR-LINEAR-
EQUATION-SOLVER:

3 x0 D x 0.b=d/ mod .n=d/

Will this work? Explain why or why not.

31.4-4 ?

Let p be prime and f .x/ � f0 C f1x C � � � C ftx
t .mod p/ be a polyno-

mial of degree t , with coefficients fi drawn from Zp. We say that a 2 Zp

is a zero of f if f .a/ � 0 .mod p/. Prove that if a is a zero of f , then
f .x/ � .x � a/g.x/ .mod p/ for some polynomial g.x/ of degree t � 1. Prove
by induction on t that if p is prime, then a polynomial f .x/ of degree t can have
at most t distinct zeros modulo p.

31.5 The Chinese remainder theorem

Around A.D. 100, the Chinese mathematician Sun-Tsŭ solved the problem of find-
ing those integers x that leave remainders 2, 3, and 2 when divided by 3, 5, and 7
respectively. One such solution is x D 23; all solutions are of the form 23C 105k

31.5 The Chinese remainder theorem 951

for arbitrary integers k. The “Chinese remainder theorem” provides a correspon-
dence between a system of equations modulo a set of pairwise relatively prime
moduli (for example, 3, 5, and 7) and an equation modulo their product (for exam-
ple, 105).

The Chinese remainder theorem has two major applications. Let the inte-
ger n be factored as n D n1n2 � � � nk , where the factors ni are pairwise relatively
prime. First, the Chinese remainder theorem is a descriptive “structure theorem”
that describes the structure of Zn as identical to that of the Cartesian product
Zn1
	 Zn2

	 � � � 	 Znk
with componentwise addition and multiplication modulo ni

in the i th component. Second, this description helps us to design efficient algo-
rithms, since working in each of the systems Zni

can be more efficient (in terms of
bit operations) than working modulo n.

Theorem 31.27 (Chinese remainder theorem)
Let n D n1n2 � � � nk, where the ni are pairwise relatively prime. Consider the
correspondence

a$.a1; a2; : : : ; ak/ ; (31.27)

where a 2 Zn, ai 2 Zni
, and

ai D a mod ni

for i D 1; 2; : : : ; k. Then, mapping (31.27) is a one-to-one correspondence (bijec-
tion) between Zn and the Cartesian product Zn1

	Zn2
	� � � 	Znk

. Operations per-
formed on the elements of Zn can be equivalently performed on the corresponding
k-tuples by performing the operations independently in each coordinate position in
the appropriate system. That is, if

a $.a1; a2; : : : ; ak/ ;

b $.b1; b2; : : : ; bk/ ;

then

.aC b/ mod n $..a1 C b1/ mod n1; : : : ; .ak C bk/ mod nk/ ; (31.28)

.a � b/ mod n $..a1 � b1/ mod n1; : : : ; .ak � bk/ mod nk/ ; (31.29)

.ab/ mod n $.a1b1 mod n1; : : : ; akbk mod nk/ : (31.30)

Proof Transforming between the two representations is fairly straightforward.
Going from a to .a1; a2; : : : ; ak/ is quite easy and requires only k “mod” opera-
tions.

Computing a from inputs .a1; a2; : : : ; ak/ is a bit more complicated. We begin
by defining mi D n=ni for i D 1; 2; : : : ; k; thus mi is the product of all of the nj ’s
other than ni : mi D n1n2 � � � ni�1niC1 � � � nk. We next define

952 Chapter 31 Number-Theoretic Algorithms

ci D mi.m
�1
i mod ni/ (31.31)

for i D 1; 2; : : : ; k. Equation (31.31) is always well defined: since mi and ni are
relatively prime (by Theorem 31.6), Corollary 31.26 guarantees that m�1

i mod ni

exists. Finally, we can compute a as a function of a1, a2, . . . , ak as follows:

a � .a1c1 C a2c2 C � � � C akck/ .mod n/ : (31.32)

We now show that equation (31.32) ensures that a � ai .mod ni/ for i D
1; 2; : : : ; k. Note that if j ¤ i , then mj � 0 .mod ni /, which implies that cj �
mj � 0 .mod ni /. Note also that ci � 1 .mod ni /, from equation (31.31). We
thus have the appealing and useful correspondence

ci $.0; 0; : : : ; 0; 1; 0; : : : ; 0/ ;

a vector that has 0s everywhere except in the i th coordinate, where it has a 1; the ci

thus form a “basis” for the representation, in a certain sense. For each i , therefore,
we have

a � aici .mod ni/

� aimi .m
�1
i mod ni/ .mod ni/

� ai .mod ni/ ;

which is what we wished to show: our method of computing a from the ai ’s pro-
duces a result a that satisfies the constraints a � ai .mod ni/ for i D 1; 2; : : : ; k.
The correspondence is one-to-one, since we can transform in both directions.
Finally, equations (31.28)–(31.30) follow directly from Exercise 31.1-7, since
x mod ni D .x mod n/ mod ni for any x and i D 1; 2; : : : ; k.

We shall use the following corollaries later in this chapter.

Corollary 31.28
If n1; n2; : : : ; nk are pairwise relatively prime and n D n1n2 � � � nk, then for any
integers a1; a2; : : : ; ak , the set of simultaneous equations

x � ai .mod ni/ ;

for i D 1; 2; : : : ; k, has a unique solution modulo n for the unknown x.

Corollary 31.29
If n1; n2; : : : ; nk are pairwise relatively prime and n D n1n2 � � � nk, then for all
integers x and a,

x � a .mod ni /

for i D 1; 2; : : : ; k if and only if

x � a .mod n/ :

31.5 The Chinese remainder theorem 953

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 40 15 55 30 5 45 20 60 35 10 50 25
1 26 1 41 16 56 31 6 46 21 61 36 11 51
2 52 27 2 42 17 57 32 7 47 22 62 37 12
3 13 53 28 3 43 18 58 33 8 48 23 63 38
4 39 14 54 29 4 44 19 59 34 9 49 24 64

Figure 31.3 An illustration of the Chinese remainder theorem for n1 D 5 and n2 D 13. For this
example, c1 D 26 and c2 D 40. In row i , column j is shown the value of a, modulo 65, such
that a mod 5 D i and a mod 13 D j . Note that row 0, column 0 contains a 0. Similarly, row 4,
column 12 contains a 64 (equivalent to �1). Since c1 D 26, moving down a row increases a by 26.
Similarly, c2 D 40 means that moving right by a column increases a by 40. Increasing a by 1

corresponds to moving diagonally downward and to the right, wrapping around from the bottom to
the top and from the right to the left.

As an example of the application of the Chinese remainder theorem, suppose we
are given the two equations

a � 2 .mod 5/ ;

a � 3 .mod 13/ ;

so that a1 D 2, n1 D m2 D 5, a2 D 3, and n2 D m1 D 13, and we wish
to compute a mod 65, since n D n1n2 D 65. Because 13�1 � 2 .mod 5/ and
5�1 � 8 .mod 13/, we have

c1 D 13.2 mod 5/ D 26 ;

c2 D 5.8 mod 13/ D 40 ;

and

a � 2 � 26C 3 � 40 .mod 65/

� 52C 120 .mod 65/

� 42 .mod 65/ :

See Figure 31.3 for an illustration of the Chinese remainder theorem, modulo 65.
Thus, we can work modulo n by working modulo n directly or by working in the

transformed representation using separate modulo ni computations, as convenient.
The computations are entirely equivalent.

Exercises

31.5-1
Find all solutions to the equations x � 4 .mod 5/ and x � 5 .mod 11/.

954 Chapter 31 Number-Theoretic Algorithms

31.5-2
Find all integers x that leave remainders 1, 2, 3 when divided by 9, 8, 7 respectively.

31.5-3
Argue that, under the definitions of Theorem 31.27, if gcd.a; n/ D 1, then

.a�1 mod n/$..a�1
1 mod n1/; .a�1

2 mod n2/; : : : ; .a�1
k mod nk// :

31.5-4
Under the definitions of Theorem 31.27, prove that for any polynomial f , the num-
ber of roots of the equation f .x/ � 0 .mod n/ equals the product of the number
of roots of each of the equations f .x/ � 0 .mod n1/, f .x/ � 0 .mod n2/, . . . ,
f .x/ � 0 .mod nk/.

31.6 Powers of an element

Just as we often consider the multiples of a given element a, modulo n, we consider
the sequence of powers of a, modulo n, where a 2 Z

�
n:

a0; a1; a2; a3; : : : ; (31.33)

modulo n. Indexing from 0, the 0th value in this sequence is a0 mod n D 1, and
the i th value is ai mod n. For example, the powers of 3 modulo 7 are

i 0 1 2 3 4 5 6 7 8 9 10 11 � � �
3i mod 7 1 3 2 6 4 5 1 3 2 6 4 5 � � �

whereas the powers of 2 modulo 7 are

i 0 1 2 3 4 5 6 7 8 9 10 11 � � �
2i mod 7 1 2 4 1 2 4 1 2 4 1 2 4 � � �

In this section, let hai denote the subgroup of Z
�
n generated by a by repeated

multiplication, and let ordn.a/ (the “order of a, modulo n”) denote the order of a

in Z
�
n. For example, h2i D f1; 2; 4g in Z

�
7 , and ord7.2/ D 3. Using the definition of

the Euler phi function �.n/ as the size of Z
�
n (see Section 31.3), we now translate

Corollary 31.19 into the notation of Z
�
n to obtain Euler’s theorem and specialize it

to Z
�
p, where p is prime, to obtain Fermat’s theorem.

Theorem 31.30 (Euler’s theorem)
For any integer n > 1,

a�.n/ � 1 .mod n/ for all a 2 Z
�
n :

31.6 Powers of an element 955

Theorem 31.31 (Fermat’s theorem)
If p is prime, then

ap�1 � 1 .mod p/ for all a 2 Z
�
p :

Proof By equation (31.21), �.p/ D p � 1 if p is prime.

Fermat’s theorem applies to every element in Zp except 0, since 0 62 Z
�
p. For all

a 2 Zp, however, we have ap � a .mod p/ if p is prime.
If ordn.g/ D jZ�

nj, then every element in Z
�
n is a power of g, modulo n, and

g is a primitive root or a generator of Z
�
n. For example, 3 is a primitive root,

modulo 7, but 2 is not a primitive root, modulo 7. If Z
�
n possesses a primitive

root, the group Z
�
n is cyclic. We omit the proof of the following theorem, which is

proven by Niven and Zuckerman [265].

Theorem 31.32
The values of n > 1 for which Z

�
n is cyclic are 2, 4, pe, and 2pe, for all primes

p > 2 and all positive integers e.

If g is a primitive root of Z
�
n and a is any element of Z

�
n, then there exists a ´ such

that g´ � a .mod n/. This ´ is a discrete logarithm or an index of a, modulo n,
to the base g; we denote this value as indn;g.a/.

Theorem 31.33 (Discrete logarithm theorem)
If g is a primitive root of Z

�
n, then the equation gx � gy .mod n/ holds if and

only if the equation x � y .mod �.n// holds.

Proof Suppose first that x � y .mod �.n//. Then, x D y C k�.n/ for some
integer k. Therefore,

gx � gyCk�.n/ .mod n/

� gy � .g�.n//k .mod n/

� gy � 1k .mod n/ (by Euler’s theorem)

� gy .mod n/ :

Conversely, suppose that gx � gy .mod n/. Because the sequence of powers of g

generates every element of hgi and jhgij D �.n/, Corollary 31.18 implies that
the sequence of powers of g is periodic with period �.n/. Therefore, if gx � gy

.mod n/, then we must have x � y .mod �.n//.

We now turn our attention to the square roots of 1, modulo a prime power. The
following theorem will be useful in our development of a primality-testing algo-
rithm in Section 31.8.

956 Chapter 31 Number-Theoretic Algorithms

Theorem 31.34
If p is an odd prime and e � 1, then the equation

x2 � 1 .mod pe/ (31.34)

has only two solutions, namely x D 1 and x D �1.

Proof Equation (31.34) is equivalent to

pe j .x � 1/.x C 1/ :

Since p > 2, we can have p j .x � 1/ or p j .x C 1/, but not both. (Otherwise,
by property (31.3), p would also divide their difference .x C 1/ � .x � 1/ D 2.)
If p − .x � 1/, then gcd.pe; x � 1/ D 1, and by Corollary 31.5, we would have
pe j .x C 1/. That is, x � �1 .mod pe/. Symmetrically, if p − .x C 1/,
then gcd.pe; x C 1/ D 1, and Corollary 31.5 implies that pe j .x � 1/, so that
x � 1 .mod pe/. Therefore, either x � �1 .mod pe/ or x � 1 .mod pe/.

A number x is a nontrivial square root of 1, modulo n, if it satisfies the equation
x2 � 1 .mod n/ but x is equivalent to neither of the two “trivial” square roots:
1 or �1, modulo n. For example, 6 is a nontrivial square root of 1, modulo 35.
We shall use the following corollary to Theorem 31.34 in the correctness proof in
Section 31.8 for the Miller-Rabin primality-testing procedure.

Corollary 31.35
If there exists a nontrivial square root of 1, modulo n, then n is composite.

Proof By the contrapositive of Theorem 31.34, if there exists a nontrivial square
root of 1, modulo n, then n cannot be an odd prime or a power of an odd prime.
If x2 � 1 .mod 2/, then x � 1 .mod 2/, and so all square roots of 1, modulo 2,
are trivial. Thus, n cannot be prime. Finally, we must have n > 1 for a nontrivial
square root of 1 to exist. Therefore, n must be composite.

Raising to powers with repeated squaring

A frequently occurring operation in number-theoretic computations is raising one
number to a power modulo another number, also known as modular exponentia-
tion. More precisely, we would like an efficient way to compute ab mod n, where
a and b are nonnegative integers and n is a positive integer. Modular exponenti-
ation is an essential operation in many primality-testing routines and in the RSA
public-key cryptosystem. The method of repeated squaring solves this problem
efficiently using the binary representation of b.

Let hbk; bk�1; : : : ; b1; b0i be the binary representation of b. (That is, the binary
representation is k C 1 bits long, bk is the most significant bit, and b0 is the least

31.6 Powers of an element 957

i 9 8 7 6 5 4 3 2 1 0
bi 1 0 0 0 1 1 0 0 0 0
c 1 2 4 8 17 35 70 140 280 560
d 7 49 157 526 160 241 298 166 67 1

Figure 31.4 The results of MODULAR-EXPONENTIATION when computing ab .mod n/, where
a D 7, b D 560 D h1000110000i, and n D 561. The values are shown after each execution of the
for loop. The final result is 1.

significant bit.) The following procedure computes ac mod n as c is increased by
doublings and incrementations from 0 to b.

MODULAR-EXPONENTIATION.a; b; n/

1 c D 0

2 d D 1

3 let hbk; bk�1; : : : ; b0i be the binary representation of b

4 for i D k downto 0

5 c D 2c

6 d D .d � d/ mod n

7 if bi == 1

8 c D c C 1

9 d D .d � a/ mod n

10 return d

The essential use of squaring in line 6 of each iteration explains the name “repeated
squaring.” As an example, for a D 7, b D 560, and n D 561, the algorithm
computes the sequence of values modulo 561 shown in Figure 31.4; the sequence
of exponents used appears in the row of the table labeled by c.

The variable c is not really needed by the algorithm but is included for the fol-
lowing two-part loop invariant:

Just prior to each iteration of the for loop of lines 4–9,

1. The value of c is the same as the prefix hbk; bk�1; : : : ; biC1i of the binary
representation of b, and

2. d D ac mod n.

We use this loop invariant as follows:

Initialization: Initially, i D k, so that the prefix hbk; bk�1; : : : ; biC1i is empty,
which corresponds to c D 0. Moreover, d D 1 D a0 mod n.

958 Chapter 31 Number-Theoretic Algorithms

Maintenance: Let c 0 and d 0 denote the values of c and d at the end of an iteration
of the for loop, and thus the values prior to the next iteration. Each iteration
updates c 0 D 2c (if bi D 0) or c 0 D 2cC1 (if bi D 1), so that c will be correct
prior to the next iteration. If bi D 0, then d 0 D d 2 mod n D .ac/2 mod n D
a2c mod n D ac0

mod n. If bi D 1, then d 0 D d 2a mod n D .ac/2a mod n D
a2cC1 mod n D ac0

mod n. In either case, d D ac mod n prior to the next
iteration.

Termination: At termination, i D �1. Thus, c D b, since c has the value of the
prefix hbk; bk�1; : : : ; b0i of b’s binary representation. Hence d D ac mod n D
ab mod n.

If the inputs a, b, and n are ˇ-bit numbers, then the total number of arith-
metic operations required is O.ˇ/ and the total number of bit operations required
is O.ˇ3/.

Exercises

31.6-1
Draw a table showing the order of every element in Z

�
11. Pick the smallest primitive

root g and compute a table giving ind11;g.x/ for all x 2 Z
�
11.

31.6-2
Give a modular exponentiation algorithm that examines the bits of b from right to
left instead of left to right.

31.6-3
Assuming that you know �.n/, explain how to compute a�1 mod n for any a 2 Z

�
n

using the procedure MODULAR-EXPONENTIATION.

31.7 The RSA public-key cryptosystem

With a public-key cryptosystem, we can encrypt messages sent between two com-
municating parties so that an eavesdropper who overhears the encrypted messages
will not be able to decode them. A public-key cryptosystem also enables a party
to append an unforgeable “digital signature” to the end of an electronic message.
Such a signature is the electronic version of a handwritten signature on a paper doc-
ument. It can be easily checked by anyone, forged by no one, yet loses its validity
if any bit of the message is altered. It therefore provides authentication of both the
identity of the signer and the contents of the signed message. It is the perfect tool

31.7 The RSA public-key cryptosystem 959

for electronically signed business contracts, electronic checks, electronic purchase
orders, and other electronic communications that parties wish to authenticate.

The RSA public-key cryptosystem relies on the dramatic difference between the
ease of finding large prime numbers and the difficulty of factoring the product of
two large prime numbers. Section 31.8 describes an efficient procedure for finding
large prime numbers, and Section 31.9 discusses the problem of factoring large
integers.

Public-key cryptosystems

In a public-key cryptosystem, each participant has both a public key and a secret
key. Each key is a piece of information. For example, in the RSA cryptosystem,
each key consists of a pair of integers. The participants “Alice” and “Bob” are
traditionally used in cryptography examples; we denote their public and secret
keys as PA, SA for Alice and PB , SB for Bob.

Each participant creates his or her own public and secret keys. Secret keys are
kept secret, but public keys can be revealed to anyone or even published. In fact,
it is often convenient to assume that everyone’s public key is available in a pub-
lic directory, so that any participant can easily obtain the public key of any other
participant.

The public and secret keys specify functions that can be applied to any message.
Let D denote the set of permissible messages. For example, D might be the set of
all finite-length bit sequences. In the simplest, and original, formulation of public-
key cryptography, we require that the public and secret keys specify one-to-one
functions from D to itself. We denote the function corresponding to Alice’s public
key PA by PA./ and the function corresponding to her secret key SA by SA./. The
functions PA./ and SA./ are thus permutations of D . We assume that the functions
PA./ and SA./ are efficiently computable given the corresponding key PA or SA.

The public and secret keys for any participant are a “matched pair” in that they
specify functions that are inverses of each other. That is,

M D SA.PA.M // ; (31.35)

M D PA.SA.M // (31.36)

for any message M 2 D . Transforming M with the two keys PA and SA succes-
sively, in either order, yields the message M back.

In a public-key cryptosystem, we require that no one but Alice be able to com-
pute the function SA./ in any practical amount of time. This assumption is crucial
to keeping encrypted mail sent to Alice private and to knowing that Alice’s digi-
tal signatures are authentic. Alice must keep SA secret; if she does not, she loses
her uniqueness and the cryptosystem cannot provide her with unique capabilities.
The assumption that only Alice can compute SA./ must hold even though everyone

960 Chapter 31 Number-Theoretic Algorithms

decrypt
communication channel

encrypt

Bob Alice

eavesdropper

MM PA SA

C

C D PA.M /

Figure 31.5 Encryption in a public key system. Bob encrypts the message M using Alice’s public
key PA and transmits the resulting ciphertext C D PA.M/ over a communication channel to Al-
ice. An eavesdropper who captures the transmitted ciphertext gains no information about M . Alice
receives C and decrypts it using her secret key to obtain the original message M D SA.C /.

knows PA and can compute PA./, the inverse function to SA./, efficiently. In order
to design a workable public-key cryptosystem, we must figure out how to create
a system in which we can reveal a transformation PA./ without thereby revealing
how to compute the corresponding inverse transformation SA./. This task appears
formidable, but we shall see how to accomplish it.

In a public-key cryptosystem, encryption works as shown in Figure 31.5. Sup-
pose Bob wishes to send Alice a message M encrypted so that it will look like
unintelligible gibberish to an eavesdropper. The scenario for sending the message
goes as follows.

� Bob obtains Alice’s public key PA (from a public directory or directly from
Alice).

� Bob computes the ciphertext C D PA.M / corresponding to the message M

and sends C to Alice.
� When Alice receives the ciphertext C , she applies her secret key SA to retrieve

the original message: SA.C / D SA.PA.M // DM .

Because SA./ and PA./ are inverse functions, Alice can compute M from C . Be-
cause only Alice is able to compute SA./, Alice is the only one who can compute M

from C . Because Bob encrypts M using PA./, only Alice can understand the trans-
mitted message.

We can just as easily implement digital signatures within our formulation of a
public-key cryptosystem. (There are other ways of approaching the problem of
constructing digital signatures, but we shall not go into them here.) Suppose now
that Alice wishes to send Bob a digitally signed response M 0. Figure 31.6 shows
how the digital-signature scenario proceeds.

� Alice computes her digital signature 	 for the message M 0 using her secret
key SA and the equation 	 D SA.M 0/.

31.7 The RSA public-key cryptosystem 961

sign

communication channel

verify

=? accept

BobAlice

M 0
M 0

PASA
	

.M 0; 	/

	 D SA.M 0/

Figure 31.6 Digital signatures in a public-key system. Alice signs the message M 0 by appending
her digital signature 	 D SA.M 0/ to it. She transmits the message/signature pair .M 0; 	/ to Bob,
who verifies it by checking the equation M 0 D PA.	/. If the equation holds, he accepts .M 0; 	/ as
a message that Alice has signed.

� Alice sends the message/signature pair .M 0; 	/ to Bob.

� When Bob receives .M 0; 	/, he can verify that it originated from Alice by us-
ing Alice’s public key to verify the equation M 0 D PA.	/. (Presumably, M 0

contains Alice’s name, so Bob knows whose public key to use.) If the equation
holds, then Bob concludes that the message M 0 was actually signed by Alice.
If the equation fails to hold, Bob concludes either that the message M 0 or the
digital signature 	 was corrupted by transmission errors or that the pair .M 0; 	/

is an attempted forgery.

Because a digital signature provides both authentication of the signer’s identity and
authentication of the contents of the signed message, it is analogous to a handwrit-
ten signature at the end of a written document.

A digital signature must be verifiable by anyone who has access to the signer’s
public key. A signed message can be verified by one party and then passed on to
other parties who can also verify the signature. For example, the message might
be an electronic check from Alice to Bob. After Bob verifies Alice’s signature on
the check, he can give the check to his bank, who can then also verify the signature
and effect the appropriate funds transfer.

A signed message is not necessarily encrypted; the message can be “in the clear”
and not protected from disclosure. By composing the above protocols for encryp-
tion and for signatures, we can create messages that are both signed and encrypted.
The signer first appends his or her digital signature to the message and then en-
crypts the resulting message/signature pair with the public key of the intended re-
cipient. The recipient decrypts the received message with his or her secret key to
obtain both the original message and its digital signature. The recipient can then
verify the signature using the public key of the signer. The corresponding com-
bined process using paper-based systems would be to sign the paper document and

962 Chapter 31 Number-Theoretic Algorithms

then seal the document inside a paper envelope that is opened only by the intended
recipient.

The RSA cryptosystem

In the RSA public-key cryptosystem, a participant creates his or her public and
secret keys with the following procedure:

1. Select at random two large prime numbers p and q such that p ¤ q. The primes
p and q might be, say, 1024 bits each.

2. Compute n D pq.

3. Select a small odd integer e that is relatively prime to �.n/, which, by equa-
tion (31.20), equals .p � 1/.q � 1/.

4. Compute d as the multiplicative inverse of e, modulo �.n/. (Corollary 31.26
guarantees that d exists and is uniquely defined. We can use the technique of
Section 31.4 to compute d , given e and �.n/.)

5. Publish the pair P D .e; n/ as the participant’s RSA public key.

6. Keep secret the pair S D .d; n/ as the participant’s RSA secret key.

For this scheme, the domain D is the set Zn. To transform a message M asso-
ciated with a public key P D .e; n/, compute

P.M / DM e mod n : (31.37)

To transform a ciphertext C associated with a secret key S D .d; n/, compute

S.C / D C d mod n : (31.38)

These equations apply to both encryption and signatures. To create a signature, the
signer applies his or her secret key to the message to be signed, rather than to a
ciphertext. To verify a signature, the public key of the signer is applied to it, rather
than to a message to be encrypted.

We can implement the public-key and secret-key operations using the procedure
MODULAR-EXPONENTIATION described in Section 31.6. To analyze the running
time of these operations, assume that the public key .e; n/ and secret key .d; n/

satisfy lg e D O.1/, lg d � ˇ, and lg n � ˇ. Then, applying a public key requires
O.1/ modular multiplications and uses O.ˇ2/ bit operations. Applying a secret
key requires O.ˇ/ modular multiplications, using O.ˇ3/ bit operations.

Theorem 31.36 (Correctness of RSA)
The RSA equations (31.37) and (31.38) define inverse transformations of Zn satis-
fying equations (31.35) and (31.36).

31.7 The RSA public-key cryptosystem 963

Proof From equations (31.37) and (31.38), we have that for any M 2 Zn,

P.S.M // D S.P.M // DM ed .mod n/ :

Since e and d are multiplicative inverses modulo �.n/ D .p � 1/.q � 1/,

ed D 1C k.p � 1/.q � 1/

for some integer k. But then, if M 6� 0 .mod p/, we have

M ed � M.M p�1/k.q�1/ .mod p/

� M..M mod p/p�1/k.q�1/ .mod p/

� M.1/k.q�1/ .mod p/ (by Theorem 31.31)

� M .mod p/ :

Also, M ed �M .mod p/ if M � 0 .mod p/. Thus,

M ed �M .mod p/

for all M . Similarly,

M ed �M .mod q/

for all M . Thus, by Corollary 31.29 to the Chinese remainder theorem,

M ed �M .mod n/

for all M .

The security of the RSA cryptosystem rests in large part on the difficulty of fac-
toring large integers. If an adversary can factor the modulus n in a public key, then
the adversary can derive the secret key from the public key, using the knowledge
of the factors p and q in the same way that the creator of the public key used them.
Therefore, if factoring large integers is easy, then breaking the RSA cryptosystem
is easy. The converse statement, that if factoring large integers is hard, then break-
ing RSA is hard, is unproven. After two decades of research, however, no easier
method has been found to break the RSA public-key cryptosystem than to factor
the modulus n. And as we shall see in Section 31.9, factoring large integers is sur-
prisingly difficult. By randomly selecting and multiplying together two 1024-bit
primes, we can create a public key that cannot be “broken” in any feasible amount
of time with current technology. In the absence of a fundamental breakthrough in
the design of number-theoretic algorithms, and when implemented with care fol-
lowing recommended standards, the RSA cryptosystem is capable of providing a
high degree of security in applications.

In order to achieve security with the RSA cryptosystem, however, we should
use integers that are quite long—hundreds or even more than one thousand bits

964 Chapter 31 Number-Theoretic Algorithms

long—to resist possible advances in the art of factoring. At the time of this
writing (2009), RSA moduli were commonly in the range of 768 to 2048 bits.
To create moduli of such sizes, we must be able to find large primes efficiently.
Section 31.8 addresses this problem.

For efficiency, RSA is often used in a “hybrid” or “key-management” mode
with fast non-public-key cryptosystems. With such a system, the encryption and
decryption keys are identical. If Alice wishes to send a long message M to Bob
privately, she selects a random key K for the fast non-public-key cryptosystem and
encrypts M using K, obtaining ciphertext C . Here, C is as long as M , but K

is quite short. Then, she encrypts K using Bob’s public RSA key. Since K is
short, computing PB.K/ is fast (much faster than computing PB.M /). She then
transmits .C; PB.K// to Bob, who decrypts PB.K/ to obtain K and then uses K

to decrypt C , obtaining M .
We can use a similar hybrid approach to make digital signatures efficiently.

This approach combines RSA with a public collision-resistant hash function h—a
function that is easy to compute but for which it is computationally infeasible to
find two messages M and M 0 such that h.M / D h.M 0/. The value h.M / is
a short (say, 256-bit) “fingerprint” of the message M . If Alice wishes to sign a
message M , she first applies h to M to obtain the fingerprint h.M /, which she
then encrypts with her secret key. She sends .M; SA.h.M /// to Bob as her signed
version of M . Bob can verify the signature by computing h.M / and verifying
that PA applied to SA.h.M // as received equals h.M /. Because no one can create
two messages with the same fingerprint, it is computationally infeasible to alter a
signed message and preserve the validity of the signature.

Finally, we note that the use of certificates makes distributing public keys much
easier. For example, assume there is a “trusted authority” T whose public key
is known by everyone. Alice can obtain from T a signed message (her certificate)
stating that “Alice’s public key is PA.” This certificate is “self-authenticating” since
everyone knows PT . Alice can include her certificate with her signed messages,
so that the recipient has Alice’s public key immediately available in order to verify
her signature. Because her key was signed by T , the recipient knows that Alice’s
key is really Alice’s.

Exercises

31.7-1
Consider an RSA key set with p D 11, q D 29, n D 319, and e D 3. What
value of d should be used in the secret key? What is the encryption of the message
M D 100?

31.8 Primality testing 965

31.7-2
Prove that if Alice’s public exponent e is 3 and an adversary obtains Alice’s secret
exponent d , where 0 < d < �.n/, then the adversary can factor Alice’s modulus n

in time polynomial in the number of bits in n. (Although you are not asked to prove
it, you may be interested to know that this result remains true even if the condition
e D 3 is removed. See Miller [255].)

31.7-3 ?

Prove that RSA is multiplicative in the sense that

PA.M1/PA.M2/ � PA.M1M2/ .mod n/ :

Use this fact to prove that if an adversary had a procedure that could efficiently
decrypt 1 percent of messages from Zn encrypted with PA, then he could employ
a probabilistic algorithm to decrypt every message encrypted with PA with high
probability.

? 31.8 Primality testing

In this section, we consider the problem of finding large primes. We begin with a
discussion of the density of primes, proceed to examine a plausible, but incomplete,
approach to primality testing, and then present an effective randomized primality
test due to Miller and Rabin.

The density of prime numbers

For many applications, such as cryptography, we need to find large “random”
primes. Fortunately, large primes are not too rare, so that it is feasible to test
random integers of the appropriate size until we find a prime. The prime distribu-
tion function �.n/ specifies the number of primes that are less than or equal to n.
For example, �.10/ D 4, since there are 4 prime numbers less than or equal to 10,
namely, 2, 3, 5, and 7. The prime number theorem gives a useful approximation
to �.n/.

Theorem 31.37 (Prime number theorem)

lim
n!1

�.n/

n= ln n
D 1 :

The approximation n= ln n gives reasonably accurate estimates of �.n/ even
for small n. For example, it is off by less than 6% at n D 109, where �.n/ D

966 Chapter 31 Number-Theoretic Algorithms

50,847,534 and n= ln n � 48,254,942. (To a number theorist, 109 is a small num-
ber.)

We can view the process of randomly selecting an integer n and determining
whether it is prime as a Bernoulli trial (see Section C.4). By the prime number
theorem, the probability of a success—that is, the probability that n is prime—is
approximately 1= ln n. The geometric distribution tells us how many trials we need
to obtain a success, and by equation (C.32), the expected number of trials is ap-
proximately ln n. Thus, we would expect to examine approximately ln n integers
chosen randomly near n in order to find a prime that is of the same length as n.
For example, we expect that finding a 1024-bit prime would require testing ap-
proximately ln 21024 � 710 randomly chosen 1024-bit numbers for primality. (Of
course, we can cut this figure in half by choosing only odd integers.)

In the remainder of this section, we consider the problem of determining whether
or not a large odd integer n is prime. For notational convenience, we assume that n

has the prime factorization

n D p
e1

1 p
e2

2 � � �per

r ; (31.39)

where r � 1, p1; p2; : : : ; pr are the prime factors of n, and e1; e2; : : : ; er are posi-
tive integers. The integer n is prime if and only if r D 1 and e1 D 1.

One simple approach to the problem of testing for primality is trial division. We
try dividing n by each integer 2; 3; : : : ; bpnc. (Again, we may skip even integers
greater than 2.) It is easy to see that n is prime if and only if none of the trial divi-
sors divides n. Assuming that each trial division takes constant time, the worst-case
running time is ‚.

p
n/, which is exponential in the length of n. (Recall that if n

is encoded in binary using ˇ bits, then ˇ D dlg.nC 1/e, and so
p

n D ‚.2ˇ=2/.)
Thus, trial division works well only if n is very small or happens to have a small
prime factor. When it works, trial division has the advantage that it not only de-
termines whether n is prime or composite, but also determines one of n’s prime
factors if n is composite.

In this section, we are interested only in finding out whether a given number n

is prime; if n is composite, we are not concerned with finding its prime factor-
ization. As we shall see in Section 31.9, computing the prime factorization of a
number is computationally expensive. It is perhaps surprising that it is much easier
to tell whether or not a given number is prime than it is to determine the prime
factorization of the number if it is not prime.

Pseudoprimality testing

We now consider a method for primality testing that “almost works” and in fact
is good enough for many practical applications. Later on, we shall present a re-

31.8 Primality testing 967

finement of this method that removes the small defect. Let Z
C
n denote the nonzero

elements of Zn:

Z
C
n D f1; 2; : : : ; n � 1g :

If n is prime, then Z
C
n D Z

�
n.

We say that n is a base-a pseudoprime if n is composite and

an�1 � 1 .mod n/ : (31.40)

Fermat’s theorem (Theorem 31.31) implies that if n is prime, then n satisfies equa-
tion (31.40) for every a in Z

C
n . Thus, if we can find any a 2 Z

C
n such that n does

not satisfy equation (31.40), then n is certainly composite. Surprisingly, the con-
verse almost holds, so that this criterion forms an almost perfect test for primality.
We test to see whether n satisfies equation (31.40) for a D 2. If not, we declare n

to be composite by returning COMPOSITE. Otherwise, we return PRIME, guessing
that n is prime (when, in fact, all we know is that n is either prime or a base-2
pseudoprime).

The following procedure pretends in this manner to be checking the primality
of n. It uses the procedure MODULAR-EXPONENTIATION from Section 31.6. We
assume that the input n is an odd integer greater than 2.

PSEUDOPRIME.n/

1 if MODULAR-EXPONENTIATION.2; n � 1; n/ 6� 1 .mod n/

2 return COMPOSITE // definitely
3 else return PRIME // we hope!

This procedure can make errors, but only of one type. That is, if it says that n

is composite, then it is always correct. If it says that n is prime, however, then it
makes an error only if n is a base-2 pseudoprime.

How often does this procedure err? Surprisingly rarely. There are only 22 values
of n less than 10,000 for which it errs; the first four such values are 341, 561,
645, and 1105. We won’t prove it, but the probability that this program makes an
error on a randomly chosen ˇ-bit number goes to zero as ˇ ! 1. Using more
precise estimates due to Pomerance [279] of the number of base-2 pseudoprimes of
a given size, we may estimate that a randomly chosen 512-bit number that is called
prime by the above procedure has less than one chance in 1020 of being a base-2
pseudoprime, and a randomly chosen 1024-bit number that is called prime has less
than one chance in 1041 of being a base-2 pseudoprime. So if you are merely
trying to find a large prime for some application, for all practical purposes you
almost never go wrong by choosing large numbers at random until one of them
causes PSEUDOPRIME to return PRIME. But when the numbers being tested for
primality are not randomly chosen, we need a better approach for testing primality.

968 Chapter 31 Number-Theoretic Algorithms

As we shall see, a little more cleverness, and some randomization, will yield a
primality-testing routine that works well on all inputs.

Unfortunately, we cannot entirely eliminate all the errors by simply checking
equation (31.40) for a second base number, say a D 3, because there exist com-
posite integers n, known as Carmichael numbers, that satisfy equation (31.40) for
all a 2 Z

�
n. (We note that equation (31.40) does fail when gcd.a; n/ > 1—that

is, when a 62 Z
�
n—but hoping to demonstrate that n is composite by finding such

an a can be difficult if n has only large prime factors.) The first three Carmichael
numbers are 561, 1105, and 1729. Carmichael numbers are extremely rare; there
are, for example, only 255 of them less than 100,000,000. Exercise 31.8-2 helps
explain why they are so rare.

We next show how to improve our primality test so that it won’t be fooled by
Carmichael numbers.

The Miller-Rabin randomized primality test

The Miller-Rabin primality test overcomes the problems of the simple test PSEU-
DOPRIME with two modifications:

� It tries several randomly chosen base values a instead of just one base value.

� While computing each modular exponentiation, it looks for a nontrivial square
root of 1, modulo n, during the final set of squarings. If it finds one, it stops
and returns COMPOSITE. Corollary 31.35 from Section 31.6 justifies detecting
composites in this manner.

The pseudocode for the Miller-Rabin primality test follows. The input n > 2 is
the odd number to be tested for primality, and s is the number of randomly cho-
sen base values from Z

C
n to be tried. The code uses the random-number generator

RANDOM described on page 117: RANDOM.1; n � 1/ returns a randomly chosen
integer a satisfying 1 � a � n�1. The code uses an auxiliary procedure WITNESS

such that WITNESS.a; n/ is TRUE if and only if a is a “witness” to the composite-
ness of n—that is, if it is possible using a to prove (in a manner that we shall see)
that n is composite. The test WITNESS.a; n/ is an extension of, but more effective
than, the test

an�1 6� 1 .mod n/

that formed the basis (using a D 2) for PSEUDOPRIME. We first present and
justify the construction of WITNESS, and then we shall show how we use it in the
Miller-Rabin primality test. Let n � 1 D 2tu where t � 1 and u is odd; i.e.,
the binary representation of n � 1 is the binary representation of the odd integer u

followed by exactly t zeros. Therefore, an�1 � .au/2t

.mod n/, so that we can

31.8 Primality testing 969

compute an�1 mod n by first computing au mod n and then squaring the result t

times successively.

WITNESS.a; n/

1 let t and u be such that t � 1, u is odd, and n � 1 D 2tu

2 x0 D MODULAR-EXPONENTIATION.a; u; n/

3 for i D 1 to t

4 xi D x2
i�1 mod n

5 if xi == 1 and xi�1 ¤ 1 and xi�1 ¤ n � 1

6 return TRUE

7 if xt ¤ 1

8 return TRUE

9 return FALSE

This pseudocode for WITNESS computes an�1 mod n by first computing the
value x0 D au mod n in line 2 and then squaring the result t times in a row in the
for loop of lines 3–6. By induction on i , the sequence x0, x1, . . . , xt of values
computed satisfies the equation xi � a2i u .mod n/ for i D 0; 1; : : : ; t , so that in
particular xt � an�1 .mod n/. After line 4 performs a squaring step, however,
the loop may terminate early if lines 5–6 detect that a nontrivial square root of 1

has just been discovered. (We shall explain these tests shortly.) If so, the algo-
rithm stops and returns TRUE. Lines 7–8 return TRUE if the value computed for
xt � an�1 .mod n/ is not equal to 1, just as the PSEUDOPRIME procedure returns
COMPOSITE in this case. Line 9 returns FALSE if we haven’t returned TRUE in
lines 6 or 8.

We now argue that if WITNESS.a; n/ returns TRUE, then we can construct a
proof that n is composite using a as a witness.

If WITNESS returns TRUE from line 8, then it has discovered that xt D
an�1 mod n ¤ 1. If n is prime, however, we have by Fermat’s theorem (Theo-
rem 31.31) that an�1 � 1 .mod n/ for all a 2 Z

C
n . Therefore, n cannot be prime,

and the equation an�1 mod n ¤ 1 proves this fact.
If WITNESS returns TRUE from line 6, then it has discovered that xi�1 is a non-

trivial square root of 1, modulo n, since we have that xi�1 6� ˙1 .mod n/ yet
xi � x2

i�1 � 1 .mod n/. Corollary 31.35 states that only if n is composite can
there exist a nontrivial square root of 1 modulo n, so that demonstrating that xi�1

is a nontrivial square root of 1 modulo n proves that n is composite.
This completes our proof of the correctness of WITNESS. If we find that the call

WITNESS.a; n/ returns TRUE, then n is surely composite, and the witness a, along
with the reason that the procedure returns TRUE (did it return from line 6 or from
line 8?), provides a proof that n is composite.

970 Chapter 31 Number-Theoretic Algorithms

At this point, we briefly present an alternative description of the behavior of
WITNESS as a function of the sequence X D hx0; x1; : : : ; xti, which we shall find
useful later on, when we analyze the efficiency of the Miller-Rabin primality test.
Note that if xi D 1 for some 0 � i < t , WITNESS might not compute the rest
of the sequence. If it were to do so, however, each value xiC1; xiC2; : : : ; xt would
be 1, and we consider these positions in the sequence X as being all 1s. We have
four cases:

1. X D h: : : ; d i, where d ¤ 1: the sequence X does not end in 1. Return TRUE

in line 8; a is a witness to the compositeness of n (by Fermat’s Theorem).

2. X D h1; 1; : : : ; 1i: the sequence X is all 1s. Return FALSE; a is not a witness
to the compositeness of n.

3. X D h: : : ;�1; 1; : : : ; 1i: the sequence X ends in 1, and the last non-1 is equal
to �1. Return FALSE; a is not a witness to the compositeness of n.

4. X D h: : : ; d; 1; : : : ; 1i, where d ¤ ˙1: the sequence X ends in 1, but the last
non-1 is not �1. Return TRUE in line 6; a is a witness to the compositeness
of n, since d is a nontrivial square root of 1.

We now examine the Miller-Rabin primality test based on the use of WITNESS.
Again, we assume that n is an odd integer greater than 2.

MILLER-RABIN.n; s/

1 for j D 1 to s

2 a D RANDOM.1; n � 1/

3 if WITNESS.a; n/

4 return COMPOSITE // definitely
5 return PRIME // almost surely

The procedure MILLER-RABIN is a probabilistic search for a proof that n is
composite. The main loop (beginning on line 1) picks up to s random values of a

from Z
C
n (line 2). If one of the a’s picked is a witness to the compositeness of n,

then MILLER-RABIN returns COMPOSITE on line 4. Such a result is always cor-
rect, by the correctness of WITNESS. If MILLER-RABIN finds no witness in s

trials, then the procedure assumes that this is because no witnesses exist, and there-
fore it assumes that n is prime. We shall see that this result is likely to be correct
if s is large enough, but that there is still a tiny chance that the procedure may be
unlucky in its choice of a’s and that witnesses do exist even though none has been
found.

To illustrate the operation of MILLER-RABIN, let n be the Carmichael num-
ber 561, so that n � 1 D 560 D 24 � 35, t D 4, and u D 35. If the pro-
cedure chooses a D 7 as a base, Figure 31.4 in Section 31.6 shows that WIT-
NESS computes x0 � a35 � 241 .mod 561/ and thus computes the sequence

31.8 Primality testing 971

X D h241; 298; 166; 67; 1i. Thus, WITNESS discovers a nontrivial square root
of 1 in the last squaring step, since a280 � 67 .mod n/ and a560 � 1 .mod n/.
Therefore, a D 7 is a witness to the compositeness of n, WITNESS.7; n/ returns
TRUE, and MILLER-RABIN returns COMPOSITE.

If n is a ˇ-bit number, MILLER-RABIN requires O.sˇ/ arithmetic operations
and O.sˇ3/ bit operations, since it requires asymptotically no more work than s

modular exponentiations.

Error rate of the Miller-Rabin primality test

If MILLER-RABIN returns PRIME, then there is a very slim chance that it has made
an error. Unlike PSEUDOPRIME, however, the chance of error does not depend
on n; there are no bad inputs for this procedure. Rather, it depends on the size of s

and the “luck of the draw” in choosing base values a. Moreover, since each test is
more stringent than a simple check of equation (31.40), we can expect on general
principles that the error rate should be small for randomly chosen integers n. The
following theorem presents a more precise argument.

Theorem 31.38
If n is an odd composite number, then the number of witnesses to the composite-
ness of n is at least .n � 1/=2.

Proof The proof shows that the number of nonwitnesses is at most .n � 1/=2,
which implies the theorem.

We start by claiming that any nonwitness must be a member of Z
�
n. Why?

Consider any nonwitness a. It must satisfy an�1 � 1 .mod n/ or, equivalently,
a � an�2 � 1 .mod n/. Thus, the equation ax � 1 .mod n/ has a solution,
namely an�2. By Corollary 31.21, gcd.a; n/ j 1, which in turn implies that
gcd.a; n/ D 1. Therefore, a is a member of Z

�
n; all nonwitnesses belong to Z

�
n.

To complete the proof, we show that not only are all nonwitnesses contained
in Z

�
n, they are all contained in a proper subgroup B of Z

�
n (recall that we say B

is a proper subgroup of Z
�
n when B is subgroup of Z

�
n but B is not equal to Z

�
n).

By Corollary 31.16, we then have jBj � jZ�
nj =2. Since jZ�

nj � n � 1, we obtain
jBj � .n � 1/=2. Therefore, the number of nonwitnesses is at most .n � 1/=2, so
that the number of witnesses must be at least .n � 1/=2.

We now show how to find a proper subgroup B of Z
�
n containing all of the

nonwitnesses. We break the proof into two cases.

Case 1: There exists an x 2 Z
�
n such that

xn�1 6� 1 .mod n/ :

972 Chapter 31 Number-Theoretic Algorithms

In other words, n is not a Carmichael number. Because, as we noted earlier,
Carmichael numbers are extremely rare, case 1 is the main case that arises “in
practice” (e.g., when n has been chosen randomly and is being tested for primal-
ity).

Let B D fb 2 Z
�
n W bn�1 � 1 .mod n/g. Clearly, B is nonempty, since 1 2 B .

Since B is closed under multiplication modulo n, we have that B is a subgroup
of Z

�
n by Theorem 31.14. Note that every nonwitness belongs to B , since a non-

witness a satisfies an�1 � 1 .mod n/. Since x 2 Z
�
n � B , we have that B is a

proper subgroup of Z
�
n.

Case 2: For all x 2 Z
�
n,

xn�1 � 1 .mod n/ : (31.41)

In other words, n is a Carmichael number. This case is extremely rare in prac-
tice. However, the Miller-Rabin test (unlike a pseudo-primality test) can efficiently
determine that Carmichael numbers are composite, as we now show.

In this case, n cannot be a prime power. To see why, let us suppose to the
contrary that n D pe, where p is a prime and e > 1. We derive a contradiction
as follows. Since we assume that n is odd, p must also be odd. Theorem 31.32
implies that Z

�
n is a cyclic group: it contains a generator g such that ordn.g/ D

jZ�
nj D �.n/ D pe.1 � 1=p/ D .p � 1/pe�1. (The formula for �.n/ comes from

equation (31.20).) By equation (31.41), we have gn�1 � 1 .mod n/. Then the
discrete logarithm theorem (Theorem 31.33, taking y D 0) implies that n � 1 � 0

.mod �.n//, or

.p � 1/pe�1 j pe � 1 :

This is a contradiction for e > 1, since .p � 1/pe�1 is divisible by the prime p

but pe � 1 is not. Thus, n is not a prime power.
Since the odd composite number n is not a prime power, we decompose it into

a product n1n2, where n1 and n2 are odd numbers greater than 1 that are relatively
prime to each other. (There may be several ways to decompose n, and it does not
matter which one we choose. For example, if n D p

e1

1 p
e2

2 � � �per
r , then we can

choose n1 D p
e1

1 and n2 D p
e2

2 p
e3

3 � � �per
r .)

Recall that we define t and u so that n� 1 D 2tu, where t � 1 and u is odd, and
that for an input a, the procedure WITNESS computes the sequence

X D hau; a2u; a22u; : : : ; a2t ui
(all computations are performed modulo n).

Let us call a pair .�; j / of integers acceptable if � 2 Z
�
n, j 2 f0; 1; : : : ; tg, and

�2j u � �1 .mod n/ :

31.8 Primality testing 973

Acceptable pairs certainly exist since u is odd; we can choose � D n � 1 and
j D 0, so that .n�1; 0/ is an acceptable pair. Now pick the largest possible j such
that there exists an acceptable pair .�; j /, and fix � so that .�; j / is an acceptable
pair. Let

B D fx 2 Z
�
n W x2j u � ˙1 .mod n/g :

Since B is closed under multiplication modulo n, it is a subgroup of Z
�
n. By Theo-

rem 31.15, therefore, jBj divides jZ�
nj. Every nonwitness must be a member of B ,

since the sequence X produced by a nonwitness must either be all 1s or else contain
a�1 no later than the j th position, by the maximality of j . (If .a; j 0/ is acceptable,
where a is a nonwitness, we must have j 0 � j by how we chose j .)

We now use the existence of � to demonstrate that there exists a w 2 Z
�
n � B ,

and hence that B is a proper subgroup of Z
�
n. Since �2j u � �1 .mod n/, we have

�2j u � �1 .mod n1/ by Corollary 31.29 to the Chinese remainder theorem. By
Corollary 31.28, there exists a w simultaneously satisfying the equations

w � � .mod n1/ ;

w � 1 .mod n2/ :

Therefore,

w2j u � �1 .mod n1/ ;

w2j u � 1 .mod n2/ :

By Corollary 31.29, w2j u 6� 1 .mod n1/ implies w2j u 6� 1 .mod n/, and
w2j u 6� �1 .mod n2/ implies w2j u 6� �1 .mod n/. Hence, we conclude that
w2j u 6� ˙1 .mod n/, and so w 62 B .

It remains to show that w 2 Z
�
n, which we do by first working separately mod-

ulo n1 and modulo n2. Working modulo n1, we observe that since � 2 Z
�
n, we

have that gcd.�; n/ D 1, and so also gcd.�; n1/ D 1; if � does not have any com-
mon divisors with n, then it certainly does not have any common divisors with n1.
Since w � � .mod n1/, we see that gcd.w; n1/ D 1. Working modulo n2, we
observe that w � 1 .mod n2/ implies gcd.w; n2/ D 1. To combine these results,
we use Theorem 31.6, which implies that gcd.w; n1n2/ D gcd.w; n/ D 1. That is,
w 2 Z

�
n.

Therefore w 2 Z
�
n � B , and we finish case 2 with the conclusion that B is a

proper subgroup of Z
�
n.

In either case, we see that the number of witnesses to the compositeness of n is
at least .n � 1/=2.

Theorem 31.39
For any odd integer n > 2 and positive integer s, the probability that MILLER-
RABIN.n; s/ errs is at most 2�s .

974 Chapter 31 Number-Theoretic Algorithms

Proof Using Theorem 31.38, we see that if n is composite, then each execution of
the for loop of lines 1–4 has a probability of at least 1=2 of discovering a witness x

to the compositeness of n. MILLER-RABIN makes an error only if it is so unlucky
as to miss discovering a witness to the compositeness of n on each of the s iterations
of the main loop. The probability of such a sequence of misses is at most 2�s .

If n is prime, MILLER-RABIN always reports PRIME, and if n is composite, the
chance that MILLER-RABIN reports PRIME is at most 2�s .

When applying MILLER-RABIN to a large randomly chosen integer n, however,
we need to consider as well the prior probability that n is prime, in order to cor-
rectly interpret MILLER-RABIN’s result. Suppose that we fix a bit length ˇ and
choose at random an integer n of length ˇ bits to be tested for primality. Let A

denote the event that n is prime. By the prime number theorem (Theorem 31.37),
the probability that n is prime is approximately

Pr fAg � 1= ln n

� 1:443=ˇ :

Now let B denote the event that MILLER-RABIN returns PRIME. We have that
Pr
˚
B j A
 D 0 (or equivalently, that Pr fB j Ag D 1) and Pr

˚
B j A
 � 2�s (or

equivalently, that Pr
˚
B j A
 > 1 � 2�s).

But what is Pr fA j Bg, the probability that n is prime, given that MILLER-
RABIN has returned PRIME? By the alternate form of Bayes’s theorem (equa-
tion (C.18)) we have

Pr fA j Bg D Pr fAg Pr fB j Ag
Pr fAgPr fB j Ag C Pr

˚
A

Pr
˚
B j A

� 1

1C 2�s.ln n � 1/
:

This probability does not exceed 1=2 until s exceeds lg.ln n � 1/. Intuitively, that
many initial trials are needed just for the confidence derived from failing to find a
witness to the compositeness of n to overcome the prior bias in favor of n being
composite. For a number with ˇ D 1024 bits, this initial testing requires about

lg.ln n � 1/ � lg.ˇ=1:443/

� 9

trials. In any case, choosing s D 50 should suffice for almost any imaginable
application.

In fact, the situation is much better. If we are trying to find large primes by
applying MILLER-RABIN to large randomly chosen odd integers, then choosing
a small value of s (say 3) is very unlikely to lead to erroneous results, though

31.9 Integer factorization 975

we won’t prove it here. The reason is that for a randomly chosen odd composite
integer n, the expected number of nonwitnesses to the compositeness of n is likely
to be very much smaller than .n � 1/=2.

If the integer n is not chosen randomly, however, the best that can be proven is
that the number of nonwitnesses is at most .n � 1/=4, using an improved version
of Theorem 31.38. Furthermore, there do exist integers n for which the number of
nonwitnesses is .n � 1/=4.

Exercises

31.8-1
Prove that if an odd integer n > 1 is not a prime or a prime power, then there exists
a nontrivial square root of 1 modulo n.

31.8-2 ?

It is possible to strengthen Euler’s theorem slightly to the form

a	.n/ � 1 .mod n/ for all a 2 Z
�
n ;

where n D p
e1

1 � � �per
r and �.n/ is defined by

�.n/ D lcm.�.p
e1

1 /; : : : ; �.per

r // : (31.42)

Prove that �.n/ j �.n/. A composite number n is a Carmichael number if
�.n/ j n � 1. The smallest Carmichael number is 561 D 3 � 11 � 17; here,
�.n/ D lcm.2; 10; 16/ D 80, which divides 560. Prove that Carmichael num-
bers must be both “square-free” (not divisible by the square of any prime) and the
product of at least three primes. (For this reason, they are not very common.)

31.8-3
Prove that if x is a nontrivial square root of 1, modulo n, then gcd.x � 1; n/ and
gcd.x C 1; n/ are both nontrivial divisors of n.

? 31.9 Integer factorization

Suppose we have an integer n that we wish to factor, that is, to decompose into a
product of primes. The primality test of the preceding section may tell us that n is
composite, but it does not tell us the prime factors of n. Factoring a large integer n

seems to be much more difficult than simply determining whether n is prime or
composite. Even with today’s supercomputers and the best algorithms to date, we
cannot feasibly factor an arbitrary 1024-bit number.

976 Chapter 31 Number-Theoretic Algorithms

Pollard’s rho heuristic

Trial division by all integers up to R is guaranteed to factor completely any number
up to R2. For the same amount of work, the following procedure, POLLARD-RHO,
factors any number up to R4 (unless we are unlucky). Since the procedure is only
a heuristic, neither its running time nor its success is guaranteed, although the
procedure is highly effective in practice. Another advantage of the POLLARD-
RHO procedure is that it uses only a constant number of memory locations. (If you
wanted to, you could easily implement POLLARD-RHO on a programmable pocket
calculator to find factors of small numbers.)

POLLARD-RHO.n/

1 i D 1

2 x1 D RANDOM.0; n � 1/

3 y D x1

4 k D 2

5 while TRUE

6 i D i C 1

7 xi D .x2
i�1 � 1/ mod n

8 d D gcd.y � xi ; n/

9 if d ¤ 1 and d ¤ n

10 print d

11 if i == k

12 y D xi

13 k D 2k

The procedure works as follows. Lines 1–2 initialize i to 1 and x1 to a randomly
chosen value in Zn. The while loop beginning on line 5 iterates forever, searching
for factors of n. During each iteration of the while loop, line 7 uses the recurrence

xi D .x2
i�1 � 1/ mod n (31.43)

to produce the next value of xi in the infinite sequence

x1; x2; x3; x4; : : : ; (31.44)

with line 6 correspondingly incrementing i . The pseudocode is written using sub-
scripted variables xi for clarity, but the program works the same if all of the sub-
scripts are dropped, since only the most recent value of xi needs to be maintained.
With this modification, the procedure uses only a constant number of memory lo-
cations.

Every so often, the program saves the most recently generated xi value in the
variable y. Specifically, the values that are saved are the ones whose subscripts are
powers of 2:

31.9 Integer factorization 977

x1; x2; x4; x8; x16; : : : :

Line 3 saves the value x1, and line 12 saves xk whenever i is equal to k. The
variable k is initialized to 2 in line 4, and line 13 doubles it whenever line 12
updates y. Therefore, k follows the sequence 1; 2; 4; 8; : : : and always gives the
subscript of the next value xk to be saved in y.

Lines 8–10 try to find a factor of n, using the saved value of y and the cur-
rent value of xi . Specifically, line 8 computes the greatest common divisor
d D gcd.y � xi ; n/. If line 9 finds d to be a nontrivial divisor of n, then line 10
prints d .

This procedure for finding a factor may seem somewhat mysterious at first.
Note, however, that POLLARD-RHO never prints an incorrect answer; any num-
ber it prints is a nontrivial divisor of n. POLLARD-RHO might not print anything
at all, though; it comes with no guarantee that it will print any divisors. We shall
see, however, that we have good reason to expect POLLARD-RHO to print a fac-
tor p of n after ‚.

p
p/ iterations of the while loop. Thus, if n is composite, we

can expect this procedure to discover enough divisors to factor n completely after
approximately n1=4 updates, since every prime factor p of n except possibly the
largest one is less than

p
n.

We begin our analysis of how this procedure behaves by studying how long
it takes a random sequence modulo n to repeat a value. Since Zn is finite, and
since each value in the sequence (31.44) depends only on the previous value, the
sequence (31.44) eventually repeats itself. Once we reach an xi such that xi D xj

for some j < i , we are in a cycle, since xiC1 D xj C1, xiC2 D xj C2, and so on.
The reason for the name “rho heuristic” is that, as Figure 31.7 shows, we can draw
the sequence x1; x2; : : : ; xj �1 as the “tail” of the rho and the cycle xj ; xj C1; : : : ; xi

as the “body” of the rho.
Let us consider the question of how long it takes for the sequence of xi to repeat.

This information is not exactly what we need, but we shall see later how to modify
the argument. For the purpose of this estimation, let us assume that the function

fn.x/ D .x2 � 1/ mod n

behaves like a “random” function. Of course, it is not really random, but this as-
sumption yields results consistent with the observed behavior of POLLARD-RHO.
We can then consider each xi to have been independently drawn from Zn according
to a uniform distribution on Zn. By the birthday-paradox analysis of Section 5.4.1,
we expect ‚.

p
n/ steps to be taken before the sequence cycles.

Now for the required modification. Let p be a nontrivial factor of n such that
gcd.p; n=p/ D 1. For example, if n has the factorization n D p

e1

1 p
e2

2 � � �per
r , then

we may take p to be p
e1

1 . (If e1 D 1, then p is just the smallest prime factor of n,
a good example to keep in mind.)

978 Chapter 31 Number-Theoretic Algorithms

996 310

396

84

120

529

1053595

339

814

1194

63

8

3

2

(b) (c)(a)

3

2

18

26

8

31

11

47

177

1186

mod 1387 mod 19 mod 73

8

6

16

63

3

2x1

x2

x3

x4

x5

x6

x7

x 0
1

x 0
2

x 0
3

x 0
4

x 0
5

x 0
6

x 0
7

x 00
1

x 00
2

x 00
3

x 00
4

x 00
5

x 00
6

x 00
7

Figure 31.7 Pollard’s rho heuristic. (a) The values produced by the recurrence xiC1 D
.x2

i � 1/ mod 1387, starting with x1 D 2. The prime factorization of 1387 is 19 � 73. The heavy
arrows indicate the iteration steps that are executed before the factor 19 is discovered. The light
arrows point to unreached values in the iteration, to illustrate the “rho” shape. The shaded values are
the y values stored by POLLARD-RHO. The factor 19 is discovered upon reaching x7 D 177, when
gcd.63 � 177; 1387/ D 19 is computed. The first x value that would be repeated is 1186, but the
factor 19 is discovered before this value is repeated. (b) The values produced by the same recurrence,
modulo 19. Every value xi given in part (a) is equivalent, modulo 19, to the value x0

i shown here.
For example, both x4 D 63 and x7 D 177 are equivalent to 6, modulo 19. (c) The values produced
by the same recurrence, modulo 73. Every value xi given in part (a) is equivalent, modulo 73, to the
value x00

i shown here. By the Chinese remainder theorem, each node in part (a) corresponds to a pair
of nodes, one from part (b) and one from part (c).

The sequence hxii induces a corresponding sequence hx 0
ii modulo p, where

x 0
i D xi mod p

for all i .
Furthermore, because fn is defined using only arithmetic operations (squaring

and subtraction) modulo n, we can compute x 0
iC1 from x 0

i ; the “modulo p” view of

31.9 Integer factorization 979

the sequence is a smaller version of what is happening modulo n:

x 0
iC1 D xiC1 mod p

D fn.xi / mod p

D ..x2
i � 1/ mod n/ mod p

D .x2
i � 1/ mod p (by Exercise 31.1-7)

D ..xi mod p/2 � 1/ mod p

D ..x 0
i/

2 � 1/ mod p

D fp.x 0
i / :

Thus, although we are not explicitly computing the sequence hx 0
ii, this sequence is

well defined and obeys the same recurrence as the sequence hxii.
Reasoning as before, we find that the expected number of steps before the se-

quence hx 0
ii repeats is ‚.

p
p/. If p is small compared to n, the sequence hx 0

iimight
repeat much more quickly than the sequence hxii. Indeed, as parts (b) and (c) of
Figure 31.7 show, the hx 0

ii sequence repeats as soon as two elements of the se-
quence hxii are merely equivalent modulo p, rather than equivalent modulo n.

Let t denote the index of the first repeated value in the hx 0
ii sequence, and let

u > 0 denote the length of the cycle that has been thereby produced. That is, t

and u > 0 are the smallest values such that x 0
tCi D x 0

tCuCi for all i � 0. By the
above arguments, the expected values of t and u are both ‚.

p
p/. Note that if

x 0
tCi D x 0

tCuCi , then p j .xtCuCi � xtCi/. Thus, gcd.xtCuCi � xtCi ; n/ > 1.
Therefore, once POLLARD-RHO has saved as y any value xk such that k � t ,

then y mod p is always on the cycle modulo p. (If a new value is saved as y,
that value is also on the cycle modulo p.) Eventually, k is set to a value that
is greater than u, and the procedure then makes an entire loop around the cycle
modulo p without changing the value of y. The procedure then discovers a factor
of n when xi “runs into” the previously stored value of y, modulo p, that is, when
xi � y .mod p/.

Presumably, the factor found is the factor p, although it may occasionally hap-
pen that a multiple of p is discovered. Since the expected values of both t and u are
‚.
p

p/, the expected number of steps required to produce the factor p is ‚.
p

p/.
This algorithm might not perform quite as expected, for two reasons. First, the

heuristic analysis of the running time is not rigorous, and it is possible that the cycle
of values, modulo p, could be much larger than

p
p. In this case, the algorithm

performs correctly but much more slowly than desired. In practice, this issue seems
to be moot. Second, the divisors of n produced by this algorithm might always be
one of the trivial factors 1 or n. For example, suppose that n D pq, where p

and q are prime. It can happen that the values of t and u for p are identical with
the values of t and u for q, and thus the factor p is always revealed in the same
gcd operation that reveals the factor q. Since both factors are revealed at the same

980 Chapter 31 Number-Theoretic Algorithms

time, the trivial factor pq D n is revealed, which is useless. Again, this problem
seems to be insignificant in practice. If necessary, we can restart the heuristic with
a different recurrence of the form xiC1 D .x2

i � c/ mod n. (We should avoid the
values c D 0 and c D 2 for reasons we will not go into here, but other values are
fine.)

Of course, this analysis is heuristic and not rigorous, since the recurrence is
not really “random.” Nonetheless, the procedure performs well in practice, and
it seems to be as efficient as this heuristic analysis indicates. It is the method of
choice for finding small prime factors of a large number. To factor a ˇ-bit compos-
ite number n completely, we only need to find all prime factors less than bn1=2c,
and so we expect POLLARD-RHO to require at most n1=4 D 2ˇ=4 arithmetic opera-
tions and at most n1=4ˇ2 D 2ˇ=4ˇ2 bit operations. POLLARD-RHO’s ability to find
a small factor p of n with an expected number ‚.

p
p/ of arithmetic operations is

often its most appealing feature.

Exercises

31.9-1
Referring to the execution history shown in Figure 31.7(a), when does POLLARD-
RHO print the factor 73 of 1387?

31.9-2
Suppose that we are given a function f W Zn ! Zn and an initial value x0 2 Zn.
Define xi D f .xi�1/ for i D 1; 2; : : :. Let t and u > 0 be the smallest values such
that xtCi D xtCuCi for i D 0; 1; : : :. In the terminology of Pollard’s rho algorithm,
t is the length of the tail and u is the length of the cycle of the rho. Give an efficient
algorithm to determine t and u exactly, and analyze its running time.

31.9-3
How many steps would you expect POLLARD-RHO to require to discover a factor
of the form pe, where p is prime and e > 1?

31.9-4 ?

One disadvantage of POLLARD-RHO as written is that it requires one gcd compu-
tation for each step of the recurrence. Instead, we could batch the gcd computa-
tions by accumulating the product of several xi values in a row and then using this
product instead of xi in the gcd computation. Describe carefully how you would
implement this idea, why it works, and what batch size you would pick as the most
effective when working on a ˇ-bit number n.

Problems for Chapter 31 981

Problems

31-1 Binary gcd algorithm
Most computers can perform the operations of subtraction, testing the parity (odd
or even) of a binary integer, and halving more quickly than computing remainders.
This problem investigates the binary gcd algorithm, which avoids the remainder
computations used in Euclid’s algorithm.

a. Prove that if a and b are both even, then gcd.a; b/ D 2 � gcd.a=2; b=2/.

b. Prove that if a is odd and b is even, then gcd.a; b/ D gcd.a; b=2/.

c. Prove that if a and b are both odd, then gcd.a; b/ D gcd..a � b/=2; b/.

d. Design an efficient binary gcd algorithm for input integers a and b, where
a � b, that runs in O.lg a/ time. Assume that each subtraction, parity test,
and halving takes unit time.

31-2 Analysis of bit operations in Euclid’s algorithm
a. Consider the ordinary “paper and pencil” algorithm for long division: dividing

a by b, which yields a quotient q and remainder r . Show that this method
requires O..1C lg q/ lg b/ bit operations.

b. Define
.a; b/ D .1C lg a/.1C lg b/. Show that the number of bit operations
performed by EUCLID in reducing the problem of computing gcd.a; b/ to that
of computing gcd.b; a mod b/ is at most c.
.a; b/�
.b; a mod b// for some
sufficiently large constant c > 0.

c. Show that EUCLID.a; b/ requires O.
.a; b// bit operations in general and
O.ˇ2/ bit operations when applied to two ˇ-bit inputs.

31-3 Three algorithms for Fibonacci numbers
This problem compares the efficiency of three methods for computing the nth Fi-
bonacci number Fn, given n. Assume that the cost of adding, subtracting, or mul-
tiplying two numbers is O.1/, independent of the size of the numbers.

a. Show that the running time of the straightforward recursive method for com-
puting Fn based on recurrence (3.22) is exponential in n. (See, for example, the
FIB procedure on page 775.)

b. Show how to compute Fn in O.n/ time using memoization.

982 Chapter 31 Number-Theoretic Algorithms

c. Show how to compute Fn in O.lg n/ time using only integer addition and mul-
tiplication. (Hint: Consider the matrix�

0 1

1 1

�
and its powers.)

d. Assume now that adding two ˇ-bit numbers takes ‚.ˇ/ time and that multi-
plying two ˇ-bit numbers takes ‚.ˇ2/ time. What is the running time of these
three methods under this more reasonable cost measure for the elementary arith-
metic operations?

31-4 Quadratic residues
Let p be an odd prime. A number a 2 Z�

p is a quadratic residue if the equation
x2 D a .mod p/ has a solution for the unknown x.

a. Show that there are exactly .p � 1/=2 quadratic residues, modulo p.

b. If p is prime, we define the Legendre symbol . a
p

/, for a 2 Z
�
p, to be 1 if a is a

quadratic residue modulo p and �1 otherwise. Prove that if a 2 Z
�
p, then�a

p

�
� a.p�1/=2 .mod p/ :

Give an efficient algorithm that determines whether a given number a is a qua-
dratic residue modulo p. Analyze the efficiency of your algorithm.

c. Prove that if p is a prime of the form 4kC 3 and a is a quadratic residue in Z
�
p,

then akC1 mod p is a square root of a, modulo p. How much time is required
to find the square root of a quadratic residue a modulo p?

d. Describe an efficient randomized algorithm for finding a nonquadratic residue,
modulo an arbitrary prime p, that is, a member of Z

�
p that is not a quadratic

residue. How many arithmetic operations does your algorithm require on aver-
age?

Chapter notes

Niven and Zuckerman [265] provide an excellent introduction to elementary num-
ber theory. Knuth [210] contains a good discussion of algorithms for finding the

Notes for Chapter 31 983

greatest common divisor, as well as other basic number-theoretic algorithms. Bach
[30] and Riesel [295] provide more recent surveys of computational number the-
ory. Dixon [91] gives an overview of factorization and primality testing. The
conference proceedings edited by Pomerance [280] contains several excellent sur-
vey articles. More recently, Bach and Shallit [31] have provided an exceptional
overview of the basics of computational number theory.

Knuth [210] discusses the origin of Euclid’s algorithm. It appears in Book 7,
Propositions 1 and 2, of the Greek mathematician Euclid’s Elements, which was
written around 300 B.C. Euclid’s description may have been derived from an al-
gorithm due to Eudoxus around 375 B.C. Euclid’s algorithm may hold the honor
of being the oldest nontrivial algorithm; it is rivaled only by an algorithm for mul-
tiplication known to the ancient Egyptians. Shallit [312] chronicles the history of
the analysis of Euclid’s algorithm.

Knuth attributes a special case of the Chinese remainder theorem (Theo-
rem 31.27) to the Chinese mathematician Sun-Tsŭ, who lived sometime between
200 B.C. and A.D. 200—the date is quite uncertain. The same special case was
given by the Greek mathematician Nichomachus around A.D. 100. It was gener-
alized by Chhin Chiu-Shao in 1247. The Chinese remainder theorem was finally
stated and proved in its full generality by L. Euler in 1734.

The randomized primality-testing algorithm presented here is due to Miller [255]
and Rabin [289]; it is the fastest randomized primality-testing algorithm known,
to within constant factors. The proof of Theorem 31.39 is a slight adaptation of
one suggested by Bach [29]. A proof of a stronger result for MILLER-RABIN

was given by Monier [258, 259]. For many years primality-testing was the classic
example of a problem where randomization appeared to be necessary to obtain
an efficient (polynomial-time) algorithm. In 2002, however, Agrawal, Kayal, and
Saxema [4] surprised everyone with their deterministic polynomial-time primality-
testing algorithm. Until then, the fastest deterministic primality testing algorithm
known, due to Cohen and Lenstra [73], ran in time .lg n/O.lg lg lg n/ on input n, which
is just slightly superpolynomial. Nonetheless, for practical purposes randomized
primality-testing algorithms remain more efficient and are preferred.

The problem of finding large “random” primes is nicely discussed in an article
by Beauchemin, Brassard, Crépeau, Goutier, and Pomerance [36].

The concept of a public-key cryptosystem is due to Diffie and Hellman [87].
The RSA cryptosystem was proposed in 1977 by Rivest, Shamir, and Adleman
[296]. Since then, the field of cryptography has blossomed. Our understanding
of the RSA cryptosystem has deepened, and modern implementations use signif-
icant refinements of the basic techniques presented here. In addition, many new
techniques have been developed for proving cryptosystems to be secure. For ex-
ample, Goldwasser and Micali [142] show that randomization can be an effective
tool in the design of secure public-key encryption schemes. For signature schemes,

984 Chapter 31 Number-Theoretic Algorithms

Goldwasser, Micali, and Rivest [143] present a digital-signature scheme for which
every conceivable type of forgery is provably as difficult as factoring. Menezes,
van Oorschot, and Vanstone [254] provide an overview of applied cryptography.

The rho heuristic for integer factorization was invented by Pollard [277]. The
version presented here is a variant proposed by Brent [56].

The best algorithms for factoring large numbers have a running time that grows
roughly exponentially with the cube root of the length of the number n to be fac-
tored. The general number-field sieve factoring algorithm (as developed by Buh-
ler, Lenstra, and Pomerance [57] as an extension of the ideas in the number-field
sieve factoring algorithm by Pollard [278] and Lenstra et al. [232] and refined by
Coppersmith [77] and others) is perhaps the most efficient such algorithm in gen-
eral for large inputs. Although it is difficult to give a rigorous analysis of this
algorithm, under reasonable assumptions we can derive a running-time estimate of
L.1=3; n/1:902Co.1/, where L.˛; n/ D e.ln n/˛.ln ln n/1�˛

.
The elliptic-curve method due to Lenstra [233] may be more effective for some

inputs than the number-field sieve method, since, like Pollard’s rho method, it can
find a small prime factor p quite quickly. With this method, the time to find p is
estimated to be L.1=2; p/

p
2Co.1/.

32 String Matching

Text-editing programs frequently need to find all occurrences of a pattern in the
text. Typically, the text is a document being edited, and the pattern searched for is a
particular word supplied by the user. Efficient algorithms for this problem—called
“string matching”—can greatly aid the responsiveness of the text-editing program.
Among their many other applications, string-matching algorithms search for par-
ticular patterns in DNA sequences. Internet search engines also use them to find
Web pages relevant to queries.

We formalize the string-matching problem as follows. We assume that the
text is an array T Œ1 : : n� of length n and that the pattern is an array P Œ1 : : m�

of length m � n. We further assume that the elements of P and T are char-
acters drawn from a finite alphabet †. For example, we may have † D f0,1g
or † D fa;b; : : : ;zg. The character arrays P and T are often called strings of
characters.

Referring to Figure 32.1, we say that pattern P occurs with shift s in text T

(or, equivalently, that pattern P occurs beginning at position s C 1 in text T) if
0 � s � n�m and T ŒsC 1 : : sCm� D P Œ1 : : m� (that is, if T ŒsC j � D P Œj �, for
1 � j � m). If P occurs with shift s in T , then we call s a valid shift; otherwise,
we call s an invalid shift. The string-matching problem is the problem of finding
all valid shifts with which a given pattern P occurs in a given text T .

a b c a b a a b c a b a c

a b a apattern P

text T

s = 3

Figure 32.1 An example of the string-matching problem, where we want to find all occurrences of
the pattern P D abaa in the text T D abcabaabcabac. The pattern occurs only once in the text,
at shift s D 3, which we call a valid shift. A vertical line connects each character of the pattern to its
matching character in the text, and all matched characters are shaded.

986 Chapter 32 String Matching

Algorithm Preprocessing time Matching time

Naive 0 O..n �mC 1/m/

Rabin-Karp ‚.m/ O..n �mC 1/m/

Finite automaton O.m j†j/ ‚.n/

Knuth-Morris-Pratt ‚.m/ ‚.n/

Figure 32.2 The string-matching algorithms in this chapter and their preprocessing and matching
times.

Except for the naive brute-force algorithm, which we review in Section 32.1,
each string-matching algorithm in this chapter performs some preprocessing based
on the pattern and then finds all valid shifts; we call this latter phase “matching.”
Figure 32.2 shows the preprocessing and matching times for each of the algorithms
in this chapter. The total running time of each algorithm is the sum of the prepro-
cessing and matching times. Section 32.2 presents an interesting string-matching
algorithm, due to Rabin and Karp. Although the ‚..n � m C 1/m/ worst-case
running time of this algorithm is no better than that of the naive method, it works
much better on average and in practice. It also generalizes nicely to other pattern-
matching problems. Section 32.3 then describes a string-matching algorithm that
begins by constructing a finite automaton specifically designed to search for occur-
rences of the given pattern P in a text. This algorithm takes O.m j†j/ preprocess-
ing time, but only ‚.n/ matching time. Section 32.4 presents the similar, but much
cleverer, Knuth-Morris-Pratt (or KMP) algorithm; it has the same ‚.n/ matching
time, and it reduces the preprocessing time to only ‚.m/.

Notation and terminology

We denote by †� (read “sigma-star”) the set of all finite-length strings formed
using characters from the alphabet †. In this chapter, we consider only finite-
length strings. The zero-length empty string, denoted ", also belongs to †�. The
length of a string x is denoted jxj. The concatenation of two strings x and y,
denoted xy, has length jxj C jyj and consists of the characters from x followed by
the characters from y.

We say that a string w is a prefix of a string x, denoted w � x, if x D wy for
some string y 2 †�. Note that if w � x, then jwj � jxj. Similarly, we say that a
string w is a suffix of a string x, denoted w � x, if x D yw for some y 2 †�. As
with a prefix, w � x implies jwj � jxj. For example, we have ab � abcca and
cca � abcca. The empty string " is both a suffix and a prefix of every string. For
any strings x and y and any character a, we have x � y if and only if xa � ya.

Chapter 32 String Matching 987

x

z

x

y

y

(a)

x

z

x

y

y

(b)

x

z

x

y

y

(c)

Figure 32.3 A graphical proof of Lemma 32.1. We suppose that x � ´ and y � ´. The three parts
of the figure illustrate the three cases of the lemma. Vertical lines connect matching regions (shown
shaded) of the strings. (a) If jxj � jyj, then x � y. (b) If jxj � jyj, then y � x. (c) If jxj D jyj,
then x D y.

Also note that � and � are transitive relations. The following lemma will be useful
later.

Lemma 32.1 (Overlapping-suffix lemma)
Suppose that x, y, and ´ are strings such that x � ´ and y � ´. If jxj � jyj,
then x � y. If jxj � jyj, then y � x. If jxj D jyj, then x D y.

Proof See Figure 32.3 for a graphical proof.

For brevity of notation, we denote the k-character prefix P Œ1 : : k� of the pattern
P Œ1 : : m� by Pk. Thus, P0 D " and Pm D P D P Œ1 : : m�. Similarly, we denote
the k-character prefix of the text T by Tk. Using this notation, we can state the
string-matching problem as that of finding all shifts s in the range 0 � s � n �m

such that P � TsCm.
In our pseudocode, we allow two equal-length strings to be compared for equal-

ity as a primitive operation. If the strings are compared from left to right and the
comparison stops when a mismatch is discovered, we assume that the time taken
by such a test is a linear function of the number of matching characters discovered.
To be precise, the test “x == y” is assumed to take time ‚.t C 1/, where t is the
length of the longest string ´ such that ´ � x and ´ � y. (We write ‚.t C 1/

rather than ‚.t/ to handle the case in which t D 0; the first characters compared
do not match, but it takes a positive amount of time to perform this comparison.)

988 Chapter 32 String Matching

32.1 The naive string-matching algorithm

The naive algorithm finds all valid shifts using a loop that checks the condition
P Œ1 : : m� D T Œs C 1 : : s Cm� for each of the n �mC 1 possible values of s.

NAIVE-STRING-MATCHER.T; P /

1 n D T: length
2 m D P: length
3 for s D 0 to n �m

4 if P Œ1 : : m� == T Œs C 1 : : s Cm�

5 print “Pattern occurs with shift” s

Figure 32.4 portrays the naive string-matching procedure as sliding a “template”
containing the pattern over the text, noting for which shifts all of the characters
on the template equal the corresponding characters in the text. The for loop of
lines 3–5 considers each possible shift explicitly. The test in line 4 determines
whether the current shift is valid; this test implicitly loops to check corresponding
character positions until all positions match successfully or a mismatch is found.
Line 5 prints out each valid shift s.

Procedure NAIVE-STRING-MATCHER takes time O..n � m C 1/m/, and this
bound is tight in the worst case. For example, consider the text string an (a string
of n a’s) and the pattern am. For each of the n�mC1 possible values of the shift s,
the implicit loop on line 4 to compare corresponding characters must execute m

times to validate the shift. The worst-case running time is thus ‚..n �mC 1/m/,
which is ‚.n2/ if m D bn=2c. Because it requires no preprocessing, NAIVE-
STRING-MATCHER’s running time equals its matching time.

a c a a b c

a a b
s = 0

(a)

a c a a b c

a a b
s = 1

(b)

a c a a b c

a a b
s = 2

(c)

a c a a b c

a a b
s = 3

(d)

Figure 32.4 The operation of the naive string matcher for the pattern P D aab and the text
T D acaabc. We can imagine the pattern P as a template that we slide next to the text. (a)–(d) The
four successive alignments tried by the naive string matcher. In each part, vertical lines connect cor-
responding regions found to match (shown shaded), and a jagged line connects the first mismatched
character found, if any. The algorithm finds one occurrence of the pattern, at shift s D 2, shown in
part (c).

32.1 The naive string-matching algorithm 989

As we shall see, NAIVE-STRING-MATCHER is not an optimal procedure for this
problem. Indeed, in this chapter we shall see that the Knuth-Morris-Pratt algorithm
is much better in the worst case. The naive string-matcher is inefficient because
it entirely ignores information gained about the text for one value of s when it
considers other values of s. Such information can be quite valuable, however. For
example, if P D aaab and we find that s D 0 is valid, then none of the shifts 1, 2,
or 3 are valid, since T Œ4� D b. In the following sections, we examine several ways
to make effective use of this sort of information.

Exercises

32.1-1
Show the comparisons the naive string matcher makes for the pattern P D 0001
in the text T D 000010001010001.

32.1-2
Suppose that all characters in the pattern P are different. Show how to accelerate
NAIVE-STRING-MATCHER to run in time O.n/ on an n-character text T .

32.1-3
Suppose that pattern P and text T are randomly chosen strings of length m and n,
respectively, from the d -ary alphabet †d D f0; 1; : : : ; d � 1g, where d � 2. Show
that the expected number of character-to-character comparisons made by the im-
plicit loop in line 4 of the naive algorithm is

.n �mC 1/
1 � d �m

1 � d �1
� 2.n �mC 1/

over all executions of this loop. (Assume that the naive algorithm stops comparing
characters for a given shift once it finds a mismatch or matches the entire pattern.)
Thus, for randomly chosen strings, the naive algorithm is quite efficient.

32.1-4
Suppose we allow the pattern P to contain occurrences of a gap character } that
can match an arbitrary string of characters (even one of zero length). For example,
the pattern ab}ba}c occurs in the text cabccbacbacab as

c ab’
ab

cc’
}

ba’
ba

cba“
}

c’
c

ab

and as

c ab’
ab

ccbac—
}

ba’
ba

’
}

c’
c

ab :

990 Chapter 32 String Matching

Note that the gap character may occur an arbitrary number of times in the pattern
but not at all in the text. Give a polynomial-time algorithm to determine whether
such a pattern P occurs in a given text T , and analyze the running time of your
algorithm.

32.2 The Rabin-Karp algorithm

Rabin and Karp proposed a string-matching algorithm that performs well in prac-
tice and that also generalizes to other algorithms for related problems, such as
two-dimensional pattern matching. The Rabin-Karp algorithm uses ‚.m/ prepro-
cessing time, and its worst-case running time is ‚..n�mC1/m/. Based on certain
assumptions, however, its average-case running time is better.

This algorithm makes use of elementary number-theoretic notions such as the
equivalence of two numbers modulo a third number. You might want to refer to
Section 31.1 for the relevant definitions.

For expository purposes, let us assume that † D f0;1;2; : : : ;9g, so that each
character is a decimal digit. (In the general case, we can assume that each charac-
ter is a digit in radix-d notation, where d D j†j.) We can then view a string of k

consecutive characters as representing a length-k decimal number. The character
string 31415 thus corresponds to the decimal number 31,415. Because we inter-
pret the input characters as both graphical symbols and digits, we find it convenient
in this section to denote them as we would digits, in our standard text font.

Given a pattern P Œ1 : : m�, let p denote its corresponding decimal value. In a sim-
ilar manner, given a text T Œ1 : : n�, let ts denote the decimal value of the length-m
substring T ŒsC 1 : : sCm�, for s D 0; 1; : : : ; n �m. Certainly, ts D p if and only
if T ŒsC 1 : : sCm� D P Œ1 : : m�; thus, s is a valid shift if and only if ts D p. If we
could compute p in time ‚.m/ and all the ts values in a total of ‚.n�mC1/ time,1

then we could determine all valid shifts s in time ‚.m/C‚.n �mC 1/ D ‚.n/

by comparing p with each of the ts values. (For the moment, let’s not worry about
the possibility that p and the ts values might be very large numbers.)

We can compute p in time ‚.m/ using Horner’s rule (see Section 30.1):

p D P Œm�C 10 .P Œm� 1�C 10.P Œm� 2�C � � � C 10.P Œ2�C 10P Œ1�/ � � �// :

Similarly, we can compute t0 from T Œ1 : : m� in time ‚.m/.

1We write ‚.n �mC 1/ instead of ‚.n �m/ because s takes on n �mC 1 different values. The
“C1” is significant in an asymptotic sense because when m D n, computing the lone ts value takes
‚.1/ time, not ‚.0/ time.

32.2 The Rabin-Karp algorithm 991

To compute the remaining values t1; t2; : : : ; tn�m in time ‚.n �m/, we observe
that we can compute tsC1 from ts in constant time, since

tsC1 D 10.ts � 10m�1T Œs C 1�/C T Œs CmC 1� : (32.1)

Subtracting 10m�1T Œs C 1� removes the high-order digit from ts , multiplying the
result by 10 shifts the number left by one digit position, and adding T Œs CmC 1�

brings in the appropriate low-order digit. For example, if m D 5 and ts D 31415,
then we wish to remove the high-order digit T Œs C 1� D 3 and bring in the new
low-order digit (suppose it is T Œs C 5C 1� D 2) to obtain

tsC1 D 10.31415 � 10000 � 3/C 2

D 14152 :

If we precompute the constant 10m�1 (which we can do in time O.lg m/ using the
techniques of Section 31.6, although for this application a straightforward O.m/-
time method suffices), then each execution of equation (32.1) takes a constant num-
ber of arithmetic operations. Thus, we can compute p in time ‚.m/, and we can
compute all of t0; t1; : : : ; tn�m in time ‚.n �mC 1/. Therefore, we can find all
occurrences of the pattern P Œ1 : : m� in the text T Œ1 : : n� with ‚.m/ preprocessing
time and ‚.n �mC 1/ matching time.

Until now, we have intentionally overlooked one problem: p and ts may be
too large to work with conveniently. If P contains m characters, then we cannot
reasonably assume that each arithmetic operation on p (which is m digits long)
takes “constant time.” Fortunately, we can solve this problem easily, as Figure 32.5
shows: compute p and the ts values modulo a suitable modulus q. We can compute
p modulo q in ‚.m/ time and all the ts values modulo q in ‚.n � m C 1/ time.
If we choose the modulus q as a prime such that 10q just fits within one computer
word, then we can perform all the necessary computations with single-precision
arithmetic. In general, with a d -ary alphabet f0; 1; : : : ; d � 1g, we choose q so
that dq fits within a computer word and adjust the recurrence equation (32.1) to
work modulo q, so that it becomes

tsC1 D .d.ts � T Œs C 1�h/C T Œs CmC 1�/ mod q ; (32.2)

where h � d m�1 .mod q/ is the value of the digit “1” in the high-order position
of an m-digit text window.

The solution of working modulo q is not perfect, however: ts � p .mod q/

does not imply that ts D p. On the other hand, if ts 6� p .mod q/, then we
definitely have that ts ¤ p, so that shift s is invalid. We can thus use the test
ts � p .mod q/ as a fast heuristic test to rule out invalid shifts s. Any shift s for
which ts � p .mod q/ must be tested further to see whether s is really valid or
we just have a spurious hit. This additional test explicitly checks the condition

992 Chapter 32 String Matching

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1

7

(a)

mod 13

2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1

7

(b)

mod 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

8 9 3 11 0 1 8 5 11 9 117104

valid
match

spurious
hit

… … …

3 1 4 1 5 2

7 8

old
high-order

digit

new
low-order

digit

≡ (31415 – 3·10000)·10 + 2 (mod 13)

old
high-order

digit

new
low-order

digitshift

≡ (7 – 3·3)·10 + 2 (mod 13)

≡ 8 (mod 13)

(c)

14152

Figure 32.5 The Rabin-Karp algorithm. Each character is a decimal digit, and we compute values
modulo 13. (a) A text string. A window of length 5 is shown shaded. The numerical value of the
shaded number, computed modulo 13, yields the value 7. (b) The same text string with values com-
puted modulo 13 for each possible position of a length-5 window. Assuming the pattern P D 31415,
we look for windows whose value modulo 13 is 7, since 31415 � 7 .mod 13/. The algorithm finds
two such windows, shown shaded in the figure. The first, beginning at text position 7, is indeed an
occurrence of the pattern, while the second, beginning at text position 13, is a spurious hit. (c) How
to compute the value for a window in constant time, given the value for the previous window. The
first window has value 31415. Dropping the high-order digit 3, shifting left (multiplying by 10), and
then adding in the low-order digit 2 gives us the new value 14152. Because all computations are
performed modulo 13, the value for the first window is 7, and the value for the new window is 8.

32.2 The Rabin-Karp algorithm 993

P Œ1 : : m� D T Œs C 1 : : s Cm�. If q is large enough, then we hope that spurious
hits occur infrequently enough that the cost of the extra checking is low.

The following procedure makes these ideas precise. The inputs to the procedure
are the text T , the pattern P , the radix d to use (which is typically taken to be j†j),
and the prime q to use.

RABIN-KARP-MATCHER.T; P; d; q/

1 n D T: length
2 m D P: length
3 h D d m�1 mod q

4 p D 0

5 t0 D 0

6 for i D 1 to m // preprocessing
7 p D .dp C P Œi�/ mod q

8 t0 D .dt0 C T Œi �/ mod q

9 for s D 0 to n �m // matching
10 if p == ts
11 if P Œ1 : : m� == T Œs C 1 : : s Cm�

12 print “Pattern occurs with shift” s

13 if s < n �m

14 tsC1 D .d.ts � T Œs C 1�h/C T Œs CmC 1�/ mod q

The procedure RABIN-KARP-MATCHER works as follows. All characters are
interpreted as radix-d digits. The subscripts on t are provided only for clarity; the
program works correctly if all the subscripts are dropped. Line 3 initializes h to the
value of the high-order digit position of an m-digit window. Lines 4–8 compute p

as the value of P Œ1 : : m� mod q and t0 as the value of T Œ1 : : m� mod q. The for
loop of lines 9–14 iterates through all possible shifts s, maintaining the following
invariant:

Whenever line 10 is executed, ts D T Œs C 1 : : s Cm� mod q.

If p D ts in line 10 (a “hit”), then line 11 checks to see whether P Œ1 : : m� D
T ŒsC1 : : sCm� in order to rule out the possibility of a spurious hit. Line 12 prints
out any valid shifts that are found. If s < n �m (checked in line 13), then the for
loop will execute at least one more time, and so line 14 first executes to ensure that
the loop invariant holds when we get back to line 10. Line 14 computes the value
of tsC1 mod q from the value of ts mod q in constant time using equation (32.2)
directly.

RABIN-KARP-MATCHER takes ‚.m/ preprocessing time, and its matching time
is ‚..n �mC 1/m/ in the worst case, since (like the naive string-matching algo-
rithm) the Rabin-Karp algorithm explicitly verifies every valid shift. If P D am

994 Chapter 32 String Matching

and T D an, then verifying takes time ‚..n�mC1/m/, since each of the n�mC1

possible shifts is valid.
In many applications, we expect few valid shifts—perhaps some constant c of

them. In such applications, the expected matching time of the algorithm is only
O..n �mC 1/C cm/ D O.n C m/, plus the time required to process spurious
hits. We can base a heuristic analysis on the assumption that reducing values mod-
ulo q acts like a random mapping from †� to Zq . (See the discussion on the use of
division for hashing in Section 11.3.1. It is difficult to formalize and prove such an
assumption, although one viable approach is to assume that q is chosen randomly
from integers of the appropriate size. We shall not pursue this formalization here.)
We can then expect that the number of spurious hits is O.n=q/, since we can es-
timate the chance that an arbitrary ts will be equivalent to p, modulo q, as 1=q.
Since there are O.n/ positions at which the test of line 10 fails and we spend O.m/

time for each hit, the expected matching time taken by the Rabin-Karp algorithm
is

O.n/CO.m.� C n=q// ;

where � is the number of valid shifts. This running time is O.n/ if � D O.1/ and
we choose q � m. That is, if the expected number of valid shifts is small (O.1/)
and we choose the prime q to be larger than the length of the pattern, then we
can expect the Rabin-Karp procedure to use only O.nCm/ matching time. Since
m � n, this expected matching time is O.n/.

Exercises

32.2-1
Working modulo q D 11, how many spurious hits does the Rabin-Karp matcher en-
counter in the text T D 3141592653589793 when looking for the pattern P D 26?

32.2-2
How would you extend the Rabin-Karp method to the problem of searching a text
string for an occurrence of any one of a given set of k patterns? Start by assuming
that all k patterns have the same length. Then generalize your solution to allow the
patterns to have different lengths.

32.2-3
Show how to extend the Rabin-Karp method to handle the problem of looking for
a given m 	m pattern in an n 	 n array of characters. (The pattern may be shifted
vertically and horizontally, but it may not be rotated.)

32.3 String matching with finite automata 995

32.2-4
Alice has a copy of a long n-bit file A D han�1; an�2; : : : ; a0i, and Bob similarly
has an n-bit file B D hbn�1; bn�2; : : : ; b0i. Alice and Bob wish to know if their
files are identical. To avoid transmitting all of A or B , they use the following fast
probabilistic check. Together, they select a prime q > 1000n and randomly select
an integer x from f0; 1; : : : ; q � 1g. Then, Alice evaluates

A.x/ D

n�1X
iD0

aix
i

!
mod q

and Bob similarly evaluates B.x/. Prove that if A ¤ B , there is at most one
chance in 1000 that A.x/ D B.x/, whereas if the two files are the same, A.x/ is
necessarily the same as B.x/. (Hint: See Exercise 31.4-4.)

32.3 String matching with finite automata

Many string-matching algorithms build a finite automaton—a simple machine for
processing information—that scans the text string T for all occurrences of the pat-
tern P . This section presents a method for building such an automaton. These
string-matching automata are very efficient: they examine each text character ex-
actly once, taking constant time per text character. The matching time used—after
preprocessing the pattern to build the automaton—is therefore ‚.n/. The time to
build the automaton, however, can be large if † is large. Section 32.4 describes a
clever way around this problem.

We begin this section with the definition of a finite automaton. We then examine
a special string-matching automaton and show how to use it to find occurrences
of a pattern in a text. Finally, we shall show how to construct the string-matching
automaton for a given input pattern.

Finite automata

A finite automaton M , illustrated in Figure 32.6, is a 5-tuple .Q; q0; A; †; ı/,
where

� Q is a finite set of states,
� q0 2 Q is the start state,
� A � Q is a distinguished set of accepting states,
� † is a finite input alphabet,
� ı is a function from Q 	† into Q, called the transition function of M .

996 Chapter 32 String Matching

1 0

0 0

a b
input

state

0

1

(a)

a

a

b

b

(b)

0 1

Figure 32.6 A simple two-state finite automaton with state set Q D f0; 1g, start state q0 D 0,
and input alphabet † D fa;bg. (a) A tabular representation of the transition function ı. (b) An
equivalent state-transition diagram. State 1, shown blackend, is the only accepting state. Directed
edges represent transitions. For example, the edge from state 1 to state 0 labeled b indicates that
ı.1; b/ D 0. This automaton accepts those strings that end in an odd number of a’s. More precisely,
it accepts a string x if and only if x D y´, where y D " or y ends with a b, and ´ D ak , where k is
odd. For example, on input abaaa, including the start state, this automaton enters the sequence of
states h0; 1; 0; 1; 0; 1i, and so it accepts this input. For input abbaa, it enters the sequence of states
h0; 1; 0; 0; 1; 0i, and so it rejects this input.

The finite automaton begins in state q0 and reads the characters of its input string
one at a time. If the automaton is in state q and reads input character a, it moves
(“makes a transition”) from state q to state ı.q; a/. Whenever its current state q is
a member of A, the machine M has accepted the string read so far. An input that
is not accepted is rejected.

A finite automaton M induces a function �, called the final-state function,
from †� to Q such that �.w/ is the state M ends up in after scanning the string w.
Thus, M accepts a string w if and only if �.w/ 2 A. We define the function �

recursively, using the transition function:

�."/ D q0 ;

�.wa/ D ı.�.w/; a/ for w 2 †�; a 2 † .

String-matching automata

For a given pattern P , we construct a string-matching automaton in a preprocess-
ing step before using it to search the text string. Figure 32.7 illustrates how we
construct the automaton for the pattern P D ababaca. From now on, we shall
assume that P is a given fixed pattern string; for brevity, we shall not indicate the
dependence upon P in our notation.

In order to specify the string-matching automaton corresponding to a given pat-
tern P Œ1 : : m�, we first define an auxiliary function 	 , called the suffix function
corresponding to P . The function 	 maps †� to f0; 1; : : : ; mg such that 	.x/ is the
length of the longest prefix of P that is also a suffix of x:

	.x/ D max fk W Pk � xg : (32.3)

32.3 String matching with finite automata 997

0 1 2 3 4 5 6 7
a b a b a c a

b

a
a

a
a

b

(a)

1 0 0

1 2 0

3 0 0

1 4 0

5 0 0

1 4 6

7 0 0

1 2 0

0

1

2

3

4

5

6

7

state
input

a b c

a

b

a

b

a

c

a

P

(b)

1 2 3 4 5 6 7 8 9 10 11

a b a b a b a c a b a

0 1 2 3 4 5 4 5 6 7 2 3

—

—

(c)

i

T Œi �

state �.Ti /

Figure 32.7 (a) A state-transition diagram for the string-matching automaton that accepts all
strings ending in the string ababaca. State 0 is the start state, and state 7 (shown blackened) is
the only accepting state. A directed edge from state i to state j labeled a represents ı.i; a/ D j . The
right-going edges forming the “spine” of the automaton, shown heavy in the figure, correspond to
successful matches between pattern and input characters. The left-going edges correspond to failing
matches. Some edges corresponding to failing matches are omitted; by convention, if a state i has
no outgoing edge labeled a for some a 2 †, then ı.i; a/ D 0. (b) The corresponding transition
function ı, and the pattern string P D ababaca. The entries corresponding to successful matches
between pattern and input characters are shown shaded. (c) The operation of the automaton on the
text T D abababacaba. Under each text character T Œi� appears the state �.Ti / that the automa-
ton is in after processing the prefix Ti . The automaton finds one occurrence of the pattern, ending in
position 9.

The suffix function 	 is well defined since the empty string P0 D " is a suf-
fix of every string. As examples, for the pattern P D ab, we have 	."/ D 0,
	.ccaca/ D 1, and 	.ccab/ D 2. For a pattern P of length m, we have
	.x/ D m if and only if P � x. From the definition of the suffix function,
x � y implies 	.x/ � 	.y/.

We define the string-matching automaton that corresponds to a given pattern
P Œ1 : : m� as follows:

998 Chapter 32 String Matching

� The state set Q is f0; 1; : : : ; mg. The start state q0 is state 0, and state m is the
only accepting state.

� The transition function ı is defined by the following equation, for any state q

and character a:

ı.q; a/ D 	.Pqa/ : (32.4)

We define ı.q; a/ D 	.Pqa/ because we want to keep track of the longest pre-
fix of the pattern P that has matched the text string T so far. We consider the
most recently read characters of T . In order for a substring of T —let’s say the
substring ending at T Œi �—to match some prefix Pj of P , this prefix Pj must be a
suffix of Ti . Suppose that q D �.Ti /, so that after reading Ti , the automaton is in
state q. We design the transition function ı so that this state number, q, tells us the
length of the longest prefix of P that matches a suffix of Ti . That is, in state q,
Pq � Ti and q D 	.Ti/. (Whenever q D m, all m characters of P match a suffix
of Ti , and so we have found a match.) Thus, since �.Ti / and 	.Ti / both equal q,
we shall see (in Theorem 32.4, below) that the automaton maintains the following
invariant:

�.Ti / D 	.Ti / : (32.5)

If the automaton is in state q and reads the next character T Œi C 1� D a, then we
want the transition to lead to the state corresponding to the longest prefix of P that
is a suffix of Tia, and that state is 	.Tia/. Because Pq is the longest prefix of P

that is a suffix of Ti , the longest prefix of P that is a suffix of Tia is not only 	.Tia/,
but also 	.Pqa/. (Lemma 32.3, on page 1000, proves that 	.Tia/ D 	.Pqa/.)
Thus, when the automaton is in state q, we want the transition function on charac-
ter a to take the automaton to state 	.Pqa/.

There are two cases to consider. In the first case, a D P Œq C 1�, so that the
character a continues to match the pattern; in this case, because ı.q; a/ D qC1, the
transition continues to go along the “spine” of the automaton (the heavy edges in
Figure 32.7). In the second case, a ¤ P ŒqC1�, so that a does not continue to match
the pattern. Here, we must find a smaller prefix of P that is also a suffix of Ti .
Because the preprocessing step matches the pattern against itself when creating the
string-matching automaton, the transition function quickly identifies the longest
such smaller prefix of P .

Let’s look at an example. The string-matching automaton of Figure 32.7 has
ı.5;c/ D 6, illustrating the first case, in which the match continues. To illus-
trate the second case, observe that the automaton of Figure 32.7 has ı.5;b/ D 4.
We make this transition because if the automaton reads a b in state q D 5, then
Pqb D ababab, and the longest prefix of P that is also a suffix of ababab is
P4 D abab.

32.3 String matching with finite automata 999

x

a

Pr

Pr–1

Figure 32.8 An illustration for the proof of Lemma 32.2. The figure shows that r � 	.x/ C 1,
where r D 	.xa/.

To clarify the operation of a string-matching automaton, we now give a simple,
efficient program for simulating the behavior of such an automaton (represented
by its transition function ı) in finding occurrences of a pattern P of length m in an
input text T Œ1 : : n�. As for any string-matching automaton for a pattern of length m,
the state set Q is f0; 1; : : : ; mg, the start state is 0, and the only accepting state is
state m.

FINITE-AUTOMATON-MATCHER.T; ı; m/

1 n D T: length
2 q D 0

3 for i D 1 to n

4 q D ı.q; T Œi �/

5 if q == m

6 print “Pattern occurs with shift” i �m

From the simple loop structure of FINITE-AUTOMATON-MATCHER, we can easily
see that its matching time on a text string of length n is ‚.n/. This matching
time, however, does not include the preprocessing time required to compute the
transition function ı. We address this problem later, after first proving that the
procedure FINITE-AUTOMATON-MATCHER operates correctly.

Consider how the automaton operates on an input text T Œ1 : : n�. We shall prove
that the automaton is in state 	.Ti / after scanning character T Œi �. Since 	.Ti/ D m

if and only if P � Ti , the machine is in the accepting state m if and only if it has
just scanned the pattern P . To prove this result, we make use of the following two
lemmas about the suffix function 	 .

Lemma 32.2 (Suffix-function inequality)
For any string x and character a, we have 	.xa/ � 	.x/C 1.

Proof Referring to Figure 32.8, let r D 	.xa/. If r D 0, then the conclusion
	.xa/ D r � 	.x/C 1 is trivially satisfied, by the nonnegativity of 	.x/. Now
assume that r > 0. Then, Pr � xa, by the definition of 	 . Thus, Pr�1 � x, by

1000 Chapter 32 String Matching

x

a

aPq

Pr

Figure 32.9 An illustration for the proof of Lemma 32.3. The figure shows that r D 	.Pqa/,
where q D 	.x/ and r D 	.xa/.

dropping the a from the end of Pr and from the end of xa. Therefore, r�1 � 	.x/,
since 	.x/ is the largest k such that Pk � x, and thus 	.xa/ D r � 	.x/C 1.

Lemma 32.3 (Suffix-function recursion lemma)
For any string x and character a, if q D 	.x/, then 	.xa/ D 	.Pqa/.

Proof From the definition of 	 , we have Pq � x. As Figure 32.9 shows, we
also have Pqa � xa. If we let r D 	.xa/, then Pr � xa and, by Lemma 32.2,
r � qC 1. Thus, we have jPr j D r � qC 1 D jPqaj. Since Pqa � xa, Pr � xa,
and jPr j � jPqaj, Lemma 32.1 implies that Pr � Pqa. Therefore, r � 	.Pqa/,
that is, 	.xa/ � 	.Pqa/. But we also have 	.Pqa/ � 	.xa/, since Pqa � xa.
Thus, 	.xa/ D 	.Pqa/.

We are now ready to prove our main theorem characterizing the behavior of a
string-matching automaton on a given input text. As noted above, this theorem
shows that the automaton is merely keeping track, at each step, of the longest
prefix of the pattern that is a suffix of what has been read so far. In other words,
the automaton maintains the invariant (32.5).

Theorem 32.4
If � is the final-state function of a string-matching automaton for a given pattern P

and T Œ1 : : n� is an input text for the automaton, then

�.Ti / D 	.Ti /

for i D 0; 1; : : : ; n.

Proof The proof is by induction on i . For i D 0, the theorem is trivially true,
since T0 D ". Thus, �.T0/ D 0 D 	.T0/.

32.3 String matching with finite automata 1001

Now, we assume that �.Ti / D 	.Ti/ and prove that �.TiC1/ D 	.TiC1/. Let q

denote �.Ti /, and let a denote T Œi C 1�. Then,

�.TiC1/ D �.Tia/ (by the definitions of TiC1 and a)

D ı.�.Ti /; a/ (by the definition of �)

D ı.q; a/ (by the definition of q)

D 	.Pqa/ (by the definition (32.4) of ı)

D 	.Tia/ (by Lemma 32.3 and induction)

D 	.TiC1/ (by the definition of TiC1) .

By Theorem 32.4, if the machine enters state q on line 4, then q is the largest
value such that Pq � Ti . Thus, we have q D m on line 5 if and only if the ma-
chine has just scanned an occurrence of the pattern P . We conclude that FINITE-
AUTOMATON-MATCHER operates correctly.

Computing the transition function

The following procedure computes the transition function ı from a given pattern
P Œ1 : : m�.

COMPUTE-TRANSITION-FUNCTION.P; †/

1 m D P: length
2 for q D 0 to m

3 for each character a 2 †

4 k D min.mC 1; q C 2/

5 repeat
6 k D k � 1

7 until Pk � Pqa

8 ı.q; a/ D k

9 return ı

This procedure computes ı.q; a/ in a straightforward manner according to its def-
inition in equation (32.4). The nested loops beginning on lines 2 and 3 consider
all states q and all characters a, and lines 4–8 set ı.q; a/ to be the largest k such
that Pk � Pqa. The code starts with the largest conceivable value of k, which is
min.m; q C 1/. It then decreases k until Pk � Pqa, which must eventually occur,
since P0 D " is a suffix of every string.

The running time of COMPUTE-TRANSITION-FUNCTION is O.m3 j†j/, be-
cause the outer loops contribute a factor of m j†j, the inner repeat loop can run
at most m C 1 times, and the test Pk � Pqa on line 7 can require comparing up

1002 Chapter 32 String Matching

to m characters. Much faster procedures exist; by utilizing some cleverly com-
puted information about the pattern P (see Exercise 32.4-8), we can improve the
time required to compute ı from P to O.m j†j/. With this improved procedure for
computing ı, we can find all occurrences of a length-m pattern in a length-n text
over an alphabet † with O.m j†j/ preprocessing time and ‚.n/ matching time.

Exercises

32.3-1
Construct the string-matching automaton for the pattern P D aabab and illustrate
its operation on the text string T D aaababaabaababaab.

32.3-2
Draw a state-transition diagram for a string-matching automaton for the pattern
ababbabbababbababbabb over the alphabet † D fa;bg.
32.3-3
We call a pattern P nonoverlappable if Pk � Pq implies k D 0 or k D q. De-
scribe the state-transition diagram of the string-matching automaton for a nonover-
lappable pattern.

32.3-4 ?

Given two patterns P and P 0, describe how to construct a finite automaton that
determines all occurrences of either pattern. Try to minimize the number of states
in your automaton.

32.3-5
Given a pattern P containing gap characters (see Exercise 32.1-4), show how to
build a finite automaton that can find an occurrence of P in a text T in O.n/

matching time, where n D jT j.

? 32.4 The Knuth-Morris-Pratt algorithm

We now present a linear-time string-matching algorithm due to Knuth, Morris, and
Pratt. This algorithm avoids computing the transition function ı altogether, and its
matching time is ‚.n/ using just an auxiliary function � , which we precompute
from the pattern in time ‚.m/ and store in an array �Œ1 : : m�. The array � allows
us to compute the transition function ı efficiently (in an amortized sense) “on the
fly” as needed. Loosely speaking, for any state q D 0; 1; : : : ; m and any character

32.4 The Knuth-Morris-Pratt algorithm 1003

a 2 †, the value �Œq� contains the information we need to compute ı.q; a/ but
that does not depend on a. Since the array � has only m entries, whereas ı has
‚.m j†j/ entries, we save a factor of j†j in the preprocessing time by computing �

rather than ı.

The prefix function for a pattern

The prefix function � for a pattern encapsulates knowledge about how the pat-
tern matches against shifts of itself. We can take advantage of this information to
avoid testing useless shifts in the naive pattern-matching algorithm and to avoid
precomputing the full transition function ı for a string-matching automaton.

Consider the operation of the naive string matcher. Figure 32.10(a) shows a
particular shift s of a template containing the pattern P D ababaca against a
text T . For this example, q D 5 of the characters have matched successfully, but
the 6th pattern character fails to match the corresponding text character. The infor-
mation that q characters have matched successfully determines the corresponding
text characters. Knowing these q text characters allows us to determine immedi-
ately that certain shifts are invalid. In the example of the figure, the shift s C 1 is
necessarily invalid, since the first pattern character (a) would be aligned with a text
character that we know does not match the first pattern character, but does match
the second pattern character (b). The shift s0 D s C 2 shown in part (b) of the fig-
ure, however, aligns the first three pattern characters with three text characters that
must necessarily match. In general, it is useful to know the answer to the following
question:

Given that pattern characters P Œ1 : : q� match text characters T ŒsC1 : : sCq�,
what is the least shift s0 > s such that for some k < q,

P Œ1 : : k� D T Œs0 C 1 : : s0 C k� ; (32.6)

where s0 C k D s C q?

In other words, knowing that Pq � TsCq, we want the longest proper prefix Pk

of Pq that is also a suffix of TsCq. (Since s0 C k D s C q, if we are given s

and q, then finding the smallest shift s0 is tantamount to finding the longest prefix
length k.) We add the difference q � k in the lengths of these prefixes of P to the
shift s to arrive at our new shift s0, so that s0 D sC .q�k/. In the best case, k D 0,
so that s0 D sC q, and we immediately rule out shifts sC 1; s C 2; : : : ; sC q � 1.
In any case, at the new shift s0 we don’t need to compare the first k characters of P

with the corresponding characters of T , since equation (32.6) guarantees that they
match.

We can precompute the necessary information by comparing the pattern against
itself, as Figure 32.10(c) demonstrates. Since T Œs0 C 1 : : s0 C k� is part of the

1004 Chapter 32 String Matching

b a c b a b

a b a

(a)

a b a a b c b a b

b a c as

T

P

q

b a c b a b

a b a

(b)

a b a a b c b a b

b a c as′ = s + 2

T

P

k

a b

a b a

a b a

(c)

Pq

Pk

Figure 32.10 The prefix function � . (a) The pattern P D ababaca aligns with a text T so that
the first q D 5 characters match. Matching characters, shown shaded, are connected by vertical lines.
(b) Using only our knowledge of the 5 matched characters, we can deduce that a shift of s C 1 is
invalid, but that a shift of s0 D sC2 is consistent with everything we know about the text and therefore
is potentially valid. (c)We can precompute useful information for such deductions by comparing the
pattern with itself. Here, we see that the longest prefix of P that is also a proper suffix of P5 is P3.
We represent this precomputed information in the array � , so that �Œ5� D 3. Given that q characters
have matched successfully at shift s, the next potentially valid shift is at s0 D sC.q��Œq�/ as shown
in part (b).

known portion of the text, it is a suffix of the string Pq. Therefore, we can interpret
equation (32.6) as asking for the greatest k < q such that Pk � Pq. Then, the new
shift s0 D sC.q�k/ is the next potentially valid shift. We will find it convenient to
store, for each value of q, the number k of matching characters at the new shift s0,
rather than storing, say, s0 � s.

We formalize the information that we precompute as follows. Given a pattern
P Œ1 : : m�, the prefix function for the pattern P is the function � W f1; 2; : : : ; mg !
f0; 1; : : : ; m � 1g such that

�Œq� D max fk W k < q and Pk � Pqg :

That is, �Œq� is the length of the longest prefix of P that is a proper suffix of Pq.
Figure 32.11(a) gives the complete prefix function � for the pattern ababaca.

32.4 The Knuth-Morris-Pratt algorithm 1005

1 2 3 4 5 6 7

0 0 1 2 3 0 1

a b a b a c a

(a)

a b a b a c a

a b a b a c a

a b a b a c a

a b a b a c a

(b)

"

i

P Œi �

�Œi �

P5

P3

P1

P0

�Œ5� D 3

�Œ3� D 1

�Œ1� D 0

Figure 32.11 An illustration of Lemma 32.5 for the pattern P D ababaca and q D 5. (a) The �

function for the given pattern. Since �Œ5� D 3, �Œ3� D 1, and �Œ1� D 0, by iterating � we obtain
��Œ5� D f3; 1; 0g. (b)We slide the template containing the pattern P to the right and note when some
prefix Pk of P matches up with some proper suffix of P5; we get matches when k D 3, 1, and 0. In
the figure, the first row gives P , and the dotted vertical line is drawn just after P5. Successive rows
show all the shifts of P that cause some prefix Pk of P to match some suffix of P5. Successfully
matched characters are shown shaded. Vertical lines connect aligned matching characters. Thus,
fk W k < 5 and Pk � P5g D f3; 1; 0g. Lemma 32.5 claims that ��Œq� D fk W k < q and Pk � Pqg
for all q.

The pseudocode below gives the Knuth-Morris-Pratt matching algorithm as
the procedure KMP-MATCHER. For the most part, the procedure follows from
FINITE-AUTOMATON-MATCHER, as we shall see. KMP-MATCHER calls the aux-
iliary procedure COMPUTE-PREFIX-FUNCTION to compute � .

KMP-MATCHER.T; P /

1 n D T: length
2 m D P: length
3 � D COMPUTE-PREFIX-FUNCTION.P /

4 q D 0 // number of characters matched
5 for i D 1 to n // scan the text from left to right
6 while q > 0 and P Œq C 1� ¤ T Œi �

7 q D �Œq� // next character does not match
8 if P Œq C 1� == T Œi �

9 q D q C 1 // next character matches
10 if q == m // is all of P matched?
11 print “Pattern occurs with shift” i �m

12 q D �Œq� // look for the next match

1006 Chapter 32 String Matching

COMPUTE-PREFIX-FUNCTION.P /

1 m D P: length
2 let �Œ1 : : m� be a new array
3 �Œ1� D 0

4 k D 0

5 for q D 2 to m

6 while k > 0 and P Œk C 1� ¤ P Œq�

7 k D �Œk�

8 if P Œk C 1� == P Œq�

9 k D k C 1

10 �Œq� D k

11 return �

These two procedures have much in common, because both match a string against
the pattern P : KMP-MATCHER matches the text T against P , and COMPUTE-
PREFIX-FUNCTION matches P against itself.

We begin with an analysis of the running times of these procedures. Proving
these procedures correct will be more complicated.

Running-time analysis

The running time of COMPUTE-PREFIX-FUNCTION is ‚.m/, which we show by
using the aggregate method of amortized analysis (see Section 17.1). The only
tricky part is showing that the while loop of lines 6–7 executes O.m/ times alto-
gether. We shall show that it makes at most m � 1 iterations. We start by making
some observations about k. First, line 4 starts k at 0, and the only way that k

increases is by the increment operation in line 9, which executes at most once per
iteration of the for loop of lines 5–10. Thus, the total increase in k is at most m�1.
Second, since k < q upon entering the for loop and each iteration of the loop in-
crements q, we always have k < q. Therefore, the assignments in lines 3 and 10
ensure that �Œq� < q for all q D 1; 2; : : : ; m, which means that each iteration of
the while loop decreases k. Third, k never becomes negative. Putting these facts
together, we see that the total decrease in k from the while loop is bounded from
above by the total increase in k over all iterations of the for loop, which is m � 1.
Thus, the while loop iterates at most m � 1 times in all, and COMPUTE-PREFIX-
FUNCTION runs in time ‚.m/.

Exercise 32.4-4 asks you to show, by a similar aggregate analysis, that the match-
ing time of KMP-MATCHER is ‚.n/.

Compared with FINITE-AUTOMATON-MATCHER, by using � rather than ı, we
have reduced the time for preprocessing the pattern from O.m j†j/ to ‚.m/, while
keeping the actual matching time bounded by ‚.n/.

32.4 The Knuth-Morris-Pratt algorithm 1007

Correctness of the prefix-function computation

We shall see a little later that the prefix function � helps us simulate the transition
function ı in a string-matching automaton. But first, we need to prove that the
procedure COMPUTE-PREFIX-FUNCTION does indeed compute the prefix func-
tion correctly. In order to do so, we will need to find all prefixes Pk that are proper
suffixes of a given prefix Pq. The value of �Œq� gives us the longest such prefix, but
the following lemma, illustrated in Figure 32.11, shows that by iterating the prefix
function � , we can indeed enumerate all the prefixes Pk that are proper suffixes
of Pq. Let

��Œq� D f�Œq�; � .2/Œq�; � .3/Œq�; : : : ; � .t/Œq�g ;

where � .i/Œq� is defined in terms of functional iteration, so that � .0/Œq� D q and
� .i/Œq� D �Œ� .i�1/Œq�� for i � 1, and where the sequence in ��Œq� stops upon
reaching � .t/Œq� D 0.

Lemma 32.5 (Prefix-function iteration lemma)
Let P be a pattern of length m with prefix function � . Then, for q D 1; 2; : : : ; m,
we have ��Œq� D fk W k < q and Pk � Pqg.

Proof We first prove that ��Œq� � fk W k < q and Pk � Pqg or, equivalently,

i 2 ��Œq� implies Pi � Pq : (32.7)

If i 2 ��Œq�, then i D � .u/Œq� for some u > 0. We prove equation (32.7) by
induction on u. For u D 1, we have i D �Œq�, and the claim follows since i < q

and P�Œq� � Pq by the definition of � . Using the relations �Œi� < i and P�Œi� � Pi

and the transitivity of < and � establishes the claim for all i in ��Œq�. Therefore,
��Œq� � fk W k < q and Pk � Pqg.

We now prove that fk W k < q and Pk � Pqg � ��Œq� by contradiction. Sup-
pose to the contrary that the set fk W k < q and Pk � Pqg � ��Œq� is nonempty,
and let j be the largest number in the set. Because �Œq� is the largest value in
fk W k < q and Pk � Pqg and �Œq� 2 ��Œq�, we must have j < �Œq�, and so we
let j 0 denote the smallest integer in ��Œq� that is greater than j . (We can choose
j 0 D �Œq� if no other number in ��Œq� is greater than j .) We have Pj � Pq because
j 2 fk W k < q and Pk � Pqg, and from j 0 2 ��Œq� and equation (32.7), we have
Pj 0 � Pq. Thus, Pj � Pj 0 by Lemma 32.1, and j is the largest value less than j 0

with this property. Therefore, we must have �Œj 0� D j and, since j 0 2 ��Œq�, we
must have j 2 ��Œq� as well. This contradiction proves the lemma.

The algorithm COMPUTE-PREFIX-FUNCTION computes �Œq�, in order, for q D
1; 2; : : : ; m. Setting �Œ1� to 0 in line 3 of COMPUTE-PREFIX-FUNCTION is cer-
tainly correct, since �Œq� < q for all q. We shall use the following lemma and

1008 Chapter 32 String Matching

its corollary to prove that COMPUTE-PREFIX-FUNCTION computes �Œq� correctly
for q > 1.

Lemma 32.6
Let P be a pattern of length m, and let � be the prefix function for P . For q D
1; 2; : : : ; m, if �Œq� > 0, then �Œq� � 1 2 ��Œq � 1�.

Proof Let r D �Œq� > 0, so that r < q and Pr � Pq; thus, r � 1 < q � 1 and
Pr�1 � Pq�1 (by dropping the last character from Pr and Pq, which we can do
because r > 0). By Lemma 32.5, therefore, r � 1 2 ��Œq � 1�. Thus, we have
�Œq� � 1 D r � 1 2 ��Œq � 1�.

For q D 2; 3; : : : ; m, define the subset Eq�1 � ��Œq � 1� by

Eq�1 D fk 2 ��Œq � 1� W P Œk C 1� D P Œq�g
D fk W k < q � 1 and Pk � Pq�1 and P Œk C 1� D P Œq�g (by Lemma 32.5)

D fk W k < q � 1 and PkC1 � Pqg :

The set Eq�1 consists of the values k < q� 1 for which Pk � Pq�1 and for which,
because P Œk C 1� D P Œq�, we have PkC1 � Pq. Thus, Eq�1 consists of those
values k 2 ��Œq � 1� such that we can extend Pk to PkC1 and get a proper suffix
of Pq.

Corollary 32.7
Let P be a pattern of length m, and let � be the prefix function for P . For q D
2; 3; : : : ; m,

�Œq� D
(

0 if Eq�1 D ; ;

1Cmax fk 2 Eq�1g if Eq�1 ¤ ; :

Proof If Eq�1 is empty, there is no k 2 ��Œq � 1� (including k D 0) for which
we can extend Pk to PkC1 and get a proper suffix of Pq. Therefore �Œq� D 0.

If Eq�1 is nonempty, then for each k 2 Eq�1 we have kC1 < q and PkC1 � Pq.
Therefore, from the definition of �Œq�, we have

�Œq� � 1Cmax fk 2 Eq�1g : (32.8)

Note that �Œq� > 0. Let r D �Œq� � 1, so that r C 1 D �Œq� and there-
fore PrC1 � Pq . Since r C 1 > 0, we have P Œr C 1� D P Œq�. Furthermore,
by Lemma 32.6, we have r 2 ��Œq � 1�. Therefore, r 2 Eq�1, and so r �
max fk 2 Eq�1g or, equivalently,

�Œq� � 1Cmax fk 2 Eq�1g : (32.9)

Combining equations (32.8) and (32.9) completes the proof.

32.4 The Knuth-Morris-Pratt algorithm 1009

We now finish the proof that COMPUTE-PREFIX-FUNCTION computes � cor-
rectly. In the procedure COMPUTE-PREFIX-FUNCTION, at the start of each iter-
ation of the for loop of lines 5–10, we have that k D �Œq � 1�. This condition
is enforced by lines 3 and 4 when the loop is first entered, and it remains true in
each successive iteration because of line 10. Lines 6–9 adjust k so that it becomes
the correct value of �Œq�. The while loop of lines 6–7 searches through all values
k 2 ��Œq � 1� until it finds a value of k for which P Œk C 1� D P Œq�; at that point,
k is the largest value in the set Eq�1, so that, by Corollary 32.7, we can set �Œq�

to kC 1. If the while loop cannot find a k 2 ��Œq� 1� such that P ŒkC 1� D P Œq�,
then k equals 0 at line 8. If P Œ1� D P Œq�, then we should set both k and �Œq� to 1;
otherwise we should leave k alone and set �Œq� to 0. Lines 8–10 set k and �Œq�

correctly in either case. This completes our proof of the correctness of COMPUTE-
PREFIX-FUNCTION.

Correctness of the Knuth-Morris-Pratt algorithm

We can think of the procedure KMP-MATCHER as a reimplemented version of
the procedure FINITE-AUTOMATON-MATCHER, but using the prefix function �

to compute state transitions. Specifically, we shall prove that in the i th iteration of
the for loops of both KMP-MATCHER and FINITE-AUTOMATON-MATCHER, the
state q has the same value when we test for equality with m (at line 10 in KMP-
MATCHER and at line 5 in FINITE-AUTOMATON-MATCHER). Once we have
argued that KMP-MATCHER simulates the behavior of FINITE-AUTOMATON-
MATCHER, the correctness of KMP-MATCHER follows from the correctness of
FINITE-AUTOMATON-MATCHER (though we shall see a little later why line 12 in
KMP-MATCHER is necessary).

Before we formally prove that KMP-MATCHER correctly simulates FINITE-
AUTOMATON-MATCHER, let’s take a moment to understand how the prefix func-
tion � replaces the ı transition function. Recall that when a string-matching
automaton is in state q and it scans a character a D T Œi �, it moves to a new
state ı.q; a/. If a D P Œq C 1�, so that a continues to match the pattern, then
ı.q; a/ D q C 1. Otherwise, a ¤ P Œq C 1�, so that a does not continue to match
the pattern, and 0 � ı.q; a/ � q. In the first case, when a continues to match,
KMP-MATCHER moves to state q C 1 without referring to the � function: the
while loop test in line 6 comes up false the first time, the test in line 8 comes up
true, and line 9 increments q.

The � function comes into play when the character a does not continue to match
the pattern, so that the new state ı.q; a/ is either q or to the left of q along the spine
of the automaton. The while loop of lines 6–7 in KMP-MATCHER iterates through
the states in ��Œq�, stopping either when it arrives in a state, say q0, such that a

matches P Œq0 C 1� or q0 has gone all the way down to 0. If a matches P Œq0 C 1�,

1010 Chapter 32 String Matching

then line 9 sets the new state to q0C1, which should equal ı.q; a/ for the simulation
to work correctly. In other words, the new state ı.q; a/ should be either state 0 or
one greater than some state in ��Œq�.

Let’s look at the example in Figures 32.7 and 32.11, which are for the pattern
P D ababaca. Suppose that the automaton is in state q D 5; the states in
��Œ5� are, in descending order, 3, 1, and 0. If the next character scanned is c, then
we can easily see that the automaton moves to state ı.5;c/ D 6 in both FINITE-
AUTOMATON-MATCHER and KMP-MATCHER. Now suppose that the next char-
acter scanned is instead b, so that the automaton should move to state ı.5;b/ D 4.
The while loop in KMP-MATCHER exits having executed line 7 once, and it ar-
rives in state q0 D �Œ5� D 3. Since P Œq0 C 1� D P Œ4� D b, the test in line 8
comes up true, and KMP-MATCHER moves to the new state q0C1 D 4 D ı.5;b/.
Finally, suppose that the next character scanned is instead a, so that the automa-
ton should move to state ı.5;a/ D 1. The first three times that the test in line 6
executes, the test comes up true. The first time, we find that P Œ6� D c ¤ a, and
KMP-MATCHER moves to state �Œ5� D 3 (the first state in ��Œ5�). The second
time, we find that P Œ4� D b ¤ a and move to state �Œ3� D 1 (the second state
in ��Œ5�). The third time, we find that P Œ2� D b ¤ a and move to state �Œ1� D 0

(the last state in ��Œ5�). The while loop exits once it arrives in state q0 D 0. Now,
line 8 finds that P Œq0C1� D P Œ1� D a, and line 9 moves the automaton to the new
state q0 C 1 D 1 D ı.5;a/.

Thus, our intuition is that KMP-MATCHER iterates through the states in ��Œq� in
decreasing order, stopping at some state q0 and then possibly moving to state q0C1.
Although that might seem like a lot of work just to simulate computing ı.q; a/,
bear in mind that asymptotically, KMP-MATCHER is no slower than FINITE-
AUTOMATON-MATCHER.

We are now ready to formally prove the correctness of the Knuth-Morris-Pratt
algorithm. By Theorem 32.4, we have that q D 	.Ti / after each time we execute
line 4 of FINITE-AUTOMATON-MATCHER. Therefore, it suffices to show that the
same property holds with regard to the for loop in KMP-MATCHER. The proof
proceeds by induction on the number of loop iterations. Initially, both procedures
set q to 0 as they enter their respective for loops for the first time. Consider itera-
tion i of the for loop in KMP-MATCHER, and let q0 be state at the start of this loop
iteration. By the inductive hypothesis, we have q0 D 	.Ti�1/. We need to show
that q D 	.Ti / at line 10. (Again, we shall handle line 12 separately.)

When we consider the character T Œi �, the longest prefix of P that is a suffix of Ti

is either Pq0C1 (if P Œq0 C 1� D T Œi �) or some prefix (not necessarily proper, and
possibly empty) of Pq0 . We consider separately the three cases in which 	.Ti/ D 0,
	.Ti / D q0 C 1, and 0 < 	.Ti/ � q0.

32.4 The Knuth-Morris-Pratt algorithm 1011

� If 	.Ti / D 0, then P0 D " is the only prefix of P that is a suffix of Ti . Thewhile
loop of lines 6–7 iterates through the values in ��Œq0�, but although Pq � Ti for
every q 2 ��Œq0�, the loop never finds a q such that P ŒqC 1� D T Œi �. The loop
terminates when q reaches 0, and of course line 9 does not execute. Therefore,
q D 0 at line 10, so that q D 	.Ti/.

� If 	.Ti / D q0 C 1, then P Œq0 C 1� D T Œi �, and the while loop test in line 6
fails the first time through. Line 9 executes, incrementing q so that afterward
we have q D q0 C 1 D 	.Ti /.

� If 0 < 	.Ti/ � q0, then the while loop of lines 6–7 iterates at least once,
checking in decreasing order each value q 2 ��Œq0� until it stops at some q < q0.
Thus, Pq is the longest prefix of Pq0 for which P ŒqC1� D T Œi �, so that when the
while loop terminates, q C 1 D 	.Pq0T Œi �/. Since q0 D 	.Ti�1/, Lemma 32.3
implies that 	.Ti�1T Œi �/ D 	.Pq0T Œi �/. Thus, we have

q C 1 D 	.Pq0T Œi �/

D 	.Ti�1T Œi �/

D 	.Ti/

when the while loop terminates. After line 9 increments q, we have q D 	.Ti /.

Line 12 is necessary in KMP-MATCHER, because otherwise, we might refer-
ence P ŒmC 1� on line 6 after finding an occurrence of P . (The argument that
q D 	.Ti�1/ upon the next execution of line 6 remains valid by the hint given in
Exercise 32.4-8: ı.m; a/ D ı.�Œm�; a/ or, equivalently, 	.P a/ D 	.P�Œm�a/ for
any a 2 †.) The remaining argument for the correctness of the Knuth-Morris-
Pratt algorithm follows from the correctness of FINITE-AUTOMATON-MATCHER,
since we have shown that KMP-MATCHER simulates the behavior of FINITE-
AUTOMATON-MATCHER.

Exercises

32.4-1
Compute the prefix function � for the pattern ababbabbabbababbabb.

32.4-2
Give an upper bound on the size of ��Œq� as a function of q. Give an example to
show that your bound is tight.

32.4-3
Explain how to determine the occurrences of pattern P in the text T by examining
the � function for the string P T (the string of length mCn that is the concatenation
of P and T).

1012 Chapter 32 String Matching

32.4-4
Use an aggregate analysis to show that the running time of KMP-MATCHER

is ‚.n/.

32.4-5
Use a potential function to show that the running time of KMP-MATCHER is ‚.n/.

32.4-6
Show how to improve KMP-MATCHER by replacing the occurrence of � in line 7
(but not line 12) by � 0, where � 0 is defined recursively for q D 1; 2; : : : ; m � 1 by
the equation

� 0Œq� D

�
0 if �Œq� D 0 ;

� 0Œ�Œq�� if �Œq� ¤ 0 and P Œ�Œq�C 1� D P Œq C 1� ;

�Œq� if �Œq� ¤ 0 and P Œ�Œq�C 1� ¤ P Œq C 1� :

Explain why the modified algorithm is correct, and explain in what sense this
change constitutes an improvement.

32.4-7
Give a linear-time algorithm to determine whether a text T is a cyclic rotation of
another string T 0. For example, arc and car are cyclic rotations of each other.

32.4-8 ?

Give an O.m j†j/-time algorithm for computing the transition function ı for the
string-matching automaton corresponding to a given pattern P . (Hint: Prove that
ı.q; a/ D ı.�Œq�; a/ if q D m or P Œq C 1� ¤ a.)

Problems

32-1 String matching based on repetition factors
Let yi denote the concatenation of string y with itself i times. For example,
.ab/3 D ababab. We say that a string x 2 †� has repetition factor r if x D yr

for some string y 2 †� and some r > 0. Let �.x/ denote the largest r such that x

has repetition factor r .

a. Give an efficient algorithm that takes as input a pattern P Œ1 : : m� and computes
the value �.Pi/ for i D 1; 2; : : : ; m. What is the running time of your algo-
rithm?

Notes for Chapter 32 1013

b. For any pattern P Œ1 : : m�, let ��.P / be defined as max1�i�m �.Pi/. Prove that if
the pattern P is chosen randomly from the set of all binary strings of length m,
then the expected value of ��.P / is O.1/.

c. Argue that the following string-matching algorithm correctly finds all occur-
rences of pattern P in a text T Œ1 : : n� in time O.��.P /nCm/:

REPETITION-MATCHER.P; T /

1 m D P: length
2 n D T: length
3 k D 1C ��.P /

4 q D 0

5 s D 0

6 while s � n �m

7 if T Œs C q C 1� == P Œq C 1�

8 q D q C 1

9 if q == m

10 print “Pattern occurs with shift” s

11 if q == m or T Œs C q C 1� ¤ P Œq C 1�

12 s D s Cmax.1; dq=ke/
13 q D 0

This algorithm is due to Galil and Seiferas. By extending these ideas greatly,
they obtained a linear-time string-matching algorithm that uses only O.1/ stor-
age beyond what is required for P and T .

Chapter notes

The relation of string matching to the theory of finite automata is discussed by
Aho, Hopcroft, and Ullman [5]. The Knuth-Morris-Pratt algorithm [214] was
invented independently by Knuth and Pratt and by Morris; they published their
work jointly. Reingold, Urban, and Gries [294] give an alternative treatment of the
Knuth-Morris-Pratt algorithm. The Rabin-Karp algorithm was proposed by Karp
and Rabin [201]. Galil and Seiferas [126] give an interesting deterministic linear-
time string-matching algorithm that uses only O.1/ space beyond that required to
store the pattern and text.

33 Computational Geometry

Computational geometry is the branch of computer science that studies algorithms
for solving geometric problems. In modern engineering and mathematics, com-
putational geometry has applications in such diverse fields as computer graphics,
robotics, VLSI design, computer-aided design, molecular modeling, metallurgy,
manufacturing, textile layout, forestry, and statistics. The input to a computational-
geometry problem is typically a description of a set of geometric objects, such as
a set of points, a set of line segments, or the vertices of a polygon in counterclock-
wise order. The output is often a response to a query about the objects, such as
whether any of the lines intersect, or perhaps a new geometric object, such as the
convex hull (smallest enclosing convex polygon) of the set of points.

In this chapter, we look at a few computational-geometry algorithms in two
dimensions, that is, in the plane. We represent each input object by a set of
points fp1; p2; p3; : : :g, where each pi D .xi ; yi / and xi ; yi 2 R. For exam-
ple, we represent an n-vertex polygon P by a sequence hp0; p1; p2; : : : ; pn�1i
of its vertices in order of their appearance on the boundary of P . Computational
geometry can also apply to three dimensions, and even higher-dimensional spaces,
but such problems and their solutions can be very difficult to visualize. Even in
two dimensions, however, we can see a good sample of computational-geometry
techniques.

Section 33.1 shows how to answer basic questions about line segments effi-
ciently and accurately: whether one segment is clockwise or counterclockwise
from another that shares an endpoint, which way we turn when traversing two
adjoining line segments, and whether two line segments intersect. Section 33.2
presents a technique called “sweeping” that we use to develop an O.n lg n/-time
algorithm for determining whether a set of n line segments contains any inter-
sections. Section 33.3 gives two “rotational-sweep” algorithms that compute the
convex hull (smallest enclosing convex polygon) of a set of n points: Graham’s
scan, which runs in time O.n lg n/, and Jarvis’s march, which takes O.nh/ time,
where h is the number of vertices of the convex hull. Finally, Section 33.4 gives

33.1 Line-segment properties 1015

an O.n lg n/-time divide-and-conquer algorithm for finding the closest pair of
points in a set of n points in the plane.

33.1 Line-segment properties

Several of the computational-geometry algorithms in this chapter require answers
to questions about the properties of line segments. A convex combination of two
distinct points p1 D .x1; y1/ and p2 D .x2; y2/ is any point p3 D .x3; y3/ such
that for some ˛ in the range 0 � ˛ � 1, we have x3 D ˛x1 C .1 � ˛/x2 and
y3 D ˛y1 C .1� ˛/y2. We also write that p3 D ˛p1 C .1 � ˛/p2. Intuitively, p3

is any point that is on the line passing through p1 and p2 and is on or between p1

and p2 on the line. Given two distinct points p1 and p2, the line segment p1p2

is the set of convex combinations of p1 and p2. We call p1 and p2 the endpoints
of segment p1p2. Sometimes the ordering of p1 and p2 matters, and we speak of
the directed segment ���!p1p2. If p1 is the origin .0; 0/, then we can treat the directed
segment ���!p1p2 as the vector p2.

In this section, we shall explore the following questions:

1. Given two directed segments ���!p0p1 and ���!p0p2, is ���!p0p1 clockwise from ���!p0p2

with respect to their common endpoint p0?

2. Given two line segments p0p1 and p1p2, if we traverse p0p1 and then p1p2,
do we make a left turn at point p1?

3. Do line segments p1p2 and p3p4 intersect?

There are no restrictions on the given points.
We can answer each question in O.1/ time, which should come as no surprise

since the input size of each question is O.1/. Moreover, our methods use only ad-
ditions, subtractions, multiplications, and comparisons. We need neither division
nor trigonometric functions, both of which can be computationally expensive and
prone to problems with round-off error. For example, the “straightforward” method
of determining whether two segments intersect—compute the line equation of the
form y D mx C b for each segment (m is the slope and b is the y-intercept),
find the point of intersection of the lines, and check whether this point is on both
segments—uses division to find the point of intersection. When the segments are
nearly parallel, this method is very sensitive to the precision of the division opera-
tion on real computers. The method in this section, which avoids division, is much
more accurate.

1016 Chapter 33 Computational Geometry

p2

x

y

(0,0)

p1

p1 + p2

(a) (b)

y

x
(0,0)

p

Figure 33.1 (a) The cross product of vectors p1 and p2 is the signed area of the parallelogram.
(b) The lightly shaded region contains vectors that are clockwise from p. The darkly shaded region
contains vectors that are counterclockwise from p.

Cross products

Computing cross products lies at the heart of our line-segment methods. Consider
vectors p1 and p2, shown in Figure 33.1(a). We can interpret the cross product
p1	p2 as the signed area of the parallelogram formed by the points .0; 0/, p1, p2,
and p1Cp2 D .x1Cx2; y1Cy2/. An equivalent, but more useful, definition gives
the cross product as the determinant of a matrix:1

p1 	 p2 D det

�
x1 x2

y1 y2

�
D x1y2 � x2y1

D �p2 	 p1 :

If p1	p2 is positive, then p1 is clockwise from p2 with respect to the origin .0; 0/;
if this cross product is negative, then p1 is counterclockwise from p2. (See Exer-
cise 33.1-1.) Figure 33.1(b) shows the clockwise and counterclockwise regions
relative to a vector p. A boundary condition arises if the cross product is 0; in this
case, the vectors are colinear, pointing in either the same or opposite directions.

To determine whether a directed segment ���!p0p1 is closer to a directed seg-
ment ���!p0p2 in a clockwise direction or in a counterclockwise direction with respect
to their common endpoint p0, we simply translate to use p0 as the origin. That
is, we let p1 � p0 denote the vector p0

1 D .x 0
1; y 0

1/, where x 0
1 D x1 � x0 and

y 0
1 D y1�y0, and we define p2�p0 similarly. We then compute the cross product

1Actually, the cross product is a three-dimensional concept. It is a vector that is perpendicular to
both p1 and p2 according to the “right-hand rule” and whose magnitude is jx1y2 � x2y1j. In this
chapter, however, we find it convenient to treat the cross product simply as the value x1y2 � x2y1.

33.1 Line-segment properties 1017

p0

p1

p2

p0

p1

p2

counterclockwise

(a) (b)

clockwise

Figure 33.2 Using the cross product to determine how consecutive line segments p0p1 and p1p2

turn at point p1. We check whether the directed segment ���!p0p2 is clockwise or counterclockwise
relative to the directed segment ���!p0p1. (a) If counterclockwise, the points make a left turn. (b) If
clockwise, they make a right turn.

.p1 � p0/ 	 .p2 � p0/ D .x1 � x0/.y2 � y0/ � .x2 � x0/.y1 � y0/ :

If this cross product is positive, then ���!p0p1 is clockwise from ���!p0p2; if negative, it
is counterclockwise.

Determining whether consecutive segments turn left or right

Our next question is whether two consecutive line segments p0p1 and p1p2 turn
left or right at point p1. Equivalently, we want a method to determine which way a
given angle †p0p1p2 turns. Cross products allow us to answer this question with-
out computing the angle. As Figure 33.2 shows, we simply check whether directed
segment ���!p0p2 is clockwise or counterclockwise relative to directed segment ���!p0p1.
To do so, we compute the cross product .p2 � p0/ 	 .p1 � p0/. If the sign of
this cross product is negative, then ���!p0p2 is counterclockwise with respect to ���!p0p1,
and thus we make a left turn at p1. A positive cross product indicates a clockwise
orientation and a right turn. A cross product of 0 means that points p0, p1, and p2

are colinear.

Determining whether two line segments intersect

To determine whether two line segments intersect, we check whether each segment
straddles the line containing the other. A segment p1p2 straddles a line if point p1

lies on one side of the line and point p2 lies on the other side. A boundary case
arises if p1 or p2 lies directly on the line. Two line segments intersect if and only
if either (or both) of the following conditions holds:

1. Each segment straddles the line containing the other.

2. An endpoint of one segment lies on the other segment. (This condition comes
from the boundary case.)

1018 Chapter 33 Computational Geometry

The following procedures implement this idea. SEGMENTS-INTERSECT returns
TRUE if segments p1p2 and p3p4 intersect and FALSE if they do not. It calls
the subroutines DIRECTION, which computes relative orientations using the cross-
product method above, and ON-SEGMENT, which determines whether a point
known to be colinear with a segment lies on that segment.

SEGMENTS-INTERSECT.p1; p2; p3; p4/

1 d1 D DIRECTION.p3; p4; p1/

2 d2 D DIRECTION.p3; p4; p2/

3 d3 D DIRECTION.p1; p2; p3/

4 d4 D DIRECTION.p1; p2; p4/

5 if ..d1 > 0 and d2 < 0/ or .d1 < 0 and d2 > 0// and
..d3 > 0 and d4 < 0/ or .d3 < 0 and d4 > 0//

6 return TRUE

7 elseif d1 == 0 and ON-SEGMENT.p3; p4; p1/

8 return TRUE

9 elseif d2 == 0 and ON-SEGMENT.p3; p4; p2/

10 return TRUE

11 elseif d3 == 0 and ON-SEGMENT.p1; p2; p3/

12 return TRUE

13 elseif d4 == 0 and ON-SEGMENT.p1; p2; p4/

14 return TRUE

15 else return FALSE

DIRECTION.pi ; pj ; pk/

1 return .pk � pi/ 	 .pj � pi /

ON-SEGMENT.pi ; pj ; pk/

1 if min.xi ; xj / � xk � max.xi ; xj / and min.yi ; yj / � yk � max.yi ; yj /

2 return TRUE

3 else return FALSE

SEGMENTS-INTERSECT works as follows. Lines 1–4 compute the relative ori-
entation di of each endpoint pi with respect to the other segment. If all the relative
orientations are nonzero, then we can easily determine whether segments p1p2

and p3p4 intersect, as follows. Segment p1p2 straddles the line containing seg-
ment p3p4 if directed segments ���!p3p1 and ���!p3p2 have opposite orientations relative
to ���!p3p4. In this case, the signs of d1 and d2 differ. Similarly, p3p4 straddles
the line containing p1p2 if the signs of d3 and d4 differ. If the test of line 5 is
true, then the segments straddle each other, and SEGMENTS-INTERSECT returns
TRUE. Figure 33.3(a) shows this case. Otherwise, the segments do not straddle

33.1 Line-segment properties 1019

p1

p2

p3

p4(p1–p3) × (p4–p3) < 0

(p4–p1) × (p2–p1) < 0

(p2–p3) × (p4–p3) > 0
(p3–p1) × (p2–p1) > 0

(a)

p1 p2

p3

p4(p1–p3) × (p4–p3) < 0

(p4–p1) × (p2–p1) < 0

(p2–p3) × (p4–p3) < 0

(p3–p1) × (p2–p1) > 0

(b)

p1

p2

p3

p4

(c)

p1

p2 p3

p4

(d)

Figure 33.3 Cases in the procedure SEGMENTS-INTERSECT. (a) The segments p1p2 and p3p4

straddle each other’s lines. Because p3p4 straddles the line containing p1p2, the signs of the cross
products .p3 �p1/	 .p2 �p1/ and .p4 �p1/	 .p2 �p1/ differ. Because p1p2 straddles the line
containing p3p4, the signs of the cross products .p1 �p3/	 .p4 �p3/ and .p2 �p3/	 .p4 �p3/

differ. (b) Segment p3p4 straddles the line containing p1p2, but p1p2 does not straddle the line
containing p3p4. The signs of the cross products .p1�p3/	 .p4�p3/ and .p2�p3/	 .p4�p3/

are the same. (c) Point p3 is colinear with p1p2 and is between p1 and p2. (d) Point p3 is colinear
with p1p2, but it is not between p1 and p2. The segments do not intersect.

each other’s lines, although a boundary case may apply. If all the relative orienta-
tions are nonzero, no boundary case applies. All the tests against 0 in lines 7–13
then fail, and SEGMENTS-INTERSECT returns FALSE in line 15. Figure 33.3(b)
shows this case.

A boundary case occurs if any relative orientation dk is 0. Here, we know that pk

is colinear with the other segment. It is directly on the other segment if and only
if it is between the endpoints of the other segment. The procedure ON-SEGMENT

returns whether pk is between the endpoints of segment pipj , which will be the
other segment when called in lines 7–13; the procedure assumes that pk is colinear
with segment pipj . Figures 33.3(c) and (d) show cases with colinear points. In
Figure 33.3(c), p3 is on p1p2, and so SEGMENTS-INTERSECT returns TRUE in
line 12. No endpoints are on other segments in Figure 33.3(d), and so SEGMENTS-
INTERSECT returns FALSE in line 15.

1020 Chapter 33 Computational Geometry

Other applications of cross products

Later sections of this chapter introduce additional uses for cross products. In Sec-
tion 33.3, we shall need to sort a set of points according to their polar angles with
respect to a given origin. As Exercise 33.1-3 asks you to show, we can use cross
products to perform the comparisons in the sorting procedure. In Section 33.2, we
shall use red-black trees to maintain the vertical ordering of a set of line segments.
Rather than keeping explicit key values which we compare to each other in the
red-black tree code, we shall compute a cross-product to determine which of two
segments that intersect a given vertical line is above the other.

Exercises

33.1-1
Prove that if p1 	 p2 is positive, then vector p1 is clockwise from vector p2 with
respect to the origin .0; 0/ and that if this cross product is negative, then p1 is
counterclockwise from p2.

33.1-2
Professor van Pelt proposes that only the x-dimension needs to be tested in line 1
of ON-SEGMENT. Show why the professor is wrong.

33.1-3
The polar angle of a point p1 with respect to an origin point p0 is the angle of the
vector p1 � p0 in the usual polar coordinate system. For example, the polar angle
of .3; 5/ with respect to .2; 4/ is the angle of the vector .1; 1/, which is 45 degrees
or �=4 radians. The polar angle of .3; 3/ with respect to .2; 4/ is the angle of the
vector .1;�1/, which is 315 degrees or 7�=4 radians. Write pseudocode to sort a
sequence hp1; p2; : : : ; pni of n points according to their polar angles with respect
to a given origin point p0. Your procedure should take O.n lg n/ time and use cross
products to compare angles.

33.1-4
Show how to determine in O.n2 lg n/ time whether any three points in a set of n

points are colinear.

33.1-5
A polygon is a piecewise-linear, closed curve in the plane. That is, it is a curve
ending on itself that is formed by a sequence of straight-line segments, called the
sides of the polygon. A point joining two consecutive sides is a vertex of the poly-
gon. If the polygon is simple, as we shall generally assume, it does not cross itself.
The set of points in the plane enclosed by a simple polygon forms the interior of

33.2 Determining whether any pair of segments intersects 1021

the polygon, the set of points on the polygon itself forms its boundary, and the set
of points surrounding the polygon forms its exterior. A simple polygon is convex
if, given any two points on its boundary or in its interior, all points on the line
segment drawn between them are contained in the polygon’s boundary or interior.
A vertex of a convex polygon cannot be expressed as a convex combination of any
two distinct points on the boundary or in the interior of the polygon.

Professor Amundsen proposes the following method to determine whether a se-
quence hp0; p1; : : : ; pn�1i of n points forms the consecutive vertices of a convex
polygon. Output “yes” if the set f†pipiC1piC2 W i D 0; 1; : : : ; n � 1g, where sub-
script addition is performed modulo n, does not contain both left turns and right
turns; otherwise, output “no.” Show that although this method runs in linear time,
it does not always produce the correct answer. Modify the professor’s method so
that it always produces the correct answer in linear time.

33.1-6
Given a point p0 D .x0; y0/, the right horizontal ray from p0 is the set of points
fpi D .xi ; yi / W xi � x0 and yi D y0g, that is, it is the set of points due right of p0

along with p0 itself. Show how to determine whether a given right horizontal ray
from p0 intersects a line segment p1p2 in O.1/ time by reducing the problem to
that of determining whether two line segments intersect.

33.1-7
One way to determine whether a point p0 is in the interior of a simple, but not
necessarily convex, polygon P is to look at any ray from p0 and check that the ray
intersects the boundary of P an odd number of times but that p0 itself is not on
the boundary of P . Show how to compute in ‚.n/ time whether a point p0 is in
the interior of an n-vertex polygon P . (Hint: Use Exercise 33.1-6. Make sure your
algorithm is correct when the ray intersects the polygon boundary at a vertex and
when the ray overlaps a side of the polygon.)

33.1-8
Show how to compute the area of an n-vertex simple, but not necessarily convex,
polygon in ‚.n/ time. (See Exercise 33.1-5 for definitions pertaining to polygons.)

33.2 Determining whether any pair of segments intersects

This section presents an algorithm for determining whether any two line segments
in a set of segments intersect. The algorithm uses a technique known as “sweep-
ing,” which is common to many computational-geometry algorithms. Moreover, as

1022 Chapter 33 Computational Geometry

the exercises at the end of this section show, this algorithm, or simple variations of
it, can help solve other computational-geometry problems.

The algorithm runs in O.n lg n/ time, where n is the number of segments we are
given. It determines only whether or not any intersection exists; it does not print
all the intersections. (By Exercise 33.2-1, it takes �.n2/ time in the worst case to
find all the intersections in a set of n line segments.)

In sweeping, an imaginary vertical sweep line passes through the given set of
geometric objects, usually from left to right. We treat the spatial dimension that
the sweep line moves across, in this case the x-dimension, as a dimension of
time. Sweeping provides a method for ordering geometric objects, usually by plac-
ing them into a dynamic data structure, and for taking advantage of relationships
among them. The line-segment-intersection algorithm in this section considers all
the line-segment endpoints in left-to-right order and checks for an intersection each
time it encounters an endpoint.

To describe and prove correct our algorithm for determining whether any two
of n line segments intersect, we shall make two simplifying assumptions. First, we
assume that no input segment is vertical. Second, we assume that no three input
segments intersect at a single point. Exercises 33.2-8 and 33.2-9 ask you to show
that the algorithm is robust enough that it needs only a slight modification to work
even when these assumptions do not hold. Indeed, removing such simplifying
assumptions and dealing with boundary conditions often present the most difficult
challenges when programming computational-geometry algorithms and proving
their correctness.

Ordering segments

Because we assume that there are no vertical segments, we know that any input
segment intersecting a given vertical sweep line intersects it at a single point. Thus,
we can order the segments that intersect a vertical sweep line according to the y-
coordinates of the points of intersection.

To be more precise, consider two segments s1 and s2. We say that these segments
are comparable at x if the vertical sweep line with x-coordinate x intersects both of
them. We say that s1 is above s2 at x, written s1 <x s2, if s1 and s2 are comparable
at x and the intersection of s1 with the sweep line at x is higher than the intersection
of s2 with the same sweep line, or if s1 and s2 intersect at the sweep line. In
Figure 33.4(a), for example, we have the relationships a <r c, a <t b, b <t c,
a <t c, and b <u c. Segment d is not comparable with any other segment.

For any given x, the relation “<x” is a total preorder (see Section B.2) for all
segments that intersect the sweep line at x. That is, the relation is transitive, and
if segments s1 and s2 each intersect the sweep line at x, then either s1 <x s2

or s2 <x s1, or both (if s1 and s2 intersect at the sweep line). (The relation <x is

33.2 Determining whether any pair of segments intersects 1023

r t u

a

c

b
d

(a) (b)

v w

e

f

g
h

i

z

Figure 33.4 The ordering among line segments at various vertical sweep lines. (a)We have a <r c,
a <t b, b <t c, a <t c, and b <u c. Segment d is comparable with no other segment shown.
(b)When segments e and f intersect, they reverse their orders: we have e <� f but f <w e. Any
sweep line (such as ´) that passes through the shaded region has e and f consecutive in the ordering
given by the relation <´.

also reflexive, but neither symmetric nor antisymmetric.) The total preorder may
differ for differing values of x, however, as segments enter and leave the ordering.
A segment enters the ordering when its left endpoint is encountered by the sweep,
and it leaves the ordering when its right endpoint is encountered.

What happens when the sweep line passes through the intersection of two seg-
ments? As Figure 33.4(b) shows, the segments reverse their positions in the total
preorder. Sweep lines � and w are to the left and right, respectively, of the point
of intersection of segments e and f , and we have e <� f and f <w e. Note
that because we assume that no three segments intersect at the same point, there
must be some vertical sweep line x for which intersecting segments e and f are
consecutive in the total preorder <x . Any sweep line that passes through the shaded
region of Figure 33.4(b), such as ´, has e and f consecutive in its total preorder.

Moving the sweep line

Sweeping algorithms typically manage two sets of data:

1. The sweep-line status gives the relationships among the objects that the sweep
line intersects.

2. The event-point schedule is a sequence of points, called event points, which
we order from left to right according to their x-coordinates. As the sweep
progresses from left to right, whenever the sweep line reaches the x-coordinate
of an event point, the sweep halts, processes the event point, and then resumes.
Changes to the sweep-line status occur only at event points.

For some algorithms (the algorithm asked for in Exercise 33.2-7, for example),
the event-point schedule develops dynamically as the algorithm progresses. The al-
gorithm at hand, however, determines all the event points before the sweep, based

1024 Chapter 33 Computational Geometry

solely on simple properties of the input data. In particular, each segment endpoint
is an event point. We sort the segment endpoints by increasing x-coordinate and
proceed from left to right. (If two or more endpoints are covertical, i.e., they have
the same x-coordinate, we break the tie by putting all the covertical left endpoints
before the covertical right endpoints. Within a set of covertical left endpoints, we
put those with lower y-coordinates first, and we do the same within a set of cover-
tical right endpoints.) When we encounter a segment’s left endpoint, we insert the
segment into the sweep-line status, and we delete the segment from the sweep-line
status upon encountering its right endpoint. Whenever two segments first become
consecutive in the total preorder, we check whether they intersect.

The sweep-line status is a total preorder T , for which we require the following
operations:

� INSERT.T; s/: insert segment s into T .

� DELETE.T; s/: delete segment s from T .

� ABOVE.T; s/: return the segment immediately above segment s in T .

� BELOW.T; s/: return the segment immediately below segment s in T .

It is possible for segments s1 and s2 to be mutually above each other in the total
preorder T ; this situation can occur if s1 and s2 intersect at the sweep line whose
total preorder is given by T . In this case, the two segments may appear in either
order in T .

If the input contains n segments, we can perform each of the operations INSERT,
DELETE, ABOVE, and BELOW in O.lg n/ time using red-black trees. Recall that
the red-black-tree operations in Chapter 13 involve comparing keys. We can re-
place the key comparisons by comparisons that use cross products to determine the
relative ordering of two segments (see Exercise 33.2-2).

Segment-intersection pseudocode

The following algorithm takes as input a set S of n line segments, returning the
boolean value TRUE if any pair of segments in S intersects, and FALSE otherwise.
A red-black tree maintains the total preorder T .

33.2 Determining whether any pair of segments intersects 1025

ANY-SEGMENTS-INTERSECT.S/

1 T D ;
2 sort the endpoints of the segments in S from left to right,

breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y-coordinates first

3 for each point p in the sorted list of endpoints
4 if p is the left endpoint of a segment s

5 INSERT.T; s/

6 if (ABOVE.T; s/ exists and intersects s)
or (BELOW.T; s/ exists and intersects s)

7 return TRUE

8 if p is the right endpoint of a segment s

9 if both ABOVE.T; s/ and BELOW.T; s/ exist
and ABOVE.T; s/ intersects BELOW.T; s/

10 return TRUE

11 DELETE.T; s/

12 return FALSE

Figure 33.5 illustrates how the algorithm works. Line 1 initializes the total preorder
to be empty. Line 2 determines the event-point schedule by sorting the 2n segment
endpoints from left to right, breaking ties as described above. One way to perform
line 2 is by lexicographically sorting the endpoints on .x; e; y/, where x and y are
the usual coordinates, e D 0 for a left endpoint, and e D 1 for a right endpoint.

Each iteration of the for loop of lines 3–11 processes one event point p. If p is
the left endpoint of a segment s, line 5 adds s to the total preorder, and lines 6–7
return TRUE if s intersects either of the segments it is consecutive with in the total
preorder defined by the sweep line passing through p. (A boundary condition
occurs if p lies on another segment s0. In this case, we require only that s and s0

be placed consecutively into T .) If p is the right endpoint of a segment s, then
we need to delete s from the total preorder. But first, lines 9–10 return TRUE if
there is an intersection between the segments surrounding s in the total preorder
defined by the sweep line passing through p. If these segments do not intersect,
line 11 deletes segment s from the total preorder. If the segments surrounding
segment s intersect, they would have become consecutive after deleting s had the
return statement in line 10 not prevented line 11 from executing. The correctness
argument, which follows, will make it clear why it suffices to check the segments
surrounding s. Finally, if we never find any intersections after having processed
all 2n event points, line 12 returns FALSE.

1026 Chapter 33 Computational Geometry

a a
b

a
c
b

d
a
c
b

d
c
b

e
d
c
b

a

b

c

d
e

f

time

Figure 33.5 The execution of ANY-SEGMENTS-INTERSECT. Each dashed line is the sweep line at
an event point. Except for the rightmost sweep line, the ordering of segment names below each sweep
line corresponds to the total preorder T at the end of the for loop processing the corresponding event
point. The rightmost sweep line occurs when processing the right endpoint of segment c; because
segments d and b surround c and intersect each other, the procedure returns TRUE.

Correctness

To show that ANY-SEGMENTS-INTERSECT is correct, we will prove that the call
ANY-SEGMENTS-INTERSECT.S/ returns TRUE if and only if there is an intersec-
tion among the segments in S .

It is easy to see that ANY-SEGMENTS-INTERSECT returns TRUE (on lines 7
and 10) only if it finds an intersection between two of the input segments. Hence,
if it returns TRUE, there is an intersection.

We also need to show the converse: that if there is an intersection, then ANY-
SEGMENTS-INTERSECT returns TRUE. Let us suppose that there is at least one
intersection. Let p be the leftmost intersection point, breaking ties by choosing the
point with the lowest y-coordinate, and let a and b be the segments that intersect
at p. Since no intersections occur to the left of p, the order given by T is correct at
all points to the left of p. Because no three segments intersect at the same point, a

and b become consecutive in the total preorder at some sweep line ´.2 Moreover,
´ is to the left of p or goes through p. Some segment endpoint q on sweep line ´

2If we allow three segments to intersect at the same point, there may be an intervening segment c that
intersects both a and b at point p. That is, we may have a <w c and c <w b for all sweep lines w to
the left of p for which a <w b. Exercise 33.2-8 asks you to show that ANY-SEGMENTS-INTERSECT

is correct even if three segments do intersect at the same point.

33.2 Determining whether any pair of segments intersects 1027

is the event point at which a and b become consecutive in the total preorder. If p

is on sweep line ´, then q D p. If p is not on sweep line ´, then q is to the left
of p. In either case, the order given by T is correct just before encountering q.
(Here is where we use the lexicographic order in which the algorithm processes
event points. Because p is the lowest of the leftmost intersection points, even if p

is on sweep line ´ and some other intersection point p0 is on ´, event point q D p

is processed before the other intersection p0 can interfere with the total preorder T .
Moreover, even if p is the left endpoint of one segment, say a, and the right end-
point of the other segment, say b, because left endpoint events occur before right
endpoint events, segment b is in T upon first encountering segment a.) Either event
point q is processed by ANY-SEGMENTS-INTERSECT or it is not processed.

If q is processed by ANY-SEGMENTS-INTERSECT, only two possible actions
may occur:

1. Either a or b is inserted into T , and the other segment is above or below it in
the total preorder. Lines 4–7 detect this case.

2. Segments a and b are already in T , and a segment between them in the total
preorder is deleted, making a and b become consecutive. Lines 8–11 detect this
case.

In either case, we find the intersection p and ANY-SEGMENTS-INTERSECT returns
TRUE.

If event point q is not processed by ANY-SEGMENTS-INTERSECT, the proce-
dure must have returned before processing all event points. This situation could
have occurred only if ANY-SEGMENTS-INTERSECT had already found an inter-
section and returned TRUE.

Thus, if there is an intersection, ANY-SEGMENTS-INTERSECT returns TRUE.
As we have already seen, if ANY-SEGMENTS-INTERSECT returns TRUE, there is
an intersection. Therefore, ANY-SEGMENTS-INTERSECT always returns a correct
answer.

Running time

If set S contains n segments, then ANY-SEGMENTS-INTERSECT runs in time
O.n lg n/. Line 1 takes O.1/ time. Line 2 takes O.n lg n/ time, using merge
sort or heapsort. The for loop of lines 3–11 iterates at most once per event point,
and so with 2n event points, the loop iterates at most 2n times. Each iteration takes
O.lg n/ time, since each red-black-tree operation takes O.lg n/ time and, using the
method of Section 33.1, each intersection test takes O.1/ time. The total time is
thus O.n lg n/.

1028 Chapter 33 Computational Geometry

Exercises

33.2-1
Show that a set of n line segments may contain ‚.n2/ intersections.

33.2-2
Given two segments a and b that are comparable at x, show how to determine
in O.1/ time which of a <x b or b <x a holds. Assume that neither segment
is vertical. (Hint: If a and b do not intersect, you can just use cross products.
If a and b intersect—which you can of course determine using only cross prod-
ucts—you can still use only addition, subtraction, and multiplication, avoiding
division. Of course, in the application of the <x relation used here, if a and b

intersect, we can just stop and declare that we have found an intersection.)

33.2-3
Professor Mason suggests that we modify ANY-SEGMENTS-INTERSECT so that
instead of returning upon finding an intersection, it prints the segments that inter-
sect and continues on to the next iteration of the for loop. The professor calls the
resulting procedure PRINT-INTERSECTING-SEGMENTS and claims that it prints
all intersections, from left to right, as they occur in the set of line segments. Pro-
fessor Dixon disagrees, claiming that Professor Mason’s idea is incorrect. Which
professor is right? Will PRINT-INTERSECTING-SEGMENTS always find the left-
most intersection first? Will it always find all the intersections?

33.2-4
Give an O.n lg n/-time algorithm to determine whether an n-vertex polygon is
simple.

33.2-5
Give an O.n lg n/-time algorithm to determine whether two simple polygons with
a total of n vertices intersect.

33.2-6
A disk consists of a circle plus its interior and is represented by its center point and
radius. Two disks intersect if they have any point in common. Give an O.n lg n/-
time algorithm to determine whether any two disks in a set of n intersect.

33.2-7
Given a set of n line segments containing a total of k intersections, show how to
output all k intersections in O..nC k/ lg n/ time.

33.3 Finding the convex hull 1029

33.2-8
Argue that ANY-SEGMENTS-INTERSECT works correctly even if three or more
segments intersect at the same point.

33.2-9
Show that ANY-SEGMENTS-INTERSECT works correctly in the presence of verti-
cal segments if we treat the bottom endpoint of a vertical segment as if it were a
left endpoint and the top endpoint as if it were a right endpoint. How does your
answer to Exercise 33.2-2 change if we allow vertical segments?

33.3 Finding the convex hull

The convex hull of a set Q of points, denoted by CH.Q/, is the smallest convex
polygon P for which each point in Q is either on the boundary of P or in its
interior. (See Exercise 33.1-5 for a precise definition of a convex polygon.) We
implicitly assume that all points in the set Q are unique and that Q contains at
least three points which are not colinear. Intuitively, we can think of each point
in Q as being a nail sticking out from a board. The convex hull is then the shape
formed by a tight rubber band that surrounds all the nails. Figure 33.6 shows a set
of points and its convex hull.

In this section, we shall present two algorithms that compute the convex hull
of a set of n points. Both algorithms output the vertices of the convex hull in
counterclockwise order. The first, known as Graham’s scan, runs in O.n lg n/ time.
The second, called Jarvis’s march, runs in O.nh/ time, where h is the number of
vertices of the convex hull. As Figure 33.6 illustrates, every vertex of CH.Q/ is a

p0

p1

p2

p3p4

p5
p6p7

p8

p9

p10

p11

p12

Figure 33.6 A set of points Q D fp0; p1; : : : ; p12g with its convex hull CH.Q/ in gray.

1030 Chapter 33 Computational Geometry

point in Q. Both algorithms exploit this property, deciding which vertices in Q to
keep as vertices of the convex hull and which vertices in Q to reject.

We can compute convex hulls in O.n lg n/ time by any one of several methods.
Both Graham’s scan and Jarvis’s march use a technique called “rotational sweep,”
processing vertices in the order of the polar angles they form with a reference
vertex. Other methods include the following:

� In the incremental method, we first sort the points from left to right, yielding a
sequence hp1; p2; : : : ; pni. At the i th stage, we update the convex hull of the
i � 1 leftmost points, CH.fp1; p2; : : : ; pi�1g/, according to the i th point from
the left, thus forming CH.fp1; p2; : : : ; pig/. Exercise 33.3-6 asks you how to
implement this method to take a total of O.n lg n/ time.

� In the divide-and-conquer method, we divide the set of n points in ‚.n/ time
into two subsets, one containing the leftmost dn=2e points and one containing
the rightmost bn=2c points, recursively compute the convex hulls of the subsets,
and then, by means of a clever method, combine the hulls in O.n/ time. The
running time is described by the familiar recurrence T .n/ D 2T .n=2/CO.n/,
and so the divide-and-conquer method runs in O.n lg n/ time.

� The prune-and-search method is similar to the worst-case linear-time median
algorithm of Section 9.3. With this method, we find the upper portion (or “upper
chain”) of the convex hull by repeatedly throwing out a constant fraction of the
remaining points until only the upper chain of the convex hull remains. We then
do the same for the lower chain. This method is asymptotically the fastest: if
the convex hull contains h vertices, it runs in only O.n lg h/ time.

Computing the convex hull of a set of points is an interesting problem in its own
right. Moreover, algorithms for some other computational-geometry problems start
by computing a convex hull. Consider, for example, the two-dimensional farthest-
pair problem: we are given a set of n points in the plane and wish to find the
two points whose distance from each other is maximum. As Exercise 33.3-3 asks
you to prove, these two points must be vertices of the convex hull. Although we
won’t prove it here, we can find the farthest pair of vertices of an n-vertex convex
polygon in O.n/ time. Thus, by computing the convex hull of the n input points
in O.n lg n/ time and then finding the farthest pair of the resulting convex-polygon
vertices, we can find the farthest pair of points in any set of n points in O.n lg n/

time.

Graham’s scan

Graham’s scan solves the convex-hull problem by maintaining a stack S of can-
didate points. It pushes each point of the input set Q onto the stack one time,

33.3 Finding the convex hull 1031

and it eventually pops from the stack each point that is not a vertex of CH.Q/.
When the algorithm terminates, stack S contains exactly the vertices of CH.Q/, in
counterclockwise order of their appearance on the boundary.

The procedure GRAHAM-SCAN takes as input a set Q of points, where jQj � 3.
It calls the functions TOP.S/, which returns the point on top of stack S without
changing S , and NEXT-TO-TOP.S/, which returns the point one entry below the
top of stack S without changing S . As we shall prove in a moment, the stack S

returned by GRAHAM-SCAN contains, from bottom to top, exactly the vertices
of CH.Q/ in counterclockwise order.

GRAHAM-SCAN.Q/

1 let p0 be the point in Q with the minimum y-coordinate,
or the leftmost such point in case of a tie

2 let hp1; p2; : : : ; pmi be the remaining points in Q,
sorted by polar angle in counterclockwise order around p0

(if more than one point has the same angle, remove all but
the one that is farthest from p0)

3 let S be an empty stack
4 PUSH.p0; S/

5 PUSH.p1; S/

6 PUSH.p2; S/

7 for i D 3 to m

8 while the angle formed by points NEXT-TO-TOP.S/, TOP.S/,
and pi makes a nonleft turn

9 POP.S/

10 PUSH.pi ; S/

11 return S

Figure 33.7 illustrates the progress of GRAHAM-SCAN. Line 1 chooses point p0

as the point with the lowest y-coordinate, picking the leftmost such point in case
of a tie. Since there is no point in Q that is below p0 and any other points with
the same y-coordinate are to its right, p0 must be a vertex of CH.Q/. Line 2
sorts the remaining points of Q by polar angle relative to p0, using the same
method—comparing cross products—as in Exercise 33.1-3. If two or more points
have the same polar angle relative to p0, all but the farthest such point are convex
combinations of p0 and the farthest point, and so we remove them entirely from
consideration. We let m denote the number of points other than p0 that remain.
The polar angle, measured in radians, of each point in Q relative to p0 is in the
half-open interval Œ0; �/. Since the points are sorted according to polar angles,
they are sorted in counterclockwise order relative to p0. We designate this sorted
sequence of points by hp1; p2; : : : ; pmi. Note that points p1 and pm are vertices

1032 Chapter 33 Computational Geometry

p12

p11

p10

p9
p8

p7
p6

p5
p4 p3

p2

p1

p0 (a)

p12

p11

p10

p9
p8

p7
p6

p5
p4 p3

p2

p1

p0 (b)

p12

p11

p10

p9
p8

p7
p6

p5

p4
p3

p2

p1

p0 (c)

p12

p11

p10

p9
p8

p7
p6

p5

p4
p3

p2

p1

p0 (d)

p12

p11

p10

p9
p8

p7
p6

p5
p4 p3

p2

p1

p0 (e)

p12

p11

p10

p9
p8

p7
p6

p5
p4 p3

p2

p1

p0 (f)

Figure 33.7 The execution of GRAHAM-SCAN on the set Q of Figure 33.6. The current convex
hull contained in stack S is shown in gray at each step. (a) The sequence hp1; p2; : : : ; p12i of points
numbered in order of increasing polar angle relative to p0, and the initial stack S containing p0, p1,
and p2. (b)–(k) Stack S after each iteration of the for loop of lines 7–10. Dashed lines show nonleft
turns, which cause points to be popped from the stack. In part (h), for example, the right turn at
angle †p7p8p9 causes p8 to be popped, and then the right turn at angle †p6p7p9 causes p7 to be
popped.

33.3 Finding the convex hull 1033

p12

p11

p10

p9

p8

p7
p6

p5
p4 p3

p2

p1

p0 (g)

p12

p11

p10

p9

p8

p6

p5
p4 p3

p2

p1

p0 (h)

p12

p11

p10

p9
p8

p7
p6 p5

p3

p2

p1

p0 (i)

p12

p11

p10

p9
p8

p7
p6

p3

p2

p1

p0 (j)

p12

p11

p10

p9
p8

p7
p6

p5
p4 p3

p2

p1

p0 (k)

p12

p11

p10

p9
p8

p7
p6

p5
p4 p3

p2

p1

p0 (l)

p4 p4

p5

p7

Figure 33.7, continued (l) The convex hull returned by the procedure, which matches that of
Figure 33.6.

1034 Chapter 33 Computational Geometry

of CH.Q/ (see Exercise 33.3-1). Figure 33.7(a) shows the points of Figure 33.6
sequentially numbered in order of increasing polar angle relative to p0.

The remainder of the procedure uses the stack S . Lines 3–6 initialize the stack
to contain, from bottom to top, the first three points p0, p1, and p2. Figure 33.7(a)
shows the initial stack S . The for loop of lines 7–10 iterates once for each point
in the subsequence hp3; p4; : : : ; pmi. We shall see that after processing point pi ,
stack S contains, from bottom to top, the vertices of CH.fp0; p1; : : : ; pig/ in coun-
terclockwise order. The while loop of lines 8–9 removes points from the stack if
we find them not to be vertices of the convex hull. When we traverse the convex
hull counterclockwise, we should make a left turn at each vertex. Thus, each time
the while loop finds a vertex at which we make a nonleft turn, we pop the vertex
from the stack. (By checking for a nonleft turn, rather than just a right turn, this
test precludes the possibility of a straight angle at a vertex of the resulting convex
hull. We want no straight angles, since no vertex of a convex polygon may be a
convex combination of other vertices of the polygon.) After we pop all vertices
that have nonleft turns when heading toward point pi , we push pi onto the stack.
Figures 33.7(b)–(k) show the state of the stack S after each iteration of the for
loop. Finally, GRAHAM-SCAN returns the stack S in line 11. Figure 33.7(l) shows
the corresponding convex hull.

The following theorem formally proves the correctness of GRAHAM-SCAN.

Theorem 33.1 (Correctness of Graham’s scan)
If GRAHAM-SCAN executes on a set Q of points, where jQj � 3, then at termina-
tion, the stack S consists of, from bottom to top, exactly the vertices of CH.Q/ in
counterclockwise order.

Proof After line 2, we have the sequence of points hp1; p2; : : : ; pmi. Let us
define, for i D 2; 3; : : : ; m, the subset of points Qi D fp0; p1; : : : ; pig. The
points in Q � Qm are those that were removed because they had the same polar
angle relative to p0 as some point in Qm; these points are not in CH.Q/, and
so CH.Qm/ D CH.Q/. Thus, it suffices to show that when GRAHAM-SCAN

terminates, the stack S consists of the vertices of CH.Qm/ in counterclockwise
order, when listed from bottom to top. Note that just as p0, p1, and pm are vertices
of CH.Q/, the points p0, p1, and pi are all vertices of CH.Qi /.

The proof uses the following loop invariant:

At the start of each iteration of the for loop of lines 7–10, stack S consists of,
from bottom to top, exactly the vertices of CH.Qi�1/ in counterclockwise
order.

Initialization: The invariant holds the first time we execute line 7, since at that
time, stack S consists of exactly the vertices of Q2 D Qi�1, and this set of three

33.3 Finding the convex hull 1035

p0

p1

p2

pk
pj

pi

Qj

(a)

p0

p1

pj

pi

(b)

pt

pr

Figure 33.8 The proof of correctness of GRAHAM-SCAN. (a) Because pi ’s polar angle relative
to p0 is greater than pj ’s polar angle, and because the angle †pkpj pi makes a left turn, adding pi

to CH.Qj / gives exactly the vertices of CH.Qj [fpi g/. (b) If the angle †pr pt pi makes a nonleft
turn, then pt is either in the interior of the triangle formed by p0, pr , and pi or on a side of the
triangle, which means that it cannot be a vertex of CH.Qi /.

vertices forms its own convex hull. Moreover, they appear in counterclockwise
order from bottom to top.

Maintenance: Entering an iteration of the for loop, the top point on stack S

is pi�1, which was pushed at the end of the previous iteration (or before the
first iteration, when i D 3). Let pj be the top point on S after executing the
while loop of lines 8–9 but before line 10 pushes pi , and let pk be the point
just below pj on S . At the moment that pj is the top point on S and we have
not yet pushed pi , stack S contains exactly the same points it contained after
iteration j of the for loop. By the loop invariant, therefore, S contains exactly
the vertices of CH.Qj / at that moment, and they appear in counterclockwise
order from bottom to top.

Let us continue to focus on this moment just before pushing pi . We know
that pi ’s polar angle relative to p0 is greater than pj ’s polar angle and that
the angle †pkpj pi makes a left turn (otherwise we would have popped pj).
Therefore, because S contains exactly the vertices of CH.Qj /, we see from
Figure 33.8(a) that once we push pi , stack S will contain exactly the vertices
of CH.Qj [fpig/, still in counterclockwise order from bottom to top.

We now show that CH.Qj[fpig/ is the same set of points as CH.Qi /. Consider
any point pt that was popped during iteration i of the for loop, and let pr be
the point just below pt on stack S at the time pt was popped (pr might be pj).
The angle †prptpi makes a nonleft turn, and the polar angle of pt relative
to p0 is greater than the polar angle of pr . As Figure 33.8(b) shows, pt must

1036 Chapter 33 Computational Geometry

be either in the interior of the triangle formed by p0, pr , and pi or on a side of
this triangle (but it is not a vertex of the triangle). Clearly, since pt is within a
triangle formed by three other points of Qi , it cannot be a vertex of CH.Qi/.
Since pt is not a vertex of CH.Qi /, we have that

CH.Qi � fptg/ D CH.Qi / : (33.1)

Let Pi be the set of points that were popped during iteration i of the for loop.
Since the equality (33.1) applies for all points in Pi , we can apply it repeatedly
to show that CH.Qi � Pi / D CH.Qi /. But Qi � Pi D Qj [fpig, and so we
conclude that CH.Qj [fpig/ D CH.Qi � Pi/ D CH.Qi /.

We have shown that once we push pi , stack S contains exactly the vertices
of CH.Qi / in counterclockwise order from bottom to top. Incrementing i will
then cause the loop invariant to hold for the next iteration.

Termination: When the loop terminates, we have i D m C 1, and so the loop
invariant implies that stack S consists of exactly the vertices of CH.Qm/, which
is CH.Q/, in counterclockwise order from bottom to top. This completes the
proof.

We now show that the running time of GRAHAM-SCAN is O.n lg n/, where
n D jQj. Line 1 takes ‚.n/ time. Line 2 takes O.n lg n/ time, using merge sort
or heapsort to sort the polar angles and the cross-product method of Section 33.1
to compare angles. (We can remove all but the farthest point with the same polar
angle in total of O.n/ time over all n points.) Lines 3–6 take O.1/ time. Because
m � n � 1, the for loop of lines 7–10 executes at most n � 3 times. Since PUSH

takes O.1/ time, each iteration takes O.1/ time exclusive of the time spent in the
while loop of lines 8–9, and thus overall the for loop takes O.n/ time exclusive of
the nested while loop.

We use aggregate analysis to show that the while loop takes O.n/ time overall.
For i D 0; 1; : : : ; m, we push each point pi onto stack S exactly once. As in the
analysis of the MULTIPOP procedure of Section 17.1, we observe that we can pop at
most the number of items that we push. At least three points—p0, p1, and pm—are
never popped from the stack, so that in fact at most m � 2 POP operations are
performed in total. Each iteration of the while loop performs one POP, and so
there are at most m � 2 iterations of the while loop altogether. Since the test in
line 8 takes O.1/ time, each call of POP takes O.1/ time, and m � n� 1, the total
time taken by the while loop is O.n/. Thus, the running time of GRAHAM-SCAN

is O.n lg n/.

33.3 Finding the convex hull 1037

p4 p2

p0

p1

right chainleft chain

right chainleft chain

p3

Figure 33.9 The operation of Jarvis’s march. We choose the first vertex as the lowest point p0.
The next vertex, p1, has the smallest polar angle of any point with respect to p0. Then, p2 has the
smallest polar angle with respect to p1. The right chain goes as high as the highest point p3. Then,
we construct the left chain by finding smallest polar angles with respect to the negative x-axis.

Jarvis’s march

Jarvis’s march computes the convex hull of a set Q of points by a technique known
as package wrapping (or gift wrapping). The algorithm runs in time O.nh/,
where h is the number of vertices of CH.Q/. When h is o.lg n/, Jarvis’s march is
asymptotically faster than Graham’s scan.

Intuitively, Jarvis’s march simulates wrapping a taut piece of paper around the
set Q. We start by taping the end of the paper to the lowest point in the set, that is,
to the same point p0 with which we start Graham’s scan. We know that this point
must be a vertex of the convex hull. We pull the paper to the right to make it taut,
and then we pull it higher until it touches a point. This point must also be a vertex
of the convex hull. Keeping the paper taut, we continue in this way around the set
of vertices until we come back to our original point p0.

More formally, Jarvis’s march builds a sequence H D hp0; p1; : : : ; ph�1i of the
vertices of CH.Q/. We start with p0. As Figure 33.9 shows, the next vertex p1

in the convex hull has the smallest polar angle with respect to p0. (In case of ties,
we choose the point farthest from p0.) Similarly, p2 has the smallest polar angle

1038 Chapter 33 Computational Geometry

with respect to p1, and so on. When we reach the highest vertex, say pk (breaking
ties by choosing the farthest such vertex), we have constructed, as Figure 33.9
shows, the right chain of CH.Q/. To construct the left chain, we start at pk and
choose pkC1 as the point with the smallest polar angle with respect to pk, but from
the negative x-axis. We continue on, forming the left chain by taking polar angles
from the negative x-axis, until we come back to our original vertex p0.

We could implement Jarvis’s march in one conceptual sweep around the convex
hull, that is, without separately constructing the right and left chains. Such imple-
mentations typically keep track of the angle of the last convex-hull side chosen and
require the sequence of angles of hull sides to be strictly increasing (in the range
of 0 to 2� radians). The advantage of constructing separate chains is that we need
not explicitly compute angles; the techniques of Section 33.1 suffice to compare
angles.

If implemented properly, Jarvis’s march has a running time of O.nh/. For each
of the h vertices of CH.Q/, we find the vertex with the minimum polar angle. Each
comparison between polar angles takes O.1/ time, using the techniques of Sec-
tion 33.1. As Section 9.1 shows, we can compute the minimum of n values in O.n/

time if each comparison takes O.1/ time. Thus, Jarvis’s march takes O.nh/ time.

Exercises

33.3-1
Prove that in the procedure GRAHAM-SCAN, points p1 and pm must be vertices
of CH.Q/.

33.3-2
Consider a model of computation that supports addition, comparison, and multipli-
cation and for which there is a lower bound of �.n lg n/ to sort n numbers. Prove
that �.n lg n/ is a lower bound for computing, in order, the vertices of the convex
hull of a set of n points in such a model.

33.3-3
Given a set of points Q, prove that the pair of points farthest from each other must
be vertices of CH.Q/.

33.3-4
For a given polygon P and a point q on its boundary, the shadow of q is the set
of points r such that the segment qr is entirely on the boundary or in the interior
of P . As Figure 33.10 illustrates, a polygon P is star-shaped if there exists a
point p in the interior of P that is in the shadow of every point on the boundary
of P . The set of all such points p is called the kernel of P . Given an n-vertex,

33.4 Finding the closest pair of points 1039

p

(a) (b)

q

q′

Figure 33.10 The definition of a star-shaped polygon, for use in Exercise 33.3-4. (a) A star-shaped
polygon. The segment from point p to any point q on the boundary intersects the boundary only at q.
(b) A non-star-shaped polygon. The shaded region on the left is the shadow of q, and the shaded
region on the right is the shadow of q0. Since these regions are disjoint, the kernel is empty.

star-shaped polygon P specified by its vertices in counterclockwise order, show
how to compute CH.P / in O.n/ time.

33.3-5
In the on-line convex-hull problem, we are given the set Q of n points one point at
a time. After receiving each point, we compute the convex hull of the points seen
so far. Obviously, we could run Graham’s scan once for each point, with a total
running time of O.n2 lg n/. Show how to solve the on-line convex-hull problem in
a total of O.n2/ time.

33.3-6 ?

Show how to implement the incremental method for computing the convex hull
of n points so that it runs in O.n lg n/ time.

33.4 Finding the closest pair of points

We now consider the problem of finding the closest pair of points in a set Q of
n � 2 points. “Closest” refers to the usual euclidean distance: the distance between
points p1 D .x1; y1/ and p2 D .x2; y2/ is

p
.x1 � x2/2 C .y1 � y2/2. Two points

in set Q may be coincident, in which case the distance between them is zero. This
problem has applications in, for example, traffic-control systems. A system for
controlling air or sea traffic might need to identify the two closest vehicles in order
to detect potential collisions.

A brute-force closest-pair algorithm simply looks at all the
�

n

2

� D ‚.n2/ pairs
of points. In this section, we shall describe a divide-and-conquer algorithm for

1040 Chapter 33 Computational Geometry

this problem, whose running time is described by the familiar recurrence T .n/ D
2T .n=2/CO.n/. Thus, this algorithm uses only O.n lg n/ time.

The divide-and-conquer algorithm

Each recursive invocation of the algorithm takes as input a subset P � Q and
arrays X and Y , each of which contains all the points of the input subset P .
The points in array X are sorted so that their x-coordinates are monotonically
increasing. Similarly, array Y is sorted by monotonically increasing y-coordinate.
Note that in order to attain the O.n lg n/ time bound, we cannot afford to sort
in each recursive call; if we did, the recurrence for the running time would be
T .n/ D 2T .n=2/ C O.n lg n/, whose solution is T .n/ D O.n lg2 n/. (Use the
version of the master method given in Exercise 4.6-2.) We shall see a little later
how to use “presorting” to maintain this sorted property without actually sorting in
each recursive call.

A given recursive invocation with inputs P , X , and Y first checks whether
jP j � 3. If so, the invocation simply performs the brute-force method described
above: try all

�jP j
2

�
pairs of points and return the closest pair. If jP j > 3, the

recursive invocation carries out the divide-and-conquer paradigm as follows.

Divide: Find a vertical line l that bisects the point set P into two sets PL and PR

such that jPLj D djP j =2e, jPRj D bjP j =2c, all points in PL are on or to the
left of line l , and all points in PR are on or to the right of l . Divide the array X

into arrays XL and XR, which contain the points of PL and PR respectively,
sorted by monotonically increasing x-coordinate. Similarly, divide the array Y

into arrays YL and YR, which contain the points of PL and PR respectively,
sorted by monotonically increasing y-coordinate.

Conquer: Having divided P into PL and PR, make two recursive calls, one to find
the closest pair of points in PL and the other to find the closest pair of points
in PR. The inputs to the first call are the subset PL and arrays XL and YL; the
second call receives the inputs PR, XR, and YR. Let the closest-pair distances
returned for PL and PR be ıL and ıR, respectively, and let ı D min.ıL; ıR/.

Combine: The closest pair is either the pair with distance ı found by one of the
recursive calls, or it is a pair of points with one point in PL and the other in PR.
The algorithm determines whether there is a pair with one point in PL and the
other point in PR and whose distance is less than ı. Observe that if a pair of
points has distance less than ı, both points of the pair must be within ı units
of line l . Thus, as Figure 33.11(a) shows, they both must reside in the 2ı-wide
vertical strip centered at line l . To find such a pair, if one exists, we do the
following:

33.4 Finding the closest pair of points 1041

1. Create an array Y 0, which is the array Y with all points not in the 2ı-wide
vertical strip removed. The array Y 0 is sorted by y-coordinate, just as Y is.

2. For each point p in the array Y 0, try to find points in Y 0 that are within ı

units of p. As we shall see shortly, only the 7 points in Y 0 that follow p need
be considered. Compute the distance from p to each of these 7 points, and
keep track of the closest-pair distance ı0 found over all pairs of points in Y 0.

3. If ı0 < ı, then the vertical strip does indeed contain a closer pair than the
recursive calls found. Return this pair and its distance ı0. Otherwise, return
the closest pair and its distance ı found by the recursive calls.

The above description omits some implementation details that are necessary to
achieve the O.n lg n/ running time. After proving the correctness of the algorithm,
we shall show how to implement the algorithm to achieve the desired time bound.

Correctness

The correctness of this closest-pair algorithm is obvious, except for two aspects.
First, by bottoming out the recursion when jP j � 3, we ensure that we never try to
solve a subproblem consisting of only one point. The second aspect is that we need
only check the 7 points following each point p in array Y 0; we shall now prove this
property.

Suppose that at some level of the recursion, the closest pair of points is pL 2 PL

and pR 2 PR. Thus, the distance ı0 between pL and pR is strictly less than ı.
Point pL must be on or to the left of line l and less than ı units away. Similarly, pR

is on or to the right of l and less than ı units away. Moreover, pL and pR are
within ı units of each other vertically. Thus, as Figure 33.11(a) shows, pL and pR

are within a ı 	 2ı rectangle centered at line l . (There may be other points within
this rectangle as well.)

We next show that at most 8 points of P can reside within this ı 	 2ı rectangle.
Consider the ı 	 ı square forming the left half of this rectangle. Since all points
within PL are at least ı units apart, at most 4 points can reside within this square;
Figure 33.11(b) shows how. Similarly, at most 4 points in PR can reside within
the ı	 ı square forming the right half of the rectangle. Thus, at most 8 points of P

can reside within the ı 	 2ı rectangle. (Note that since points on line l may be in
either PL or PR, there may be up to 4 points on l . This limit is achieved if there are
two pairs of coincident points such that each pair consists of one point from PL and
one point from PR, one pair is at the intersection of l and the top of the rectangle,
and the other pair is where l intersects the bottom of the rectangle.)

Having shown that at most 8 points of P can reside within the rectangle, we
can easily see why we need to check only the 7 points following each point in the
array Y 0. Still assuming that the closest pair is pL and pR, let us assume without

1042 Chapter 33 Computational Geometry

l

pL

pR

PL

PR

δ

2δ

(a)

PR
PL

(b)

l

coincident points,
 one in PL,
 one in PR

coincident points,
 one in PL,
 one in PR

δδ

δ

Figure 33.11 Key concepts in the proof that the closest-pair algorithm needs to check only 7 points
following each point in the array Y 0. (a) If pL 2 PL and pR 2 PR are less than ı units apart, they
must reside within a ı 	 2ı rectangle centered at line l . (b) How 4 points that are pairwise at least ı

units apart can all reside within a ı 	 ı square. On the left are 4 points in PL, and on the right are 4

points in PR. The ı 	 2ı rectangle can contain 8 points if the points shown on line l are actually
pairs of coincident points with one point in PL and one in PR.

loss of generality that pL precedes pR in array Y 0. Then, even if pL occurs as early
as possible in Y 0 and pR occurs as late as possible, pR is in one of the 7 positions
following pL. Thus, we have shown the correctness of the closest-pair algorithm.

Implementation and running time

As we have noted, our goal is to have the recurrence for the running time be T .n/ D
2T .n=2/ CO.n/, where T .n/ is the running time for a set of n points. The main
difficulty comes from ensuring that the arrays XL, XR, YL, and YR, which are
passed to recursive calls, are sorted by the proper coordinate and also that the
array Y 0 is sorted by y-coordinate. (Note that if the array X that is received by a
recursive call is already sorted, then we can easily divide set P into PL and PR in
linear time.)

The key observation is that in each call, we wish to form a sorted subset of a
sorted array. For example, a particular invocation receives the subset P and the
array Y , sorted by y-coordinate. Having partitioned P into PL and PR, it needs to
form the arrays YL and YR, which are sorted by y-coordinate, in linear time. We
can view the method as the opposite of the MERGE procedure from merge sort in

33.4 Finding the closest pair of points 1043

Section 2.3.1: we are splitting a sorted array into two sorted arrays. The following
pseudocode gives the idea.

1 let YLŒ1 : : Y: length� and YRŒ1 : : Y: length� be new arrays
2 YL: length D YR: length D 0

3 for i D 1 to Y: length
4 if Y Œi � 2 PL

5 YL: length D YL: lengthC 1

6 YLŒYL: length� D Y Œi �

7 else YR: length D YR: lengthC 1

8 YRŒYR: length� D Y Œi �

We simply examine the points in array Y in order. If a point Y Œi � is in PL, we
append it to the end of array YL; otherwise, we append it to the end of array YR.
Similar pseudocode works for forming arrays XL, XR, and Y 0.

The only remaining question is how to get the points sorted in the first place. We
presort them; that is, we sort them once and for all before the first recursive call.
We pass these sorted arrays into the first recursive call, and from there we whittle
them down through the recursive calls as necessary. Presorting adds an additional
O.n lg n/ term to the running time, but now each step of the recursion takes linear
time exclusive of the recursive calls. Thus, if we let T .n/ be the running time of
each recursive step and T 0.n/ be the running time of the entire algorithm, we get
T 0.n/ D T .n/CO.n lg n/ and

T .n/ D
(

2T .n=2/CO.n/ if n > 3 ;

O.1/ if n � 3 :

Thus, T .n/ D O.n lg n/ and T 0.n/ D O.n lg n/.

Exercises

33.4-1
Professor Williams comes up with a scheme that allows the closest-pair algorithm
to check only 5 points following each point in array Y 0. The idea is always to place
points on line l into set PL. Then, there cannot be pairs of coincident points on
line l with one point in PL and one in PR. Thus, at most 6 points can reside in
the ı 	 2ı rectangle. What is the flaw in the professor’s scheme?

33.4-2
Show that it actually suffices to check only the points in the 5 array positions fol-
lowing each point in the array Y 0.

1044 Chapter 33 Computational Geometry

33.4-3
We can define the distance between two points in ways other than euclidean. In
the plane, the Lm-distance between points p1 and p2 is given by the expres-
sion .jx1 � x2jm C jy1 � y2jm/

1=m. Euclidean distance, therefore, is L2-distance.
Modify the closest-pair algorithm to use the L1-distance, which is also known as
the Manhattan distance.

33.4-4
Given two points p1 and p2 in the plane, the L1-distance between them is
given by max.jx1 � x2j ; jy1 � y2j/. Modify the closest-pair algorithm to use the
L1-distance.

33.4-5
Suppose that �.n/ of the points given to the closest-pair algorithm are covertical.
Show how to determine the sets PL and PR and how to determine whether each
point of Y is in PL or PR so that the running time for the closest-pair algorithm
remains O.n lg n/.

33.4-6
Suggest a change to the closest-pair algorithm that avoids presorting the Y array
but leaves the running time as O.n lg n/. (Hint: Merge sorted arrays YL and YR to
form the sorted array Y .)

Problems

33-1 Convex layers
Given a set Q of points in the plane, we define the convex layers of Q inductively.
The first convex layer of Q consists of those points in Q that are vertices of CH.Q/.
For i > 1, define Qi to consist of the points of Q with all points in convex layers
1; 2; : : : ; i �1 removed. Then, the i th convex layer of Q is CH.Qi / if Qi ¤ ; and
is undefined otherwise.

a. Give an O.n2/-time algorithm to find the convex layers of a set of n points.

b. Prove that �.n lg n/ time is required to compute the convex layers of a set of n

points with any model of computation that requires �.n lg n/ time to sort n real
numbers.

Problems for Chapter 33 1045

33-2 Maximal layers
Let Q be a set of n points in the plane. We say that point .x; y/ dominates
point .x 0; y 0/ if x � x 0 and y � y 0. A point in Q that is dominated by no other
points in Q is said to be maximal. Note that Q may contain many maximal points,
which can be organized intomaximal layers as follows. The first maximal layer L1

is the set of maximal points of Q. For i > 1, the i th maximal layer Li is the set of
maximal points in Q �Si�1

j D1 Lj .
Suppose that Q has k nonempty maximal layers, and let yi be the y-coordinate

of the leftmost point in Li for i D 1; 2; : : : ; k. For now, assume that no two points
in Q have the same x- or y-coordinate.

a. Show that y1 > y2 > � � � > yk.

Consider a point .x; y/ that is to the left of any point in Q and for which y is
distinct from the y-coordinate of any point in Q. Let Q0 D Q [f.x; y/g.
b. Let j be the minimum index such that yj < y, unless y < yk, in which case

we let j D k C 1. Show that the maximal layers of Q0 are as follows:

� If j � k, then the maximal layers of Q0 are the same as the maximal layers
of Q, except that Lj also includes .x; y/ as its new leftmost point.

� If j D kC1, then the first k maximal layers of Q0 are the same as for Q, but
in addition, Q0 has a nonempty .k C 1/st maximal layer: LkC1 D f.x; y/g.

c. Describe an O.n lg n/-time algorithm to compute the maximal layers of a set Q

of n points. (Hint: Move a sweep line from right to left.)

d. Do any difficulties arise if we now allow input points to have the same x- or
y-coordinate? Suggest a way to resolve such problems.

33-3 Ghostbusters and ghosts
A group of n Ghostbusters is battling n ghosts. Each Ghostbuster carries a proton
pack, which shoots a stream at a ghost, eradicating it. A stream goes in a straight
line and terminates when it hits the ghost. The Ghostbusters decide upon the fol-
lowing strategy. They will pair off with the ghosts, forming n Ghostbuster-ghost
pairs, and then simultaneously each Ghostbuster will shoot a stream at his cho-
sen ghost. As we all know, it is very dangerous to let streams cross, and so the
Ghostbusters must choose pairings for which no streams will cross.

Assume that the position of each Ghostbuster and each ghost is a fixed point in
the plane and that no three positions are colinear.

a. Argue that there exists a line passing through one Ghostbuster and one ghost
such that the number of Ghostbusters on one side of the line equals the number
of ghosts on the same side. Describe how to find such a line in O.n lg n/ time.

1046 Chapter 33 Computational Geometry

b. Give an O.n2 lg n/-time algorithm to pair Ghostbusters with ghosts in such a
way that no streams cross.

33-4 Picking up sticks
Professor Charon has a set of n sticks, which are piled up in some configuration.
Each stick is specified by its endpoints, and each endpoint is an ordered triple
giving its .x; y; ´/ coordinates. No stick is vertical. He wishes to pick up all the
sticks, one at a time, subject to the condition that he may pick up a stick only if
there is no other stick on top of it.

a. Give a procedure that takes two sticks a and b and reports whether a is above,
below, or unrelated to b.

b. Describe an efficient algorithm that determines whether it is possible to pick up
all the sticks, and if so, provides a legal order in which to pick them up.

33-5 Sparse-hulled distributions
Consider the problem of computing the convex hull of a set of points in the plane
that have been drawn according to some known random distribution. Sometimes,
the number of points, or size, of the convex hull of n points drawn from such a
distribution has expectation O.n1��/ for some constant � > 0. We call such a
distribution sparse-hulled. Sparse-hulled distributions include the following:

� Points drawn uniformly from a unit-radius disk. The convex hull has expected
size ‚.n1=3/.

� Points drawn uniformly from the interior of a convex polygon with k sides, for
any constant k. The convex hull has expected size ‚.lg n/.

� Points drawn according to a two-dimensional normal distribution. The convex
hull has expected size ‚.

p
lg n/.

a. Given two convex polygons with n1 and n2 vertices respectively, show how to
compute the convex hull of all n1Cn2 points in O.n1Cn2/ time. (The polygons
may overlap.)

b. Show how to compute the convex hull of a set of n points drawn independently
according to a sparse-hulled distribution in O.n/ average-case time. (Hint:
Recursively find the convex hulls of the first n=2 points and the second n=2

points, and then combine the results.)

Notes for Chapter 33 1047

Chapter notes

This chapter barely scratches the surface of computational-geometry algorithms
and techniques. Books on computational geometry include those by Preparata and
Shamos [282], Edelsbrunner [99], and O’Rourke [269].

Although geometry has been studied since antiquity, the development of algo-
rithms for geometric problems is relatively new. Preparata and Shamos note that
the earliest notion of the complexity of a problem was given by E. Lemoine in 1902.
He was studying euclidean constructions—those using a compass and a ruler—and
devised a set of five primitives: placing one leg of the compass on a given point,
placing one leg of the compass on a given line, drawing a circle, passing the ruler’s
edge through a given point, and drawing a line. Lemoine was interested in the
number of primitives needed to effect a given construction; he called this amount
the “simplicity” of the construction.

The algorithm of Section 33.2, which determines whether any segments inter-
sect, is due to Shamos and Hoey [313].

The original version of Graham’s scan is given by Graham [150]. The package-
wrapping algorithm is due to Jarvis [189]. Using a decision-tree model of com-
putation, Yao [359] proved a worst-case lower bound of �.n lg n/ for the running
time of any convex-hull algorithm. When the number of vertices h of the con-
vex hull is taken into account, the prune-and-search algorithm of Kirkpatrick and
Seidel [206], which takes O.n lg h/ time, is asymptotically optimal.

The O.n lg n/-time divide-and-conquer algorithm for finding the closest pair of
points is by Shamos and appears in Preparata and Shamos [282]. Preparata and
Shamos also show that the algorithm is asymptotically optimal in a decision-tree
model.

34 NP-Completeness

Almost all the algorithms we have studied thus far have been polynomial-time al-
gorithms: on inputs of size n, their worst-case running time is O.nk/ for some con-
stant k. You might wonder whether all problems can be solved in polynomial time.
The answer is no. For example, there are problems, such as Turing’s famous “Halt-
ing Problem,” that cannot be solved by any computer, no matter how much time we
allow. There are also problems that can be solved, but not in time O.nk/ for any
constant k. Generally, we think of problems that are solvable by polynomial-time
algorithms as being tractable, or easy, and problems that require superpolynomial
time as being intractable, or hard.

The subject of this chapter, however, is an interesting class of problems, called
the “NP-complete” problems, whose status is unknown. No polynomial-time al-
gorithm has yet been discovered for an NP-complete problem, nor has anyone yet
been able to prove that no polynomial-time algorithm can exist for any one of them.
This so-called P ¤ NP question has been one of the deepest, most perplexing open
research problems in theoretical computer science since it was first posed in 1971.

Several NP-complete problems are particularly tantalizing because they seem
on the surface to be similar to problems that we know how to solve in polynomial
time. In each of the following pairs of problems, one is solvable in polynomial
time and the other is NP-complete, but the difference between problems appears to
be slight:

Shortest vs. longest simple paths: In Chapter 24, we saw that even with negative
edge weights, we can find shortest paths from a single source in a directed
graph G D .V; E/ in O.VE/ time. Finding a longest simple path between two
vertices is difficult, however. Merely determining whether a graph contains a
simple path with at least a given number of edges is NP-complete.

Euler tour vs. hamiltonian cycle: An Euler tour of a connected, directed graph
G D .V; E/ is a cycle that traverses each edge of G exactly once, although
it is allowed to visit each vertex more than once. By Problem 22-3, we can
determine whether a graph has an Euler tour in only O.E/ time and, in fact,

Chapter 34 NP-Completeness 1049

we can find the edges of the Euler tour in O.E/ time. A hamiltonian cycle of
a directed graph G D .V; E/ is a simple cycle that contains each vertex in V .
Determining whether a directed graph has a hamiltonian cycle is NP-complete.
(Later in this chapter, we shall prove that determining whether an undirected
graph has a hamiltonian cycle is NP-complete.)

2-CNF satisfiability vs. 3-CNF satisfiability: A boolean formula contains vari-
ables whose values are 0 or 1; boolean connectives such as ^ (AND), _ (OR),
and : (NOT); and parentheses. A boolean formula is satisfiable if there exists
some assignment of the values 0 and 1 to its variables that causes it to evaluate
to 1. We shall define terms more formally later in this chapter, but informally, a
boolean formula is in k-conjunctive normal form, or k-CNF, if it is the AND
of clauses of ORs of exactly k variables or their negations. For example, the
boolean formula .x1 _ :x2/ ^ .:x1 _ x3/ ^ .:x2 _ :x3/ is in 2-CNF. (It has
the satisfying assignment x1 D 1; x2 D 0; x3 D 1.) Although we can deter-
mine in polynomial time whether a 2-CNF formula is satisfiable, we shall see
later in this chapter that determining whether a 3-CNF formula is satisfiable is
NP-complete.

NP-completeness and the classes P and NP

Throughout this chapter, we shall refer to three classes of problems: P, NP, and
NPC, the latter class being the NP-complete problems. We describe them infor-
mally here, and we shall define them more formally later on.

The class P consists of those problems that are solvable in polynomial time.
More specifically, they are problems that can be solved in time O.nk/ for some
constant k, where n is the size of the input to the problem. Most of the problems
examined in previous chapters are in P.

The class NP consists of those problems that are “verifiable” in polynomial time.
What do we mean by a problem being verifiable? If we were somehow given a
“certificate” of a solution, then we could verify that the certificate is correct in time
polynomial in the size of the input to the problem. For example, in the hamiltonian-
cycle problem, given a directed graph G D .V; E/, a certificate would be a se-
quence h�1; �2; �3; : : : ; �jV ji of jV j vertices. We could easily check in polynomial
time that .�i ; �iC1/ 2 E for i D 1; 2; 3; : : : ; jV j�1 and that .�jV j; �1/ 2 E as well.
As another example, for 3-CNF satisfiability, a certificate would be an assignment
of values to variables. We could check in polynomial time that this assignment
satisfies the boolean formula.

Any problem in P is also in NP, since if a problem is in P then we can solve it
in polynomial time without even being supplied a certificate. We shall formalize
this notion later in this chapter, but for now we can believe that P � NP. The open
question is whether or not P is a proper subset of NP.

1050 Chapter 34 NP-Completeness

Informally, a problem is in the class NPC—and we refer to it as being NP-
complete—if it is in NP and is as “hard” as any problem in NP. We shall formally
define what it means to be as hard as any problem in NP later in this chapter.
In the meantime, we will state without proof that if any NP-complete problem
can be solved in polynomial time, then every problem in NP has a polynomial-
time algorithm. Most theoretical computer scientists believe that the NP-complete
problems are intractable, since given the wide range of NP-complete problems
that have been studied to date—without anyone having discovered a polynomial-
time solution to any of them—it would be truly astounding if all of them could
be solved in polynomial time. Yet, given the effort devoted thus far to proving
that NP-complete problems are intractable—without a conclusive outcome—we
cannot rule out the possibility that the NP-complete problems are in fact solvable
in polynomial time.

To become a good algorithm designer, you must understand the rudiments of the
theory of NP-completeness. If you can establish a problem as NP-complete, you
provide good evidence for its intractability. As an engineer, you would then do
better to spend your time developing an approximation algorithm (see Chapter 35)
or solving a tractable special case, rather than searching for a fast algorithm that
solves the problem exactly. Moreover, many natural and interesting problems that
on the surface seem no harder than sorting, graph searching, or network flow are
in fact NP-complete. Therefore, you should become familiar with this remarkable
class of problems.

Overview of showing problems to be NP-complete

The techniques we use to show that a particular problem is NP-complete differ
fundamentally from the techniques used throughout most of this book to design
and analyze algorithms. When we demonstrate that a problem is NP-complete,
we are making a statement about how hard it is (or at least how hard we think it
is), rather than about how easy it is. We are not trying to prove the existence of
an efficient algorithm, but instead that no efficient algorithm is likely to exist. In
this way, NP-completeness proofs bear some similarity to the proof in Section 8.1
of an �.n lg n/-time lower bound for any comparison sort algorithm; the specific
techniques used for showing NP-completeness differ from the decision-tree method
used in Section 8.1, however.

We rely on three key concepts in showing a problem to be NP-complete:

Decision problems vs. optimization problems
Many problems of interest are optimization problems, in which each feasible (i.e.,
“legal”) solution has an associated value, and we wish to find a feasible solution
with the best value. For example, in a problem that we call SHORTEST-PATH,

Chapter 34 NP-Completeness 1051

we are given an undirected graph G and vertices u and �, and we wish to find a
path from u to � that uses the fewest edges. In other words, SHORTEST-PATH
is the single-pair shortest-path problem in an unweighted, undirected graph. NP-
completeness applies directly not to optimization problems, however, but to deci-
sion problems, in which the answer is simply “yes” or “no” (or, more formally, “1”
or “0”).

Although NP-complete problems are confined to the realm of decision problems,
we can take advantage of a convenient relationship between optimization problems
and decision problems. We usually can cast a given optimization problem as a re-
lated decision problem by imposing a bound on the value to be optimized. For
example, a decision problem related to SHORTEST-PATH is PATH: given a di-
rected graph G, vertices u and �, and an integer k, does a path exist from u to �

consisting of at most k edges?
The relationship between an optimization problem and its related decision prob-

lem works in our favor when we try to show that the optimization problem is
“hard.” That is because the decision problem is in a sense “easier,” or at least “no
harder.” As a specific example, we can solve PATH by solving SHORTEST-PATH
and then comparing the number of edges in the shortest path found to the value
of the decision-problem parameter k. In other words, if an optimization prob-
lem is easy, its related decision problem is easy as well. Stated in a way that has
more relevance to NP-completeness, if we can provide evidence that a decision
problem is hard, we also provide evidence that its related optimization problem is
hard. Thus, even though it restricts attention to decision problems, the theory of
NP-completeness often has implications for optimization problems as well.

Reductions
The above notion of showing that one problem is no harder or no easier than an-
other applies even when both problems are decision problems. We take advantage
of this idea in almost every NP-completeness proof, as follows. Let us consider a
decision problem A, which we would like to solve in polynomial time. We call the
input to a particular problem an instance of that problem; for example, in PATH,
an instance would be a particular graph G, particular vertices u and � of G, and a
particular integer k. Now suppose that we already know how to solve a different
decision problem B in polynomial time. Finally, suppose that we have a procedure
that transforms any instance ˛ of A into some instance ˇ of B with the following
characteristics:

� The transformation takes polynomial time.

� The answers are the same. That is, the answer for ˛ is “yes” if and only if the
answer for ˇ is also “yes.”

1052 Chapter 34 NP-Completeness

polynomial-time
reduction algorithm

instance β polynomial-time
algorithm to decide B

yes yes

polynomial-time algorithm to decide A

nonoof B
instance α

of A

Figure 34.1 How to use a polynomial-time reduction algorithm to solve a decision problem A in
polynomial time, given a polynomial-time decision algorithm for another problem B . In polynomial
time, we transform an instance ˛ of A into an instance ˇ of B , we solve B in polynomial time, and
we use the answer for ˇ as the answer for ˛.

We call such a procedure a polynomial-time reduction algorithm and, as Fig-
ure 34.1 shows, it provides us a way to solve problem A in polynomial time:

1. Given an instance ˛ of problem A, use a polynomial-time reduction algorithm
to transform it to an instance ˇ of problem B .

2. Run the polynomial-time decision algorithm for B on the instance ˇ.

3. Use the answer for ˇ as the answer for ˛.

As long as each of these steps takes polynomial time, all three together do also, and
so we have a way to decide on ˛ in polynomial time. In other words, by “reducing”
solving problem A to solving problem B , we use the “easiness” of B to prove the
“easiness” of A.

Recalling that NP-completeness is about showing how hard a problem is rather
than how easy it is, we use polynomial-time reductions in the opposite way to show
that a problem is NP-complete. Let us take the idea a step further, and show how we
could use polynomial-time reductions to show that no polynomial-time algorithm
can exist for a particular problem B . Suppose we have a decision problem A for
which we already know that no polynomial-time algorithm can exist. (Let us not
concern ourselves for now with how to find such a problem A.) Suppose further
that we have a polynomial-time reduction transforming instances of A to instances
of B . Now we can use a simple proof by contradiction to show that no polynomial-
time algorithm can exist for B . Suppose otherwise; i.e., suppose that B has a
polynomial-time algorithm. Then, using the method shown in Figure 34.1, we
would have a way to solve problem A in polynomial time, which contradicts our
assumption that there is no polynomial-time algorithm for A.

For NP-completeness, we cannot assume that there is absolutely no polynomial-
time algorithm for problem A. The proof methodology is similar, however, in that
we prove that problem B is NP-complete on the assumption that problem A is also
NP-complete.

34.1 Polynomial time 1053

A first NP-complete problem
Because the technique of reduction relies on having a problem already known to
be NP-complete in order to prove a different problem NP-complete, we need a
“first” NP-complete problem. The problem we shall use is the circuit-satisfiability
problem, in which we are given a boolean combinational circuit composed of AND,
OR, and NOT gates, and we wish to know whether there exists some set of boolean
inputs to this circuit that causes its output to be 1. We shall prove that this first
problem is NP-complete in Section 34.3.

Chapter outline

This chapter studies the aspects of NP-completeness that bear most directly on the
analysis of algorithms. In Section 34.1, we formalize our notion of “problem” and
define the complexity class P of polynomial-time solvable decision problems. We
also see how these notions fit into the framework of formal-language theory. Sec-
tion 34.2 defines the class NP of decision problems whose solutions are verifiable
in polynomial time. It also formally poses the P ¤ NP question.

Section 34.3 shows we can relate problems via polynomial-time “reductions.”
It defines NP-completeness and sketches a proof that one problem, called “circuit
satisfiability,” is NP-complete. Having found one NP-complete problem, we show
in Section 34.4 how to prove other problems to be NP-complete much more simply
by the methodology of reductions. We illustrate this methodology by showing that
two formula-satisfiability problems are NP-complete. With additional reductions,
we show in Section 34.5 a variety of other problems to be NP-complete.

34.1 Polynomial time

We begin our study of NP-completeness by formalizing our notion of polynomial-
time solvable problems. We generally regard these problems as tractable, but for
philosophical, not mathematical, reasons. We can offer three supporting argu-
ments.

First, although we may reasonably regard a problem that requires time ‚.n100/

to be intractable, very few practical problems require time on the order of such a
high-degree polynomial. The polynomial-time computable problems encountered
in practice typically require much less time. Experience has shown that once the
first polynomial-time algorithm for a problem has been discovered, more efficient
algorithms often follow. Even if the current best algorithm for a problem has a
running time of ‚.n100/, an algorithm with a much better running time will likely
soon be discovered.

1054 Chapter 34 NP-Completeness

Second, for many reasonable models of computation, a problem that can be
solved in polynomial time in one model can be solved in polynomial time in an-
other. For example, the class of problems solvable in polynomial time by the serial
random-access machine used throughout most of this book is the same as the class
of problems solvable in polynomial time on abstract Turing machines.1 It is also
the same as the class of problems solvable in polynomial time on a parallel com-
puter when the number of processors grows polynomially with the input size.

Third, the class of polynomial-time solvable problems has nice closure proper-
ties, since polynomials are closed under addition, multiplication, and composition.
For example, if the output of one polynomial-time algorithm is fed into the input of
another, the composite algorithm is polynomial. Exercise 34.1-5 asks you to show
that if an algorithm makes a constant number of calls to polynomial-time subrou-
tines and performs an additional amount of work that also takes polynomial time,
then the running time of the composite algorithm is polynomial.

Abstract problems

To understand the class of polynomial-time solvable problems, we must first have
a formal notion of what a “problem” is. We define an abstract problem Q to be a
binary relation on a set I of problem instances and a set S of problem solutions.
For example, an instance for SHORTEST-PATH is a triple consisting of a graph
and two vertices. A solution is a sequence of vertices in the graph, with perhaps
the empty sequence denoting that no path exists. The problem SHORTEST-PATH
itself is the relation that associates each instance of a graph and two vertices with
a shortest path in the graph that connects the two vertices. Since shortest paths are
not necessarily unique, a given problem instance may have more than one solution.

This formulation of an abstract problem is more general than we need for our
purposes. As we saw above, the theory of NP-completeness restricts attention to
decision problems: those having a yes/no solution. In this case, we can view an
abstract decision problem as a function that maps the instance set I to the solution
set f0; 1g. For example, a decision problem related to SHORTEST-PATH is the
problem PATH that we saw earlier. If i D hG;u; �; ki is an instance of the decision
problem PATH, then PATH.i/ D 1 (yes) if a shortest path from u to � has at
most k edges, and PATH.i/ D 0 (no) otherwise. Many abstract problems are not
decision problems, but rather optimization problems, which require some value to
be minimized or maximized. As we saw above, however, we can usually recast an
optimization problem as a decision problem that is no harder.

1See Hopcroft and Ullman [180] or Lewis and Papadimitriou [236] for a thorough treatment of the
Turing-machine model.

34.1 Polynomial time 1055

Encodings

In order for a computer program to solve an abstract problem, we must represent
problem instances in a way that the program understands. An encoding of a set S

of abstract objects is a mapping e from S to the set of binary strings.2 For example,
we are all familiar with encoding the natural numbers N D f0; 1; 2; 3; 4; : : :g as
the strings f0; 1; 10; 11; 100; : : :g. Using this encoding, e.17/ D 10001. If you
have looked at computer representations of keyboard characters, you probably have
seen the ASCII code, where, for example, the encoding of A is 1000001. We can
encode a compound object as a binary string by combining the representations of
its constituent parts. Polygons, graphs, functions, ordered pairs, programs—all can
be encoded as binary strings.

Thus, a computer algorithm that “solves” some abstract decision problem actu-
ally takes an encoding of a problem instance as input. We call a problem whose
instance set is the set of binary strings a concrete problem. We say that an algo-
rithm solves a concrete problem in time O.T .n// if, when it is provided a problem
instance i of length n D ji j, the algorithm can produce the solution in O.T .n//

time.3 A concrete problem is polynomial-time solvable, therefore, if there exists
an algorithm to solve it in time O.nk/ for some constant k.

We can now formally define the complexity class P as the set of concrete deci-
sion problems that are polynomial-time solvable.

We can use encodings to map abstract problems to concrete problems. Given
an abstract decision problem Q mapping an instance set I to f0; 1g, an encoding
e W I ! f0; 1g� can induce a related concrete decision problem, which we denote
by e.Q/.4 If the solution to an abstract-problem instance i 2 I is Q.i/ 2 f0; 1g,
then the solution to the concrete-problem instance e.i/ 2 f0; 1g� is also Q.i/. As a
technicality, some binary strings might represent no meaningful abstract-problem
instance. For convenience, we shall assume that any such string maps arbitrarily
to 0. Thus, the concrete problem produces the same solutions as the abstract prob-
lem on binary-string instances that represent the encodings of abstract-problem
instances.

We would like to extend the definition of polynomial-time solvability from con-
crete problems to abstract problems by using encodings as the bridge, but we would

2The codomain of e need not be binary strings; any set of strings over a finite alphabet having at
least 2 symbols will do.

3We assume that the algorithm’s output is separate from its input. Because it takes at least one time
step to produce each bit of the output and the algorithm takes O.T .n// time steps, the size of the
output is O.T .n//.

4We denote by f0; 1g� the set of all strings composed of symbols from the set f0; 1g.

1056 Chapter 34 NP-Completeness

like the definition to be independent of any particular encoding. That is, the ef-
ficiency of solving a problem should not depend on how the problem is encoded.
Unfortunately, it depends quite heavily on the encoding. For example, suppose that
an integer k is to be provided as the sole input to an algorithm, and suppose that
the running time of the algorithm is ‚.k/. If the integer k is provided in unary—a
string of k 1s—then the running time of the algorithm is O.n/ on length-n inputs,
which is polynomial time. If we use the more natural binary representation of the
integer k, however, then the input length is n D blg kc C 1. In this case, the run-
ning time of the algorithm is ‚.k/ D ‚.2n/, which is exponential in the size of the
input. Thus, depending on the encoding, the algorithm runs in either polynomial
or superpolynomial time.

How we encode an abstract problem matters quite a bit to how we understand
polynomial time. We cannot really talk about solving an abstract problem without
first specifying an encoding. Nevertheless, in practice, if we rule out “expensive”
encodings such as unary ones, the actual encoding of a problem makes little dif-
ference to whether the problem can be solved in polynomial time. For example,
representing integers in base 3 instead of binary has no effect on whether a prob-
lem is solvable in polynomial time, since we can convert an integer represented in
base 3 to an integer represented in base 2 in polynomial time.

We say that a function f W f0; 1g� ! f0; 1g� is polynomial-time computable
if there exists a polynomial-time algorithm A that, given any input x 2 f0; 1g�,
produces as output f .x/. For some set I of problem instances, we say that two en-
codings e1 and e2 are polynomially related if there exist two polynomial-time com-
putable functions f12 and f21 such that for any i 2 I , we have f12.e1.i// D e2.i/

and f21.e2.i// D e1.i/.5 That is, a polynomial-time algorithm can compute the en-
coding e2.i/ from the encoding e1.i/, and vice versa. If two encodings e1 and e2 of
an abstract problem are polynomially related, whether the problem is polynomial-
time solvable or not is independent of which encoding we use, as the following
lemma shows.

Lemma 34.1
Let Q be an abstract decision problem on an instance set I , and let e1 and e2 be
polynomially related encodings on I . Then, e1.Q/ 2 P if and only if e2.Q/ 2 P.

5Technically, we also require the functions f12 and f21 to “map noninstances to noninstances.”
A noninstance of an encoding e is a string x 2 f0; 1g� such that there is no instance i for which
e.i/ D x. We require that f12.x/ D y for every noninstance x of encoding e1, where y is some non-
instance of e2, and that f21.x0/ D y0 for every noninstance x0 of e2, where y0 is some noninstance
of e1.

34.1 Polynomial time 1057

Proof We need only prove the forward direction, since the backward direction is
symmetric. Suppose, therefore, that e1.Q/ can be solved in time O.nk/ for some
constant k. Further, suppose that for any problem instance i , the encoding e1.i/

can be computed from the encoding e2.i/ in time O.nc/ for some constant c, where
n D je2.i/j. To solve problem e2.Q/, on input e2.i/, we first compute e1.i/ and
then run the algorithm for e1.Q/ on e1.i/. How long does this take? Converting
encodings takes time O.nc/, and therefore je1.i/j D O.nc/, since the output of
a serial computer cannot be longer than its running time. Solving the problem
on e1.i/ takes time O.je1.i/jk/ D O.nck/, which is polynomial since both c and k

are constants.

Thus, whether an abstract problem has its instances encoded in binary or base 3
does not affect its “complexity,” that is, whether it is polynomial-time solvable or
not; but if instances are encoded in unary, its complexity may change. In order to
be able to converse in an encoding-independent fashion, we shall generally assume
that problem instances are encoded in any reasonable, concise fashion, unless we
specifically say otherwise. To be precise, we shall assume that the encoding of an
integer is polynomially related to its binary representation, and that the encoding of
a finite set is polynomially related to its encoding as a list of its elements, enclosed
in braces and separated by commas. (ASCII is one such encoding scheme.) With
such a “standard” encoding in hand, we can derive reasonable encodings of other
mathematical objects, such as tuples, graphs, and formulas. To denote the standard
encoding of an object, we shall enclose the object in angle braces. Thus, hGi
denotes the standard encoding of a graph G.

As long as we implicitly use an encoding that is polynomially related to this
standard encoding, we can talk directly about abstract problems without reference
to any particular encoding, knowing that the choice of encoding has no effect on
whether the abstract problem is polynomial-time solvable. Henceforth, we shall
generally assume that all problem instances are binary strings encoded using the
standard encoding, unless we explicitly specify the contrary. We shall also typically
neglect the distinction between abstract and concrete problems. You should watch
out for problems that arise in practice, however, in which a standard encoding is
not obvious and the encoding does make a difference.

A formal-language framework

By focusing on decision problems, we can take advantage of the machinery of
formal-language theory. Let’s review some definitions from that theory. An
alphabet † is a finite set of symbols. A language L over † is any set of
strings made up of symbols from †. For example, if † D f0; 1g, the set
L D f10; 11; 101; 111; 1011; 1101; 10001; : : :g is the language of binary represen-

1058 Chapter 34 NP-Completeness

tations of prime numbers. We denote the empty string by ", the empty language
by ;, and the language of all strings over † by †�. For example, if † D f0; 1g,
then †� D f"; 0; 1; 00; 01; 10; 11; 000; : : :g is the set of all binary strings. Every
language L over † is a subset of †�.

We can perform a variety of operations on languages. Set-theoretic operations,
such as union and intersection, follow directly from the set-theoretic definitions.
We define the complement of L by L D †� �L. The concatenation L1L2 of two
languages L1 and L2 is the language

L D fx1x2 W x1 2 L1 and x2 2 L2g :

The closure or Kleene star of a language L is the language

L� D f"g [L [L2 [L3 [� � � ;

where Lk is the language obtained by concatenating L to itself k times.
From the point of view of language theory, the set of instances for any decision

problem Q is simply the set †�, where † D f0; 1g. Since Q is entirely character-
ized by those problem instances that produce a 1 (yes) answer, we can view Q as
a language L over † D f0; 1g, where

L D fx 2 †� W Q.x/ D 1g :

For example, the decision problem PATH has the corresponding language

PATH D fhG; u; �; ki W G D .V; E/ is an undirected graph,
u; � 2 V;

k � 0 is an integer, and
there exists a path from u to � in G

consisting of at most k edgesg :

(Where convenient, we shall sometimes use the same name—PATH in this case—
to refer to both a decision problem and its corresponding language.)

The formal-language framework allows us to express concisely the relation be-
tween decision problems and algorithms that solve them. We say that an al-
gorithm A accepts a string x 2 f0; 1g� if, given input x, the algorithm’s out-
put A.x/ is 1. The language accepted by an algorithm A is the set of strings
L D fx 2 f0; 1g� W A.x/ D 1g, that is, the set of strings that the algorithm accepts.
An algorithm A rejects a string x if A.x/ D 0.

Even if language L is accepted by an algorithm A, the algorithm will not neces-
sarily reject a string x 62 L provided as input to it. For example, the algorithm may
loop forever. A language L is decided by an algorithm A if every binary string
in L is accepted by A and every binary string not in L is rejected by A. A lan-
guage L is accepted in polynomial time by an algorithm A if it is accepted by A

and if in addition there exists a constant k such that for any length-n string x 2 L,

34.1 Polynomial time 1059

algorithm A accepts x in time O.nk/. A language L is decided in polynomial
time by an algorithm A if there exists a constant k such that for any length-n string
x 2 f0; 1g�, the algorithm correctly decides whether x 2 L in time O.nk/. Thus,
to accept a language, an algorithm need only produce an answer when provided a
string in L, but to decide a language, it must correctly accept or reject every string
in f0; 1g�.

As an example, the language PATH can be accepted in polynomial time. One
polynomial-time accepting algorithm verifies that G encodes an undirected graph,
verifies that u and � are vertices in G, uses breadth-first search to compute a short-
est path from u to � in G, and then compares the number of edges on the shortest
path obtained with k. If G encodes an undirected graph and the path found from u

to � has at most k edges, the algorithm outputs 1 and halts. Otherwise, the algo-
rithm runs forever. This algorithm does not decide PATH, however, since it does
not explicitly output 0 for instances in which a shortest path has more than k edges.
A decision algorithm for PATH must explicitly reject binary strings that do not be-
long to PATH. For a decision problem such as PATH, such a decision algorithm is
easy to design: instead of running forever when there is not a path from u to � with
at most k edges, it outputs 0 and halts. (It must also output 0 and halt if the input
encoding is faulty.) For other problems, such as Turing’s Halting Problem, there
exists an accepting algorithm, but no decision algorithm exists.

We can informally define a complexity class as a set of languages, membership
in which is determined by a complexity measure, such as running time, of an
algorithm that determines whether a given string x belongs to language L. The
actual definition of a complexity class is somewhat more technical.6

Using this language-theoretic framework, we can provide an alternative defini-
tion of the complexity class P:

P D fL � f0; 1g� W there exists an algorithm A that decides L

in polynomial timeg :

In fact, P is also the class of languages that can be accepted in polynomial time.

Theorem 34.2
P D fL W L is accepted by a polynomial-time algorithmg :

Proof Because the class of languages decided by polynomial-time algorithms is
a subset of the class of languages accepted by polynomial-time algorithms, we
need only show that if L is accepted by a polynomial-time algorithm, it is de-
cided by a polynomial-time algorithm. Let L be the language accepted by some

6For more on complexity classes, see the seminal paper by Hartmanis and Stearns [162].

1060 Chapter 34 NP-Completeness

polynomial-time algorithm A. We shall use a classic “simulation” argument to
construct another polynomial-time algorithm A0 that decides L. Because A ac-
cepts L in time O.nk/ for some constant k, there also exists a constant c such
that A accepts L in at most cnk steps. For any input string x, the algorithm A0

simulates cnk steps of A. After simulating cnk steps, algorithm A0 inspects the be-
havior of A. If A has accepted x, then A0 accepts x by outputting a 1. If A has not
accepted x, then A0 rejects x by outputting a 0. The overhead of A0 simulating A

does not increase the running time by more than a polynomial factor, and thus A0

is a polynomial-time algorithm that decides L.

Note that the proof of Theorem 34.2 is nonconstructive. For a given language
L 2 P, we may not actually know a bound on the running time for the algorithm A

that accepts L. Nevertheless, we know that such a bound exists, and therefore, that
an algorithm A0 exists that can check the bound, even though we may not be able
to find the algorithm A0 easily.

Exercises

34.1-1
Define the optimization problem LONGEST-PATH-LENGTH as the relation that
associates each instance of an undirected graph and two vertices with the num-
ber of edges in a longest simple path between the two vertices. Define the de-
cision problem LONGEST-PATH D fhG; u; �; ki W G D .V; E/ is an undi-
rected graph, u; � 2 V , k � 0 is an integer, and there exists a simple path
from u to � in G consisting of at least k edgesg. Show that the optimization prob-
lem LONGEST-PATH-LENGTH can be solved in polynomial time if and only if
LONGEST-PATH 2 P.

34.1-2
Give a formal definition for the problem of finding the longest simple cycle in an
undirected graph. Give a related decision problem. Give the language correspond-
ing to the decision problem.

34.1-3
Give a formal encoding of directed graphs as binary strings using an adjacency-
matrix representation. Do the same using an adjacency-list representation. Argue
that the two representations are polynomially related.

34.1-4
Is the dynamic-programming algorithm for the 0-1 knapsack problem that is asked
for in Exercise 16.2-2 a polynomial-time algorithm? Explain your answer.

34.2 Polynomial-time verification 1061

34.1-5
Show that if an algorithm makes at most a constant number of calls to polynomial-
time subroutines and performs an additional amount of work that also takes polyno-
mial time, then it runs in polynomial time. Also show that a polynomial number of
calls to polynomial-time subroutines may result in an exponential-time algorithm.

34.1-6
Show that the class P, viewed as a set of languages, is closed under union, inter-
section, concatenation, complement, and Kleene star. That is, if L1; L2 2 P, then
L1 [L2 2 P, L1 \ L2 2 P, L1L2 2 P, L1 2 P, and L�

1 2 P.

34.2 Polynomial-time verification

We now look at algorithms that verify membership in languages. For example,
suppose that for a given instance hG; u; �; ki of the decision problem PATH, we
are also given a path p from u to �. We can easily check whether p is a path in G

and whether the length of p is at most k, and if so, we can view p as a “certificate”
that the instance indeed belongs to PATH. For the decision problem PATH, this
certificate doesn’t seem to buy us much. After all, PATH belongs to P—in fact,
we can solve PATH in linear time—and so verifying membership from a given
certificate takes as long as solving the problem from scratch. We shall now examine
a problem for which we know of no polynomial-time decision algorithm and yet,
given a certificate, verification is easy.

Hamiltonian cycles

The problem of finding a hamiltonian cycle in an undirected graph has been stud-
ied for over a hundred years. Formally, a hamiltonian cycle of an undirected graph
G D .V; E/ is a simple cycle that contains each vertex in V . A graph that con-
tains a hamiltonian cycle is said to be hamiltonian; otherwise, it is nonhamilto-
nian. The name honors W. R. Hamilton, who described a mathematical game on
the dodecahedron (Figure 34.2(a)) in which one player sticks five pins in any five
consecutive vertices and the other player must complete the path to form a cycle

1062 Chapter 34 NP-Completeness

(a) (b)

Figure 34.2 (a) A graph representing the vertices, edges, and faces of a dodecahedron, with a
hamiltonian cycle shown by shaded edges. (b) A bipartite graph with an odd number of vertices.
Any such graph is nonhamiltonian.

containing all the vertices.7 The dodecahedron is hamiltonian, and Figure 34.2(a)
shows one hamiltonian cycle. Not all graphs are hamiltonian, however. For ex-
ample, Figure 34.2(b) shows a bipartite graph with an odd number of vertices.
Exercise 34.2-2 asks you to show that all such graphs are nonhamiltonian.

We can define the hamiltonian-cycle problem, “Does a graph G have a hamil-
tonian cycle?” as a formal language:

HAM-CYCLE D fhGi W G is a hamiltonian graphg :

How might an algorithm decide the language HAM-CYCLE? Given a problem
instance hGi, one possible decision algorithm lists all permutations of the vertices
of G and then checks each permutation to see if it is a hamiltonian path. What is
the running time of this algorithm? If we use the “reasonable” encoding of a graph
as its adjacency matrix, the number m of vertices in the graph is �.

p
n/, where

n D jhGij is the length of the encoding of G. There are mŠ possible permutations

7In a letter dated 17 October 1856 to his friend John T. Graves, Hamilton [157, p. 624] wrote, “I
have found that some young persons have been much amused by trying a new mathematical game
which the Icosion furnishes, one person sticking five pins in any five consecutive points . . . and the
other player then aiming to insert, which by the theory in this letter can always be done, fifteen other
pins, in cyclical succession, so as to cover all the other points, and to end in immediate proximity to
the pin wherewith his antagonist had begun.”

34.2 Polynomial-time verification 1063

of the vertices, and therefore the running time is �.mŠ/ D �.
p

n Š/ D �.2
p

n/,
which is not O.nk/ for any constant k. Thus, this naive algorithm does not run
in polynomial time. In fact, the hamiltonian-cycle problem is NP-complete, as we
shall prove in Section 34.5.

Verification algorithms

Consider a slightly easier problem. Suppose that a friend tells you that a given
graph G is hamiltonian, and then offers to prove it by giving you the vertices in
order along the hamiltonian cycle. It would certainly be easy enough to verify the
proof: simply verify that the provided cycle is hamiltonian by checking whether
it is a permutation of the vertices of V and whether each of the consecutive edges
along the cycle actually exists in the graph. You could certainly implement this
verification algorithm to run in O.n2/ time, where n is the length of the encoding
of G. Thus, a proof that a hamiltonian cycle exists in a graph can be verified in
polynomial time.

We define a verification algorithm as being a two-argument algorithm A, where
one argument is an ordinary input string x and the other is a binary string y called
a certificate. A two-argument algorithm A verifies an input string x if there exists
a certificate y such that A.x; y/ D 1. The language verified by a verification
algorithm A is

L D fx 2 f0; 1g� W there exists y 2 f0; 1g� such that A.x; y/ D 1g :

Intuitively, an algorithm A verifies a language L if for any string x 2 L, there
exists a certificate y that A can use to prove that x 2 L. Moreover, for any string
x 62 L, there must be no certificate proving that x 2 L. For example, in the
hamiltonian-cycle problem, the certificate is the list of vertices in some hamilto-
nian cycle. If a graph is hamiltonian, the hamiltonian cycle itself offers enough
information to verify this fact. Conversely, if a graph is not hamiltonian, there
can be no list of vertices that fools the verification algorithm into believing that the
graph is hamiltonian, since the verification algorithm carefully checks the proposed
“cycle” to be sure.

1064 Chapter 34 NP-Completeness

The complexity class NP

The complexity class NP is the class of languages that can be verified by a poly-
nomial-time algorithm.8 More precisely, a language L belongs to NP if and only if
there exist a two-input polynomial-time algorithm A and a constant c such that

L D fx 2 f0; 1g� W there exists a certificate y with jyj D O.jxjc/

such that A.x; y/ D 1g :

We say that algorithm A verifies language L in polynomial time.
From our earlier discussion on the hamiltonian-cycle problem, we now see that

HAM-CYCLE 2 NP. (It is always nice to know that an important set is nonempty.)
Moreover, if L 2 P, then L 2 NP, since if there is a polynomial-time algorithm
to decide L, the algorithm can be easily converted to a two-argument verification
algorithm that simply ignores any certificate and accepts exactly those input strings
it determines to be in L. Thus, P � NP.

It is unknown whether P D NP, but most researchers believe that P and NP are
not the same class. Intuitively, the class P consists of problems that can be solved
quickly. The class NP consists of problems for which a solution can be verified
quickly. You may have learned from experience that it is often more difficult to
solve a problem from scratch than to verify a clearly presented solution, especially
when working under time constraints. Theoretical computer scientists generally
believe that this analogy extends to the classes P and NP, and thus that NP includes
languages that are not in P.

There is more compelling, though not conclusive, evidence that P ¤ NP—the
existence of languages that are “NP-complete.” We shall study this class in Sec-
tion 34.3.

Many other fundamental questions beyond the P ¤ NP question remain unre-
solved. Figure 34.3 shows some possible scenarios. Despite much work by many
researchers, no one even knows whether the class NP is closed under comple-
ment. That is, does L 2 NP imply L 2 NP? We can define the complexity class
co-NP as the set of languages L such that L 2 NP. We can restate the question
of whether NP is closed under complement as whether NP D co-NP. Since P is
closed under complement (Exercise 34.1-6), it follows from Exercise 34.2-9 that
P � NP \ co-NP. Once again, however, no one knows whether P D NP \ co-NP
or whether there is some language in NP\ co-NP � P.

8The name “NP” stands for “nondeterministic polynomial time.” The class NP was originally studied
in the context of nondeterminism, but this book uses the somewhat simpler yet equivalent notion of
verification. Hopcroft and Ullman [180] give a good presentation of NP-completeness in terms of
nondeterministic models of computation.

34.2 Polynomial-time verification 1065

co-NP NP

(c)

P = NP ∩ co-NP
co-NP NP

(d)

P

P = NP = co-NP

(a)

NP = co-NP

(b)

P

NP ∩ co-NP

Figure 34.3 Four possibilities for relationships among complexity classes. In each diagram, one
region enclosing another indicates a proper-subset relation. (a) P D NP D co-NP. Most researchers
regard this possibility as the most unlikely. (b) If NP is closed under complement, then NP D co-NP,
but it need not be the case that P D NP. (c) P D NP\co-NP, but NP is not closed under complement.
(d) NP ¤ co-NP and P ¤ NP \ co-NP. Most researchers regard this possibility as the most likely.

Thus, our understanding of the precise relationship between P and NP is woe-
fully incomplete. Nevertheless, even though we might not be able to prove that a
particular problem is intractable, if we can prove that it is NP-complete, then we
have gained valuable information about it.

Exercises

34.2-1
Consider the language GRAPH-ISOMORPHISM D fhG1; G2i W G1 and G2 are
isomorphic graphsg. Prove that GRAPH-ISOMORPHISM 2 NP by describing a
polynomial-time algorithm to verify the language.

34.2-2
Prove that if G is an undirected bipartite graph with an odd number of vertices,
then G is nonhamiltonian.

34.2-3
Show that if HAM-CYCLE 2 P, then the problem of listing the vertices of a
hamiltonian cycle, in order, is polynomial-time solvable.

1066 Chapter 34 NP-Completeness

34.2-4
Prove that the class NP of languages is closed under union, intersection, concate-
nation, and Kleene star. Discuss the closure of NP under complement.

34.2-5
Show that any language in NP can be decided by an algorithm running in
time 2O.nk/ for some constant k.

34.2-6
A hamiltonian path in a graph is a simple path that visits every vertex exactly
once. Show that the language HAM-PATH D fhG; u; �i W there is a hamiltonian
path from u to � in graph Gg belongs to NP.

34.2-7
Show that the hamiltonian-path problem from Exercise 34.2-6 can be solved in
polynomial time on directed acyclic graphs. Give an efficient algorithm for the
problem.

34.2-8
Let � be a boolean formula constructed from the boolean input variables x1; x2;

: : : ; xk, negations (:), ANDs (^), ORs (_), and parentheses. The formula � is a
tautology if it evaluates to 1 for every assignment of 1 and 0 to the input variables.
Define TAUTOLOGY as the language of boolean formulas that are tautologies.
Show that TAUTOLOGY 2 co-NP.

34.2-9
Prove that P � co-NP.

34.2-10
Prove that if NP ¤ co-NP, then P ¤ NP.

34.2-11
Let G be a connected, undirected graph with at least 3 vertices, and let G3 be the
graph obtained by connecting all pairs of vertices that are connected by a path in G

of length at most 3. Prove that G3 is hamiltonian. (Hint: Construct a spanning tree
for G, and use an inductive argument.)

34.3 NP-completeness and reducibility 1067

34.3 NP-completeness and reducibility

Perhaps the most compelling reason why theoretical computer scientists believe
that P ¤ NP comes from the existence of the class of “NP-complete” problems.
This class has the intriguing property that if any NP-complete problem can be
solved in polynomial time, then every problem in NP has a polynomial-time solu-
tion, that is, P D NP. Despite years of study, though, no polynomial-time algorithm
has ever been discovered for any NP-complete problem.

The language HAM-CYCLE is one NP-complete problem. If we could decide
HAM-CYCLE in polynomial time, then we could solve every problem in NP in
polynomial time. In fact, if NP � P should turn out to be nonempty, we could say
with certainty that HAM-CYCLE 2 NP� P.

The NP-complete languages are, in a sense, the “hardest” languages in NP. In
this section, we shall show how to compare the relative “hardness” of languages
using a precise notion called “polynomial-time reducibility.” Then we formally
define the NP-complete languages, and we finish by sketching a proof that one
such language, called CIRCUIT-SAT, is NP-complete. In Sections 34.4 and 34.5,
we shall use the notion of reducibility to show that many other problems are NP-
complete.

Reducibility

Intuitively, a problem Q can be reduced to another problem Q0 if any instance of Q

can be “easily rephrased” as an instance of Q0, the solution to which provides a
solution to the instance of Q. For example, the problem of solving linear equations
in an indeterminate x reduces to the problem of solving quadratic equations. Given
an instance ax C b D 0, we transform it to 0x2 C ax C b D 0, whose solution
provides a solution to ax C b D 0. Thus, if a problem Q reduces to another
problem Q0, then Q is, in a sense, “no harder to solve” than Q0.

Returning to our formal-language framework for decision problems, we say that
a language L1 is polynomial-time reducible to a language L2, written L1 �P L2,
if there exists a polynomial-time computable function f W f0; 1g� ! f0; 1g� such
that for all x 2 f0; 1g�,

x 2 L1 if and only if f .x/ 2 L2 : (34.1)

We call the function f the reduction function, and a polynomial-time algorithm F

that computes f is a reduction algorithm.
Figure 34.4 illustrates the idea of a polynomial-time reduction from a lan-

guage L1 to another language L2. Each language is a subset of f0; 1g�. The
reduction function f provides a polynomial-time mapping such that if x 2 L1,

1068 Chapter 34 NP-Completeness

L2L1

{0,1}* {0,1}*f

Figure 34.4 An illustration of a polynomial-time reduction from a language L1 to a language L2

via a reduction function f . For any input x 2 f0; 1g�, the question of whether x 2 L1 has the same
answer as the question of whether f .x/ 2 L2.

then f .x/ 2 L2. Moreover, if x 62 L1, then f .x/ 62 L2. Thus, the reduction func-
tion maps any instance x of the decision problem represented by the language L1

to an instance f .x/ of the problem represented by L2. Providing an answer to
whether f .x/ 2 L2 directly provides the answer to whether x 2 L1.

Polynomial-time reductions give us a powerful tool for proving that various lan-
guages belong to P.

Lemma 34.3
If L1; L2 � f0; 1g� are languages such that L1 �P L2, then L2 2 P implies
L1 2 P.

Proof Let A2 be a polynomial-time algorithm that decides L2, and let F be a
polynomial-time reduction algorithm that computes the reduction function f . We
shall construct a polynomial-time algorithm A1 that decides L1.

Figure 34.5 illustrates how we construct A1. For a given input x 2 f0; 1g�,
algorithm A1 uses F to transform x into f .x/, and then it uses A2 to test whether
f .x/ 2 L2. Algorithm A1 takes the output from algorithm A2 and produces that
answer as its own output.

The correctness of A1 follows from condition (34.1). The algorithm runs in poly-
nomial time, since both F and A2 run in polynomial time (see Exercise 34.1-5).

NP-completeness

Polynomial-time reductions provide a formal means for showing that one prob-
lem is at least as hard as another, to within a polynomial-time factor. That is, if
L1 �P L2, then L1 is not more than a polynomial factor harder than L2, which is

34.3 NP-completeness and reducibility 1069

x
F

f .x/

A1

A2

yes, f .x/ 2 L2

no, f .x/ 62 L2

yes, x 2 L1

no, x 62 L1

Figure 34.5 The proof of Lemma 34.3. The algorithm F is a reduction algorithm that computes the
reduction function f from L1 to L2 in polynomial time, and A2 is a polynomial-time algorithm that
decides L2. Algorithm A1 decides whether x 2 L1 by using F to transform any input x into f .x/

and then using A2 to decide whether f .x/ 2 L2.

why the “less than or equal to” notation for reduction is mnemonic. We can now
define the set of NP-complete languages, which are the hardest problems in NP.

A language L � f0; 1g� is NP-complete if

1. L 2 NP, and

2. L0 �P L for every L0 2 NP.

If a language L satisfies property 2, but not necessarily property 1, we say that L

is NP-hard. We also define NPC to be the class of NP-complete languages.
As the following theorem shows, NP-completeness is at the crux of deciding

whether P is in fact equal to NP.

Theorem 34.4
If any NP-complete problem is polynomial-time solvable, then P D NP. Equiva-
lently, if any problem in NP is not polynomial-time solvable, then no NP-complete
problem is polynomial-time solvable.

Proof Suppose that L 2 P and also that L 2 NPC. For any L0 2 NP, we
have L0 �P L by property 2 of the definition of NP-completeness. Thus, by
Lemma 34.3, we also have that L0 2 P, which proves the first statement of the
theorem.

To prove the second statement, note that it is the contrapositive of the first state-
ment.

It is for this reason that research into the P ¤ NP question centers around the
NP-complete problems. Most theoretical computer scientists believe that P ¤ NP,
which leads to the relationships among P, NP, and NPC shown in Figure 34.6.
But, for all we know, someone may yet come up with a polynomial-time algo-
rithm for an NP-complete problem, thus proving that P D NP. Nevertheless, since
no polynomial-time algorithm for any NP-complete problem has yet been discov-

1070 Chapter 34 NP-Completeness

NPC

P

NP

Figure 34.6 How most theoretical computer scientists view the relationships among P, NP,
and NPC. Both P and NPC are wholly contained within NP, and P \ NPC D ;.

ered, a proof that a problem is NP-complete provides excellent evidence that it is
intractable.

Circuit satisfiability

We have defined the notion of an NP-complete problem, but up to this point, we
have not actually proved that any problem is NP-complete. Once we prove that at
least one problem is NP-complete, we can use polynomial-time reducibility as a
tool to prove other problems to be NP-complete. Thus, we now focus on demon-
strating the existence of an NP-complete problem: the circuit-satisfiability prob-
lem.

Unfortunately, the formal proof that the circuit-satisfiability problem is NP-
complete requires technical detail beyond the scope of this text. Instead, we shall
informally describe a proof that relies on a basic understanding of boolean combi-
national circuits.

Boolean combinational circuits are built from boolean combinational elements
that are interconnected by wires. A boolean combinational element is any circuit
element that has a constant number of boolean inputs and outputs and that performs
a well-defined function. Boolean values are drawn from the set f0; 1g, where 0

represents FALSE and 1 represents TRUE.
The boolean combinational elements that we use in the circuit-satisfiability prob-

lem compute simple boolean functions, and they are known as logic gates. Fig-
ure 34.7 shows the three basic logic gates that we use in the circuit-satisfiability
problem: the NOT gate (or inverter), the AND gate, and the OR gate. The NOT
gate takes a single binary input x, whose value is either 0 or 1, and produces a
binary output ´ whose value is opposite that of the input value. Each of the other
two gates takes two binary inputs x and y and produces a single binary output ´.

We can describe the operation of each gate, and of any boolean combinational
element, by a truth table, shown under each gate in Figure 34.7. A truth table gives
the outputs of the combinational element for each possible setting of the inputs. For

34.3 NP-completeness and reducibility 1071

x

y
z

x

y
z

0 0 0
0 1 0
1 0 0
1 1 1

0 0 0
0 1 1
1 0 1
1 1 1

(b) (c)

x z

0 1
1 0

(a)

xxx yy:x x ^ y x _ y

Figure 34.7 Three basic logic gates, with binary inputs and outputs. Under each gate is the truth
table that describes the gate’s operation. (a) The NOT gate. (b) The AND gate. (c) The OR gate.

example, the truth table for the OR gate tells us that when the inputs are x D 0

and y D 1, the output value is ´ D 1. We use the symbols : to denote the NOT
function, ^ to denote the AND function, and _ to denote the OR function. Thus,
for example, 0 _ 1 D 1.

We can generalize AND and OR gates to take more than two inputs. An AND
gate’s output is 1 if all of its inputs are 1, and its output is 0 otherwise. An OR gate’s
output is 1 if any of its inputs are 1, and its output is 0 otherwise.

A boolean combinational circuit consists of one or more boolean combinational
elements interconnected by wires. A wire can connect the output of one element
to the input of another, thereby providing the output value of the first element as an
input value of the second. Figure 34.8 shows two similar boolean combinational
circuits, differing in only one gate. Part (a) of the figure also shows the values on
the individual wires, given the input hx1 D 1; x2 D 1; x3 D 0i. Although a single
wire may have no more than one combinational-element output connected to it, it
can feed several element inputs. The number of element inputs fed by a wire is
called the fan-out of the wire. If no element output is connected to a wire, the wire
is a circuit input, accepting input values from an external source. If no element
input is connected to a wire, the wire is a circuit output, providing the results of
the circuit’s computation to the outside world. (An internal wire can also fan out
to a circuit output.) For the purpose of defining the circuit-satisfiability problem,
we limit the number of circuit outputs to 1, though in actual hardware design, a
boolean combinational circuit may have multiple outputs.

Boolean combinational circuits contain no cycles. In other words, suppose we
create a directed graph G D .V; E/ with one vertex for each combinational element
and with k directed edges for each wire whose fan-out is k; the graph contains
a directed edge .u; �/ if a wire connects the output of element u to an input of
element �. Then G must be acyclic.

1072 Chapter 34 NP-Completeness

x3

x2

x1

(a)

1

1

0
1
1
1

1

1

1

1

1

0

0

1 1
1
1

x3

x2

x1

(b)

Figure 34.8 Two instances of the circuit-satisfiability problem. (a) The assignment hx1 D 1;

x2 D 1; x3 D 0i to the inputs of this circuit causes the output of the circuit to be 1. The circuit
is therefore satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the
circuit to be 1. The circuit is therefore unsatisfiable.

A truth assignment for a boolean combinational circuit is a set of boolean input
values. We say that a one-output boolean combinational circuit is satisfiable if it
has a satisfying assignment: a truth assignment that causes the output of the circuit
to be 1. For example, the circuit in Figure 34.8(a) has the satisfying assignment
hx1 D 1; x2 D 1; x3 D 0i, and so it is satisfiable. As Exercise 34.3-1 asks you to
show, no assignment of values to x1, x2, and x3 causes the circuit in Figure 34.8(b)
to produce a 1 output; it always produces 0, and so it is unsatisfiable.

The circuit-satisfiability problem is, “Given a boolean combinational circuit
composed of AND, OR, and NOT gates, is it satisfiable?” In order to pose this
question formally, however, we must agree on a standard encoding for circuits.
The size of a boolean combinational circuit is the number of boolean combina-
tional elements plus the number of wires in the circuit. We could devise a graphlike
encoding that maps any given circuit C into a binary string hC i whose length is
polynomial in the size of the circuit itself. As a formal language, we can therefore
define

CIRCUIT-SAT D fhC i W C is a satisfiable boolean combinational circuitg :

The circuit-satisfiability problem arises in the area of computer-aided hardware
optimization. If a subcircuit always produces 0, that subcircuit is unnecessary;
the designer can replace it by a simpler subcircuit that omits all logic gates and
provides the constant 0 value as its output. You can see why we would like to have
a polynomial-time algorithm for this problem.

Given a circuit C , we might attempt to determine whether it is satisfiable by
simply checking all possible assignments to the inputs. Unfortunately, if the circuit
has k inputs, then we would have to check up to 2k possible assignments. When

34.3 NP-completeness and reducibility 1073

the size of C is polynomial in k, checking each one takes �.2k/ time, which is
superpolynomial in the size of the circuit.9 In fact, as we have claimed, there is
strong evidence that no polynomial-time algorithm exists that solves the circuit-
satisfiability problem because circuit satisfiability is NP-complete. We break the
proof of this fact into two parts, based on the two parts of the definition of NP-
completeness.

Lemma 34.5
The circuit-satisfiability problem belongs to the class NP.

Proof We shall provide a two-input, polynomial-time algorithm A that can verify
CIRCUIT-SAT. One of the inputs to A is (a standard encoding of) a boolean com-
binational circuit C . The other input is a certificate corresponding to an assignment
of boolean values to the wires in C . (See Exercise 34.3-4 for a smaller certificate.)

We construct the algorithm A as follows. For each logic gate in the circuit, it
checks that the value provided by the certificate on the output wire is correctly
computed as a function of the values on the input wires. Then, if the output of the
entire circuit is 1, the algorithm outputs 1, since the values assigned to the inputs
of C provide a satisfying assignment. Otherwise, A outputs 0.

Whenever a satisfiable circuit C is input to algorithm A, there exists a certificate
whose length is polynomial in the size of C and that causes A to output a 1. When-
ever an unsatisfiable circuit is input, no certificate can fool A into believing that
the circuit is satisfiable. Algorithm A runs in polynomial time: with a good imple-
mentation, linear time suffices. Thus, we can verify CIRCUIT-SAT in polynomial
time, and CIRCUIT-SAT 2 NP.

The second part of proving that CIRCUIT-SAT is NP-complete is to show that
the language is NP-hard. That is, we must show that every language in NP is
polynomial-time reducible to CIRCUIT-SAT. The actual proof of this fact is full
of technical intricacies, and so we shall settle for a sketch of the proof based on
some understanding of the workings of computer hardware.

A computer program is stored in the computer memory as a sequence of in-
structions. A typical instruction encodes an operation to be performed, addresses
of operands in memory, and an address where the result is to be stored. A spe-
cial memory location, called the program counter, keeps track of which instruc-

9On the other hand, if the size of the circuit C is ‚.2k/, then an algorithm whose running time
is O.2k/ has a running time that is polynomial in the circuit size. Even if P ¤ NP, this situa-
tion would not contradict the NP-completeness of the problem; the existence of a polynomial-time
algorithm for a special case does not imply that there is a polynomial-time algorithm for all cases.

1074 Chapter 34 NP-Completeness

tion is to be executed next. The program counter automatically increments upon
fetching each instruction, thereby causing the computer to execute instructions se-
quentially. The execution of an instruction can cause a value to be written to the
program counter, however, which alters the normal sequential execution and allows
the computer to loop and perform conditional branches.

At any point during the execution of a program, the computer’s memory holds
the entire state of the computation. (We take the memory to include the program
itself, the program counter, working storage, and any of the various bits of state
that a computer maintains for bookkeeping.) We call any particular state of com-
puter memory a configuration. We can view the execution of an instruction as
mapping one configuration to another. The computer hardware that accomplishes
this mapping can be implemented as a boolean combinational circuit, which we
denote by M in the proof of the following lemma.

Lemma 34.6
The circuit-satisfiability problem is NP-hard.

Proof Let L be any language in NP. We shall describe a polynomial-time algo-
rithm F computing a reduction function f that maps every binary string x to a
circuit C D f .x/ such that x 2 L if and only if C 2 CIRCUIT-SAT.

Since L 2 NP, there must exist an algorithm A that verifies L in polynomial
time. The algorithm F that we shall construct uses the two-input algorithm A to
compute the reduction function f .

Let T .n/ denote the worst-case running time of algorithm A on length-n input
strings, and let k � 1 be a constant such that T .n/ D O.nk/ and the length of the
certificate is O.nk/. (The running time of A is actually a polynomial in the total
input size, which includes both an input string and a certificate, but since the length
of the certificate is polynomial in the length n of the input string, the running time
is polynomial in n.)

The basic idea of the proof is to represent the computation of A as a sequence
of configurations. As Figure 34.9 illustrates, we can break each configuration into
parts consisting of the program for A, the program counter and auxiliary machine
state, the input x, the certificate y, and working storage. The combinational cir-
cuit M , which implements the computer hardware, maps each configuration ci to
the next configuration ciC1, starting from the initial configuration c0. Algorithm A

writes its output—0 or 1—to some designated location by the time it finishes ex-
ecuting, and if we assume that thereafter A halts, the value never changes. Thus,
if the algorithm runs for at most T .n/ steps, the output appears as one of the bits
in cT .n/.

The reduction algorithm F constructs a single combinational circuit that com-
putes all configurations produced by a given initial configuration. The idea is to

34.3 NP-completeness and reducibility 1075

M

A PC aux machine state x y working storage

A PC aux machine state x y working storage

M

A PC aux machine state x y working storage

M

A PC aux machine state x y

…

working storage

0/1 output

M

c0

c1

c2

cT(n)

Figure 34.9 The sequence of configurations produced by an algorithm A running on an input x and
certificate y. Each configuration represents the state of the computer for one step of the computation
and, besides A, x, and y, includes the program counter (PC), auxiliary machine state, and working
storage. Except for the certificate y, the initial configuration c0 is constant. A boolean combinational
circuit M maps each configuration to the next configuration. The output is a distinguished bit in the
working storage.

1076 Chapter 34 NP-Completeness

paste together T .n/ copies of the circuit M . The output of the i th circuit, which
produces configuration ci , feeds directly into the input of the .iC1/st circuit. Thus,
the configurations, rather than being stored in the computer’s memory, simply re-
side as values on the wires connecting copies of M .

Recall what the polynomial-time reduction algorithm F must do. Given an in-
put x, it must compute a circuit C D f .x/ that is satisfiable if and only if there
exists a certificate y such that A.x; y/ D 1. When F obtains an input x, it first
computes n D jxj and constructs a combinational circuit C 0 consisting of T .n/

copies of M . The input to C 0 is an initial configuration corresponding to a compu-
tation on A.x; y/, and the output is the configuration cT .n/.

Algorithm F modifies circuit C 0 slightly to construct the circuit C D f .x/.
First, it wires the inputs to C 0 corresponding to the program for A, the initial pro-
gram counter, the input x, and the initial state of memory directly to these known
values. Thus, the only remaining inputs to the circuit correspond to the certifi-
cate y. Second, it ignores all outputs from C 0, except for the one bit of cT .n/

corresponding to the output of A. This circuit C , so constructed, computes
C.y/ D A.x; y/ for any input y of length O.nk/. The reduction algorithm F ,
when provided an input string x, computes such a circuit C and outputs it.

We need to prove two properties. First, we must show that F correctly computes
a reduction function f . That is, we must show that C is satisfiable if and only if
there exists a certificate y such that A.x; y/ D 1. Second, we must show that F

runs in polynomial time.
To show that F correctly computes a reduction function, let us suppose that there

exists a certificate y of length O.nk/ such that A.x; y/ D 1. Then, if we apply the
bits of y to the inputs of C , the output of C is C.y/ D A.x; y/ D 1. Thus, if a
certificate exists, then C is satisfiable. For the other direction, suppose that C is
satisfiable. Hence, there exists an input y to C such that C.y/ D 1, from which
we conclude that A.x; y/ D 1. Thus, F correctly computes a reduction function.

To complete the proof sketch, we need only show that F runs in time polynomial
in n D jxj. The first observation we make is that the number of bits required to
represent a configuration is polynomial in n. The program for A itself has constant
size, independent of the length of its input x. The length of the input x is n, and
the length of the certificate y is O.nk/. Since the algorithm runs for at most O.nk/

steps, the amount of working storage required by A is polynomial in n as well.
(We assume that this memory is contiguous; Exercise 34.3-5 asks you to extend
the argument to the situation in which the locations accessed by A are scattered
across a much larger region of memory and the particular pattern of scattering can
differ for each input x.)

The combinational circuit M implementing the computer hardware has size
polynomial in the length of a configuration, which is O.nk/; hence, the size of M

is polynomial in n. (Most of this circuitry implements the logic of the memory

34.3 NP-completeness and reducibility 1077

system.) The circuit C consists of at most t D O.nk/ copies of M , and hence it
has size polynomial in n. The reduction algorithm F can construct C from x in
polynomial time, since each step of the construction takes polynomial time.

The language CIRCUIT-SAT is therefore at least as hard as any language in NP,
and since it belongs to NP, it is NP-complete.

Theorem 34.7
The circuit-satisfiability problem is NP-complete.

Proof Immediate from Lemmas 34.5 and 34.6 and from the definition of NP-
completeness.

Exercises

34.3-1
Verify that the circuit in Figure 34.8(b) is unsatisfiable.

34.3-2
Show that the �P relation is a transitive relation on languages. That is, show that if
L1 �P L2 and L2 �P L3, then L1 �P L3.

34.3-3
Prove that L �P L if and only if L �P L.

34.3-4
Show that we could have used a satisfying assignment as a certificate in an alter-
native proof of Lemma 34.5. Which certificate makes for an easier proof?

34.3-5
The proof of Lemma 34.6 assumes that the working storage for algorithm A occu-
pies a contiguous region of polynomial size. Where in the proof do we exploit this
assumption? Argue that this assumption does not involve any loss of generality.

34.3-6
A language L is complete for a language class C with respect to polynomial-time
reductions if L 2 C and L0 �P L for all L0 2 C . Show that ; and f0; 1g� are the
only languages in P that are not complete for P with respect to polynomial-time
reductions.

1078 Chapter 34 NP-Completeness

34.3-7
Show that, with respect to polynomial-time reductions (see Exercise 34.3-6), L is
complete for NP if and only if L is complete for co-NP.

34.3-8
The reduction algorithm F in the proof of Lemma 34.6 constructs the circuit
C D f .x/ based on knowledge of x, A, and k. Professor Sartre observes that
the string x is input to F , but only the existence of A, k, and the constant factor
implicit in the O.nk/ running time is known to F (since the language L belongs
to NP), not their actual values. Thus, the professor concludes that F can’t possi-
bly construct the circuit C and that the language CIRCUIT-SAT is not necessarily
NP-hard. Explain the flaw in the professor’s reasoning.

34.4 NP-completeness proofs

We proved that the circuit-satisfiability problem is NP-complete by a direct proof
that L �P CIRCUIT-SAT for every language L 2 NP. In this section, we shall
show how to prove that languages are NP-complete without directly reducing every
language in NP to the given language. We shall illustrate this methodology by
proving that various formula-satisfiability problems are NP-complete. Section 34.5
provides many more examples of the methodology.

The following lemma is the basis of our method for showing that a language is
NP-complete.

Lemma 34.8
If L is a language such that L0 �P L for some L0 2 NPC, then L is NP-hard. If, in
addition, L 2 NP, then L 2 NPC.

Proof Since L0 is NP-complete, for all L00 2 NP, we have L00 �P L0. By sup-
position, L0 �P L, and thus by transitivity (Exercise 34.3-2), we have L00 �P L,
which shows that L is NP-hard. If L 2 NP, we also have L 2 NPC.

In other words, by reducing a known NP-complete language L0 to L, we implic-
itly reduce every language in NP to L. Thus, Lemma 34.8 gives us a method for
proving that a language L is NP-complete:

1. Prove L 2 NP.

2. Select a known NP-complete language L0.

34.4 NP-completeness proofs 1079

3. Describe an algorithm that computes a function f mapping every instance
x 2 f0; 1g� of L0 to an instance f .x/ of L.

4. Prove that the function f satisfies x 2 L0 if and only if f .x/ 2 L for all
x 2 f0; 1g�.

5. Prove that the algorithm computing f runs in polynomial time.

(Steps 2–5 show that L is NP-hard.) This methodology of reducing from a sin-
gle known NP-complete language is far simpler than the more complicated pro-
cess of showing directly how to reduce from every language in NP. Proving
CIRCUIT-SAT 2 NPC has given us a “foot in the door.” Because we know that the
circuit-satisfiability problem is NP-complete, we now can prove much more easily
that other problems are NP-complete. Moreover, as we develop a catalog of known
NP-complete problems, we will have more and more choices for languages from
which to reduce.

Formula satisfiability

We illustrate the reduction methodology by giving an NP-completeness proof for
the problem of determining whether a boolean formula, not a circuit, is satisfiable.
This problem has the historical honor of being the first problem ever shown to be
NP-complete.

We formulate the (formula) satisfiability problem in terms of the language SAT
as follows. An instance of SAT is a boolean formula � composed of

1. n boolean variables: x1; x2; : : : ; xn;

2. m boolean connectives: any boolean function with one or two inputs and one
output, such as ^ (AND), _ (OR), : (NOT),! (implication), $ (if and only
if); and

3. parentheses. (Without loss of generality, we assume that there are no redundant
parentheses, i.e., a formula contains at most one pair of parentheses per boolean
connective.)

We can easily encode a boolean formula � in a length that is polynomial in nCm.
As in boolean combinational circuits, a truth assignment for a boolean formula �

is a set of values for the variables of �, and a satisfying assignment is a truth
assignment that causes it to evaluate to 1. A formula with a satisfying assignment
is a satisfiable formula. The satisfiability problem asks whether a given boolean
formula is satisfiable; in formal-language terms,

SAT D fh�i W � is a satisfiable boolean formulag :

As an example, the formula

1080 Chapter 34 NP-Completeness

� D ..x1 ! x2/ _ :..:x1 $ x3/ _ x4// ^ :x2

has the satisfying assignment hx1 D 0; x2 D 0; x3 D 1; x4 D 1i, since

� D ..0! 0/ _ :..:0$ 1/ _ 1// ^ :0 (34.2)

D .1 _ :.1 _ 1// ^ 1

D .1 _ 0/ ^ 1

D 1 ;

and thus this formula � belongs to SAT.
The naive algorithm to determine whether an arbitrary boolean formula is satis-

fiable does not run in polynomial time. A formula with n variables has 2n possible
assignments. If the length of h�i is polynomial in n, then checking every assign-
ment requires �.2n/ time, which is superpolynomial in the length of h�i. As the
following theorem shows, a polynomial-time algorithm is unlikely to exist.

Theorem 34.9
Satisfiability of boolean formulas is NP-complete.

Proof We start by arguing that SAT 2 NP. Then we prove that SAT is NP-hard by
showing that CIRCUIT-SAT �P SAT; by Lemma 34.8, this will prove the theorem.

To show that SAT belongs to NP, we show that a certificate consisting of a
satisfying assignment for an input formula � can be verified in polynomial time.
The verifying algorithm simply replaces each variable in the formula with its cor-
responding value and then evaluates the expression, much as we did in equa-
tion (34.2) above. This task is easy to do in polynomial time. If the expression
evaluates to 1, then the algorithm has verified that the formula is satisfiable. Thus,
the first condition of Lemma 34.8 for NP-completeness holds.

To prove that SAT is NP-hard, we show that CIRCUIT-SAT �P SAT. In other
words, we need to show how to reduce any instance of circuit satisfiability to an
instance of formula satisfiability in polynomial time. We can use induction to
express any boolean combinational circuit as a boolean formula. We simply look
at the gate that produces the circuit output and inductively express each of the
gate’s inputs as formulas. We then obtain the formula for the circuit by writing an
expression that applies the gate’s function to its inputs’ formulas.

Unfortunately, this straightforward method does not amount to a polynomial-
time reduction. As Exercise 34.4-1 asks you to show, shared subformulas—which
arise from gates whose output wires have fan-out of 2 or more—can cause the
size of the generated formula to grow exponentially. Thus, the reduction algorithm
must be somewhat more clever.

Figure 34.10 illustrates how we overcome this problem, using as an example
the circuit from Figure 34.8(a). For each wire xi in the circuit C , the formula �

34.4 NP-completeness proofs 1081

x6

x3
x4 x7

x10x9

x8

x5

x2

x1

Figure 34.10 Reducing circuit satisfiability to formula satisfiability. The formula produced by the
reduction algorithm has a variable for each wire in the circuit.

has a variable xi . We can now express how each gate operates as a small formula
involving the variables of its incident wires. For example, the operation of the
output AND gate is x10 $.x7 ^ x8 ^ x9/. We call each of these small formulas a
clause.

The formula � produced by the reduction algorithm is the AND of the circuit-
output variable with the conjunction of clauses describing the operation of each
gate. For the circuit in the figure, the formula is

� D x10 ^ .x4 $:x3/

^ .x5 $.x1 _ x2//

^ .x6 $:x4/

^ .x7 $.x1 ^ x2 ^ x4//

^ .x8 $.x5 _ x6//

^ .x9 $.x6 _ x7//

^ .x10 $.x7 ^ x8 ^ x9// :

Given a circuit C , it is straightforward to produce such a formula � in polynomial
time.

Why is the circuit C satisfiable exactly when the formula � is satisfiable? If C

has a satisfying assignment, then each wire of the circuit has a well-defined value,
and the output of the circuit is 1. Therefore, when we assign wire values to
variables in �, each clause of � evaluates to 1, and thus the conjunction of all
evaluates to 1. Conversely, if some assignment causes � to evaluate to 1, the
circuit C is satisfiable by an analogous argument. Thus, we have shown that
CIRCUIT-SAT �P SAT, which completes the proof.

1082 Chapter 34 NP-Completeness

3-CNF satisfiability

We can prove many problems NP-complete by reducing from formula satisfiability.
The reduction algorithm must handle any input formula, though, and this require-
ment can lead to a huge number of cases that we must consider. We often prefer
to reduce from a restricted language of boolean formulas, so that we need to con-
sider fewer cases. Of course, we must not restrict the language so much that it
becomes polynomial-time solvable. One convenient language is 3-CNF satisfiabil-
ity, or 3-CNF-SAT.

We define 3-CNF satisfiability using the following terms. A literal in a boolean
formula is an occurrence of a variable or its negation. A boolean formula is in
conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each
of which is the OR of one or more literals. A boolean formula is in 3-conjunctive
normal form, or 3-CNF, if each clause has exactly three distinct literals.

For example, the boolean formula

.x1 _ :x1 _ :x2/ ^ .x3 _ x2 _ x4/ ^ .:x1 _ :x3 _ :x4/

is in 3-CNF. The first of its three clauses is .x1 _ :x1 _ :x2/, which contains the
three literals x1, :x1, and :x2.

In 3-CNF-SAT, we are asked whether a given boolean formula � in 3-CNF is
satisfiable. The following theorem shows that a polynomial-time algorithm that
can determine the satisfiability of boolean formulas is unlikely to exist, even when
they are expressed in this simple normal form.

Theorem 34.10
Satisfiability of boolean formulas in 3-conjunctive normal form is NP-complete.

Proof The argument we used in the proof of Theorem 34.9 to show that SAT 2
NP applies equally well here to show that 3-CNF-SAT 2 NP. By Lemma 34.8,
therefore, we need only show that SAT �P 3-CNF-SAT.

We break the reduction algorithm into three basic steps. Each step progressively
transforms the input formula � closer to the desired 3-conjunctive normal form.

The first step is similar to the one used to prove CIRCUIT-SAT �P SAT in
Theorem 34.9. First, we construct a binary “parse” tree for the input formula �,
with literals as leaves and connectives as internal nodes. Figure 34.11 shows such
a parse tree for the formula

� D ..x1 ! x2/ _ :..:x1 $ x3/ _ x4// ^ :x2 : (34.3)

Should the input formula contain a clause such as the OR of several literals, we use
associativity to parenthesize the expression fully so that every internal node in the
resulting tree has 1 or 2 children. We can now think of the binary parse tree as a
circuit for computing the function.

34.4 NP-completeness proofs 1083

:x1

x1

:x2

x2

x3

x4

y1

y2

y3 y4

y5

y6

^

$

_

_

:!

Figure 34.11 The tree corresponding to the formula � D ..x1!x2/_:..:x1$x3/_x4//^:x2:

Mimicking the reduction in the proof of Theorem 34.9, we introduce a vari-
able yi for the output of each internal node. Then, we rewrite the original for-
mula � as the AND of the root variable and a conjunction of clauses describing the
operation of each node. For the formula (34.3), the resulting expression is

�0 D y1 ^ .y1 $.y2 ^:x2//

^ .y2 $.y3 _ y4//

^ .y3 $.x1 ! x2//

^ .y4 $:y5/

^ .y5 $.y6 _ x4//

^ .y6 $.:x1 $ x3// :

Observe that the formula �0 thus obtained is a conjunction of clauses �0
i , each of

which has at most 3 literals. The only requirement that we might fail to meet is
that each clause has to be an OR of 3 literals.

The second step of the reduction converts each clause �0
i into conjunctive normal

form. We construct a truth table for �0
i by evaluating all possible assignments to

its variables. Each row of the truth table consists of a possible assignment of the
variables of the clause, together with the value of the clause under that assignment.
Using the truth-table entries that evaluate to 0, we build a formula in disjunctive
normal form (or DNF)—an OR of ANDs—that is equivalent to :�0

i . We then
negate this formula and convert it into a CNF formula �00

i by using DeMorgan’s

1084 Chapter 34 NP-Completeness

y1 y2 x2 .y1 $.y2 ^ :x2//

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

Figure 34.12 The truth table for the clause .y1 $.y2 ^ :x2//.

laws for propositional logic,

:.a ^ b/ D :a _:b ;

:.a _ b/ D :a ^:b ;

to complement all literals, change ORs into ANDs, and change ANDs into ORs.
In our example, we convert the clause �0

1 D .y1 $.y2 ^ :x2// into CNF
as follows. The truth table for �0

1 appears in Figure 34.12. The DNF formula
equivalent to :�0

1 is

.y1 ^ y2 ^ x2/ _ .y1 ^ :y2 ^ x2/ _ .y1 ^ :y2 ^:x2/ _ .:y1 ^ y2 ^ :x2/ :

Negating and applying DeMorgan’s laws, we get the CNF formula

�00
1 D .:y1 _:y2 _ :x2/ ^ .:y1 _ y2 _ :x2/

^ .:y1 _ y2 _ x2/ ^ .y1 _ :y2 _ x2/ ;

which is equivalent to the original clause �0
1.

At this point, we have converted each clause �0
i of the formula �0 into a CNF

formula �00
i , and thus �0 is equivalent to the CNF formula �00 consisting of the

conjunction of the �00
i . Moreover, each clause of �00 has at most 3 literals.

The third and final step of the reduction further transforms the formula so that
each clause has exactly 3 distinct literals. We construct the final 3-CNF formula �000

from the clauses of the CNF formula �00. The formula �000 also uses two auxiliary
variables that we shall call p and q. For each clause Ci of �00, we include the
following clauses in �000:

� If Ci has 3 distinct literals, then simply include Ci as a clause of �000.
� If Ci has 2 distinct literals, that is, if Ci D .l1 _ l2/, where l1 and l2 are literals,

then include .l1 _ l2 _ p/ ^ .l1 _ l2 _ :p/ as clauses of �000. The literals
p and :p merely fulfill the syntactic requirement that each clause of �000 has

34.4 NP-completeness proofs 1085

exactly 3 distinct literals. Whether p D 0 or p D 1, one of the clauses is
equivalent to l1_ l2, and the other evaluates to 1, which is the identity for AND.

� If Ci has just 1 distinct literal l , then include .l _ p _ q/ ^ .l _ p _ :q/ ^
.l _:p _ q/ ^ .l _:p _:q/ as clauses of �000. Regardless of the values of p

and q, one of the four clauses is equivalent to l , and the other 3 evaluate to 1.

We can see that the 3-CNF formula �000 is satisfiable if and only if � is satisfiable
by inspecting each of the three steps. Like the reduction from CIRCUIT-SAT to
SAT, the construction of �0 from � in the first step preserves satisfiability. The
second step produces a CNF formula �00 that is algebraically equivalent to �0. The
third step produces a 3-CNF formula �000 that is effectively equivalent to �00, since
any assignment to the variables p and q produces a formula that is algebraically
equivalent to �00.

We must also show that the reduction can be computed in polynomial time. Con-
structing �0 from � introduces at most 1 variable and 1 clause per connective in �.
Constructing �00 from �0 can introduce at most 8 clauses into �00 for each clause
from �0, since each clause of �0 has at most 3 variables, and the truth table for
each clause has at most 23 D 8 rows. The construction of �000 from �00 introduces
at most 4 clauses into �000 for each clause of �00. Thus, the size of the resulting
formula �000 is polynomial in the length of the original formula. Each of the con-
structions can easily be accomplished in polynomial time.

Exercises

34.4-1
Consider the straightforward (nonpolynomial-time) reduction in the proof of The-
orem 34.9. Describe a circuit of size n that, when converted to a formula by this
method, yields a formula whose size is exponential in n.

34.4-2
Show the 3-CNF formula that results when we use the method of Theorem 34.10
on the formula (34.3).

34.4-3
Professor Jagger proposes to show that SAT �P 3-CNF-SAT by using only the
truth-table technique in the proof of Theorem 34.10, and not the other steps. That
is, the professor proposes to take the boolean formula �, form a truth table for
its variables, derive from the truth table a formula in 3-DNF that is equivalent
to :�, and then negate and apply DeMorgan’s laws to produce a 3-CNF formula
equivalent to �. Show that this strategy does not yield a polynomial-time reduction.

1086 Chapter 34 NP-Completeness

34.4-4
Show that the problem of determining whether a boolean formula is a tautology is
complete for co-NP. (Hint: See Exercise 34.3-7.)

34.4-5
Show that the problem of determining the satisfiability of boolean formulas in dis-
junctive normal form is polynomial-time solvable.

34.4-6
Suppose that someone gives you a polynomial-time algorithm to decide formula
satisfiability. Describe how to use this algorithm to find satisfying assignments in
polynomial time.

34.4-7
Let 2-CNF-SAT be the set of satisfiable boolean formulas in CNF with exactly 2
literals per clause. Show that 2-CNF-SAT 2 P. Make your algorithm as efficient as
possible. (Hint: Observe that x _ y is equivalent to :x ! y. Reduce 2-CNF-SAT
to an efficiently solvable problem on a directed graph.)

34.5 NP-complete problems

NP-complete problems arise in diverse domains: boolean logic, graphs, arithmetic,
network design, sets and partitions, storage and retrieval, sequencing and schedul-
ing, mathematical programming, algebra and number theory, games and puzzles,
automata and language theory, program optimization, biology, chemistry, physics,
and more. In this section, we shall use the reduction methodology to provide NP-
completeness proofs for a variety of problems drawn from graph theory and set
partitioning.

Figure 34.13 outlines the structure of the NP-completeness proofs in this section
and Section 34.4. We prove each language in the figure to be NP-complete by
reduction from the language that points to it. At the root is CIRCUIT-SAT, which
we proved NP-complete in Theorem 34.7.

34.5.1 The clique problem

A clique in an undirected graph G D .V; E/ is a subset V 0 � V of vertices, each
pair of which is connected by an edge in E. In other words, a clique is a complete
subgraph of G. The size of a clique is the number of vertices it contains. The
clique problem is the optimization problem of finding a clique of maximum size in

34.5 NP-complete problems 1087

CIRCUIT-SAT

SAT

3-CNF-SAT

CLIQUE

VERTEX-COVER

SUBSET-SUM

HAM-CYCLE

TSP

Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs ulti-
mately follow by reduction from the NP-completeness of CIRCUIT-SAT.

a graph. As a decision problem, we ask simply whether a clique of a given size k

exists in the graph. The formal definition is

CLIQUE D fhG; ki W G is a graph containing a clique of size kg :

A naive algorithm for determining whether a graph G D .V; E/ with jV j ver-
tices has a clique of size k is to list all k-subsets of V , and check each one to
see whether it forms a clique. The running time of this algorithm is �.k2

�jV j
k

�
/,

which is polynomial if k is a constant. In general, however, k could be near jV j =2,
in which case the algorithm runs in superpolynomial time. Indeed, an efficient
algorithm for the clique problem is unlikely to exist.

Theorem 34.11
The clique problem is NP-complete.

Proof To show that CLIQUE 2 NP, for a given graph G D .V; E/, we use the
set V 0 � V of vertices in the clique as a certificate for G. We can check whether V 0

is a clique in polynomial time by checking whether, for each pair u; � 2 V 0, the
edge .u; �/ belongs to E.

We next prove that 3-CNF-SAT �P CLIQUE, which shows that the clique prob-
lem is NP-hard. You might be surprised that we should be able to prove such a
result, since on the surface logical formulas seem to have little to do with graphs.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let � D
C1 ^ C2 ^ � � � ^ Ck be a boolean formula in 3-CNF with k clauses. For r D

1088 Chapter 34 NP-Completeness

x1

x1

x2x2

x3x3

:x1

:x2 :x3

C1 D x1 _ :x2 _:x3

C2 D :x1 _ x2 _ x3 C3 D x1 _ x2 _ x3

Figure 34.14 The graph G derived from the 3-CNF formula � D C1 ^ C2 ^ C3, where C1 D
.x1 _ :x2 _ :x3/, C2 D .:x1 _ x2 _ x3/, and C3 D .x1 _ x2 _ x3/, in reducing 3-CNF-SAT to
CLIQUE. A satisfying assignment of the formula has x2 D 0, x3 D 1, and x1 either 0 or 1. This
assignment satisfies C1 with :x2, and it satisfies C2 and C3 with x3, corresponding to the clique
with lightly shaded vertices.

1; 2; : : : ; k, each clause Cr has exactly three distinct literals lr
1 , lr

2 , and lr
3 . We shall

construct a graph G such that � is satisfiable if and only if G has a clique of size k.
We construct the graph G D .V; E/ as follows. For each clause Cr D

.lr
1 _ lr

2 _ lr
3 / in �, we place a triple of vertices �r

1 , �r
2 , and �r

3 into V . We put
an edge between two vertices �r

i and �s
j if both of the following hold:

� �r
i and �s

j are in different triples, that is, r ¤ s, and

� their corresponding literals are consistent, that is, lr
i is not the negation of ls

j .

We can easily build this graph from � in polynomial time. As an example of this
construction, if we have

� D .x1 _ :x2 _ :x3/ ^ .:x1 _ x2 _ x3/ ^ .x1 _ x2 _ x3/ ;

then G is the graph shown in Figure 34.14.
We must show that this transformation of � into G is a reduction. First, suppose

that � has a satisfying assignment. Then each clause Cr contains at least one
literal lr

i that is assigned 1, and each such literal corresponds to a vertex �r
i . Picking

one such “true” literal from each clause yields a set V 0 of k vertices. We claim that
V 0 is a clique. For any two vertices �r

i ; �s
j 2 V 0, where r ¤ s, both corresponding

literals lr
i and ls

j map to 1 by the given satisfying assignment, and thus the literals

34.5 NP-complete problems 1089

cannot be complements. Thus, by the construction of G, the edge .�r
i ; �s

j / belongs
to E.

Conversely, suppose that G has a clique V 0 of size k. No edges in G connect
vertices in the same triple, and so V 0 contains exactly one vertex per triple. We can
assign 1 to each literal lr

i such that �r
i 2 V 0 without fear of assigning 1 to both a

literal and its complement, since G contains no edges between inconsistent literals.
Each clause is satisfied, and so � is satisfied. (Any variables that do not correspond
to a vertex in the clique may be set arbitrarily.)

In the example of Figure 34.14, a satisfying assignment of � has x2 D 0 and
x3 D 1. A corresponding clique of size k D 3 consists of the vertices correspond-
ing to :x2 from the first clause, x3 from the second clause, and x3 from the third
clause. Because the clique contains no vertices corresponding to either x1 or :x1,
we can set x1 to either 0 or 1 in this satisfying assignment.

Observe that in the proof of Theorem 34.11, we reduced an arbitrary instance
of 3-CNF-SAT to an instance of CLIQUE with a particular structure. You might
think that we have shown only that CLIQUE is NP-hard in graphs in which the
vertices are restricted to occur in triples and in which there are no edges between
vertices in the same triple. Indeed, we have shown that CLIQUE is NP-hard only
in this restricted case, but this proof suffices to show that CLIQUE is NP-hard in
general graphs. Why? If we had a polynomial-time algorithm that solved CLIQUE
on general graphs, it would also solve CLIQUE on restricted graphs.

The opposite approach—reducing instances of 3-CNF-SAT with a special struc-
ture to general instances of CLIQUE—would not have sufficed, however. Why
not? Perhaps the instances of 3-CNF-SAT that we chose to reduce from were
“easy,” and so we would not have reduced an NP-hard problem to CLIQUE.

Observe also that the reduction used the instance of 3-CNF-SAT, but not the
solution. We would have erred if the polynomial-time reduction had relied on
knowing whether the formula � is satisfiable, since we do not know how to decide
whether � is satisfiable in polynomial time.

34.5.2 The vertex-cover problem

A vertex cover of an undirected graph G D .V; E/ is a subset V 0 � V such that
if .u; �/ 2 E, then u 2 V 0 or � 2 V 0 (or both). That is, each vertex “covers” its
incident edges, and a vertex cover for G is a set of vertices that covers all the edges
in E. The size of a vertex cover is the number of vertices in it. For example, the
graph in Figure 34.15(b) has a vertex cover fw; ´g of size 2.

The vertex-cover problem is to find a vertex cover of minimum size in a given
graph. Restating this optimization problem as a decision problem, we wish to

1090 Chapter 34 NP-Completeness

u v

y x

z w

(a)

u v

y x

z w

(b)

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G D .V; E/ with
clique V 0 D fu; �; x; yg. (b) The graph G produced by the reduction algorithm that has vertex cover
V � V 0 D fw; ´g.

determine whether a graph has a vertex cover of a given size k. As a language, we
define

VERTEX-COVERD fhG; ki W graph G has a vertex cover of size kg :

The following theorem shows that this problem is NP-complete.

Theorem 34.12
The vertex-cover problem is NP-complete.

Proof We first show that VERTEX-COVER 2 NP. Suppose we are given a graph
G D .V; E/ and an integer k. The certificate we choose is the vertex cover V 0 � V

itself. The verification algorithm affirms that jV 0j D k, and then it checks, for each
edge .u; �/ 2 E, that u 2 V 0 or � 2 V 0. We can easily verify the certificate in
polynomial time.

We prove that the vertex-cover problem is NP-hard by showing that CLIQUE �P

VERTEX-COVER. This reduction relies on the notion of the “complement” of a
graph. Given an undirected graph G D .V; E/, we define the complement of G

as G D .V; E/, where E D f.u; �/ W u; � 2 V; u ¤ �; and .u; �/ 62 Eg. In other
words, G is the graph containing exactly those edges that are not in G. Figure 34.15
shows a graph and its complement and illustrates the reduction from CLIQUE to
VERTEX-COVER.

The reduction algorithm takes as input an instance hG; ki of the clique problem.
It computes the complement G, which we can easily do in polynomial time. The
output of the reduction algorithm is the instance hG; jV j � ki of the vertex-cover
problem. To complete the proof, we show that this transformation is indeed a

34.5 NP-complete problems 1091

reduction: the graph G has a clique of size k if and only if the graph G has a vertex
cover of size jV j � k.

Suppose that G has a clique V 0 � V with jV 0j D k. We claim that V � V 0 is a
vertex cover in G. Let .u; �/ be any edge in E. Then, .u; �/ 62 E, which implies
that at least one of u or � does not belong to V 0, since every pair of vertices in V 0 is
connected by an edge of E. Equivalently, at least one of u or � is in V �V 0, which
means that edge .u; �/ is covered by V � V 0. Since .u; �/ was chosen arbitrarily
from E, every edge of E is covered by a vertex in V � V 0. Hence, the set V � V 0,
which has size jV j � k, forms a vertex cover for G.

Conversely, suppose that G has a vertex cover V 0 � V , where jV 0j D jV j � k.
Then, for all u; � 2 V , if .u; �/ 2 E, then u 2 V 0 or � 2 V 0 or both. The
contrapositive of this implication is that for all u; � 2 V , if u 62 V 0 and � 62 V 0,
then .u; �/ 2 E. In other words, V �V 0 is a clique, and it has size jV j�jV 0j D k.

Since VERTEX-COVER is NP-complete, we don’t expect to find a polynomial-
time algorithm for finding a minimum-size vertex cover. Section 35.1 presents a
polynomial-time “approximation algorithm,” however, which produces “approxi-
mate” solutions for the vertex-cover problem. The size of a vertex cover produced
by the algorithm is at most twice the minimum size of a vertex cover.

Thus, we shouldn’t give up hope just because a problem is NP-complete. We
may be able to design a polynomial-time approximation algorithm that obtains
near-optimal solutions, even though finding an optimal solution is NP-complete.
Chapter 35 gives several approximation algorithms for NP-complete problems.

34.5.3 The hamiltonian-cycle problem

We now return to the hamiltonian-cycle problem defined in Section 34.2.

Theorem 34.13
The hamiltonian cycle problem is NP-complete.

Proof We first show that HAM-CYCLE belongs to NP. Given a graph G D
.V; E/, our certificate is the sequence of jV j vertices that makes up the hamiltonian
cycle. The verification algorithm checks that this sequence contains each vertex
in V exactly once and that with the first vertex repeated at the end, it forms a cycle
in G. That is, it checks that there is an edge between each pair of consecutive
vertices and between the first and last vertices. We can verify the certificate in
polynomial time.

We now prove that VERTEX-COVER �P HAM-CYCLE, which shows that
HAM-CYCLE is NP-complete. Given an undirected graph G D .V; E/ and an

1092 Chapter 34 NP-Completeness

[u,v,1]

[u,v,2]

[u,v,3]

[u,v,4]

[u,v,5]

[u,v,6]

[v,u,1]

[v,u,2]

[v,u,3]

[v,u,4]

[v,u,5]

[v,u,6]

Wuv

(a)

Wuv

(b)

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Wuv

(c)

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Wuv

(d)

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Figure 34.16 The widget used in reducing the vertex-cover problem to the hamiltonian-cycle prob-
lem. An edge .u; �/ of graph G corresponds to widget Wu� in the graph G0 created in the reduction.
(a) The widget, with individual vertices labeled. (b)–(d) The shaded paths are the only possible ones
through the widget that include all vertices, assuming that the only connections from the widget to
the remainder of G0 are through vertices Œu; �; 1�, Œu; �; 6�, Œ�; u; 1�, and Œ�; u; 6�.

integer k, we construct an undirected graph G0 D .V 0; E 0/ that has a hamiltonian
cycle if and only if G has a vertex cover of size k.

Our construction uses a widget, which is a piece of a graph that enforces certain
properties. Figure 34.16(a) shows the widget we use. For each edge .u; �/ 2 E, the
graph G0 that we construct will contain one copy of this widget, which we denote
by Wu� . We denote each vertex in Wu� by Œu; �; i � or Œ�; u; i �, where 1 � i � 6, so
that each widget Wu� contains 12 vertices. Widget Wu� also contains the 14 edges
shown in Figure 34.16(a).

Along with the internal structure of the widget, we enforce the properties we
want by limiting the connections between the widget and the remainder of the
graph G0 that we construct. In particular, only vertices Œu; �; 1�, Œu; �; 6�, Œ�; u; 1�,
and Œ�; u; 6� will have edges incident from outside Wu� . Any hamiltonian cycle
of G0 must traverse the edges of Wu� in one of the three ways shown in Fig-
ures 34.16(b)–(d). If the cycle enters through vertex Œu; �; 1�, it must exit through
vertex Œu; �; 6�, and it either visits all 12 of the widget’s vertices (Figure 34.16(b))
or the six vertices Œu; �; 1� through Œu; �; 6� (Figure 34.16(c)). In the latter case,
the cycle will have to reenter the widget to visit vertices Œ�; u; 1� through Œ�; u; 6�.
Similarly, if the cycle enters through vertex Œ�; u; 1�, it must exit through ver-
tex Œ�; u; 6�, and it either visits all 12 of the widget’s vertices (Figure 34.16(d)) or
the six vertices Œ�; u; 1� through Œ�; u; 6� (Figure 34.16(c)). No other paths through
the widget that visit all 12 vertices are possible. In particular, it is impossible to
construct two vertex-disjoint paths, one of which connects Œu; �; 1� to Œ�; u; 6� and
the other of which connects Œ�; u; 1� to Œu; �; 6�, such that the union of the two paths
contains all of the widget’s vertices.

34.5 NP-complete problems 1093

[w,x,1]

[w,x,6]

[x,w,1]

[x,w,6]

Wwx

(b)

[x,y,1]

[x,y,6]

[y,x,1]

[y,x,6]

Wxy

[w,y,1]

[w,y,6]

[y,w,1]

[y,w,6]

Wwy

[w,z,1]

[w,z,6]

[z,w,1]

[z,w,6]

Wwz

s1

s2

w x

z y

(a)

Figure 34.17 Reducing an instance of the vertex-cover problem to an instance of the hamiltonian-
cycle problem. (a) An undirected graph G with a vertex cover of size 2, consisting of the lightly
shaded vertices w and y. (b) The undirected graph G0 produced by the reduction, with the hamilto-
nian path corresponding to the vertex cover shaded. The vertex cover fw; yg corresponds to edges
.s1; Œw; x; 1�/ and .s2; Œy; x; 1�/ appearing in the hamiltonian cycle.

The only other vertices in V 0 other than those of widgets are selector vertices
s1; s2; : : : ; sk . We use edges incident on selector vertices in G0 to select the k

vertices of the cover in G.
In addition to the edges in widgets, E 0 contains two other types of edges, which

Figure 34.17 shows. First, for each vertex u 2 V , we add edges to join pairs
of widgets in order to form a path containing all widgets corresponding to edges
incident on u in G. We arbitrarily order the vertices adjacent to each vertex
u 2 V as u.1/; u.2/; : : : ; u.degree.u//, where degree.u/ is the number of vertices
adjacent to u. We create a path in G0 through all the widgets corresponding
to edges incident on u by adding to E 0 the edges f.Œu; u.i/; 6�; Œu; u.iC1/; 1�/ W
1 � i � degree.u/ � 1g. In Figure 34.17, for example, we order the vertices ad-
jacent to w as x; y; ´, and so graph G0 in part (b) of the figure includes the edges

1094 Chapter 34 NP-Completeness

.Œw; x; 6�; Œw; y; 1�/ and .Œw; y; 6�; Œw; ´; 1�/. For each vertex u 2 V , these edges
in G0 fill in a path containing all widgets corresponding to edges incident on u

in G.
The intuition behind these edges is that if we choose a vertex u 2 V in the vertex

cover of G, we can construct a path from Œu; u.1/; 1� to Œu; u.degree.u//; 6� in G0 that
“covers” all widgets corresponding to edges incident on u. That is, for each of these
widgets, say Wu;u.i/ , the path either includes all 12 vertices (if u is in the vertex
cover but u.i/ is not) or just the six vertices Œu; u.i/; 1�; Œu; u.i/; 2�; : : : ; Œu; u.i/; 6� (if
both u and u.i/ are in the vertex cover).

The final type of edge in E 0 joins the first vertex Œu; u.1/; 1� and the last vertex
Œu; u.degree.u//; 6� of each of these paths to each of the selector vertices. That is, we
include the edges

f.sj ; Œu; u.1/; 1�/ W u 2 V and 1 � j � kg
[f.sj ; Œu; u.degree.u//; 6�/ W u 2 V and 1 � j � kg :

Next, we show that the size of G0 is polynomial in the size of G, and hence we
can construct G0 in time polynomial in the size of G. The vertices of G0 are those
in the widgets, plus the selector vertices. With 12 vertices per widget, plus k � jV j
selector vertices, we have a total of

jV 0j D 12 jEj C k

� 12 jEj C jV j
vertices. The edges of G0 are those in the widgets, those that go between widgets,
and those connecting selector vertices to widgets. Each widget contains 14 edges,
totaling 14 jEj in all widgets. For each vertex u 2 V , graph G0 has degree.u/ � 1

edges going between widgets, so that summed over all vertices in V ,X
u2V

.degree.u/ � 1/ D 2 jEj � jV j

edges go between widgets. Finally, G0 has two edges for each pair consisting of a
selector vertex and a vertex of V , totaling 2k jV j such edges. The total number of
edges of G0 is therefore

jE 0j D .14 jEj/C .2 jEj � jV j/C .2k jV j/
D 16 jEj C .2k � 1/ jV j
� 16 jEj C .2 jV j � 1/ jV j :

Now we show that the transformation from graph G to G0 is a reduction. That is,
we must show that G has a vertex cover of size k if and only if G0 has a hamiltonian
cycle.

34.5 NP-complete problems 1095

Suppose that G D .V; E/ has a vertex cover V � � V of size k. Let
V � D fu1; u2; : : : ; ukg. As Figure 34.17 shows, we form a hamiltonian cy-
cle in G0 by including the following edges10 for each vertex uj 2 V �. Include
edges

˚
.Œuj ; u

.i/
j ; 6�; Œuj ; u

.iC1/
j ; 1�/ W 1 � i � degree.uj / � 1

, which connect all

widgets corresponding to edges incident on uj . We also include the edges within
these widgets as Figures 34.16(b)–(d) show, depending on whether the edge is cov-
ered by one or two vertices in V �. The hamiltonian cycle also includes the edges

f.sj ; Œuj ; u
.1/
j ; 1�/ W 1 � j � kg
[f.sj C1; Œuj ; u

.degree.uj //

j ; 6�/ W 1 � j � k � 1g
[f.s1; Œuk ; u

.degree.uk//

k
; 6�/g :

By inspecting Figure 34.17, you can verify that these edges form a cycle. The cycle
starts at s1, visits all widgets corresponding to edges incident on u1, then visits s2,
visits all widgets corresponding to edges incident on u2, and so on, until it returns
to s1. The cycle visits each widget either once or twice, depending on whether one
or two vertices of V � cover its corresponding edge. Because V � is a vertex cover
for G, each edge in E is incident on some vertex in V �, and so the cycle visits each
vertex in each widget of G0. Because the cycle also visits every selector vertex, it
is hamiltonian.

Conversely, suppose that G0 D .V 0; E 0/ has a hamiltonian cycle C � E 0. We
claim that the set

V � D fu 2 V W .sj ; Œu; u.1/; 1�/ 2 C for some 1 � j � kg (34.4)

is a vertex cover for G. To see why, partition C into maximal paths that start at
some selector vertex si , traverse an edge .si ; Œu; u.1/; 1�/ for some u 2 V , and end
at a selector vertex sj without passing through any other selector vertex. Let us call
each such path a “cover path.” From how G0 is constructed, each cover path must
start at some si , take the edge .si ; Œu; u.1/; 1�/ for some vertex u 2 V , pass through
all the widgets corresponding to edges in E incident on u, and then end at some
selector vertex sj . We refer to this cover path as pu, and by equation (34.4), we
put u into V �. Each widget visited by pu must be Wu� or W�u for some � 2 V .
For each widget visited by pu, its vertices are visited by either one or two cover
paths. If they are visited by one cover path, then edge .u; �/ 2 E is covered in G

by vertex u. If two cover paths visit the widget, then the other cover path must
be p� , which implies that � 2 V �, and edge .u; �/ 2 E is covered by both u and �.

10Technically, we define a cycle in terms of vertices rather than edges (see Section B.4). In the
interest of clarity, we abuse notation here and define the hamiltonian cycle in terms of edges.

1096 Chapter 34 NP-Completeness

u v

x w

4

23

5

1

1

Figure 34.18 An instance of the traveling-salesman problem. Shaded edges represent a minimum-
cost tour, with cost 7.

Because each vertex in each widget is visited by some cover path, we see that each
edge in E is covered by some vertex in V �.

34.5.4 The traveling-salesman problem

In the traveling-salesman problem, which is closely related to the hamiltonian-
cycle problem, a salesman must visit n cities. Modeling the problem as a complete
graph with n vertices, we can say that the salesman wishes to make a tour, or
hamiltonian cycle, visiting each city exactly once and finishing at the city he starts
from. The salesman incurs a nonnegative integer cost c.i; j / to travel from city i

to city j , and the salesman wishes to make the tour whose total cost is minimum,
where the total cost is the sum of the individual costs along the edges of the tour.
For example, in Figure 34.18, a minimum-cost tour is hu; w; �; x; ui, with cost 7.
The formal language for the corresponding decision problem is

TSP D fhG; c; ki W G D .V; E/ is a complete graph;

c is a function from V 	 V ! Z;

k 2 Z, and
G has a traveling-salesman tour with cost at most kg :

The following theorem shows that a fast algorithm for the traveling-salesman
problem is unlikely to exist.

Theorem 34.14
The traveling-salesman problem is NP-complete.

Proof We first show that TSP belongs to NP. Given an instance of the problem,
we use as a certificate the sequence of n vertices in the tour. The verification
algorithm checks that this sequence contains each vertex exactly once, sums up the
edge costs, and checks whether the sum is at most k. This process can certainly be
done in polynomial time.

34.5 NP-complete problems 1097

To prove that TSP is NP-hard, we show that HAM-CYCLE �P TSP. Let
G D .V; E/ be an instance of HAM-CYCLE. We construct an instance of TSP as
follows. We form the complete graph G0 D .V; E 0/, where E 0 D f.i; j / W i; j 2 V

and i ¤ j g, and we define the cost function c by

c.i; j / D
(

0 if .i; j / 2 E ;

1 if .i; j / 62 E :

(Note that because G is undirected, it has no self-loops, and so c.�; �/ D 1 for all
vertices � 2 V .) The instance of TSP is then hG0; c; 0i, which we can easily create
in polynomial time.

We now show that graph G has a hamiltonian cycle if and only if graph G0 has a
tour of cost at most 0. Suppose that graph G has a hamiltonian cycle h. Each edge
in h belongs to E and thus has cost 0 in G0. Thus, h is a tour in G0 with cost 0.
Conversely, suppose that graph G0 has a tour h0 of cost at most 0. Since the costs
of the edges in E 0 are 0 and 1, the cost of tour h0 is exactly 0 and each edge on the
tour must have cost 0. Therefore, h0 contains only edges in E. We conclude that h0

is a hamiltonian cycle in graph G.

34.5.5 The subset-sum problem

We next consider an arithmetic NP-complete problem. In the subset-sum problem,
we are given a finite set S of positive integers and an integer target t > 0. We ask
whether there exists a subset S 0 � S whose elements sum to t . For example,
if S D f1; 2; 7; 14; 49; 98; 343; 686; 2409; 2793; 16808; 17206; 117705; 117993g
and t D 138457, then the subset S 0 D f1; 2; 7; 98; 343; 686; 2409; 17206; 117705g
is a solution.

As usual, we define the problem as a language:

SUBSET-SUMD fhS; ti W there exists a subset S 0 � S such that t DPs2S 0 sg :

As with any arithmetic problem, it is important to recall that our standard encoding
assumes that the input integers are coded in binary. With this assumption in mind,
we can show that the subset-sum problem is unlikely to have a fast algorithm.

Theorem 34.15
The subset-sum problem is NP-complete.

Proof To show that SUBSET-SUM is in NP, for an instance hS; ti of the problem,
we let the subset S 0 be the certificate. A verification algorithm can check whether
t DPs2S 0 s in polynomial time.

We now show that 3-CNF-SAT �P SUBSET-SUM. Given a 3-CNF formula �

over variables x1; x2; : : : ; xn with clauses C1; C2; : : : ; Ck , each containing exactly

1098 Chapter 34 NP-Completeness

three distinct literals, the reduction algorithm constructs an instance hS; ti of the
subset-sum problem such that � is satisfiable if and only if there exists a subset
of S whose sum is exactly t . Without loss of generality, we make two simplifying
assumptions about the formula �. First, no clause contains both a variable and its
negation, for such a clause is automatically satisfied by any assignment of values
to the variables. Second, each variable appears in at least one clause, because it
does not matter what value is assigned to a variable that appears in no clauses.

The reduction creates two numbers in set S for each variable xi and two numbers
in S for each clause Cj . We shall create numbers in base 10, where each number
contains nCk digits and each digit corresponds to either one variable or one clause.
Base 10 (and other bases, as we shall see) has the property we need of preventing
carries from lower digits to higher digits.

As Figure 34.19 shows, we construct set S and target t as follows. We label
each digit position by either a variable or a clause. The least significant k digits are
labeled by the clauses, and the most significant n digits are labeled by variables.

� The target t has a 1 in each digit labeled by a variable and a 4 in each digit
labeled by a clause.

� For each variable xi , set S contains two integers �i and � 0
i . Each of �i and � 0

i

has a 1 in the digit labeled by xi and 0s in the other variable digits. If literal xi

appears in clause Cj , then the digit labeled by Cj in �i contains a 1. If lit-
eral :xi appears in clause Cj , then the digit labeled by Cj in � 0

i contains a 1.
All other digits labeled by clauses in �i and � 0

i are 0.

All �i and � 0
i values in set S are unique. Why? For l ¤ i , no �l or � 0

l
values can

equal �i and � 0
i in the most significant n digits. Furthermore, by our simplifying

assumptions above, no �i and � 0
i can be equal in all k least significant digits.

If �i and � 0
i were equal, then xi and :xi would have to appear in exactly the

same set of clauses. But we assume that no clause contains both xi and :xi

and that either xi or :xi appears in some clause, and so there must be some
clause Cj for which �i and � 0

i differ.

� For each clause Cj , set S contains two integers sj and s0
j . Each of sj and s0

j has
0s in all digits other than the one labeled by Cj . For sj , there is a 1 in the Cj

digit, and s0
j has a 2 in this digit. These integers are “slack variables,” which we

use to get each clause-labeled digit position to add to the target value of 4.

Simple inspection of Figure 34.19 demonstrates that all sj and s0
j values in S

are unique in set S .

Note that the greatest sum of digits in any one digit position is 6, which occurs in
the digits labeled by clauses (three 1s from the �i and � 0

i values, plus 1 and 2 from

34.5 NP-complete problems 1099

= 1 0 0 1 0 0 1

= 1 0 0 0 1 1 0

= 0 1 0 0 0 0 1

= 0 1 0 1 1 1 0

= 0 0 1 0 0 1 1

= 0 0 1 1 1 0 0

= 0 0 0 1 0 0 0

= 0 0 0 2 0 0 0

= 0 0 0 0 1 0 0

= 0 0 0 0 2 0 0

= 0 0 0 0 0 1 0

= 0 0 0 0 0 2 0

= 0 0 0 0 0 0 1

= 0 0 0 0 0 0 2

= 1 1 1 4 4 4 4

x1 x2 x3 C1 C2 C3 C4

�1

� 0
1

�2

� 0
2

�3

� 0
3

s1

s0
1

s2

s0
2

s3

s0
3

s4

s0
4

t

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is � D
C1^C2^C3^C4, where C1 D .x1_:x2_:x3/, C2 D .:x1_:x2_:x3/, C3 D .:x1_:x2_x3/,
and C4 D .x1 _ x2 _ x3/. A satisfying assignment of � is hx1 D 0; x2 D 0; x3 D 1i. The set S

produced by the reduction consists of the base-10 numbers shown; reading from top to bottom, S D
f1001001; 1000110; 100001; 101110; 10011; 11100; 1000; 2000; 100; 200; 10; 20; 1; 2g. The target t

is 1114444. The subset S 0 � S is lightly shaded, and it contains �0
1, �0

2, and �3, corresponding to the
satisfying assignment. It also contains slack variables s1, s0

1, s0
2, s3, s4, and s0

4 to achieve the target
value of 4 in the digits labeled by C1 through C4.

the sj and s0
j values). Interpreting these numbers in base 10, therefore, no carries

can occur from lower digits to higher digits.11

We can perform the reduction in polynomial time. The set S contains 2nC 2k

values, each of which has nC k digits, and the time to produce each digit is poly-
nomial in nC k. The target t has nC k digits, and the reduction produces each in
constant time.

We now show that the 3-CNF formula � is satisfiable if and only if there exists
a subset S 0 � S whose sum is t . First, suppose that � has a satisfying assignment.
For i D 1; 2; : : : ; n, if xi D 1 in this assignment, then include �i in S 0. Otherwise,
include � 0

i . In other words, we include in S 0 exactly the �i and � 0
i values that cor-

11In fact, any base b, where b � 7, would work. The instance at the beginning of this subsection is
the set S and target t in Figure 34.19 interpreted in base 7, with S listed in sorted order.

1100 Chapter 34 NP-Completeness

respond to literals with the value 1 in the satisfying assignment. Having included
either �i or � 0

i , but not both, for all i , and having put 0 in the digits labeled by
variables in all sj and s0

j , we see that for each variable-labeled digit, the sum of the
values of S 0 must be 1, which matches those digits of the target t . Because each
clause is satisfied, the clause contains some literal with the value 1. Therefore,
each digit labeled by a clause has at least one 1 contributed to its sum by a �i or � 0

i

value in S 0. In fact, 1, 2, or 3 literals may be 1 in each clause, and so each clause-
labeled digit has a sum of 1, 2, or 3 from the �i and � 0

i values in S 0. In Figure 34.19
for example, literals :x1, :x2, and x3 have the value 1 in a satisfying assignment.
Each of clauses C1 and C4 contains exactly one of these literals, and so together � 0

1,
� 0

2, and �3 contribute 1 to the sum in the digits for C1 and C4. Clause C2 contains
two of these literals, and � 0

1, � 0
2, and �3 contribute 2 to the sum in the digit for C2.

Clause C3 contains all three of these literals, and � 0
1, � 0

2, and �3 contribute 3 to the
sum in the digit for C3. We achieve the target of 4 in each digit labeled by clause Cj

by including in S 0 the appropriate nonempty subset of slack variables fsj ; s0
j g. In

Figure 34.19, S 0 includes s1, s0
1, s0

2, s3, s4, and s0
4. Since we have matched the target

in all digits of the sum, and no carries can occur, the values of S 0 sum to t .
Now, suppose that there is a subset S 0 � S that sums to t . The subset S 0 must

include exactly one of �i and � 0
i for each i D 1; 2; : : : ; n, for otherwise the digits

labeled by variables would not sum to 1. If �i 2 S 0, we set xi D 1. Otherwise,
� 0

i 2 S 0, and we set xi D 0. We claim that every clause Cj , for j D 1; 2; : : : ; k, is
satisfied by this assignment. To prove this claim, note that to achieve a sum of 4 in
the digit labeled by Cj , the subset S 0 must include at least one �i or � 0

i value that
has a 1 in the digit labeled by Cj , since the contributions of the slack variables sj

and s0
j together sum to at most 3. If S 0 includes a �i that has a 1 in Cj ’s position,

then the literal xi appears in clause Cj . Since we have set xi D 1 when �i 2 S 0,
clause Cj is satisfied. If S 0 includes a � 0

i that has a 1 in that position, then the
literal :xi appears in Cj . Since we have set xi D 0 when � 0

i 2 S 0, clause Cj is
again satisfied. Thus, all clauses of � are satisfied, which completes the proof.

Exercises

34.5-1
The subgraph-isomorphism problem takes two undirected graphs G1 and G2, and
it asks whether G1 is isomorphic to a subgraph of G2. Show that the subgraph-
isomorphism problem is NP-complete.

34.5-2
Given an integer m 	 n matrix A and an integer m-vector b, the 0-1 integer-
programming problem asks whether there exists an integer n-vector x with ele-

Problems for Chapter 34 1101

ments in the set f0; 1g such that Ax � b. Prove that 0-1 integer programming is
NP-complete. (Hint: Reduce from 3-CNF-SAT.)

34.5-3
The integer linear-programming problem is like the 0-1 integer-programming
problem given in Exercise 34.5-2, except that the values of the vector x may be
any integers rather than just 0 or 1. Assuming that the 0-1 integer-programming
problem is NP-hard, show that the integer linear-programming problem is NP-
complete.

34.5-4
Show how to solve the subset-sum problem in polynomial time if the target value t

is expressed in unary.

34.5-5
The set-partition problem takes as input a set S of numbers. The question is
whether the numbers can be partitioned into two sets A and A D S � A such
that

P
x2A x DPx2A x. Show that the set-partition problem is NP-complete.

34.5-6
Show that the hamiltonian-path problem is NP-complete.

34.5-7
The longest-simple-cycle problem is the problem of determining a simple cycle
(no repeated vertices) of maximum length in a graph. Formulate a related decision
problem, and show that the decision problem is NP-complete.

34.5-8
In the half 3-CNF satisfiability problem, we are given a 3-CNF formula � with n

variables and m clauses, where m is even. We wish to determine whether there
exists a truth assignment to the variables of � such that exactly half the clauses
evaluate to 0 and exactly half the clauses evaluate to 1. Prove that the half 3-CNF
satisfiability problem is NP-complete.

Problems

34-1 Independent set
An independent set of a graph G D .V; E/ is a subset V 0 � V of vertices such
that each edge in E is incident on at most one vertex in V 0. The independent-set
problem is to find a maximum-size independent set in G.

1102 Chapter 34 NP-Completeness

a. Formulate a related decision problem for the independent-set problem, and
prove that it is NP-complete. (Hint: Reduce from the clique problem.)

b. Suppose that you are given a “black-box” subroutine to solve the decision prob-
lem you defined in part (a). Give an algorithm to find an independent set of max-
imum size. The running time of your algorithm should be polynomial in jV j
and jEj, counting queries to the black box as a single step.

Although the independent-set decision problem is NP-complete, certain special
cases are polynomial-time solvable.

c. Give an efficient algorithm to solve the independent-set problem when each ver-
tex in G has degree 2. Analyze the running time, and prove that your algorithm
works correctly.

d. Give an efficient algorithm to solve the independent-set problem when G is
bipartite. Analyze the running time, and prove that your algorithm works cor-
rectly. (Hint: Use the results of Section 26.3.)

34-2 Bonnie and Clyde
Bonnie and Clyde have just robbed a bank. They have a bag of money and want
to divide it up. For each of the following scenarios, either give a polynomial-time
algorithm, or prove that the problem is NP-complete. The input in each case is a
list of the n items in the bag, along with the value of each.

a. The bag contains n coins, but only 2 different denominations: some coins are
worth x dollars, and some are worth y dollars. Bonnie and Clyde wish to divide
the money exactly evenly.

b. The bag contains n coins, with an arbitrary number of different denominations,
but each denomination is a nonnegative integer power of 2, i.e., the possible
denominations are 1 dollar, 2 dollars, 4 dollars, etc. Bonnie and Clyde wish to
divide the money exactly evenly.

c. The bag contains n checks, which are, in an amazing coincidence, made out to
“Bonnie or Clyde.” They wish to divide the checks so that they each get the
exact same amount of money.

d. The bag contains n checks as in part (c), but this time Bonnie and Clyde are
willing to accept a split in which the difference is no larger than 100 dollars.

Problems for Chapter 34 1103

34-3 Graph coloring
Mapmakers try to use as few colors as possible when coloring countries on a map,
as long as no two countries that share a border have the same color. We can model
this problem with an undirected graph G D .V; E/ in which each vertex repre-
sents a country and vertices whose respective countries share a border are adjacent.
Then, a k-coloring is a function c W V ! f1; 2; : : : ; kg such that c.u/ ¤ c.�/ for
every edge .u; �/ 2 E. In other words, the numbers 1; 2; : : : ; k represent the k col-
ors, and adjacent vertices must have different colors. The graph-coloring problem
is to determine the minimum number of colors needed to color a given graph.

a. Give an efficient algorithm to determine a 2-coloring of a graph, if one exists.

b. Cast the graph-coloring problem as a decision problem. Show that your deci-
sion problem is solvable in polynomial time if and only if the graph-coloring
problem is solvable in polynomial time.

c. Let the language 3-COLOR be the set of graphs that can be 3-colored. Show
that if 3-COLOR is NP-complete, then your decision problem from part (b) is
NP-complete.

To prove that 3-COLOR is NP-complete, we use a reduction from 3-CNF-SAT.
Given a formula � of m clauses on n variables x1, x2, . . . , xn, we construct a graph
G D .V; E/ as follows. The set V consists of a vertex for each variable, a vertex
for the negation of each variable, 5 vertices for each clause, and 3 special vertices:
TRUE, FALSE, and RED. The edges of the graph are of two types: “literal” edges
that are independent of the clauses and “clause” edges that depend on the clauses.
The literal edges form a triangle on the special vertices and also form a triangle on
xi , :xi , and RED for i D 1; 2; : : : ; n.

d. Argue that in any 3-coloring c of a graph containing the literal edges, exactly
one of a variable and its negation is colored c.TRUE/ and the other is colored
c.FALSE/. Argue that for any truth assignment for �, there exists a 3-coloring
of the graph containing just the literal edges.

The widget shown in Figure 34.20 helps to enforce the condition corresponding to
a clause .x _ y _ ´/. Each clause requires a unique copy of the 5 vertices that are
heavily shaded in the figure; they connect as shown to the literals of the clause and
the special vertex TRUE.

e. Argue that if each of x, y, and ´ is colored c.TRUE/ or c.FALSE/, then the
widget is 3-colorable if and only if at least one of x, y, or ´ is colored c.TRUE/.

f. Complete the proof that 3-COLOR is NP-complete.

1104 Chapter 34 NP-Completeness

x

y

z

TRUE

Figure 34.20 The widget corresponding to a clause .x _ y _ ´/, used in Problem 34-3.

34-4 Scheduling with profits and deadlines
Suppose that we have one machine and a set of n tasks a1; a2; : : : ; an, each of
which requires time on the machine. Each task aj requires tj time units on the
machine (its processing time), yields a profit of pj , and has a deadline dj . The
machine can process only one task at a time, and task aj must run without inter-
ruption for tj consecutive time units. If we complete task aj by its deadline dj , we
receive a profit pj , but if we complete it after its deadline, we receive no profit. As
an optimization problem, we are given the processing times, profits, and deadlines
for a set of n tasks, and we wish to find a schedule that completes all the tasks and
returns the greatest amount of profit. The processing times, profits, and deadlines
are all nonnegative numbers.

a. State this problem as a decision problem.

b. Show that the decision problem is NP-complete.

c. Give a polynomial-time algorithm for the decision problem, assuming that all
processing times are integers from 1 to n. (Hint: Use dynamic programming.)

d. Give a polynomial-time algorithm for the optimization problem, assuming that
all processing times are integers from 1 to n.

Chapter notes

The book by Garey and Johnson [129] provides a wonderful guide to NP-complete-
ness, discussing the theory at length and providing a catalogue of many problems
that were known to be NP-complete in 1979. The proof of Theorem 34.13 is
adapted from their book, and the list of NP-complete problem domains at the begin-
ning of Section 34.5 is drawn from their table of contents. Johnson wrote a series

Notes for Chapter 34 1105

of 23 columns in the Journal of Algorithms between 1981 and 1992 reporting new
developments in NP-completeness. Hopcroft, Motwani, and Ullman [177], Lewis
and Papadimitriou [236], Papadimitriou [270], and Sipser [317] have good treat-
ments of NP-completeness in the context of complexity theory. NP-completeness
and several reductions also appear in books by Aho, Hopcroft, and Ullman [5];
Dasgupta, Papadimitriou, and Vazirani [82]; Johnsonbaugh and Schaefer [193];
and Kleinberg and Tardos [208].

The class P was introduced in 1964 by Cobham [72] and, independently, in 1965
by Edmonds [100], who also introduced the class NP and conjectured that P ¤ NP.
The notion of NP-completeness was proposed in 1971 by Cook [75], who gave
the first NP-completeness proofs for formula satisfiability and 3-CNF satisfiabil-
ity. Levin [234] independently discovered the notion, giving an NP-completeness
proof for a tiling problem. Karp [199] introduced the methodology of reductions
in 1972 and demonstrated the rich variety of NP-complete problems. Karp’s pa-
per included the original NP-completeness proofs of the clique, vertex-cover, and
hamiltonian-cycle problems. Since then, thousands of problems have been proven
to be NP-complete by many researchers. In a talk at a meeting celebrating Karp’s
60th birthday in 1995, Papadimitriou remarked, “about 6000 papers each year have
the term ‘NP-complete’ on their title, abstract, or list of keywords. This is more
than each of the terms ‘compiler,’ ‘database,’ ‘expert,’ ‘neural network,’ or ‘oper-
ating system.’ ”

Recent work in complexity theory has shed light on the complexity of computing
approximate solutions. This work gives a new definition of NP using “probabilis-
tically checkable proofs.” This new definition implies that for problems such as
clique, vertex cover, the traveling-salesman problem with the triangle inequality,
and many others, computing good approximate solutions is NP-hard and hence no
easier than computing optimal solutions. An introduction to this area can be found
in Arora’s thesis [20]; a chapter by Arora and Lund in Hochbaum [172]; a survey
article by Arora [21]; a book edited by Mayr, Prömel, and Steger [246]; and a
survey article by Johnson [191].

35 Approximation Algorithms

Many problems of practical significance are NP-complete, yet they are too impor-
tant to abandon merely because we don’t know how to find an optimal solution in
polynomial time. Even if a problem is NP-complete, there may be hope. We have at
least three ways to get around NP-completeness. First, if the actual inputs are small,
an algorithm with exponential running time may be perfectly satisfactory. Second,
we may be able to isolate important special cases that we can solve in polynomial
time. Third, we might come up with approaches to find near-optimal solutions in
polynomial time (either in the worst case or the expected case). In practice, near-
optimality is often good enough. We call an algorithm that returns near-optimal
solutions an approximation algorithm. This chapter presents polynomial-time ap-
proximation algorithms for several NP-complete problems.

Performance ratios for approximation algorithms

Suppose that we are working on an optimization problem in which each potential
solution has a positive cost, and we wish to find a near-optimal solution. Depending
on the problem, we may define an optimal solution as one with maximum possi-
ble cost or one with minimum possible cost; that is, the problem may be either a
maximization or a minimization problem.

We say that an algorithm for a problem has an approximation ratio of �.n/ if,
for any input of size n, the cost C of the solution produced by the algorithm is
within a factor of �.n/ of the cost C � of an optimal solution:

max

�
C

C � ;
C �

C

�
� �.n/ : (35.1)

If an algorithm achieves an approximation ratio of �.n/, we call it a �.n/-approx-
imation algorithm. The definitions of the approximation ratio and of a �.n/-
approximation algorithm apply to both minimization and maximization problems.
For a maximization problem, 0 < C � C �, and the ratio C �=C gives the factor
by which the cost of an optimal solution is larger than the cost of the approximate

Chapter 35 Approximation Algorithms 1107

solution. Similarly, for a minimization problem, 0 < C � � C , and the ratio C=C �

gives the factor by which the cost of the approximate solution is larger than the
cost of an optimal solution. Because we assume that all solutions have positive
cost, these ratios are always well defined. The approximation ratio of an approx-
imation algorithm is never less than 1, since C=C � � 1 implies C �=C � 1.
Therefore, a 1-approximation algorithm1 produces an optimal solution, and an ap-
proximation algorithm with a large approximation ratio may return a solution that
is much worse than optimal.

For many problems, we have polynomial-time approximation algorithms with
small constant approximation ratios, although for other problems, the best known
polynomial-time approximation algorithms have approximation ratios that grow
as functions of the input size n. An example of such a problem is the set-cover
problem presented in Section 35.3.

Some NP-complete problems allow polynomial-time approximation algorithms
that can achieve increasingly better approximation ratios by using more and more
computation time. That is, we can trade computation time for the quality of the
approximation. An example is the subset-sum problem studied in Section 35.5.
This situation is important enough to deserve a name of its own.

An approximation scheme for an optimization problem is an approximation al-
gorithm that takes as input not only an instance of the problem, but also a value
� > 0 such that for any fixed �, the scheme is a .1C �/-approximation algorithm.
We say that an approximation scheme is a polynomial-time approximation scheme
if for any fixed � > 0, the scheme runs in time polynomial in the size n of its input
instance.

The running time of a polynomial-time approximation scheme can increase very
rapidly as � decreases. For example, the running time of a polynomial-time ap-
proximation scheme might be O.n2=�/. Ideally, if � decreases by a constant factor,
the running time to achieve the desired approximation should not increase by more
than a constant factor (though not necessarily the same constant factor by which �

decreased).
We say that an approximation scheme is a fully polynomial-time approximation

scheme if it is an approximation scheme and its running time is polynomial in
both 1=� and the size n of the input instance. For example, the scheme might have
a running time of O..1=�/2n3/. With such a scheme, any constant-factor decrease
in � comes with a corresponding constant-factor increase in the running time.

1When the approximation ratio is independent of n, we use the terms “approximation ratio of �” and
“�-approximation algorithm,” indicating no dependence on n.

1108 Chapter 35 Approximation Algorithms

Chapter outline

The first four sections of this chapter present some examples of polynomial-time
approximation algorithms for NP-complete problems, and the fifth section presents
a fully polynomial-time approximation scheme. Section 35.1 begins with a study
of the vertex-cover problem, an NP-complete minimization problem that has an
approximation algorithm with an approximation ratio of 2. Section 35.2 presents
an approximation algorithm with an approximation ratio of 2 for the case of the
traveling-salesman problem in which the cost function satisfies the triangle in-
equality. It also shows that without the triangle inequality, for any constant � � 1,
a �-approximation algorithm cannot exist unless P D NP. In Section 35.3, we
show how to use a greedy method as an effective approximation algorithm for the
set-covering problem, obtaining a covering whose cost is at worst a logarithmic
factor larger than the optimal cost. Section 35.4 presents two more approximation
algorithms. First we study the optimization version of 3-CNF satisfiability and
give a simple randomized algorithm that produces a solution with an expected ap-
proximation ratio of 8=7. Then we examine a weighted variant of the vertex-cover
problem and show how to use linear programming to develop a 2-approximation
algorithm. Finally, Section 35.5 presents a fully polynomial-time approximation
scheme for the subset-sum problem.

35.1 The vertex-cover problem

Section 34.5.2 defined the vertex-cover problem and proved it NP-complete. Recall
that a vertex cover of an undirected graph G D .V; E/ is a subset V 0 � V such
that if .u; �/ is an edge of G, then either u 2 V 0 or � 2 V 0 (or both). The size of a
vertex cover is the number of vertices in it.

The vertex-cover problem is to find a vertex cover of minimum size in a given
undirected graph. We call such a vertex cover an optimal vertex cover. This prob-
lem is the optimization version of an NP-complete decision problem.

Even though we don’t know how to find an optimal vertex cover in a graph G

in polynomial time, we can efficiently find a vertex cover that is near-optimal.
The following approximation algorithm takes as input an undirected graph G and
returns a vertex cover whose size is guaranteed to be no more than twice the size
of an optimal vertex cover.

35.1 The vertex-cover problem 1109

b c d

a e f g

(a)

b c d

a e f g

(b)

b c d

a e f g

(c)

b c d

a e f g

(d)

b c d

a e f g

(e)

b c d

a e f g

(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/

is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; �/ be an arbitrary edge of E 0

5 C D C [fu; �g
6 remove from E 0 every edge incident on either u or �

7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; �/ from E 0, adds its

1110 Chapter 35 Approximation Algorithms

endpoints u and � to C , and deletes all edges in E 0 that are covered by either u

or �. Finally, line 7 returns the vertex cover C . The running time of this algorithm
is O.V C E/, using adjacency lists to represent E 0.

Theorem 35.1
APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof We have already shown that APPROX-VERTEX-COVER runs in polyno-
mial time.

The set C of vertices that is returned by APPROX-VERTEX-COVER is a vertex
cover, since the algorithm loops until every edge in G:E has been covered by some
vertex in C .

To see that APPROX-VERTEX-COVER returns a vertex cover that is at most twice
the size of an optimal cover, let A denote the set of edges that line 4 of APPROX-
VERTEX-COVER picked. In order to cover the edges in A, any vertex cover—in
particular, an optimal cover C �—must include at least one endpoint of each edge
in A. No two edges in A share an endpoint, since once an edge is picked in line 4,
all other edges that are incident on its endpoints are deleted from E 0 in line 6. Thus,
no two edges in A are covered by the same vertex from C �, and we have the lower
bound

jC �j � jAj (35.2)

on the size of an optimal vertex cover. Each execution of line 4 picks an edge for
which neither of its endpoints is already in C , yielding an upper bound (an exact
upper bound, in fact) on the size of the vertex cover returned:

jC j D 2 jAj : (35.3)

Combining equations (35.2) and (35.3), we obtain

jC j D 2 jAj
� 2 jC �j ;

thereby proving the theorem.

Let us reflect on this proof. At first, you might wonder how we can possibly
prove that the size of the vertex cover returned by APPROX-VERTEX-COVER is at
most twice the size of an optimal vertex cover, when we do not even know the size
of an optimal vertex cover. Instead of requiring that we know the exact size of an
optimal vertex cover, we rely on a lower bound on the size. As Exercise 35.1-2 asks
you to show, the set A of edges that line 4 of APPROX-VERTEX-COVER selects is
actually a maximal matching in the graph G. (A maximal matching is a matching
that is not a proper subset of any other matching.) The size of a maximal matching

35.2 The traveling-salesman problem 1111

is, as we argued in the proof of Theorem 35.1, a lower bound on the size of an
optimal vertex cover. The algorithm returns a vertex cover whose size is at most
twice the size of the maximal matching A. By relating the size of the solution
returned to the lower bound, we obtain our approximation ratio. We will use this
methodology in later sections as well.

Exercises

35.1-1
Give an example of a graph for which APPROX-VERTEX-COVER always yields a
suboptimal solution.

35.1-2
Prove that the set of edges picked in line 4 of APPROX-VERTEX-COVER forms a
maximal matching in the graph G.

35.1-3 ?

Professor Bündchen proposes the following heuristic to solve the vertex-cover
problem. Repeatedly select a vertex of highest degree, and remove all of its in-
cident edges. Give an example to show that the professor’s heuristic does not have
an approximation ratio of 2. (Hint: Try a bipartite graph with vertices of uniform
degree on the left and vertices of varying degree on the right.)

35.1-4
Give an efficient greedy algorithm that finds an optimal vertex cover for a tree in
linear time.

35.1-5
From the proof of Theorem 34.12, we know that the vertex-cover problem and the
NP-complete clique problem are complementary in the sense that an optimal vertex
cover is the complement of a maximum-size clique in the complement graph. Does
this relationship imply that there is a polynomial-time approximation algorithm
with a constant approximation ratio for the clique problem? Justify your answer.

35.2 The traveling-salesman problem

In the traveling-salesman problem introduced in Section 34.5.4, we are given a
complete undirected graph G D .V; E/ that has a nonnegative integer cost c.u; �/

associated with each edge .u; �/ 2 E, and we must find a hamiltonian cycle (a
tour) of G with minimum cost. As an extension of our notation, let c.A/ denote
the total cost of the edges in the subset A � E:

1112 Chapter 35 Approximation Algorithms

c.A/ D
X

.u;�/2A

c.u; �/ :

In many practical situations, the least costly way to go from a place u to a place w

is to go directly, with no intermediate steps. Put another way, cutting out an inter-
mediate stop never increases the cost. We formalize this notion by saying that the
cost function c satisfies the triangle inequality if, for all vertices u; �; w 2 V ,

c.u; w/ � c.u; �/C c.�; w/ :

The triangle inequality seems as though it should naturally hold, and it is au-
tomatically satisfied in several applications. For example, if the vertices of the
graph are points in the plane and the cost of traveling between two vertices is the
ordinary euclidean distance between them, then the triangle inequality is satisfied.
Furthermore, many cost functions other than euclidean distance satisfy the triangle
inequality.

As Exercise 35.2-2 shows, the traveling-salesman problem is NP-complete even
if we require that the cost function satisfy the triangle inequality. Thus, we should
not expect to find a polynomial-time algorithm for solving this problem exactly.
Instead, we look for good approximation algorithms.

In Section 35.2.1, we examine a 2-approximation algorithm for the traveling-
salesman problem with the triangle inequality. In Section 35.2.2, we show that
without the triangle inequality, a polynomial-time approximation algorithm with a
constant approximation ratio does not exist unless P D NP.

35.2.1 The traveling-salesman problem with the triangle inequality

Applying the methodology of the previous section, we shall first compute a struc-
ture—a minimum spanning tree—whose weight gives a lower bound on the length
of an optimal traveling-salesman tour. We shall then use the minimum spanning
tree to create a tour whose cost is no more than twice that of the minimum spanning
tree’s weight, as long as the cost function satisfies the triangle inequality. The fol-
lowing algorithm implements this approach, calling the minimum-spanning-tree
algorithm MST-PRIM from Section 23.2 as a subroutine. The parameter G is a
complete undirected graph, and the cost function c satisfies the triangle inequality.

APPROX-TSP-TOUR.G; c/

1 select a vertex r 2 G:V to be a “root” vertex
2 compute a minimum spanning tree T for G from root r

using MST-PRIM.G; c; r/

3 let H be a list of vertices, ordered according to when they are first visited
in a preorder tree walk of T

4 return the hamiltonian cycle H

35.2 The traveling-salesman problem 1113

(a)

a d

b f

e

g

c

h

(b)

a d

b f

e

g

c

h

(c)

a d

e

c

h

(d)

a d

b f

e

g

c

h

(e)

b f g

e

h

c

a

b f g

d

Figure 35.2 The operation of APPROX-TSP-TOUR. (a) A complete undirected graph. Vertices lie
on intersections of integer grid lines. For example, f is one unit to the right and two units up from h.
The cost function between two points is the ordinary euclidean distance. (b) A minimum spanning
tree T of the complete graph, as computed by MST-PRIM. Vertex a is the root vertex. Only edges
in the minimum spanning tree are shown. The vertices happen to be labeled in such a way that they
are added to the main tree by MST-PRIM in alphabetical order. (c) A walk of T , starting at a. A
full walk of the tree visits the vertices in the order a; b; c; b; h; b; a; d; e; f; e; g; e; d; a. A preorder
walk of T lists a vertex just when it is first encountered, as indicated by the dot next to each vertex,
yielding the ordering a; b; c; h; d; e; f; g. (d) A tour obtained by visiting the vertices in the order
given by the preorder walk, which is the tour H returned by APPROX-TSP-TOUR. Its total cost
is approximately 19:074. (e) An optimal tour H � for the original complete graph. Its total cost is
approximately 14:715.

Recall from Section 12.1 that a preorder tree walk recursively visits every vertex
in the tree, listing a vertex when it is first encountered, before visiting any of its
children.

Figure 35.2 illustrates the operation of APPROX-TSP-TOUR. Part (a) of the fig-
ure shows a complete undirected graph, and part (b) shows the minimum spanning
tree T grown from root vertex a by MST-PRIM. Part (c) shows how a preorder
walk of T visits the vertices, and part (d) displays the corresponding tour, which is
the tour returned by APPROX-TSP-TOUR. Part (e) displays an optimal tour, which
is about 23% shorter.

1114 Chapter 35 Approximation Algorithms

By Exercise 23.2-2, even with a simple implementation of MST-PRIM, the run-
ning time of APPROX-TSP-TOUR is ‚.V 2/. We now show that if the cost function
for an instance of the traveling-salesman problem satisfies the triangle inequality,
then APPROX-TSP-TOUR returns a tour whose cost is not more than twice the cost
of an optimal tour.

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for the
traveling-salesman problem with the triangle inequality.

Proof We have already seen that APPROX-TSP-TOUR runs in polynomial time.
Let H � denote an optimal tour for the given set of vertices. We obtain a spanning

tree by deleting any edge from a tour, and each edge cost is nonnegative. Therefore,
the weight of the minimum spanning tree T computed in line 2 of APPROX-TSP-
TOUR provides a lower bound on the cost of an optimal tour:

c.T / � c.H �/ : (35.4)

A full walk of T lists the vertices when they are first visited and also whenever
they are returned to after a visit to a subtree. Let us call this full walk W . The full
walk of our example gives the order

a; b; c; b; h; b; a; d; e; f; e; g; e; d; a :

Since the full walk traverses every edge of T exactly twice, we have (extending
our definition of the cost c in the natural manner to handle multisets of edges)

c.W / D 2c.T / : (35.5)

Inequality (35.4) and equation (35.5) imply that

c.W / � 2c.H �/ ; (35.6)

and so the cost of W is within a factor of 2 of the cost of an optimal tour.
Unfortunately, the full walk W is generally not a tour, since it visits some ver-

tices more than once. By the triangle inequality, however, we can delete a visit to
any vertex from W and the cost does not increase. (If we delete a vertex � from W

between visits to u and w, the resulting ordering specifies going directly from u

to w.) By repeatedly applying this operation, we can remove from W all but the
first visit to each vertex. In our example, this leaves the ordering

a; b; c; h; d; e; f; g :

This ordering is the same as that obtained by a preorder walk of the tree T . Let H

be the cycle corresponding to this preorder walk. It is a hamiltonian cycle, since ev-

35.2 The traveling-salesman problem 1115

ery vertex is visited exactly once, and in fact it is the cycle computed by APPROX-
TSP-TOUR. Since H is obtained by deleting vertices from the full walk W , we
have

c.H/ � c.W / : (35.7)

Combining inequalities (35.6) and (35.7) gives c.H/ � 2c.H �/, which completes
the proof.

In spite of the nice approximation ratio provided by Theorem 35.2, APPROX-
TSP-TOUR is usually not the best practical choice for this problem. There are other
approximation algorithms that typically perform much better in practice. (See the
references at the end of this chapter.)

35.2.2 The general traveling-salesman problem

If we drop the assumption that the cost function c satisfies the triangle inequality,
then we cannot find good approximate tours in polynomial time unless P D NP.

Theorem 35.3
If P ¤ NP, then for any constant � � 1, there is no polynomial-time approximation
algorithm with approximation ratio � for the general traveling-salesman problem.

Proof The proof is by contradiction. Suppose to the contrary that for some num-
ber � � 1, there is a polynomial-time approximation algorithm A with approx-
imation ratio �. Without loss of generality, we assume that � is an integer, by
rounding it up if necessary. We shall then show how to use A to solve instances
of the hamiltonian-cycle problem (defined in Section 34.2) in polynomial time.
Since Theorem 34.13 tells us that the hamiltonian-cycle problem is NP-complete,
Theorem 34.4 implies that if we can solve it in polynomial time, then P D NP.

Let G D .V; E/ be an instance of the hamiltonian-cycle problem. We wish to
determine efficiently whether G contains a hamiltonian cycle by making use of
the hypothesized approximation algorithm A. We turn G into an instance of the
traveling-salesman problem as follows. Let G0 D .V; E 0/ be the complete graph
on V ; that is,

E 0 D f.u; �/ W u; � 2 V and u ¤ �g :

Assign an integer cost to each edge in E 0 as follows:

c.u; �/ D
(

1 if .u; �/ 2 E ;

� jV j C 1 otherwise :

We can create representations of G0 and c from a representation of G in time poly-
nomial in jV j and jEj.

1116 Chapter 35 Approximation Algorithms

Now, consider the traveling-salesman problem .G0; c/. If the original graph G

has a hamiltonian cycle H , then the cost function c assigns to each edge of H a
cost of 1, and so .G0; c/ contains a tour of cost jV j. On the other hand, if G does
not contain a hamiltonian cycle, then any tour of G0 must use some edge not in E.
But any tour that uses an edge not in E has a cost of at least

.� jV j C 1/C .jV j � 1/ D � jV j C jV j
> � jV j :

Because edges not in G are so costly, there is a gap of at least � jV j between the cost
of a tour that is a hamiltonian cycle in G (cost jV j) and the cost of any other tour
(cost at least � jV j C jV j). Therefore, the cost of a tour that is not a hamiltonian
cycle in G is at least a factor of � C 1 greater than the cost of a tour that is a
hamiltonian cycle in G.

Now, suppose that we apply the approximation algorithm A to the traveling-
salesman problem .G0; c/. Because A is guaranteed to return a tour of cost no
more than � times the cost of an optimal tour, if G contains a hamiltonian cycle,
then A must return it. If G has no hamiltonian cycle, then A returns a tour of cost
more than � jV j. Therefore, we can use A to solve the hamiltonian-cycle problem
in polynomial time.

The proof of Theorem 35.3 serves as an example of a general technique for
proving that we cannot approximate a problem very well. Suppose that given an
NP-hard problem X , we can produce in polynomial time a minimization prob-
lem Y such that “yes” instances of X correspond to instances of Y with value at
most k (for some k), but that “no” instances of X correspond to instances of Y

with value greater than �k. Then, we have shown that, unless P D NP, there is no
polynomial-time �-approximation algorithm for problem Y .

Exercises

35.2-1
Suppose that a complete undirected graph G D .V; E/ with at least 3 vertices has
a cost function c that satisfies the triangle inequality. Prove that c.u; �/ � 0 for all
u; � 2 V .

35.2-2
Show how in polynomial time we can transform one instance of the traveling-
salesman problem into another instance whose cost function satisfies the triangle
inequality. The two instances must have the same set of optimal tours. Explain
why such a polynomial-time transformation does not contradict Theorem 35.3, as-
suming that P ¤ NP.

35.3 The set-covering problem 1117

35.2-3
Consider the following closest-point heuristic for building an approximate trav-
eling-salesman tour whose cost function satisfies the triangle inequality. Begin
with a trivial cycle consisting of a single arbitrarily chosen vertex. At each step,
identify the vertex u that is not on the cycle but whose distance to any vertex on the
cycle is minimum. Suppose that the vertex on the cycle that is nearest u is vertex �.
Extend the cycle to include u by inserting u just after �. Repeat until all vertices
are on the cycle. Prove that this heuristic returns a tour whose total cost is not more
than twice the cost of an optimal tour.

35.2-4
In the bottleneck traveling-salesman problem, we wish to find the hamiltonian cy-
cle that minimizes the cost of the most costly edge in the cycle. Assuming that the
cost function satisfies the triangle inequality, show that there exists a polynomial-
time approximation algorithm with approximation ratio 3 for this problem. (Hint:
Show recursively that we can visit all the nodes in a bottleneck spanning tree, as
discussed in Problem 23-3, exactly once by taking a full walk of the tree and skip-
ping nodes, but without skipping more than two consecutive intermediate nodes.
Show that the costliest edge in a bottleneck spanning tree has a cost that is at most
the cost of the costliest edge in a bottleneck hamiltonian cycle.)

35.2-5
Suppose that the vertices for an instance of the traveling-salesman problem are
points in the plane and that the cost c.u; �/ is the euclidean distance between
points u and �. Show that an optimal tour never crosses itself.

35.3 The set-covering problem

The set-covering problem is an optimization problem that models many problems
that require resources to be allocated. Its corresponding decision problem general-
izes the NP-complete vertex-cover problem and is therefore also NP-hard. The ap-
proximation algorithm developed to handle the vertex-cover problem doesn’t apply
here, however, and so we need to try other approaches. We shall examine a simple
greedy heuristic with a logarithmic approximation ratio. That is, as the size of the
instance gets larger, the size of the approximate solution may grow, relative to the
size of an optimal solution. Because the logarithm function grows rather slowly,
however, this approximation algorithm may nonetheless give useful results.

1118 Chapter 35 Approximation Algorithms

S3

S6

S4 S5

S2

S1

Figure 35.3 An instance .X; F / of the set-covering problem, where X consists of the 12 black
points and F D fS1; S2; S3; S4; S5; S6g. A minimum-size set cover is C D fS3; S4; S5g, with
size 3. The greedy algorithm produces a cover of size 4 by selecting either the sets S1, S4, S5,
and S3 or the sets S1, S4, S5, and S6, in order.

An instance .X; F / of the set-covering problem consists of a finite set X and
a family F of subsets of X , such that every element of X belongs to at least one
subset in F :

X D
[

S2F

S :

We say that a subset S 2 F covers its elements. The problem is to find a minimum-
size subset C � F whose members cover all of X :

X D
[
S2C

S : (35.8)

We say that any C satisfying equation (35.8) covers X . Figure 35.3 illustrates the
set-covering problem. The size of C is the number of sets it contains, rather than
the number of individual elements in these sets, since every subset C that covers X

must contain all jX j individual elements. In Figure 35.3, the minimum set cover
has size 3.

The set-covering problem abstracts many commonly arising combinatorial prob-
lems. As a simple example, suppose that X represents a set of skills that are needed
to solve a problem and that we have a given set of people available to work on the
problem. We wish to form a committee, containing as few people as possible,
such that for every requisite skill in X , at least one member of the committee has
that skill. In the decision version of the set-covering problem, we ask whether a
covering exists with size at most k, where k is an additional parameter specified
in the problem instance. The decision version of the problem is NP-complete, as
Exercise 35.3-2 asks you to show.

35.3 The set-covering problem 1119

A greedy approximation algorithm

The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.

GREEDY-SET-COVER.X; F /

1 U D X

2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U � S

6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis

We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd

iD1 1=i (see Section A.1) by H.d/. As a boundary
condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time �.n/-approximation algorithm, where

�.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

1120 Chapter 35 Approximation Algorithms

To show that GREEDY-SET-COVER is a �.n/-approximation algorithm, we as-
sign a cost of 1 to each set selected by the algorithm, distribute this cost over
the elements covered for the first time, and then use these costs to derive the de-
sired relationship between the size of an optimal set cover C

� and the size of the
set cover C returned by the algorithm. Let Si denote the i th subset selected by
GREEDY-SET-COVER; the algorithm incurs a cost of 1 when it adds Si to C . We
spread this cost of selecting Si evenly among the elements covered for the first time
by Si . Let cx denote the cost allocated to element x, for each x 2 X . Each element
is assigned a cost only once, when it is covered for the first time. If x is covered
for the first time by Si , then

cx D
1

jSi � .S1 [S2 [� � � [Si�1/j :

Each step of the algorithm assigns 1 unit of cost, and so

jC j D
X
x2X

cx : (35.9)

Each element x 2 X is in at least one set in the optimal cover C
�, and so we haveX

S2C�

X
x2S

cx �
X
x2X

cx : (35.10)

Combining equation (35.9) and inequality (35.10), we have that

jC j �
X

S2C�

X
x2S

cx : (35.11)

The remainder of the proof rests on the following key inequality, which we shall
prove shortly. For any set S belonging to the family F ,X
x2S

cx � H.jS j/ : (35.12)

From inequalities (35.11) and (35.12), it follows that

jC j �
X

S2C�

H.jS j/

� jC�j �H.max fjS j W S 2 F g/ ;

thus proving the theorem.
All that remains is to prove inequality (35.12). Consider any set S 2 F and any

i D 1; 2; : : : ; jC j, and let

ui D jS � .S1 [S2 [� � � [Si /j
be the number of elements in S that remain uncovered after the algorithm has
selected sets S1; S2; : : : ; Si . We define u0 D jS j to be the number of elements

35.3 The set-covering problem 1121

of S , which are all initially uncovered. Let k be the least index such that uk D 0,
so that every element in S is covered by at least one of the sets S1; S2; : : : ; Sk and
some element in S is uncovered by S1 [S2 [� � � [Sk�1. Then, ui�1 � ui , and
ui�1 � ui elements of S are covered for the first time by Si , for i D 1; 2; : : : ; k.
Thus,X
x2S

cx D
kX

iD1

.ui�1 � ui / �
1

jSi � .S1 [S2 [� � � [Si�1/j :

Observe that

jSi � .S1 [S2 [� � � [Si�1/j � jS � .S1 [S2 [� � � [Si�1/j
D ui�1 ;

because the greedy choice of Si guarantees that S cannot cover more new ele-
ments than Si does (otherwise, the algorithm would have chosen S instead of Si).
Consequently, we obtainX
x2S

cx �
kX

iD1

.ui�1 � ui/ �
1

ui�1

:

We now bound this quantity as follows:X
x2S

cx �
kX

iD1

.ui�1 � ui / �
1

ui�1

D
kX

iD1

ui�1X
j Dui C1

1

ui�1

�
kX

iD1

ui�1X
j Dui C1

1

j
(because j � ui�1)

D
kX

iD1

ui�1X
j D1

1

j
�

uiX
j D1

1

j

!

D
kX

iD1

.H.ui�1/ �H.ui //

D H.u0/ �H.uk/ (because the sum telescopes)

D H.u0/ �H.0/

D H.u0/ (because H.0/ D 0)

D H.jS j/ ;

which completes the proof of inequality (35.12).

1122 Chapter 35 Approximation Algorithms

Corollary 35.5
GREEDY-SET-COVER is a polynomial-time .ln jX jC1/-approximation algorithm.

Proof Use inequality (A.14) and Theorem 35.4.

In some applications, max fjS j W S 2 F g is a small constant, and so the solution
returned by GREEDY-SET-COVER is at most a small constant times larger than
optimal. One such application occurs when this heuristic finds an approximate
vertex cover for a graph whose vertices have degree at most 3. In this case, the
solution found by GREEDY-SET-COVER is not more than H.3/ D 11=6 times as
large as an optimal solution, a performance guarantee that is slightly better than
that of APPROX-VERTEX-COVER.

Exercises

35.3-1
Consider each of the following words as a set of letters: farid;dash;drain;

heard;lost;nose;shun;slate;snare;threadg. Show which set cover
GREEDY-SET-COVER produces when we break ties in favor of the word that ap-
pears first in the dictionary.

35.3-2
Show that the decision version of the set-covering problem is NP-complete by
reducing it from the vertex-cover problem.

35.3-3
Show how to implement GREEDY-SET-COVER in such a way that it runs in time

O
�P

S2F
jS j
�

.

35.3-4
Show that the following weaker form of Theorem 35.4 is trivially true:

jC j � jC�jmax fjS j W S 2 F g :

35.3-5
GREEDY-SET-COVER can return a number of different solutions, depending on
how we break ties in line 4. Give a procedure BAD-SET-COVER-INSTANCE.n/

that returns an n-element instance of the set-covering problem for which, depend-
ing on how we break ties in line 4, GREEDY-SET-COVER can return a number of
different solutions that is exponential in n.

35.4 Randomization and linear programming 1123

35.4 Randomization and linear programming

In this section, we study two useful techniques for designing approximation algo-
rithms: randomization and linear programming. We shall give a simple randomized
algorithm for an optimization version of 3-CNF satisfiability, and then we shall use
linear programming to help design an approximation algorithm for a weighted ver-
sion of the vertex-cover problem. This section only scratches the surface of these
two powerful techniques. The chapter notes give references for further study of
these areas.

A randomized approximation algorithm for MAX-3-CNF satisfiability

Just as some randomized algorithms compute exact solutions, some randomized
algorithms compute approximate solutions. We say that a randomized algorithm
for a problem has an approximation ratio of �.n/ if, for any input of size n, the
expected cost C of the solution produced by the randomized algorithm is within a
factor of �.n/ of the cost C � of an optimal solution:

max

�
C

C � ;
C �

C

�
� �.n/ : (35.13)

We call a randomized algorithm that achieves an approximation ratio of �.n/ a
randomized �.n/-approximation algorithm. In other words, a randomized ap-
proximation algorithm is like a deterministic approximation algorithm, except that
the approximation ratio is for an expected cost.

A particular instance of 3-CNF satisfiability, as defined in Section 34.4, may or
may not be satisfiable. In order to be satisfiable, there must exist an assignment of
the variables so that every clause evaluates to 1. If an instance is not satisfiable, we
may want to compute how “close” to satisfiable it is, that is, we may wish to find an
assignment of the variables that satisfies as many clauses as possible. We call the
resulting maximization problem MAX-3-CNF satisfiability. The input to MAX-3-
CNF satisfiability is the same as for 3-CNF satisfiability, and the goal is to return
an assignment of the variables that maximizes the number of clauses evaluating
to 1. We now show that randomly setting each variable to 1 with probability 1=2

and to 0 with probability 1=2 yields a randomized 8=7-approximation algorithm.
According to the definition of 3-CNF satisfiability from Section 34.4, we require
each clause to consist of exactly three distinct literals. We further assume that
no clause contains both a variable and its negation. (Exercise 35.4-1 asks you to
remove this last assumption.)

1124 Chapter 35 Approximation Algorithms

Theorem 35.6
Given an instance of MAX-3-CNF satisfiability with n variables x1; x2; : : : ; xn

and m clauses, the randomized algorithm that independently sets each vari-
able to 1 with probability 1=2 and to 0 with probability 1=2 is a randomized
8=7-approximation algorithm.

Proof Suppose that we have independently set each variable to 1 with probabil-
ity 1=2 and to 0 with probability 1=2. For i D 1; 2; : : : ; m, we define the indicator
random variable

Yi D I fclause i is satisfiedg ;

so that Yi D 1 as long as we have set at least one of the literals in the i th clause
to 1. Since no literal appears more than once in the same clause, and since we have
assumed that no variable and its negation appear in the same clause, the settings of
the three literals in each clause are independent. A clause is not satisfied only if all
three of its literals are set to 0, and so Pr fclause i is not satisfiedg D .1=2/3 D 1=8.
Thus, we have Pr fclause i is satisfiedg D 1 � 1=8 D 7=8, and by Lemma 5.1,
we have E ŒYi � D 7=8. Let Y be the number of satisfied clauses overall, so that
Y D Y1 C Y2 C � � � C Ym. Then, we have

E ŒY � D E

"
mX

iD1

Yi

#

D
mX

iD1

E ŒYi � (by linearity of expectation)

D
mX

iD1

7=8

D 7m=8 :

Clearly, m is an upper bound on the number of satisfied clauses, and hence the
approximation ratio is at most m=.7m=8/ D 8=7.

Approximating weighted vertex cover using linear programming

In the minimum-weight vertex-cover problem, we are given an undirected graph
G D .V; E/ in which each vertex � 2 V has an associated positive weight w.�/.
For any vertex cover V 0 � V , we define the weight of the vertex cover w.V 0/ DP

�2V 0 w.�/. The goal is to find a vertex cover of minimum weight.
We cannot apply the algorithm used for unweighted vertex cover, nor can we use

a random solution; both methods may return solutions that are far from optimal.
We shall, however, compute a lower bound on the weight of the minimum-weight

35.4 Randomization and linear programming 1125

vertex cover, by using a linear program. We shall then “round” this solution and
use it to obtain a vertex cover.

Suppose that we associate a variable x.�/ with each vertex � 2 V , and let us
require that x.�/ equals either 0 or 1 for each � 2 V . We put � into the vertex cover
if and only if x.�/ D 1. Then, we can write the constraint that for any edge .u; �/,
at least one of u and � must be in the vertex cover as x.u/C x.�/ � 1. This view
gives rise to the following 0-1 integer program for finding a minimum-weight
vertex cover:

minimize
X
�2V

w.�/ x.�/ (35.14)

subject to

x.u/C x.�/ � 1 for each .u; �/ 2 E (35.15)

x.�/ 2 f0; 1g for each � 2 V : (35.16)

In the special case in which all the weights w.�/ are equal to 1, this formu-
lation is the optimization version of the NP-hard vertex-cover problem. Sup-
pose, however, that we remove the constraint that x.�/ 2 f0; 1g and replace it
by 0 � x.�/ � 1. We then obtain the following linear program, which is known as
the linear-programming relaxation:

minimize
X
�2V

w.�/ x.�/ (35.17)

subject to

x.u/C x.�/ � 1 for each .u; �/ 2 E (35.18)

x.�/ � 1 for each � 2 V (35.19)

x.�/ � 0 for each � 2 V : (35.20)

Any feasible solution to the 0-1 integer program in lines (35.14)–(35.16) is also
a feasible solution to the linear program in lines (35.17)–(35.20). Therefore, the
value of an optimal solution to the linear program gives a lower bound on the value
of an optimal solution to the 0-1 integer program, and hence a lower bound on the
optimal weight in the minimum-weight vertex-cover problem.

The following procedure uses the solution to the linear-programming relaxation
to construct an approximate solution to the minimum-weight vertex-cover problem:

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each � 2 V

4 if Nx.�/ � 1=2

5 C D C [f�g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex � an associated value Nx.�/, where 0 � Nx.�/ � 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.�/ � 1=2, we add � to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C � be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´� be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´� must be a lower bound on w.C �/, that is,

´� � w.C �/ : (35.21)

Next, we claim that by rounding the fractional values of the variables Nx.�/, we
produce a set C that is a vertex cover and satisfies w.C / � 2´�. To see that C is
a vertex cover, consider any edge .u; �/ 2 E. By constraint (35.18), we know that
x.u/C x.�/ � 1, which implies that at least one of Nx.u/ and Nx.�/ is at least 1=2.
Therefore, at least one of u and � is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

35.4 Randomization and linear programming 1127

´� D
X
�2V

w.�/ Nx.�/

�
X

�2V W Nx.�/�1=2

w.�/ Nx.�/

�
X

�2V W Nx.�/�1=2

w.�/ � 1
2

D
X
�2C

w.�/ � 1
2

D 1

2

X
�2C

w.�/

D 1

2
w.C / : (35.22)

Combining inequalities (35.21) and (35.22) gives

w.C / � 2´� � 2w.C �/ ;

and hence APPROX-MIN-WEIGHT-VC is a 2-approximation algorithm.

Exercises

35.4-1
Show that even if we allow a clause to contain both a variable and its negation, ran-
domly setting each variable to 1 with probability 1=2 and to 0 with probability 1=2

still yields a randomized 8=7-approximation algorithm.

35.4-2
The MAX-CNF satisfiability problem is like the MAX-3-CNF satisfiability prob-
lem, except that it does not restrict each clause to have exactly 3 literals. Give a
randomized 2-approximation algorithm for the MAX-CNF satisfiability problem.

35.4-3
In the MAX-CUT problem, we are given an unweighted undirected graph G D
.V; E/. We define a cut .S; V � S/ as in Chapter 23 and the weight of a cut as the
number of edges crossing the cut. The goal is to find a cut of maximum weight.
Suppose that for each vertex �, we randomly and independently place � in S with
probability 1=2 and in V � S with probability 1=2. Show that this algorithm is a
randomized 2-approximation algorithm.

1128 Chapter 35 Approximation Algorithms

35.4-4
Show that the constraints in line (35.19) are redundant in the sense that if we re-
move them from the linear program in lines (35.17)–(35.20), any optimal solution
to the resulting linear program must satisfy x.�/ � 1 for each � 2 V .

35.5 The subset-sum problem

Recall from Section 34.5.5 that an instance of the subset-sum problem is a
pair .S; t/, where S is a set fx1; x2; : : : ; xng of positive integers and t is a posi-
tive integer. This decision problem asks whether there exists a subset of S that
adds up exactly to the target value t . As we saw in Section 34.5.5, this problem is
NP-complete.

The optimization problem associated with this decision problem arises in prac-
tical applications. In the optimization problem, we wish to find a subset of
fx1; x2; : : : ; xng whose sum is as large as possible but not larger than t . For ex-
ample, we may have a truck that can carry no more than t pounds, and n different
boxes to ship, the i th of which weighs xi pounds. We wish to fill the truck with as
heavy a load as possible without exceeding the given weight limit.

In this section, we present an exponential-time algorithm that computes the op-
timal value for this optimization problem, and then we show how to modify the
algorithm so that it becomes a fully polynomial-time approximation scheme. (Re-
call that a fully polynomial-time approximation scheme has a running time that is
polynomial in 1=� as well as in the size of the input.)

An exponential-time exact algorithm

Suppose that we computed, for each subset S 0 of S , the sum of the elements
in S 0, and then we selected, among the subsets whose sum does not exceed t ,
the one whose sum was closest to t . Clearly this algorithm would return the op-
timal solution, but it could take exponential time. To implement this algorithm,
we could use an iterative procedure that, in iteration i , computes the sums of
all subsets of fx1; x2; : : : ; xig, using as a starting point the sums of all subsets
of fx1; x2; : : : ; xi�1g. In doing so, we would realize that once a particular subset S 0

had a sum exceeding t , there would be no reason to maintain it, since no super-
set of S 0 could be the optimal solution. We now give an implementation of this
strategy.

The procedure EXACT-SUBSET-SUM takes an input set S D fx1; x2; : : : ; xng
and a target value t ; we’ll see its pseudocode in a moment. This procedure it-

35.5 The subset-sum problem 1129

eratively computes Li , the list of sums of all subsets of fx1; : : : ; xig that do not
exceed t , and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then we let
LC x denote the list of integers derived from L by increasing each element of L

by x. For example, if L D h1; 2; 3; 5; 9i, then LC 2 D h3; 4; 5; 7; 11i. We also use
this notation for sets, so that

S C x D fs C x W s 2 Sg :

We also use an auxiliary procedure MERGE-LISTS.L; L0/, which returns the
sorted list that is the merge of its two sorted input lists L and L0 with duplicate
values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1),
MERGE-LISTS runs in time O.jLj C jL0j/. We omit the pseudocode for MERGE-
LISTS.

EXACT-SUBSET-SUM.S; t/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n

4 Li D MERGE-LISTS.Li�1; Li�1 C xi /

5 remove from Li every element that is greater than t

6 return the largest element in Ln

To see how EXACT-SUBSET-SUM works, let Pi denote the set of all values
obtained by selecting a (possibly empty) subset of fx1; x2; : : : ; xig and summing
its members. For example, if S D f1; 4; 5g, then

P1 D f0; 1g ;

P2 D f0; 1; 4; 5g ;

P3 D f0; 1; 4; 5; 6; 9; 10g :

Given the identity

Pi D Pi�1 [.Pi�1 C xi/ ; (35.23)

we can prove by induction on i (see Exercise 35.5-1) that the list Li is a sorted list
containing every element of Pi whose value is not more than t . Since the length
of Li can be as much as 2i , EXACT-SUBSET-SUM is an exponential-time algorithm
in general, although it is a polynomial-time algorithm in the special cases in which t

is polynomial in jS j or all the numbers in S are bounded by a polynomial in jS j.

A fully polynomial-time approximation scheme

We can derive a fully polynomial-time approximation scheme for the subset-sum
problem by “trimming” each list Li after it is created. The idea behind trimming is

1130 Chapter 35 Approximation Algorithms

that if two values in L are close to each other, then since we want just an approxi-
mate solution, we do not need to maintain both of them explicitly. More precisely,
we use a trimming parameter ı such that 0 < ı < 1. When we trim a list L by ı,
we remove as many elements from L as possible, in such a way that if L0 is the
result of trimming L, then for every element y that was removed from L, there is
an element ´ still in L0 that approximates y, that is,

y

1C ı
� ´ � y : (35.24)

We can think of such a ´ as “representing” y in the new list L0. Each removed
element y is represented by a remaining element ´ satisfying inequality (35.24).
For example, if ı D 0:1 and

L D h10; 11; 12; 15; 20; 21; 22; 23; 24; 29i ;

then we can trim L to obtain

L0 D h10; 12; 15; 20; 23; 29i ;

where the deleted value 11 is represented by 10, the deleted values 21 and 22

are represented by 20, and the deleted value 24 is represented by 23. Because
every element of the trimmed version of the list is also an element of the original
version of the list, trimming can dramatically decrease the number of elements kept
while keeping a close (and slightly smaller) representative value in the list for each
deleted element.

The following procedure trims list L D hy1; y2; : : : ; ymi in time ‚.m/, given L

and ı, and assuming that L is sorted into monotonically increasing order. The
output of the procedure is a trimmed, sorted list.

TRIM.L; ı/

1 let m be the length of L

2 L0 D hy1i
3 last D y1

4 for i D 2 to m

5 if yi > last � .1C ı/ // yi � last because L is sorted
6 append yi onto the end of L0

7 last D yi

8 return L0

The procedure scans the elements of L in monotonically increasing order. A num-
ber is appended onto the returned list L0 only if it is the first element of L or if it
cannot be represented by the most recent number placed into L0.

Given the procedure TRIM, we can construct our approximation scheme as fol-
lows. This procedure takes as input a set S D fx1; x2; : : : ; xng of n integers (in
arbitrary order), a target integer t , and an “approximation parameter” �, where

35.5 The subset-sum problem 1131

0 < � < 1 : (35.25)

It returns a value ´ whose value is within a 1C � factor of the optimal solution.

APPROX-SUBSET-SUM.S; t; �/

1 n D jS j
2 L0 D h0i
3 for i D 1 to n

4 Li D MERGE-LISTS.Li�1; Li�1 C xi /

5 Li D TRIM.Li ; �=2n/

6 remove from Li every element that is greater than t

7 let ´� be the largest value in Ln

8 return ´�

Line 2 initializes the list L0 to be the list containing just the element 0. The for
loop in lines 3–6 computes Li as a sorted list containing a suitably trimmed ver-
sion of the set Pi , with all elements larger than t removed. Since we create Li

from Li�1, we must ensure that the repeated trimming doesn’t introduce too much
compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM

returns a correct approximation if one exists.
As an example, suppose we have the instance

S D h104; 102; 201; 101i
with t D 308 and � D 0:40. The trimming parameter ı is �=8 D 0:05. APPROX-
SUBSET-SUM computes the following values on the indicated lines:

line 2: L0 D h0i ;

line 4: L1 D h0; 104i ;

line 5: L1 D h0; 104i ;

line 6: L1 D h0; 104i ;

line 4: L2 D h0; 102; 104; 206i ;

line 5: L2 D h0; 102; 206i ;

line 6: L2 D h0; 102; 206i ;

line 4: L3 D h0; 102; 201; 206; 303; 407i ;

line 5: L3 D h0; 102; 201; 303; 407i ;

line 6: L3 D h0; 102; 201; 303i ;

line 4: L4 D h0; 101; 102; 201; 203; 302; 303; 404i ;

line 5: L4 D h0; 101; 201; 302; 404i ;

line 6: L4 D h0; 101; 201; 302i :

1132 Chapter 35 Approximation Algorithms

The algorithm returns ´� D 302 as its answer, which is well within � D 40% of
the optimal answer 307 D 104C 102C 101; in fact, it is within 2%.

Theorem 35.8
APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme for the
subset-sum problem.

Proof The operations of trimming Li in line 5 and removing from Li every ele-
ment that is greater than t maintain the property that every element of Li is also a
member of Pi . Therefore, the value ´� returned in line 8 is indeed the sum of some
subset of S . Let y� 2 Pn denote an optimal solution to the subset-sum problem.
Then, from line 6, we know that ´� � y�. By inequality (35.1), we need to show
that y�=´� � 1C �. We must also show that the running time of this algorithm is
polynomial in both 1=� and the size of the input.

As Exercise 35.5-2 asks you to show, for every element y in Pi that is at most t ,
there exists an element ´ 2 Li such that

y

.1C �=2n/i
� ´ � y : (35.26)

Inequality (35.26) must hold for y� 2 Pn, and therefore there exists an element
´ 2 Ln such that

y�

.1C �=2n/n
� ´ � y� ;

and thus

y�

´
�
�
1C �

2n

�n

: (35.27)

Since there exists an element ´ 2 Ln fulfilling inequality (35.27), the inequality
must hold for ´�, which is the largest value in Ln; that is,

y�

´� �
�
1C �

2n

�n

: (35.28)

Now, we show that y�=´� � 1C �. We do so by showing that .1C �=2n/
n �

1C �. By equation (3.14), we have limn!1.1C �=2n/n D e�=2. Exercise 35.5-3
asks you to show that

d

dn

�
1C �

2n

�n

> 0 : (35.29)

Therefore, the function .1C �=2n/
n increases with n as it approaches its limit

of e�=2, and we have

35.5 The subset-sum problem 1133

�
1C �

2n

�n

� e�=2

� 1C �=2C .�=2/2 (by inequality (3.13))

� 1C � (by inequality (35.25)) . (35.30)

Combining inequalities (35.28) and (35.30) completes the analysis of the approxi-
mation ratio.

To show that APPROX-SUBSET-SUM is a fully polynomial-time approximation
scheme, we derive a bound on the length of Li . After trimming, successive ele-
ments ´ and ´0 of Li must have the relationship ´0=´ > 1C�=2n. That is, they must
differ by a factor of at least 1 C �=2n. Each list, therefore, contains the value 0,
possibly the value 1, and up to

log1C�=2n t

˘
additional values. The number of

elements in each list Li is at most

log1C�=2n t C 2 D ln t

ln.1C �=2n/
C 2

� 2n.1C �=2n/ ln t

�
C 2 (by inequality (3.17))

<
3n ln t

�
C 2 (by inequality (35.25)) .

This bound is polynomial in the size of the input—which is the number of bits lg t

needed to represent t plus the number of bits needed to represent the set S , which is
in turn polynomial in n—and in 1=�. Since the running time of APPROX-SUBSET-
SUM is polynomial in the lengths of the Li , we conclude that APPROX-SUBSET-
SUM is a fully polynomial-time approximation scheme.

Exercises

35.5-1
Prove equation (35.23). Then show that after executing line 5 of EXACT-SUBSET-
SUM, Li is a sorted list containing every element of Pi whose value is not more
than t .

35.5-2
Using induction on i , prove inequality (35.26).

35.5-3
Prove inequality (35.29).

1134 Chapter 35 Approximation Algorithms

35.5-4
How would you modify the approximation scheme presented in this section to find
a good approximation to the smallest value not less than t that is a sum of some
subset of the given input list?

35.5-5
Modify the APPROX-SUBSET-SUM procedure to also return the subset of S that
sums to the value ´�.

Problems

35-1 Bin packing
Suppose that we are given a set of n objects, where the size si of the i th object
satisfies 0 < si < 1. We wish to pack all the objects into the minimum number of
unit-size bins. Each bin can hold any subset of the objects whose total size does
not exceed 1.

a. Prove that the problem of determining the minimum number of bins required is
NP-hard. (Hint: Reduce from the subset-sum problem.)

The first-fit heuristic takes each object in turn and places it into the first bin that
can accommodate it. Let S DPn

iD1 si .

b. Argue that the optimal number of bins required is at least dSe.

c. Argue that the first-fit heuristic leaves at most one bin less than half full.

d. Prove that the number of bins used by the first-fit heuristic is never more
than d2Se.

e. Prove an approximation ratio of 2 for the first-fit heuristic.

f. Give an efficient implementation of the first-fit heuristic, and analyze its running
time.

35-2 Approximating the size of a maximum clique
Let G D .V; E/ be an undirected graph. For any k � 1, define G.k/ to be the undi-
rected graph .V .k/; E.k//, where V .k/ is the set of all ordered k-tuples of vertices
from V and E.k/ is defined so that .�1; �2; : : : ; �k/ is adjacent to .w1; w2; : : : ; wk/

if and only if for i D 1; 2; : : : ; k, either vertex �i is adjacent to wi in G, or else
�i D wi .

Problems for Chapter 35 1135

a. Prove that the size of the maximum clique in G.k/ is equal to the kth power of
the size of the maximum clique in G.

b. Argue that if there is an approximation algorithm that has a constant approxi-
mation ratio for finding a maximum-size clique, then there is a polynomial-time
approximation scheme for the problem.

35-3 Weighted set-covering problem
Suppose that we generalize the set-covering problem so that each set Si in the
family F has an associated weight wi and the weight of a cover C is

P
Si 2C

wi .
We wish to determine a minimum-weight cover. (Section 35.3 handles the case in
which wi D 1 for all i .)

Show how to generalize the greedy set-covering heuristic in a natural manner
to provide an approximate solution for any instance of the weighted set-covering
problem. Show that your heuristic has an approximation ratio of H.d/, where d is
the maximum size of any set Si .

35-4 Maximum matching
Recall that for an undirected graph G, a matching is a set of edges such that no
two edges in the set are incident on the same vertex. In Section 26.3, we saw how
to find a maximum matching in a bipartite graph. In this problem, we will look at
matchings in undirected graphs in general (i.e., the graphs are not required to be
bipartite).

a. A maximal matching is a matching that is not a proper subset of any other
matching. Show that a maximal matching need not be a maximum matching by
exhibiting an undirected graph G and a maximal matching M in G that is not a
maximum matching. (Hint: You can find such a graph with only four vertices.)

b. Consider an undirected graph G D .V; E/. Give an O.E/-time greedy algo-
rithm to find a maximal matching in G.

In this problem, we shall concentrate on a polynomial-time approximation algo-
rithm for maximum matching. Whereas the fastest known algorithm for maximum
matching takes superlinear (but polynomial) time, the approximation algorithm
here will run in linear time. You will show that the linear-time greedy algorithm
for maximal matching in part (b) is a 2-approximation algorithm for maximum
matching.

c. Show that the size of a maximum matching in G is a lower bound on the size
of any vertex cover for G.

1136 Chapter 35 Approximation Algorithms

d. Consider a maximal matching M in G D .V; E/. Let

T D f� 2 V W some edge in M is incident on �g :

What can you say about the subgraph of G induced by the vertices of G that
are not in T ?

e. Conclude from part (d) that 2 jM j is the size of a vertex cover for G.

f. Using parts (c) and (e), prove that the greedy algorithm in part (b) is a 2-approx-
imation algorithm for maximum matching.

35-5 Parallel machine scheduling
In the parallel-machine-scheduling problem, we are given n jobs, J1; J2; : : : ; Jn,
where each job Jk has an associated nonnegative processing time of pk. We are
also given m identical machines, M1; M2; : : : ; Mm. Any job can run on any ma-
chine. A schedule specifies, for each job Jk, the machine on which it runs and
the time period during which it runs. Each job Jk must run on some machine Mi

for pk consecutive time units, and during that time period no other job may run
on Mi . Let Ck denote the completion time of job Jk, that is, the time at which
job Jk completes processing. Given a schedule, we define Cmax D max1�j �n Cj to
be the makespan of the schedule. The goal is to find a schedule whose makespan
is minimum.

For example, suppose that we have two machines M1 and M2 and that we have
four jobs J1; J2; J3; J4, with p1 D 2, p2 D 12, p3 D 4, and p4 D 5. Then one
possible schedule runs, on machine M1, job J1 followed by job J2, and on ma-
chine M2, it runs job J4 followed by job J3. For this schedule, C1 D 2, C2 D 14,
C3 D 9, C4 D 5, and Cmax D 14. An optimal schedule runs J2 on machine M1, and
it runs jobs J1, J3, and J4 on machine M2. For this schedule, C1 D 2, C2 D 12,
C3 D 6, C4 D 11, and Cmax D 12.

Given a parallel-machine-scheduling problem, we let C �
max denote the makespan

of an optimal schedule.

a. Show that the optimal makespan is at least as large as the greatest processing
time, that is,

C �
max � max

1�k�n
pk :

b. Show that the optimal makespan is at least as large as the average machine load,
that is,

C �
max �

1

m

X
1�k�n

pk :

Problems for Chapter 35 1137

Suppose that we use the following greedy algorithm for parallel machine schedul-
ing: whenever a machine is idle, schedule any job that has not yet been scheduled.

c. Write pseudocode to implement this greedy algorithm. What is the running
time of your algorithm?

d. For the schedule returned by the greedy algorithm, show that

Cmax �
1

m

X
1�k�n

pk C max
1�k�n

pk :

Conclude that this algorithm is a polynomial-time 2-approximation algorithm.

35-6 Approximating a maximum spanning tree
Let G D .V; E/ be an undirected graph with distinct edge weights w.u; �/ on each
edge .u; �/ 2 E. For each vertex � 2 V , let max.�/ D max.u;�/2E fw.u; �/g be
the maximum-weight edge incident on that vertex. Let SG D fmax.�/ W � 2 V g
be the set of maximum-weight edges incident on each vertex, and let TG be the
maximum-weight spanning tree of G, that is, the spanning tree of maximum total
weight. For any subset of edges E 0 � E, define w.E 0/ DP.u;�/2E 0 w.u; �/.

a. Give an example of a graph with at least 4 vertices for which SG D TG .

b. Give an example of a graph with at least 4 vertices for which SG ¤ TG .

c. Prove that SG � TG for any graph G.

d. Prove that w.TG/ � w.SG/=2 for any graph G.

e. Give an O.V CE/-time algorithm to compute a 2-approximation to the maxi-
mum spanning tree.

35-7 An approximation algorithm for the 0-1 knapsack problem
Recall the knapsack problem from Section 16.2. There are n items, where the i th
item is worth �i dollars and weighs wi pounds. We are also given a knapsack
that can hold at most W pounds. Here, we add the further assumptions that each
weight wi is at most W and that the items are indexed in monotonically decreasing
order of their values: �1 � �2 � � � � � �n.

In the 0-1 knapsack problem, we wish to find a subset of the items whose total
weight is at most W and whose total value is maximum. The fractional knapsack
problem is like the 0-1 knapsack problem, except that we are allowed to take a
fraction of each item, rather than being restricted to taking either all or none of

1138 Chapter 35 Approximation Algorithms

each item. If we take a fraction xi of item i , where 0 � xi � 1, we contribute
xiwi to the weight of the knapsack and receive value xi�i . Our goal is to develop
a polynomial-time 2-approximation algorithm for the 0-1 knapsack problem.

In order to design a polynomial-time algorithm, we consider restricted instances
of the 0-1 knapsack problem. Given an instance I of the knapsack problem, we
form restricted instances Ij , for j D 1; 2; : : : ; n, by removing items 1; 2; : : : ; j �1

and requiring the solution to include item j (all of item j in both the fractional
and 0-1 knapsack problems). No items are removed in instance I1. For instance Ij ,
let Pj denote an optimal solution to the 0-1 problem and Qj denote an optimal
solution to the fractional problem.

a. Argue that an optimal solution to instance I of the 0-1 knapsack problem is one
of fP1; P2; : : : ; Png.

b. Prove that we can find an optimal solution Qj to the fractional problem for in-
stance Ij by including item j and then using the greedy algorithm in which
at each step, we take as much as possible of the unchosen item in the set
fj C 1; j C 2; : : : ; ng with maximum value per pound �i=wi .

c. Prove that we can always construct an optimal solution Qj to the fractional
problem for instance Ij that includes at most one item fractionally. That is, for
all items except possibly one, we either include all of the item or none of the
item in the knapsack.

d. Given an optimal solution Qj to the fractional problem for instance Ij , form
solution Rj from Qj by deleting any fractional items from Qj . Let �.S/ denote
the total value of items taken in a solution S . Prove that �.Rj / � �.Qj /=2 �
�.Pj /=2.

e. Give a polynomial-time algorithm that returns a maximum-value solution from
the set fR1; R2; : : : ; Rng, and prove that your algorithm is a polynomial-time
2-approximation algorithm for the 0-1 knapsack problem.

Chapter notes

Although methods that do not necessarily compute exact solutions have been
known for thousands of years (for example, methods to approximate the value
of �), the notion of an approximation algorithm is much more recent. Hochbaum
[172] credits Garey, Graham, and Ullman [128] and Johnson [190] with formal-
izing the concept of a polynomial-time approximation algorithm. The first such
algorithm is often credited to Graham [149].

Notes for Chapter 35 1139

Since this early work, thousands of approximation algorithms have been de-
signed for a wide range of problems, and there is a wealth of literature on this
field. Recent texts by Ausiello et al. [26], Hochbaum [172], and Vazirani [345]
deal exclusively with approximation algorithms, as do surveys by Shmoys [315]
and Klein and Young [207]. Several other texts, such as Garey and Johnson [129]
and Papadimitriou and Steiglitz [271], have significant coverage of approximation
algorithms as well. Lawler, Lenstra, Rinnooy Kan, and Shmoys [225] provide an
extensive treatment of approximation algorithms for the traveling-salesman prob-
lem.

Papadimitriou and Steiglitz attribute the algorithm APPROX-VERTEX-COVER

to F. Gavril and M. Yannakakis. The vertex-cover problem has been studied exten-
sively (Hochbaum [172] lists 16 different approximation algorithms for this prob-
lem), but all the approximation ratios are at least 2� o.1/.

The algorithm APPROX-TSP-TOUR appears in a paper by Rosenkrantz, Stearns,
and Lewis [298]. Christofides improved on this algorithm and gave a 3=2-approx-
imation algorithm for the traveling-salesman problem with the triangle inequality.
Arora [22] and Mitchell [257] have shown that if the points are in the euclidean
plane, there is a polynomial-time approximation scheme. Theorem 35.3 is due to
Sahni and Gonzalez [301].

The analysis of the greedy heuristic for the set-covering problem is modeled
after the proof published by Chvátal [68] of a more general result; the basic result
as presented here is due to Johnson [190] and Lovász [238].

The algorithm APPROX-SUBSET-SUM and its analysis are loosely modeled after
related approximation algorithms for the knapsack and subset-sum problems by
Ibarra and Kim [187].

Problem 35-7 is a combinatorial version of a more general result on approximat-
ing knapsack-type integer programs by Bienstock and McClosky [45].

The randomized algorithm for MAX-3-CNF satisfiability is implicit in the work
of Johnson [190]. The weighted vertex-cover algorithm is by Hochbaum [171].
Section 35.4 only touches on the power of randomization and linear program-
ming in the design of approximation algorithms. A combination of these two ideas
yields a technique called “randomized rounding,” which formulates a problem as
an integer linear program, solves the linear-programming relaxation, and interprets
the variables in the solution as probabilities. These probabilities then help guide
the solution of the original problem. This technique was first used by Raghavan
and Thompson [290], and it has had many subsequent uses. (See Motwani, Naor,
and Raghavan [261] for a survey.) Several other notable recent ideas in the field
of approximation algorithms include the primal-dual method (see Goemans and
Williamson [135] for a survey), finding sparse cuts for use in divide-and-conquer
algorithms [229], and the use of semidefinite programming [134].

1140 Chapter 35 Approximation Algorithms

As mentioned in the chapter notes for Chapter 34, recent results in probabilisti-
cally checkable proofs have led to lower bounds on the approximability of many
problems, including several in this chapter. In addition to the references there,
the chapter by Arora and Lund [23] contains a good description of the relation-
ship between probabilistically checkable proofs and the hardness of approximating
various problems.

VIII Appendix: Mathematical Background

Introduction

When we analyze algorithms, we often need to draw upon a body of mathematical
tools. Some of these tools are as simple as high-school algebra, but others may be
new to you. In Part I, we saw how to manipulate asymptotic notations and solve
recurrences. This appendix comprises a compendium of several other concepts and
methods we use to analyze algorithms. As noted in the introduction to Part I, you
may have seen much of the material in this appendix before having read this book
(although the specific notational conventions we use might occasionally differ from
those you have seen elsewhere). Hence, you should treat this appendix as reference
material. As in the rest of this book, however, we have included exercises and
problems, in order for you to improve your skills in these areas.

Appendix A offers methods for evaluating and bounding summations, which
occur frequently in the analysis of algorithms. Many of the formulas here appear
in any calculus text, but you will find it convenient to have these methods compiled
in one place.

Appendix B contains basic definitions and notations for sets, relations, functions,
graphs, and trees. It also gives some basic properties of these mathematical objects.

Appendix C begins with elementary principles of counting: permutations, com-
binations, and the like. The remainder contains definitions and properties of basic
probability. Most of the algorithms in this book require no probability for their
analysis, and thus you can easily omit the latter sections of the chapter on a first
reading, even without skimming them. Later, when you encounter a probabilistic
analysis that you want to understand better, you will find Appendix C well orga-
nized for reference purposes.

1144 Part VIII Appendix: Mathematical Background

Appendix D defines matrices, their operations, and some of their basic prop-
erties. You have probably seen most of this material already if you have taken a
course in linear algebra, but you might find it helpful to have one place to look for
our notation and definitions.

A Summations

When an algorithm contains an iterative control construct such as a while or for
loop, we can express its running time as the sum of the times spent on each exe-
cution of the body of the loop. For example, we found in Section 2.2 that the j th
iteration of insertion sort took time proportional to j in the worst case. By adding
up the time spent on each iteration, we obtained the summation (or series)

nX
j D2

j :

When we evaluated this summation, we attained a bound of ‚.n2/ on the worst-
case running time of the algorithm. This example illustrates why you should know
how to manipulate and bound summations.

Section A.1 lists several basic formulas involving summations. Section A.2 of-
fers useful techniques for bounding summations. We present the formulas in Sec-
tion A.1 without proof, though proofs for some of them appear in Section A.2 to
illustrate the methods of that section. You can find most of the other proofs in any
calculus text.

A.1 Summation formulas and properties

Given a sequence a1; a2; : : : ; an of numbers, where n is a nonnegative integer, we
can write the finite sum a1 C a2 C � � � C an as

nX
kD1

ak :

If n D 0, the value of the summation is defined to be 0. The value of a finite series
is always well defined, and we can add its terms in any order.

Given an infinite sequence a1; a2; : : : of numbers, we can write the infinite sum
a1 C a2 C � � � as

1146 Appendix A Summations

1X
kD1

ak ;

which we interpret to mean

lim
n!1

nX
kD1

ak :

If the limit does not exist, the series diverges; otherwise, it converges. The terms
of a convergent series cannot always be added in any order. We can, however,
rearrange the terms of an absolutely convergent series, that is, a series

P1
kD1 ak

for which the series
P1

kD1 jakj also converges.

Linearity

For any real number c and any finite sequences a1; a2; : : : ; an and b1; b2; : : : ; bn,
nX

kD1

.cak C bk/ D c

nX
kD1

ak C
nX

kD1

bk :

The linearity property also applies to infinite convergent series.
We can exploit the linearity property to manipulate summations incorporating

asymptotic notation. For example,

nX
kD1

‚.f .k// D ‚

nX

kD1

f .k/

!
:

In this equation, the ‚-notation on the left-hand side applies to the variable k, but
on the right-hand side, it applies to n. We can also apply such manipulations to
infinite convergent series.

Arithmetic series

The summation
nX

kD1

k D 1C 2C � � � C n ;

is an arithmetic series and has the value
nX

kD1

k D 1

2
n.nC 1/ (A.1)

D ‚.n2/ : (A.2)

A.1 Summation formulas and properties 1147

Sums of squares and cubes

We have the following summations of squares and cubes:
nX

kD0

k2 D n.nC 1/.2nC 1/

6
; (A.3)

nX
kD0

k3 D n2.nC 1/2

4
: (A.4)

Geometric series

For real x ¤ 1, the summation
nX

kD0

xk D 1C x C x2 C � � � C xn

is a geometric or exponential series and has the value
nX

kD0

xk D xnC1 � 1

x � 1
: (A.5)

When the summation is infinite and jxj < 1, we have the infinite decreasing geo-
metric series
1X

kD0

xk D 1

1� x
: (A.6)

Harmonic series

For positive integers n, the nth harmonic number is

Hn D 1C 1

2
C 1

3
C 1

4
C � � � C 1

n

D
nX

kD1

1

k

D ln nCO.1/ : (A.7)

(We shall prove a related bound in Section A.2.)

Integrating and differentiating series

By integrating or differentiating the formulas above, additional formulas arise. For
example, by differentiating both sides of the infinite geometric series (A.6) and
multiplying by x, we get

1148 Appendix A Summations

1X
kD0

kxk D x

.1 � x/2
(A.8)

for jxj < 1.

Telescoping series

For any sequence a0; a1; : : : ; an,
nX

kD1

.ak � ak�1/ D an � a0 ; (A.9)

since each of the terms a1; a2; : : : ; an�1 is added in exactly once and subtracted out
exactly once. We say that the sum telescopes. Similarly,
n�1X
kD0

.ak � akC1/ D a0 � an :

As an example of a telescoping sum, consider the series
n�1X
kD1

1

k.k C 1/
:

Since we can rewrite each term as
1

k.k C 1/
D 1

k
� 1

k C 1
;

we get
n�1X
kD1

1

k.k C 1/
D

n�1X
kD1

�
1

k
� 1

k C 1

�
D 1� 1

n
:

Products

We can write the finite product a1a2 � � � an as
nY

kD1

ak :

If n D 0, the value of the product is defined to be 1. We can convert a formula with
a product to a formula with a summation by using the identity

lg

nY

kD1

ak

!
D

nX
kD1

lg ak :

A.2 Bounding summations 1149

Exercises

A.1-1
Find a simple formula for

Pn

kD1.2k � 1/.

A.1-2 ?

Show that
Pn

kD1 1=.2k � 1/ D ln.
p

n/ C O.1/ by manipulating the harmonic
series.

A.1-3
Show that

P1
kD0 k2xk D x.1C x/=.1� x/3 for 0 < jxj < 1.

A.1-4 ?

Show that
P1

kD0.k � 1/=2k D 0.

A.1-5 ?

Evaluate the sum
P1

kD1.2k C 1/x2k.

A.1-6
Prove that

Pn

kD1 O.fk.i// D O
�Pn

kD1 fk.i/
�

by using the linearity property of
summations.

A.1-7
Evaluate the product

Qn

kD1 2 � 4k.

A.1-8 ?

Evaluate the product
Qn

kD2.1 � 1=k2/.

A.2 Bounding summations

We have many techniques at our disposal for bounding the summations that de-
scribe the running times of algorithms. Here are some of the most frequently used
methods.

Mathematical induction

The most basic way to evaluate a series is to use mathematical induction. As an
example, let us prove that the arithmetic series

Pn

kD1 k evaluates to 1
2
n.nC1/. We

can easily verify this assertion for n D 1. We make the inductive assumption that

1150 Appendix A Summations

it holds for n, and we prove that it holds for nC 1. We have

nC1X
kD1

k D
nX

kD1

k C .nC 1/

D 1

2
n.nC 1/C .nC 1/

D 1

2
.nC 1/.nC 2/ :

You don’t always need to guess the exact value of a summation in order to use
mathematical induction. Instead, you can use induction to prove a bound on a sum-
mation. As an example, let us prove that the geometric series

Pn

kD0 3k is O.3n/.
More specifically, let us prove that

Pn

kD0 3k � c3n for some constant c. For the
initial condition n D 0, we have

P0

kD0 3k D 1 � c � 1 as long as c � 1. Assuming
that the bound holds for n, let us prove that it holds for nC 1. We have

nC1X
kD0

3k D
nX

kD0

3k C 3nC1

� c3n C 3nC1 (by the inductive hypothesis)

D
�

1

3
C 1

c

�
c3nC1

� c3nC1

as long as .1=3 C 1=c/ � 1 or, equivalently, c � 3=2. Thus,
Pn

kD0 3k D O.3n/,
as we wished to show.

We have to be careful when we use asymptotic notation to prove bounds by in-
duction. Consider the following fallacious proof that

Pn

kD1 k D O.n/. Certainly,P1

kD1 k D O.1/. Assuming that the bound holds for n, we now prove it for nC 1:

nC1X
kD1

k D
nX

kD1

k C .nC 1/

D O.n/C .nC 1/
 wrong!!

D O.nC 1/ :

The bug in the argument is that the “constant” hidden by the “big-oh” grows with n

and thus is not constant. We have not shown that the same constant works for all n.

Bounding the terms

We can sometimes obtain a good upper bound on a series by bounding each term
of the series, and it often suffices to use the largest term to bound the others. For

A.2 Bounding summations 1151

example, a quick upper bound on the arithmetic series (A.1) is

nX
kD1

k �
nX

kD1

n

D n2 :

In general, for a series
Pn

kD1 ak, if we let amax D max1�k�n ak, then

nX
kD1

ak � n � amax :

The technique of bounding each term in a series by the largest term is a weak
method when the series can in fact be bounded by a geometric series. Given the
series

Pn

kD0 ak, suppose that akC1=ak � r for all k � 0, where 0 < r < 1 is a
constant. We can bound the sum by an infinite decreasing geometric series, since
ak � a0rk, and thus

nX
kD0

ak �
1X

kD0

a0rk

D a0

1X
kD0

rk

D a0

1

1 � r
:

We can apply this method to bound the summation
P1

kD1.k=3k/. In order to
start the summation at k D 0, we rewrite it as

P1
kD0..k C 1/=3kC1/. The first

term (a0) is 1=3, and the ratio (r) of consecutive terms is

.k C 2/=3kC2

.k C 1/=3kC1
D 1

3
� k C 2

k C 1

� 2

3

for all k � 0. Thus, we have
1X

kD1

k

3k
D

1X
kD0

k C 1

3kC1

� 1

3
� 1

1 � 2=3

D 1 :

1152 Appendix A Summations

A common bug in applying this method is to show that the ratio of consecu-
tive terms is less than 1 and then to assume that the summation is bounded by a
geometric series. An example is the infinite harmonic series, which diverges since

1X
kD1

1

k
D lim

n!1

nX
kD1

1

k

D lim
n!1

‚.lg n/

D 1 :

The ratio of the .kC1/st and kth terms in this series is k=.kC1/ < 1, but the series
is not bounded by a decreasing geometric series. To bound a series by a geometric
series, we must show that there is an r < 1, which is a constant, such that the ratio
of all pairs of consecutive terms never exceeds r . In the harmonic series, no such r

exists because the ratio becomes arbitrarily close to 1.

Splitting summations

One way to obtain bounds on a difficult summation is to express the series as the
sum of two or more series by partitioning the range of the index and then to bound
each of the resulting series. For example, suppose we try to find a lower bound
on the arithmetic series

Pn

kD1 k, which we have already seen has an upper bound
of n2. We might attempt to bound each term in the summation by the smallest term,
but since that term is 1, we get a lower bound of n for the summation—far off from
our upper bound of n2.

We can obtain a better lower bound by first splitting the summation. Assume for
convenience that n is even. We have

nX
kD1

k D
n=2X
kD1

k C
nX

kDn=2C1

k

�
n=2X
kD1

0C
nX

kDn=2C1

.n=2/

D .n=2/2

D �.n2/ ;

which is an asymptotically tight bound, since
Pn

kD1 k D O.n2/.
For a summation arising from the analysis of an algorithm, we can often split

the summation and ignore a constant number of the initial terms. Generally, this
technique applies when each term ak in a summation

Pn

kD0 ak is independent of n.

A.2 Bounding summations 1153

Then for any constant k0 > 0, we can write

nX
kD0

ak D
k0�1X
kD0

ak C
nX

kDk0

ak

D ‚.1/C
nX

kDk0

ak ;

since the initial terms of the summation are all constant and there are a constant
number of them. We can then use other methods to bound

Pn

kDk0
ak. This tech-

nique applies to infinite summations as well. For example, to find an asymptotic
upper bound on

1X
kD0

k2

2k
;

we observe that the ratio of consecutive terms is

.k C 1/2=2kC1

k2=2k
D .k C 1/2

2k2

� 8

9

if k � 3. Thus, the summation can be split into

1X
kD0

k2

2k
D

2X
kD0

k2

2k
C

1X
kD3

k2

2k

�
2X

kD0

k2

2k
C 9

8

1X
kD0

�
8

9

�k

D O.1/ ;

since the first summation has a constant number of terms and the second summation
is a decreasing geometric series.

The technique of splitting summations can help us determine asymptotic bounds
in much more difficult situations. For example, we can obtain a bound of O.lg n/

on the harmonic series (A.7):

Hn D
nX

kD1

1

k
:

We do so by splitting the range 1 to n into blg nc C 1 pieces and upper-bounding
the contribution of each piece by 1. For i D 0; 1; : : : ; blg nc, the i th piece consists

1154 Appendix A Summations

of the terms starting at 1=2i and going up to but not including 1=2iC1. The last
piece might contain terms not in the original harmonic series, and thus we have

nX
kD1

1

k
�

blg ncX
iD0

2i �1X
j D0

1

2i C j

�
blg ncX
iD0

2i �1X
j D0

1

2i

D
blg ncX
iD0

1

� lg nC 1 : (A.10)

Approximation by integrals

When a summation has the form
Pn

kDm f .k/, where f .k/ is a monotonically in-
creasing function, we can approximate it by integrals:Z n

m�1

f .x/ dx �
nX

kDm

f .k/ �
Z nC1

m

f .x/ dx : (A.11)

Figure A.1 justifies this approximation. The summation is represented as the area
of the rectangles in the figure, and the integral is the shaded region under the curve.
When f .k/ is a monotonically decreasing function, we can use a similar method
to provide the boundsZ nC1

m

f .x/ dx �
nX

kDm

f .k/ �
Z n

m�1

f .x/ dx : (A.12)

The integral approximation (A.12) gives a tight estimate for the nth harmonic
number. For a lower bound, we obtain

nX
kD1

1

k
�

Z nC1

1

dx

x

D ln.nC 1/ : (A.13)

For the upper bound, we derive the inequality
nX

kD2

1

k
�

Z n

1

dx

x

D ln n ;

A.2 Bounding summations 1155

n+1n–1n–2m+2mm –1

f (m
)

f (m
+

1)

f (m
+

2)

f (n–2)

f (n–1)

f (n)

f (x)

x
… … n

… …

(a)

m+1

n+1n–1n–2m+2mm –1

f (m
)

f (m
+

1)

f (m
+

2)

f (n–2)

f (n–1)

f (n)

f (x)

x
… … n

… …

(b)

m+1

Figure A.1 Approximation of
Pn

kDm f .k/ by integrals. The area of each rectangle is shown
within the rectangle, and the total rectangle area represents the value of the summation. The in-
tegral is represented by the shaded area under the curve. By comparing areas in (a), we getR n

m�1 f .x/ dx � Pn
kDm f .k/, and then by shifting the rectangles one unit to the right, we getPn

kDm f .k/ � R nC1
m f .x/ dx in (b).

1156 Appendix A Summations

which yields the bound

nX
kD1

1

k
� ln nC 1 : (A.14)

Exercises

A.2-1
Show that

Pn

kD1 1=k2 is bounded above by a constant.

A.2-2
Find an asymptotic upper bound on the summation

blg ncX
kD0

˙
n=2k

�
:

A.2-3
Show that the nth harmonic number is �.lg n/ by splitting the summation.

A.2-4
Approximate

Pn

kD1 k3 with an integral.

A.2-5
Why didn’t we use the integral approximation (A.12) directly on

Pn

kD1 1=k to
obtain an upper bound on the nth harmonic number?

Problems

A-1 Bounding summations
Give asymptotically tight bounds on the following summations. Assume that r � 0

and s � 0 are constants.

a.
nX

kD1

kr .

b.
nX

kD1

lgs k.

Notes for Appendix A 1157

c.
nX

kD1

kr lgs k.

Appendix notes

Knuth [209] provides an excellent reference for the material presented here. You
can find basic properties of series in any good calculus book, such as Apostol [18]
or Thomas et al. [334].

B Sets, Etc.

Many chapters of this book touch on the elements of discrete mathematics. This
appendix reviews more completely the notations, definitions, and elementary prop-
erties of sets, relations, functions, graphs, and trees. If you are already well versed
in this material, you can probably just skim this chapter.

B.1 Sets

A set is a collection of distinguishable objects, called its members or elements. If
an object x is a member of a set S , we write x 2 S (read “x is a member of S”
or, more briefly, “x is in S”). If x is not a member of S , we write x 62 S . We
can describe a set by explicitly listing its members as a list inside braces. For
example, we can define a set S to contain precisely the numbers 1, 2, and 3 by
writing S D f1; 2; 3g. Since 2 is a member of the set S , we can write 2 2 S , and
since 4 is not a member, we have 4 … S . A set cannot contain the same object more
than once,1 and its elements are not ordered. Two sets A and B are equal, written
A D B , if they contain the same elements. For example, f1; 2; 3; 1g D f1; 2; 3g D
f3; 2; 1g.

We adopt special notations for frequently encountered sets:
� ; denotes the empty set, that is, the set containing no members.
� Z denotes the set of integers, that is, the set f: : : ;�2;�1; 0; 1; 2; : : :g.
� R denotes the set of real numbers.
� N denotes the set of natural numbers, that is, the set f0; 1; 2; : : :g.2

1A variation of a set, which can contain the same object more than once, is called a multiset.

2Some authors start the natural numbers with 1 instead of 0. The modern trend seems to be to start
with 0.

B.1 Sets 1159

If all the elements of a set A are contained in a set B , that is, if x 2 A implies
x 2 B , then we write A � B and say that A is a subset of B . A set A is a
proper subset of B , written A
 B , if A � B but A ¤ B . (Some authors use the
symbol “
” to denote the ordinary subset relation, rather than the proper-subset
relation.) For any set A, we have A � A. For two sets A and B , we have A D B

if and only if A � B and B � A. For any three sets A, B , and C , if A � B

and B � C , then A � C . For any set A, we have ; � A.
We sometimes define sets in terms of other sets. Given a set A, we can define a

set B � A by stating a property that distinguishes the elements of B . For example,
we can define the set of even integers by fx W x 2 Z and x=2 is an integerg. The
colon in this notation is read “such that.” (Some authors use a vertical bar in place
of the colon.)

Given two sets A and B , we can also define new sets by applying set operations:

� The intersection of sets A and B is the set

A \ B D fx W x 2 A and x 2 Bg :

� The union of sets A and B is the set

A [B D fx W x 2 A or x 2 Bg :

� The difference between two sets A and B is the set

A � B D fx W x 2 A and x … Bg :

Set operations obey the following laws:

Empty set laws:

A \ ; D ; ;

A [; D A :

Idempotency laws:

A \ A D A ;

A [A D A :

Commutative laws:

A \ B D B \ A ;

A [B D B [A :

1160 Appendix B Sets, Etc.

AAAAA

A

BBBBB

�

�

.B \ C / [

[

DD

DD

A � .B \ C / .A � B/ .A � C /

CCCCC

Figure B.1 A Venn diagram illustrating the first of DeMorgan’s laws (B.2). Each of the sets A, B ,
and C is represented as a circle.

Associative laws:

A \ .B \ C / D .A \ B/ \ C ;

A [.B [C / D .A [B/ [C :

Distributive laws:

A \ .B [C / D .A \ B/ [.A \ C / ;

A [.B \ C / D .A [B/ \ .A [C / :
(B.1)

Absorption laws:

A \ .A [B/ D A ;

A [.A \ B/ D A :

DeMorgan’s laws:

A � .B \ C / D .A � B/ [.A � C / ;

A � .B [C / D .A � B/ \ .A � C / :
(B.2)

Figure B.1 illustrates the first of DeMorgan’s laws, using a Venn diagram: a graph-
ical picture in which sets are represented as regions of the plane.

Often, all the sets under consideration are subsets of some larger set U called the
universe. For example, if we are considering various sets made up only of integers,
the set Z of integers is an appropriate universe. Given a universe U , we define the
complement of a set A as A D U � A D fx W x 2 U and x 62 Ag. For any set
A � U , we have the following laws:

A D A ;

A \ A D ; ;

A [A D U :

B.1 Sets 1161

We can rewrite DeMorgan’s laws (B.2) with set complements. For any two sets
B; C � U , we have

B \ C D B [C ;

B [C D B \ C :

Two sets A and B are disjoint if they have no elements in common, that is, if
A\B D ;. A collection S D fSig of nonempty sets forms a partition of a set S if

� the sets are pairwise disjoint, that is, Si ; Sj 2 S and i ¤ j imply Si \ Sj D ;,
and

� their union is S , that is,

S D
[

Si 2S

Si :

In other words, S forms a partition of S if each element of S appears in exactly
one Si 2 S .

The number of elements in a set is the cardinality (or size) of the set, denoted jS j.
Two sets have the same cardinality if their elements can be put into a one-to-one
correspondence. The cardinality of the empty set is j;j D 0. If the cardinality of a
set is a natural number, we say the set is finite; otherwise, it is infinite. An infinite
set that can be put into a one-to-one correspondence with the natural numbers N is
countably infinite; otherwise, it is uncountable. For example, the integers Z are
countable, but the reals R are uncountable.

For any two finite sets A and B , we have the identity

jA [Bj D jAj C jBj � jA \ Bj ; (B.3)

from which we can conclude that

jA [Bj � jAj C jBj :

If A and B are disjoint, then jA \ Bj D 0 and thus jA [Bj D jAj C jBj. If
A � B , then jAj � jBj.

A finite set of n elements is sometimes called an n-set. A 1-set is called a
singleton. A subset of k elements of a set is sometimes called a k-subset.

We denote the set of all subsets of a set S , including the empty set and S itself,
by 2S ; we call 2S the power set of S . For example, 2fa;bg D f;; fag ; fbg ; fa; bgg.
The power set of a finite set S has cardinality 2jS j (see Exercise B.1-5).

We sometimes care about setlike structures in which the elements are ordered.
An ordered pair of two elements a and b is denoted .a; b/ and is defined formally
as the set .a; b/ D fa; fa; bgg. Thus, the ordered pair .a; b/ is not the same as the
ordered pair .b; a/.

1162 Appendix B Sets, Etc.

The Cartesian product of two sets A and B , denoted A 	 B , is the set of all
ordered pairs such that the first element of the pair is an element of A and the
second is an element of B . More formally,

A 	 B D f.a; b/ W a 2 A and b 2 Bg :

For example, fa; bg	fa; b; cg D f.a; a/; .a; b/; .a; c/; .b; a/; .b; b/; .b; c/g. When
A and B are finite sets, the cardinality of their Cartesian product is

jA 	 Bj D jAj � jBj : (B.4)

The Cartesian product of n sets A1; A2; : : : ; An is the set of n-tuples

A1 	 A2 	 � � � 	 An D f.a1; a2; : : : ; an/ W ai 2 Ai for i D 1; 2; : : : ; ng ;

whose cardinality is

jA1 	 A2 	 � � � 	 Anj D jA1j � jA2j � � � jAnj
if all sets are finite. We denote an n-fold Cartesian product over a single set A by
the set

An D A 	 A 	 � � � 	 A ;

whose cardinality is jAnj D jAjn if A is finite. We can also view an n-tuple as a
finite sequence of length n (see page 1166).

Exercises

B.1-1
Draw Venn diagrams that illustrate the first of the distributive laws (B.1).

B.1-2
Prove the generalization of DeMorgan’s laws to any finite collection of sets:

A1 \ A2 \ � � � \ An D A1 [A2 [� � � [An ;

A1 [A2 [� � � [An D A1 \ A2 \ � � � \ An :

B.2 Relations 1163

B.1-3 ?

Prove the generalization of equation (B.3), which is called the principle of inclu-
sion and exclusion:

jA1 [A2 [� � � [Anj D
jA1j C jA2j C � � � C jAnj
� jA1 \ A2j � jA1 \ A3j � � � � (all pairs)

C jA1 \ A2 \ A3j C � � � (all triples)
:::

C .�1/n�1 jA1 \ A2 \ � � � \ Anj :

B.1-4
Show that the set of odd natural numbers is countable.

B.1-5
Show that for any finite set S , the power set 2S has 2jS j elements (that is, there
are 2jS j distinct subsets of S).

B.1-6
Give an inductive definition for an n-tuple by extending the set-theoretic definition
for an ordered pair.

B.2 Relations

A binary relation R on two sets A and B is a subset of the Cartesian product A	B .
If .a; b/ 2 R, we sometimes write a R b. When we say that R is a binary relation
on a set A, we mean that R is a subset of A 	 A. For example, the “less than”
relation on the natural numbers is the set f.a; b/ W a; b 2 N and a < bg. An n-ary
relation on sets A1; A2; : : : ; An is a subset of A1 	 A2 	 � � � 	 An.

A binary relation R � A 	 A is reflexive if

a R a

for all a 2 A. For example, “D” and “�” are reflexive relations on N, but “<” is
not. The relation R is symmetric if

a R b implies b R a

for all a; b 2 A. For example, “D” is symmetric, but “<” and “�” are not. The
relation R is transitive if

a R b and b R c imply a R c

1164 Appendix B Sets, Etc.

for all a; b; c 2 A. For example, the relations “<,” “�,” and “D” are transitive, but
the relation R D f.a; b/ W a; b 2 N and a D b � 1g is not, since 3 R 4 and 4 R 5

do not imply 3 R 5.
A relation that is reflexive, symmetric, and transitive is an equivalence relation.

For example, “D” is an equivalence relation on the natural numbers, but “<” is not.
If R is an equivalence relation on a set A, then for a 2 A, the equivalence class
of a is the set Œa� D fb 2 A W a R bg, that is, the set of all elements equivalent to a.
For example, if we define R D f.a; b/ W a; b 2 N and aC b is an even numberg,
then R is an equivalence relation, since a C a is even (reflexive), a C b is even
implies b C a is even (symmetric), and a C b is even and b C c is even imply
a C c is even (transitive). The equivalence class of 4 is Œ4� D f0; 2; 4; 6; : : :g, and
the equivalence class of 3 is Œ3� D f1; 3; 5; 7; : : :g. A basic theorem of equivalence
classes is the following.

Theorem B.1 (An equivalence relation is the same as a partition)
The equivalence classes of any equivalence relation R on a set A form a partition
of A, and any partition of A determines an equivalence relation on A for which the
sets in the partition are the equivalence classes.

Proof For the first part of the proof, we must show that the equivalence classes
of R are nonempty, pairwise-disjoint sets whose union is A. Because R is reflex-
ive, a 2 Œa�, and so the equivalence classes are nonempty; moreover, since every
element a 2 A belongs to the equivalence class Œa�, the union of the equivalence
classes is A. It remains to show that the equivalence classes are pairwise disjoint,
that is, if two equivalence classes Œa� and Œb� have an element c in common, then
they are in fact the same set. Suppose that a R c and b R c. By symmetry, c R b,
and by transitivity, a R b. Thus, for any arbitrary element x 2 Œa�, we have x R a

and, by transitivity, x R b, and thus Œa� � Œb�. Similarly, Œb� � Œa�, and thus
Œa� D Œb�.

For the second part of the proof, let A D fAig be a partition of A, and define
R D f.a; b/ W there exists i such that a 2 Ai and b 2 Aig. We claim that R is an
equivalence relation on A. Reflexivity holds, since a 2 Ai implies a R a. Symme-
try holds, because if a R b, then a and b are in the same set Ai , and hence b R a.
If a R b and b R c, then all three elements are in the same set Ai , and thus a R c

and transitivity holds. To see that the sets in the partition are the equivalence
classes of R, observe that if a 2 Ai , then x 2 Œa� implies x 2 Ai , and x 2 Ai

implies x 2 Œa�.

A binary relation R on a set A is antisymmetric if

a R b and b R a imply a D b :

B.2 Relations 1165

For example, the “�” relation on the natural numbers is antisymmetric, since a � b

and b � a imply a D b. A relation that is reflexive, antisymmetric, and transitive
is a partial order, and we call a set on which a partial order is defined a partially
ordered set. For example, the relation “is a descendant of” is a partial order on the
set of all people (if we view individuals as being their own descendants).

In a partially ordered set A, there may be no single “maximum” element a such
that b R a for all b 2 A. Instead, the set may contain several maximal elements a

such that for no b 2 A, where b ¤ a, is it the case that a R b. For example, a
collection of different-sized boxes may contain several maximal boxes that don’t
fit inside any other box, yet it has no single “maximum” box into which any other
box will fit.3

A relation R on a set A is a total relation if for all a; b 2 A, we have a R b

or b R a (or both), that is, if every pairing of elements of A is related by R. A
partial order that is also a total relation is a total order or linear order. For example,
the relation “�” is a total order on the natural numbers, but the “is a descendant
of” relation is not a total order on the set of all people, since there are individuals
neither of whom is descended from the other. A total relation that is transitive, but
not necessarily reflexive and antisymmetric, is a total preorder.

Exercises

B.2-1
Prove that the subset relation “�” on all subsets of Z is a partial order but not a
total order.

B.2-2
Show that for any positive integer n, the relation “equivalent modulo n” is an equiv-
alence relation on the integers. (We say that a � b .mod n/ if there exists an
integer q such that a � b D qn.) Into what equivalence classes does this relation
partition the integers?

B.2-3
Give examples of relations that are

a. reflexive and symmetric but not transitive,

b. reflexive and transitive but not symmetric,

c. symmetric and transitive but not reflexive.

3To be precise, in order for the “fit inside” relation to be a partial order, we need to view a box as
fitting inside itself.

1166 Appendix B Sets, Etc.

B.2-4
Let S be a finite set, and let R be an equivalence relation on S 	 S . Show that if
in addition R is antisymmetric, then the equivalence classes of S with respect to R

are singletons.

B.2-5
Professor Narcissus claims that if a relation R is symmetric and transitive, then it is
also reflexive. He offers the following proof. By symmetry, a R b implies b R a.
Transitivity, therefore, implies a R a. Is the professor correct?

B.3 Functions

Given two sets A and B , a function f is a binary relation on A and B such that
for all a 2 A, there exists precisely one b 2 B such that .a; b/ 2 f . The set A is
called the domain of f , and the set B is called the codomain of f . We sometimes
write f W A ! B; and if .a; b/ 2 f , we write b D f .a/, since b is uniquely
determined by the choice of a.

Intuitively, the function f assigns an element of B to each element of A. No
element of A is assigned two different elements of B , but the same element of B

can be assigned to two different elements of A. For example, the binary relation

f D f.a; b/ W a; b 2 N and b D a mod 2g
is a function f W N ! f0; 1g, since for each natural number a, there is exactly one
value b in f0; 1g such that b D a mod 2. For this example, 0 D f .0/, 1 D f .1/,
0 D f .2/, etc. In contrast, the binary relation

g D f.a; b/ W a; b 2 N and aC b is eveng
is not a function, since .1; 3/ and .1; 5/ are both in g, and thus for the choice a D 1,
there is not precisely one b such that .a; b/ 2 g.

Given a function f W A! B , if b D f .a/, we say that a is the argument of f

and that b is the value of f at a. We can define a function by stating its value for
every element of its domain. For example, we might define f .n/ D 2n for n 2 N,
which means f D f.n; 2n/ W n 2 Ng. Two functions f and g are equal if they
have the same domain and codomain and if, for all a in the domain, f .a/ D g.a/.

A finite sequence of length n is a function f whose domain is the set of n

integers f0; 1; : : : ; n � 1g. We often denote a finite sequence by listing its values:
hf .0/; f .1/; : : : ; f .n � 1/i. An infinite sequence is a function whose domain is
the set N of natural numbers. For example, the Fibonacci sequence, defined by
recurrence (3.22), is the infinite sequence h0; 1; 1; 2; 3; 5; 8; 13; 21; : : :i.

B.3 Functions 1167

When the domain of a function f is a Cartesian product, we often omit the extra
parentheses surrounding the argument of f . For example, if we had a function
f W A1 	 A2 	 � � � 	 An ! B , we would write b D f .a1; a2; : : : ; an/ instead
of b D f ..a1; a2; : : : ; an//. We also call each ai an argument to the function f ,
though technically the (single) argument to f is the n-tuple .a1; a2; : : : ; an/.

If f W A! B is a function and b D f .a/, then we sometimes say that b is the
image of a under f . The image of a set A0 � A under f is defined by

f .A0/ D fb 2 B W b D f .a/ for some a 2 A0g :

The range of f is the image of its domain, that is, f .A/. For example, the range
of the function f W N ! N defined by f .n/ D 2n is f .N/ D fm W m D 2n for
some n 2 Ng, in other words, the set of nonnegative even integers.

A function is a surjection if its range is its codomain. For example, the function
f .n/ D bn=2c is a surjective function from N to N, since every element in N

appears as the value of f for some argument. In contrast, the function f .n/ D 2n

is not a surjective function from N to N, since no argument to f can produce 3 as a
value. The function f .n/ D 2n is, however, a surjective function from the natural
numbers to the even numbers. A surjection f W A! B is sometimes described as
mapping A onto B . When we say that f is onto, we mean that it is surjective.

A function f W A ! B is an injection if distinct arguments to f produce
distinct values, that is, if a ¤ a0 implies f .a/ ¤ f .a0/. For example, the function
f .n/ D 2n is an injective function from N to N, since each even number b is the
image under f of at most one element of the domain, namely b=2. The function
f .n/ D bn=2c is not injective, since the value 1 is produced by two arguments: 2

and 3. An injection is sometimes called a one-to-one function.
A function f W A! B is a bijection if it is injective and surjective. For example,

the function f .n/ D .�1/n dn=2e is a bijection from N to Z:

0 ! 0 ;

1 ! �1 ;

2 ! 1 ;

3 ! �2 ;

4 ! 2 ;
:::

The function is injective, since no element of Z is the image of more than one
element of N. It is surjective, since every element of Z appears as the image of
some element of N. Hence, the function is bijective. A bijection is sometimes
called a one-to-one correspondence, since it pairs elements in the domain and
codomain. A bijection from a set A to itself is sometimes called a permutation.

When a function f is bijective, we define its inverse f �1 as

f �1.b/ D a if and only if f .a/ D b :

1168 Appendix B Sets, Etc.

For example, the inverse of the function f .n/ D .�1/n dn=2e is

f �1.m/ D
(

2m if m � 0 ;

�2m � 1 if m < 0 :

Exercises

B.3-1
Let A and B be finite sets, and let f W A! B be a function. Show that

a. if f is injective, then jAj � jBj;
b. if f is surjective, then jAj � jBj.

B.3-2
Is the function f .x/ D xC 1 bijective when the domain and the codomain are N?
Is it bijective when the domain and the codomain are Z?

B.3-3
Give a natural definition for the inverse of a binary relation such that if a relation
is in fact a bijective function, its relational inverse is its functional inverse.

B.3-4 ?

Give a bijection from Z to Z 	 Z.

B.4 Graphs

This section presents two kinds of graphs: directed and undirected. Certain def-
initions in the literature differ from those given here, but for the most part, the
differences are slight. Section 22.1 shows how we can represent graphs in com-
puter memory.

A directed graph (or digraph) G is a pair .V; E/, where V is a finite set and E

is a binary relation on V . The set V is called the vertex set of G, and its elements
are called vertices (singular: vertex). The set E is called the edge set of G, and its
elements are called edges. Figure B.2(a) is a pictorial representation of a directed
graph on the vertex set f1; 2; 3; 4; 5; 6g. Vertices are represented by circles in the
figure, and edges are represented by arrows. Note that self-loops—edges from a
vertex to itself—are possible.

In an undirected graph G D .V; E/, the edge set E consists of unordered
pairs of vertices, rather than ordered pairs. That is, an edge is a set fu; �g, where

B.4 Graphs 1169

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/

is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; � 2 V and u ¤ �. By convention, we use the notation .u; �/ for an edge, rather
than the set notation fu; �g, and we consider .u; �/ and .�; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; �/ is an edge
in a directed graph G D .V; E/, we say that .u; �/ is incident from or leaves
vertex u and is incident to or enters vertex �. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; �/ is an edge in an undirected graph G D .V; E/, we say
that .u; �/ is incident on vertices u and �. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; �/ is an edge in a graph G D .V; E/, we say that vertex � is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If � is
adjacent to u in a directed graph, we sometimes write u ! �. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/

does not belong to the graph.
The degree of a vertex in an undirected graph is the number of edges incident on

it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-

1170 Appendix B Sets, Etc.

degree plus its out-degree. Vertex 2 in Figure B.2(a) has in-degree 2, out-degree 3,
and degree 5.

A path of length k from a vertex u to a vertex u0 in a graph G D .V; E/

is a sequence h�0; �1; �2; : : : ; �ki of vertices such that u D �0, u0 D �k, and
.�i�1; �i / 2 E for i D 1; 2; : : : ; k. The length of the path is the number of
edges in the path. The path contains the vertices �0; �1; : : : ; �k and the edges
.�0; �1/; .�1; �2/; : : : ; .�k�1; �k/. (There is always a 0-length path from u to u.) If
there is a path p from u to u0, we say that u0 is reachable from u via p, which we
sometimes write as u

p
� u0 if G is directed. A path is simple4 if all vertices in the

path are distinct. In Figure B.2(a), the path h1; 2; 5; 4i is a simple path of length 3.
The path h2; 5; 4; 5i is not simple.

A subpath of path p D h�0; �1; : : : ; �ki is a contiguous subsequence of its ver-
tices. That is, for any 0 � i � j � k, the subsequence of vertices h�i ; �iC1; : : : ; �j i
is a subpath of p.

In a directed graph, a path h�0; �1; : : : ; �ki forms a cycle if �0 D �k and the
path contains at least one edge. The cycle is simple if, in addition, �1; �2; : : : ; �k

are distinct. A self-loop is a cycle of length 1. Two paths h�0; �1; �2; : : : ; �k�1; �0i
and h� 0

0; � 0
1; � 0

2; : : : ; � 0
k�1

; � 0
0i form the same cycle if there exists an integer j such

that � 0
i D �.iCj / mod k for i D 0; 1; : : : ; k � 1. In Figure B.2(a), the path h1; 2; 4; 1i

forms the same cycle as the paths h2; 4; 1; 2i and h4; 1; 2; 4i. This cycle is simple,
but the cycle h1; 2; 4; 5; 4; 1i is not. The cycle h2; 2i formed by the edge .2; 2/ is
a self-loop. A directed graph with no self-loops is simple. In an undirected graph,
a path h�0; �1; : : : ; �ki forms a cycle if k � 3 and �0 D �k; the cycle is simple if
�1; �2; : : : ; �k are distinct. For example, in Figure B.2(b), the path h1; 2; 5; 1i is a
simple cycle. A graph with no cycles is acyclic.

An undirected graph is connected if every vertex is reachable from all other
vertices. The connected components of a graph are the equivalence classes of
vertices under the “is reachable from” relation. The graph in Figure B.2(b) has
three connected components: f1; 2; 5g, f3; 6g, and f4g. Every vertex in f1; 2; 5g is
reachable from every other vertex in f1; 2; 5g. An undirected graph is connected
if it has exactly one connected component. The edges of a connected component
are those that are incident on only the vertices of the component; in other words,
edge .u; �/ is an edge of a connected component only if both u and � are vertices
of the component.

A directed graph is strongly connected if every two vertices are reachable from
each other. The strongly connected components of a directed graph are the equiv-

4Some authors refer to what we call a path as a “walk” and to what we call a simple path as just a
“path.” We use the terms “path” and “simple path” throughout this book in a manner consistent with
their definitions.

B.4 Graphs 1171

1 2

3

45

6

u v w x y z

(a)

1 2

3

4

5

u v w x y

(b)

G

G′

Figure B.3 (a) A pair of isomorphic graphs. The vertices of the top graph are mapped to the
vertices of the bottom graph by f .1/ D u; f .2/ D �; f .3/ D w; f .4/ D x; f .5/ D y; f .6/ D ´.
(b) Two graphs that are not isomorphic, since the top graph has a vertex of degree 4 and the bottom
graph does not.

alence classes of vertices under the “are mutually reachable” relation. A directed
graph is strongly connected if it has only one strongly connected component. The
graph in Figure B.2(a) has three strongly connected components: f1; 2; 4; 5g, f3g,
and f6g. All pairs of vertices in f1; 2; 4; 5g are mutually reachable. The ver-
tices f3; 6g do not form a strongly connected component, since vertex 6 cannot
be reached from vertex 3.

Two graphs G D .V; E/ and G0 D .V 0; E 0/ are isomorphic if there exists a
bijection f W V ! V 0 such that .u; �/ 2 E if and only if .f .u/; f .�// 2 E 0.
In other words, we can relabel the vertices of G to be vertices of G0, maintain-
ing the corresponding edges in G and G0. Figure B.3(a) shows a pair of iso-
morphic graphs G and G0 with respective vertex sets V D f1; 2; 3; 4; 5; 6g and
V 0 D fu; �; w; x; y; ´g. The mapping from V to V 0 given by f .1/ D u; f .2/ D �;

f .3/ D w; f .4/ D x; f .5/ D y; f .6/ D ´ provides the required bijective func-
tion. The graphs in Figure B.3(b) are not isomorphic. Although both graphs have
5 vertices and 7 edges, the top graph has a vertex of degree 4 and the bottom graph
does not.

We say that a graph G0 D .V 0; E 0/ is a subgraph of G D .V; E/ if V 0 � V

and E 0 � E. Given a set V 0 � V , the subgraph of G induced by V 0 is the graph
G0 D .V 0; E 0/, where

E 0 D f.u; �/ 2 E W u; � 2 V 0g :

1172 Appendix B Sets, Etc.

The subgraph induced by the vertex set f1; 2; 3; 6g in Figure B.2(a) appears in
Figure B.2(c) and has the edge set f.1; 2/; .2; 2/; .6; 3/g.

Given an undirected graph G D .V; E/, the directed version of G is the directed
graph G0 D .V; E 0/, where .u; �/ 2 E 0 if and only if .u; �/ 2 E. That is, we
replace each undirected edge .u; �/ in G by the two directed edges .u; �/ and .�; u/

in the directed version. Given a directed graph G D .V; E/, the undirected version
of G is the undirected graph G0 D .V; E 0/, where .u; �/ 2 E 0 if and only if u ¤ �

and .u; �/ 2 E. That is, the undirected version contains the edges of G “with
their directions removed” and with self-loops eliminated. (Since .u; �/ and .�; u/

are the same edge in an undirected graph, the undirected version of a directed
graph contains it only once, even if the directed graph contains both edges .u; �/

and .�; u/.) In a directed graph G D .V; E/, a neighbor of a vertex u is any vertex
that is adjacent to u in the undirected version of G. That is, � is a neighbor of u if
u ¤ � and either .u; �/ 2 E or .�; u/ 2 E. In an undirected graph, u and � are
neighbors if they are adjacent.

Several kinds of graphs have special names. A complete graph is an undirected
graph in which every pair of vertices is adjacent. A bipartite graph is an undirected
graph G D .V; E/ in which V can be partitioned into two sets V1 and V2 such that
.u; �/ 2 E implies either u 2 V1 and � 2 V2 or u 2 V2 and � 2 V1. That is, all
edges go between the two sets V1 and V2. An acyclic, undirected graph is a forest,
and a connected, acyclic, undirected graph is a (free) tree (see Section B.5). We
often take the first letters of “directed acyclic graph” and call such a graph a dag.

There are two variants of graphs that you may occasionally encounter. A multi-
graph is like an undirected graph, but it can have both multiple edges between ver-
tices and self-loops. A hypergraph is like an undirected graph, but each hyperedge,
rather than connecting two vertices, connects an arbitrary subset of vertices. Many
algorithms written for ordinary directed and undirected graphs can be adapted to
run on these graphlike structures.

The contraction of an undirected graph G D .V; E/ by an edge e D .u; �/ is a
graph G0 D .V 0; E 0/, where V 0 D V � fu; �g [fxg and x is a new vertex. The set
of edges E 0 is formed from E by deleting the edge .u; �/ and, for each vertex w

incident on u or �, deleting whichever of .u; w/ and .�; w/ is in E and adding the
new edge .x; w/. In effect, u and � are “contracted” into a single vertex.

Exercises

B.4-1
Attendees of a faculty party shake hands to greet each other, and each professor
remembers how many times he or she shook hands. At the end of the party, the
department head adds up the number of times that each professor shook hands.

B.5 Trees 1173

Show that the result is even by proving the handshaking lemma: if G D .V; E/ is
an undirected graph, thenX
�2V

degree.�/ D 2 jEj :

B.4-2
Show that if a directed or undirected graph contains a path between two vertices u

and �, then it contains a simple path between u and �. Show that if a directed graph
contains a cycle, then it contains a simple cycle.

B.4-3
Show that any connected, undirected graph G D .V; E/ satisfies jEj � jV j � 1.

B.4-4
Verify that in an undirected graph, the “is reachable from” relation is an equiv-
alence relation on the vertices of the graph. Which of the three properties of an
equivalence relation hold in general for the “is reachable from” relation on the
vertices of a directed graph?

B.4-5
What is the undirected version of the directed graph in Figure B.2(a)? What is the
directed version of the undirected graph in Figure B.2(b)?

B.4-6 ?

Show that we can represent a hypergraph by a bipartite graph if we let incidence in
the hypergraph correspond to adjacency in the bipartite graph. (Hint: Let one set
of vertices in the bipartite graph correspond to vertices of the hypergraph, and let
the other set of vertices of the bipartite graph correspond to hyperedges.)

B.5 Trees

As with graphs, there are many related, but slightly different, notions of trees. This
section presents definitions and mathematical properties of several kinds of trees.
Sections 10.4 and 22.1 describe how we can represent trees in computer memory.

B.5.1 Free trees

As defined in Section B.4, a free tree is a connected, acyclic, undirected graph. We
often omit the adjective “free” when we say that a graph is a tree. If an undirected
graph is acyclic but possibly disconnected, it is a forest. Many algorithms that work

1174 Appendix B Sets, Etc.

(a) (b) (c)

Figure B.4 (a) A free tree. (b) A forest. (c) A graph that contains a cycle and is therefore neither
a tree nor a forest.

for trees also work for forests. Figure B.4(a) shows a free tree, and Figure B.4(b)
shows a forest. The forest in Figure B.4(b) is not a tree because it is not connected.
The graph in Figure B.4(c) is connected but neither a tree nor a forest, because it
contains a cycle.

The following theorem captures many important facts about free trees.

Theorem B.2 (Properties of free trees)
Let G D .V; E/ be an undirected graph. The following statements are equivalent.

1. G is a free tree.

2. Any two vertices in G are connected by a unique simple path.

3. G is connected, but if any edge is removed from E, the resulting graph is dis-
connected.

4. G is connected, and jEj D jV j � 1.

5. G is acyclic, and jEj D jV j � 1.

6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.

Proof (1)) (2): Since a tree is connected, any two vertices in G are connected
by at least one simple path. Suppose, for the sake of contradiction, that vertices u

and � are connected by two distinct simple paths p1 and p2, as shown in Figure B.5.
Let w be the vertex at which the paths first diverge; that is, w is the first vertex
on both p1 and p2 whose successor on p1 is x and whose successor on p2 is y,
where x ¤ y. Let ´ be the first vertex at which the paths reconverge; that is, ´ is
the first vertex following w on p1 that is also on p2. Let p0 be the subpath of p1

from w through x to ´, and let p00 be the subpath of p2 from w through y to ´.
Paths p0 and p00 share no vertices except their endpoints. Thus, the path obtained by
concatenating p0 and the reverse of p00 is a cycle, which contradicts our assumption

B.5 Trees 1175

u

w
z

v

x

y

p′

p′′

Figure B.5 A step in the proof of Theorem B.2: if (1) G is a free tree, then (2) any two vertices
in G are connected by a unique simple path. Assume for the sake of contradiction that vertices u

and � are connected by two distinct simple paths p1 and p2. These paths first diverge at vertex w,
and they first reconverge at vertex ´. The path p0 concatenated with the reverse of the path p00 forms
a cycle, which yields the contradiction.

that G is a tree. Thus, if G is a tree, there can be at most one simple path between
two vertices.

(2)) (3): If any two vertices in G are connected by a unique simple path,
then G is connected. Let .u; �/ be any edge in E. This edge is a path from u to �,
and so it must be the unique path from u to �. If we remove .u; �/ from G, there
is no path from u to �, and hence its removal disconnects G.

(3)) (4): By assumption, the graph G is connected, and by Exercise B.4-3, we
have jEj � jV j � 1. We shall prove jEj � jV j � 1 by induction. A connected
graph with n D 1 or n D 2 vertices has n � 1 edges. Suppose that G has n � 3

vertices and that all graphs satisfying (3) with fewer than n vertices also satisfy
jEj � jV j � 1. Removing an arbitrary edge from G separates the graph into k � 2

connected components (actually k D 2). Each component satisfies (3), or else G

would not satisfy (3). If we view each connected component Vi , with edge set Ei ,
as its own free tree, then because each component has fewer than jV j vertices, by
the inductive hypothesis we have jEi j � jVi j � 1. Thus, the number of edges in all
components combined is at most jV j � k � jV j � 2. Adding in the removed edge
yields jEj � jV j � 1.

(4)) (5): Suppose that G is connected and that jEj D jV j � 1. We must show
that G is acyclic. Suppose that G has a cycle containing k vertices �1; �2; : : : ; �k ,
and without loss of generality assume that this cycle is simple. Let Gk D .Vk; Ek/

be the subgraph of G consisting of the cycle. Note that jVkj D jEkj D k.
If k < jV j, there must be a vertex �kC1 2 V � Vk that is adjacent to some ver-
tex �i 2 Vk, since G is connected. Define GkC1 D .VkC1; EkC1/ to be the sub-
graph of G with VkC1 D Vk [f�kC1g and EkC1 D Ek [f.�i ; �kC1/g. Note that
jVkC1j D jEkC1j D k C 1. If k C 1 < jV j, we can continue, defining GkC2 in
the same manner, and so forth, until we obtain Gn D .Vn; En/, where n D jV j,

1176 Appendix B Sets, Etc.

Vn D V , and jEnj D jVnj D jV j. Since Gn is a subgraph of G, we have En � E,
and hence jEj � jV j, which contradicts the assumption that jEj D jV j � 1. Thus,
G is acyclic.

(5)) (6): Suppose that G is acyclic and that jEj D jV j � 1. Let k be the
number of connected components of G. Each connected component is a free tree
by definition, and since (1) implies (5), the sum of all edges in all connected com-
ponents of G is jV j � k. Consequently, we must have k D 1, and G is in fact a
tree. Since (1) implies (2), any two vertices in G are connected by a unique simple
path. Thus, adding any edge to G creates a cycle.

(6)) (1): Suppose that G is acyclic but that adding any edge to E creates a
cycle. We must show that G is connected. Let u and � be arbitrary vertices in G.
If u and � are not already adjacent, adding the edge .u; �/ creates a cycle in which
all edges but .u; �/ belong to G. Thus, the cycle minus edge .u; �/ must contain a
path from u to �, and since u and � were chosen arbitrarily, G is connected.

B.5.2 Rooted and ordered trees

A rooted tree is a free tree in which one of the vertices is distinguished from the
others. We call the distinguished vertex the root of the tree. We often refer to a
vertex of a rooted tree as a node5 of the tree. Figure B.6(a) shows a rooted tree on
a set of 12 nodes with root 7.

Consider a node x in a rooted tree T with root r . We call any node y on the
unique simple path from r to x an ancestor of x. If y is an ancestor of x, then x is
a descendant of y. (Every node is both an ancestor and a descendant of itself.) If y

is an ancestor of x and x ¤ y, then y is a proper ancestor of x and x is a proper
descendant of y. The subtree rooted at x is the tree induced by descendants of x,
rooted at x. For example, the subtree rooted at node 8 in Figure B.6(a) contains
nodes 8, 6, 5, and 9.

If the last edge on the simple path from the root r of a tree T to a node x is .y; x/,
then y is the parent of x, and x is a child of y. The root is the only node in T with
no parent. If two nodes have the same parent, they are siblings. A node with no
children is a leaf or external node. A nonleaf node is an internal node.

5The term “node” is often used in the graph theory literature as a synonym for “vertex.” We reserve
the term “node” to mean a vertex of a rooted tree.

B.5 Trees 1177

9

6 5

8

1

12

3 10

7

11 2

4

height = 4

depth 0

depth 1

depth 2

depth 3

depth 4

(a)

9

6 5

812

3 10

7

11 2

4

(b)

1

Figure B.6 Rooted and ordered trees. (a) A rooted tree with height 4. The tree is drawn in a
standard way: the root (node 7) is at the top, its children (nodes with depth 1) are beneath it, their
children (nodes with depth 2) are beneath them, and so forth. If the tree is ordered, the relative left-
to-right order of the children of a node matters; otherwise it doesn’t. (b) Another rooted tree. As a
rooted tree, it is identical to the tree in (a), but as an ordered tree it is different, since the children of
node 3 appear in a different order.

The number of children of a node x in a rooted tree T equals the degree of x.6

The length of the simple path from the root r to a node x is the depth of x in T .
A level of a tree consists of all nodes at the same depth. The height of a node in a
tree is the number of edges on the longest simple downward path from the node to
a leaf, and the height of a tree is the height of its root. The height of a tree is also
equal to the largest depth of any node in the tree.

An ordered tree is a rooted tree in which the children of each node are ordered.
That is, if a node has k children, then there is a first child, a second child, . . . ,
and a kth child. The two trees in Figure B.6 are different when considered to be
ordered trees, but the same when considered to be just rooted trees.

B.5.3 Binary and positional trees

We define binary trees recursively. A binary tree T is a structure defined on a finite
set of nodes that either

� contains no nodes, or

6Notice that the degree of a node depends on whether we consider T to be a rooted tree or a free tree.
The degree of a vertex in a free tree is, as in any undirected graph, the number of adjacent vertices.
In a rooted tree, however, the degree is the number of children—the parent of a node does not count
toward its degree.

1178 Appendix B Sets, Etc.

3

2

4 1

6

7

5

(a)

3

2

4 1

6

7

5

(b)

3

2

4 1

6

7

5

(c)

Figure B.7 Binary trees. (a) A binary tree drawn in a standard way. The left child of a node is
drawn beneath the node and to the left. The right child is drawn beneath and to the right. (b)A binary
tree different from the one in (a). In (a), the left child of node 7 is 5 and the right child is absent.
In (b), the left child of node 7 is absent and the right child is 5. As ordered trees, these trees are
the same, but as binary trees, they are distinct. (c) The binary tree in (a) represented by the internal
nodes of a full binary tree: an ordered tree in which each internal node has degree 2. The leaves in
the tree are shown as squares.

� is composed of three disjoint sets of nodes: a root node, a binary tree called its
left subtree, and a binary tree called its right subtree.

The binary tree that contains no nodes is called the empty tree or null tree, some-
times denoted NIL. If the left subtree is nonempty, its root is called the left child of
the root of the entire tree. Likewise, the root of a nonnull right subtree is the right
child of the root of the entire tree. If a subtree is the null tree NIL, we say that the
child is absent or missing. Figure B.7(a) shows a binary tree.

A binary tree is not simply an ordered tree in which each node has degree at
most 2. For example, in a binary tree, if a node has just one child, the position
of the child—whether it is the left child or the right child—matters. In an or-
dered tree, there is no distinguishing a sole child as being either left or right. Fig-
ure B.7(b) shows a binary tree that differs from the tree in Figure B.7(a) because of
the position of one node. Considered as ordered trees, however, the two trees are
identical.

We can represent the positioning information in a binary tree by the internal
nodes of an ordered tree, as shown in Figure B.7(c). The idea is to replace each
missing child in the binary tree with a node having no children. These leaf nodes
are drawn as squares in the figure. The tree that results is a full binary tree: each
node is either a leaf or has degree exactly 2. There are no degree-1 nodes. Conse-
quently, the order of the children of a node preserves the position information.

We can extend the positioning information that distinguishes binary trees from
ordered trees to trees with more than 2 children per node. In a positional tree, the

B.5 Trees 1179

height = 3

depth 0

depth 1

depth 2

depth 3

Figure B.8 A complete binary tree of height 3 with 8 leaves and 7 internal nodes.

children of a node are labeled with distinct positive integers. The i th child of a
node is absent if no child is labeled with integer i . A k-ary tree is a positional tree
in which for every node, all children with labels greater than k are missing. Thus,
a binary tree is a k-ary tree with k D 2.

A complete k-ary tree is a k-ary tree in which all leaves have the same depth
and all internal nodes have degree k. Figure B.8 shows a complete binary tree of
height 3. How many leaves does a complete k-ary tree of height h have? The root
has k children at depth 1, each of which has k children at depth 2, etc. Thus, the
number of leaves at depth h is kh. Consequently, the height of a complete k-ary
tree with n leaves is logk n. The number of internal nodes of a complete k-ary tree
of height h is

1C k C k2 C � � � C kh�1 D
h�1X
iD0

ki

D kh � 1

k � 1

by equation (A.5). Thus, a complete binary tree has 2h � 1 internal nodes.

Exercises

B.5-1
Draw all the free trees composed of the three vertices x, y, and ´. Draw all the
rooted trees with nodes x, y, and ´ with x as the root. Draw all the ordered trees
with nodes x, y, and ´ with x as the root. Draw all the binary trees with nodes x,
y, and ´ with x as the root.

1180 Appendix B Sets, Etc.

B.5-2
Let G D .V; E/ be a directed acyclic graph in which there is a vertex �0 2 V

such that there exists a unique path from �0 to every vertex � 2 V . Prove that the
undirected version of G forms a tree.

B.5-3
Show by induction that the number of degree-2 nodes in any nonempty binary tree
is 1 fewer than the number of leaves. Conclude that the number of internal nodes
in a full binary tree is 1 fewer than the number of leaves.

B.5-4
Use induction to show that a nonempty binary tree with n nodes has height at
least blg nc.
B.5-5 ?

The internal path length of a full binary tree is the sum, taken over all internal
nodes of the tree, of the depth of each node. Likewise, the external path length is
the sum, taken over all leaves of the tree, of the depth of each leaf. Consider a full
binary tree with n internal nodes, internal path length i , and external path length e.
Prove that e D i C 2n.

B.5-6 ?

Let us associate a “weight” w.x/ D 2�d with each leaf x of depth d in a binary
tree T , and let L be the set of leaves of T . Prove that

P
x2L w.x/ � 1. (This is

known as the Kraft inequality.)

B.5-7 ?

Show that if L � 2, then every binary tree with L leaves contains a subtree having
between L=3 and 2L=3 leaves, inclusive.

Problems

B-1 Graph coloring
Given an undirected graph G D .V; E/, a k-coloring of G is a function c W V !
f0; 1; : : : ; k � 1g such that c.u/ ¤ c.�/ for every edge .u; �/ 2 E. In other words,
the numbers 0; 1; : : : ; k� 1 represent the k colors, and adjacent vertices must have
different colors.

a. Show that any tree is 2-colorable.

Problems for Appendix B 1181

b. Show that the following are equivalent:

1. G is bipartite.

2. G is 2-colorable.

3. G has no cycles of odd length.

c. Let d be the maximum degree of any vertex in a graph G. Prove that we can
color G with d C 1 colors.

d. Show that if G has O.jV j/ edges, then we can color G with O.
p
jV j/ colors.

B-2 Friendly graphs
Reword each of the following statements as a theorem about undirected graphs,
and then prove it. Assume that friendship is symmetric but not reflexive.

a. Any group of at least two people contains at least two people with the same
number of friends in the group.

b. Every group of six people contains either at least three mutual friends or at least
three mutual strangers.

c. Any group of people can be partitioned into two subgroups such that at least
half the friends of each person belong to the subgroup of which that person is
not a member.

d. If everyone in a group is the friend of at least half the people in the group, then
the group can be seated around a table in such a way that everyone is seated
between two friends.

B-3 Bisecting trees
Many divide-and-conquer algorithms that operate on graphs require that the graph
be bisected into two nearly equal-sized subgraphs, which are induced by a partition
of the vertices. This problem investigates bisections of trees formed by removing a
small number of edges. We require that whenever two vertices end up in the same
subtree after removing edges, then they must be in the same partition.

a. Show that we can partition the vertices of any n-vertex binary tree into two
sets A and B , such that jAj � 3n=4 and jBj � 3n=4, by removing a single
edge.

b. Show that the constant 3=4 in part (a) is optimal in the worst case by giving
an example of a simple binary tree whose most evenly balanced partition upon
removal of a single edge has jAj D 3n=4.

1182 Appendix B Sets, Etc.

c. Show that by removing at most O.lg n/ edges, we can partition the vertices
of any n-vertex binary tree into two sets A and B such that jAj D bn=2c
and jBj D dn=2e.

Appendix notes

G. Boole pioneered the development of symbolic logic, and he introduced many of
the basic set notations in a book published in 1854. Modern set theory was created
by G. Cantor during the period 1874–1895. Cantor focused primarily on sets of
infinite cardinality. The term “function” is attributed to G. W. Leibniz, who used it
to refer to several kinds of mathematical formulas. His limited definition has been
generalized many times. Graph theory originated in 1736, when L. Euler proved
that it was impossible to cross each of the seven bridges in the city of Königsberg
exactly once and return to the starting point.

The book by Harary [160] provides a useful compendium of many definitions
and results from graph theory.

C Counting and Probability

This appendix reviews elementary combinatorics and probability theory. If you
have a good background in these areas, you may want to skim the beginning of this
appendix lightly and concentrate on the later sections. Most of this book’s chapters
do not require probability, but for some chapters it is essential.

Section C.1 reviews elementary results in counting theory, including standard
formulas for counting permutations and combinations. The axioms of probability
and basic facts concerning probability distributions form Section C.2. Random
variables are introduced in Section C.3, along with the properties of expectation
and variance. Section C.4 investigates the geometric and binomial distributions
that arise from studying Bernoulli trials. The study of the binomial distribution
continues in Section C.5, an advanced discussion of the “tails” of the distribution.

C.1 Counting

Counting theory tries to answer the question “How many?” without actually enu-
merating all the choices. For example, we might ask, “How many different n-bit
numbers are there?” or “How many orderings of n distinct elements are there?” In
this section, we review the elements of counting theory. Since some of the material
assumes a basic understanding of sets, you might wish to start by reviewing the
material in Section B.1.

Rules of sum and product

We can sometimes express a set of items that we wish to count as a union of disjoint
sets or as a Cartesian product of sets.

The rule of sum says that the number of ways to choose one element from one
of two disjoint sets is the sum of the cardinalities of the sets. That is, if A and B

are two finite sets with no members in common, then jA [Bj D jAj C jBj, which

1184 Appendix C Counting and Probability

follows from equation (B.3). For example, each position on a car’s license plate
is a letter or a digit. The number of possibilities for each position is therefore
26 C 10 D 36, since there are 26 choices if it is a letter and 10 choices if it is a
digit.

The rule of product says that the number of ways to choose an ordered pair is the
number of ways to choose the first element times the number of ways to choose the
second element. That is, if A and B are two finite sets, then jA 	 Bj D jAj � jBj,
which is simply equation (B.4). For example, if an ice-cream parlor offers 28
flavors of ice cream and 4 toppings, the number of possible sundaes with one scoop
of ice cream and one topping is 28 � 4 D 112.

Strings

A string over a finite set S is a sequence of elements of S . For example, there are 8
binary strings of length 3:

000; 001; 010; 011; 100; 101; 110; 111 :

We sometimes call a string of length k a k-string. A substring s0 of a string s

is an ordered sequence of consecutive elements of s. A k-substring of a string
is a substring of length k. For example, 010 is a 3-substring of 01101001 (the
3-substring that begins in position 4), but 111 is not a substring of 01101001.

We can view a k-string over a set S as an element of the Cartesian product Sk

of k-tuples; thus, there are jS jk strings of length k. For example, the number of
binary k-strings is 2k . Intuitively, to construct a k-string over an n-set, we have n

ways to pick the first element; for each of these choices, we have n ways to pick the
second element; and so forth k times. This construction leads to the k-fold product
n � n � � � n D nk as the number of k-strings.

Permutations

A permutation of a finite set S is an ordered sequence of all the elements of S ,
with each element appearing exactly once. For example, if S D fa; b; cg, then S

has 6 permutations:

abc; acb; bac; bca; cab; cba :

There are nŠ permutations of a set of n elements, since we can choose the first
element of the sequence in n ways, the second in n � 1 ways, the third in n � 2

ways, and so on.
A k-permutation of S is an ordered sequence of k elements of S , with no ele-

ment appearing more than once in the sequence. (Thus, an ordinary permutation is
an n-permutation of an n-set.) The twelve 2-permutations of the set fa; b; c; dg are

C.1 Counting 1185

ab; ac; ad; ba; bc; bd; ca; cb; cd; da; db; dc :

The number of k-permutations of an n-set is

n.n � 1/.n � 2/ � � � .n � k C 1/ D nŠ

.n � k/Š
; (C.1)

since we have n ways to choose the first element, n� 1 ways to choose the second
element, and so on, until we have selected k elements, the last being a selection
from the remaining n � k C 1 elements.

Combinations

A k-combination of an n-set S is simply a k-subset of S . For example, the 4-set
fa; b; c; dg has six 2-combinations:

ab; ac; ad; bc; bd; cd :

(Here we use the shorthand of denoting the 2-subset fa; bg by ab, and so on.)
We can construct a k-combination of an n-set by choosing k distinct (different)
elements from the n-set. The order in which we select the elements does not matter.

We can express the number of k-combinations of an n-set in terms of the number
of k-permutations of an n-set. Every k-combination has exactly kŠ permutations
of its elements, each of which is a distinct k-permutation of the n-set. Thus, the
number of k-combinations of an n-set is the number of k-permutations divided
by kŠ; from equation (C.1), this quantity is

nŠ

kŠ .n � k/Š
: (C.2)

For k D 0, this formula tells us that the number of ways to choose 0 elements from
an n-set is 1 (not 0), since 0Š D 1.

Binomial coefficients

The notation
�

n

k

�
(read “n choose k”) denotes the number of k-combinations of

an n-set. From equation (C.2), we have
n

k

!
D nŠ

kŠ .n � k/Š
:

This formula is symmetric in k and n � k:
n

k

!
D

n

n � k

!
: (C.3)

1186 Appendix C Counting and Probability

These numbers are also known as binomial coefficients, due to their appearance in
the binomial expansion:

.x C y/n D
nX

kD0

n

k

!
xkyn�k : (C.4)

A special case of the binomial expansion occurs when x D y D 1:

2n D
nX

kD0

n

k

!
:

This formula corresponds to counting the 2n binary n-strings by the number of 1s
they contain:

�
n

k

�
binary n-strings contain exactly k 1s, since we have

�
n

k

�
ways to

choose k out of the n positions in which to place the 1s.
Many identities involve binomial coefficients. The exercises at the end of this

section give you the opportunity to prove a few.

Binomial bounds

We sometimes need to bound the size of a binomial coefficient. For 1 � k � n,
we have the lower bound

n

k

!
D n.n � 1/ � � � .n � k C 1/

k.k � 1/ � � � 1

D
�n

k

��n � 1

k � 1

�
� � �
�

n � k C 1

1

�
�

�n

k

�k

:

Taking advantage of the inequality kŠ � .k=e/k derived from Stirling’s approxi-
mation (3.18), we obtain the upper bounds

n

k

!
D n.n � 1/ � � � .n � k C 1/

k.k � 1/ � � � 1

� nk

kŠ

�
�en

k

�k

: (C.5)

For all integers k such that 0 � k � n, we can use induction (see Exercise C.1-12)
to prove the bound

C.1 Counting 1187

n

k

!
� nn

kk.n � k/n�k
; (C.6)

where for convenience we assume that 00 D 1. For k D �n, where 0 � � � 1, we
can rewrite this bound as

n

�n

!
� nn

.�n/	n..1 � �/n/.1�	/n

D
 �

1

�

�	 �
1

1 � �

�1�	
!n

D 2n H.	/ ;

where

H.�/ D �� lg � � .1 � �/ lg.1 � �/ (C.7)

is the (binary) entropy function and where, for convenience, we assume that
0 lg 0 D 0, so that H.0/ D H.1/ D 0.

Exercises

C.1-1
How many k-substrings does an n-string have? (Consider identical k-substrings at
different positions to be different.) How many substrings does an n-string have in
total?

C.1-2
An n-input, m-output boolean function is a function from fTRUE; FALSEgn to
fTRUE; FALSEgm. How many n-input, 1-output boolean functions are there? How
many n-input, m-output boolean functions are there?

C.1-3
In how many ways can n professors sit around a circular conference table? Con-
sider two seatings to be the same if one can be rotated to form the other.

C.1-4
In how many ways can we choose three distinct numbers from the set f1; 2; : : : ; 99g
so that their sum is even?

1188 Appendix C Counting and Probability

C.1-5
Prove the identity

n

k

!
D n

k

n � 1

k � 1

!
(C.8)

for 0 < k � n.

C.1-6
Prove the identity

n

k

!
D n

n � k

n � 1

k

!
for 0 � k < n.

C.1-7
To choose k objects from n, you can make one of the objects distinguished and
consider whether the distinguished object is chosen. Use this approach to prove
that

n

k

!
D

n � 1

k

!
C

n � 1

k � 1

!
:

C.1-8
Using the result of Exercise C.1-7, make a table for n D 0; 1; : : : ; 6 and 0 � k � n

of the binomial coefficients
�

n

k

�
with

�
0

0

�
at the top,

�
1

0

�
and

�
1

1

�
on the next line, and

so forth. Such a table of binomial coefficients is called Pascal’s triangle.

C.1-9
Prove that

nX
iD1

i D

nC 1

2

!
:

C.1-10
Show that for any integers n � 0 and 0 � k � n, the expression

�
n

k

�
achieves its

maximum value when k D bn=2c or k D dn=2e.
C.1-11 ?

Argue that for any integers n � 0, j � 0, k � 0, and j C k � n,
n

j C k

!
�

n

j

!
n � j

k

!
: (C.9)

C.2 Probability 1189

Provide both an algebraic proof and an argument based on a method for choosing
j C k items out of n. Give an example in which equality does not hold.

C.1-12 ?

Use induction on all integers k such that 0 � k � n=2 to prove inequality (C.6),
and use equation (C.3) to extend it to all integers k such that 0 � k � n.

C.1-13 ?

Use Stirling’s approximation to prove that
2n

n

!
D 22n

p
�n

.1CO.1=n// : (C.10)

C.1-14 ?

By differentiating the entropy function H.�/, show that it achieves its maximum
value at � D 1=2. What is H.1=2/?

C.1-15 ?

Show that for any integer n � 0,

nX
kD0

n

k

!
k D n2n�1 : (C.11)

C.2 Probability

Probability is an essential tool for the design and analysis of probabilistic and ran-
domized algorithms. This section reviews basic probability theory.

We define probability in terms of a sample space S , which is a set whose ele-
ments are called elementary events. We can think of each elementary event as a
possible outcome of an experiment. For the experiment of flipping two distinguish-
able coins, with each individual flip resulting in a head (H) or a tail (T), we can view
the sample space as consisting of the set of all possible 2-strings over fH; Tg:
S D fHH; HT; TH; TTg :

1190 Appendix C Counting and Probability

An event is a subset1 of the sample space S . For example, in the experiment of
flipping two coins, the event of obtaining one head and one tail is fHT; THg. The
event S is called the certain event, and the event ; is called the null event. We say
that two events A and B aremutually exclusive if A\B D ;. We sometimes treat
an elementary event s 2 S as the event fsg. By definition, all elementary events
are mutually exclusive.

Axioms of probability

A probability distribution Pr fg on a sample space S is a mapping from events of S

to real numbers satisfying the following probability axioms:

1. Pr fAg � 0 for any event A.

2. Pr fSg D 1.

3. Pr fA[Bg D Pr fAg C Pr fBg for any two mutually exclusive events A

and B . More generally, for any (finite or countably infinite) sequence of events
A1; A2; : : : that are pairwise mutually exclusive,

Pr

([
i

Ai

)
D
X

i

Pr fAig :

We call Pr fAg the probability of the event A. We note here that axiom 2 is a
normalization requirement: there is really nothing fundamental about choosing 1

as the probability of the certain event, except that it is natural and convenient.
Several results follow immediately from these axioms and basic set theory (see

Section B.1). The null event ; has probability Pr f;g D 0. If A � B , then
Pr fAg � Pr fBg. Using A to denote the event S � A (the complement of A),
we have Pr

˚
A

 D 1 � Pr fAg. For any two events A and B ,

Pr fA [Bg D Pr fAg C Pr fBg � Pr fA \ Bg (C.12)

� Pr fAg C Pr fBg : (C.13)

1For a general probability distribution, there may be some subsets of the sample space S that are not
considered to be events. This situation usually arises when the sample space is uncountably infinite.
The main requirement for what subsets are events is that the set of events of a sample space be closed
under the operations of taking the complement of an event, forming the union of a finite or countable
number of events, and taking the intersection of a finite or countable number of events. Most of
the probability distributions we shall see are over finite or countable sample spaces, and we shall
generally consider all subsets of a sample space to be events. A notable exception is the continuous
uniform probability distribution, which we shall see shortly.

C.2 Probability 1191

In our coin-flipping example, suppose that each of the four elementary events
has probability 1=4. Then the probability of getting at least one head is

Pr fHH; HT; THg D Pr fHHg C Pr fHTg C Pr fTHg
D 3=4 :

Alternatively, since the probability of getting strictly less than one head is
Pr fTTg D 1=4, the probability of getting at least one head is 1 � 1=4 D 3=4.

Discrete probability distributions

A probability distribution is discrete if it is defined over a finite or countably infinite
sample space. Let S be the sample space. Then for any event A,

Pr fAg D
X
s2A

Pr fsg ;

since elementary events, specifically those in A, are mutually exclusive. If S is
finite and every elementary event s 2 S has probability

Pr fsg D 1= jS j ;

then we have the uniform probability distribution on S . In such a case the experi-
ment is often described as “picking an element of S at random.”

As an example, consider the process of flipping a fair coin, one for which the
probability of obtaining a head is the same as the probability of obtaining a tail, that
is, 1=2. If we flip the coin n times, we have the uniform probability distribution
defined on the sample space S D fH; Tgn, a set of size 2n. We can represent each
elementary event in S as a string of length n over fH; Tg, each string occurring with
probability 1=2n. The event

A D fexactly k heads and exactly n � k tails occurg
is a subset of S of size jAj D �

n

k

�
, since

�
n

k

�
strings of length n over fH; Tg contain

exactly k H’s. The probability of event A is thus Pr fAg D �n

k

�
=2n.

Continuous uniform probability distribution

The continuous uniform probability distribution is an example of a probability
distribution in which not all subsets of the sample space are considered to be
events. The continuous uniform probability distribution is defined over a closed
interval Œa; b� of the reals, where a < b. Our intuition is that each point in the in-
terval Œa; b� should be “equally likely.” There are an uncountable number of points,
however, so if we give all points the same finite, positive probability, we cannot si-
multaneously satisfy axioms 2 and 3. For this reason, we would like to associate a

1192 Appendix C Counting and Probability

probability only with some of the subsets of S , in such a way that the axioms are
satisfied for these events.

For any closed interval Œc; d �, where a � c � d � b, the continuous uniform
probability distribution defines the probability of the event Œc; d � to be

Pr fŒc; d �g D d � c

b � a
:

Note that for any point x D Œx; x�, the probability of x is 0. If we remove
the endpoints of an interval Œc; d �, we obtain the open interval .c; d/. Since
Œc; d � D Œc; c� [.c; d/ [Œd; d �, axiom 3 gives us Pr fŒc; d �g D Pr f.c; d/g. Gen-
erally, the set of events for the continuous uniform probability distribution contains
any subset of the sample space Œa; b� that can be obtained by a finite or countable
union of open and closed intervals, as well as certain more complicated sets.

Conditional probability and independence

Sometimes we have some prior partial knowledge about the outcome of an exper-
iment. For example, suppose that a friend has flipped two fair coins and has told
you that at least one of the coins showed a head. What is the probability that both
coins are heads? The information given eliminates the possibility of two tails. The
three remaining elementary events are equally likely, so we infer that each occurs
with probability 1=3. Since only one of these elementary events shows two heads,
the answer to our question is 1=3.

Conditional probability formalizes the notion of having prior partial knowledge
of the outcome of an experiment. The conditional probability of an event A given
that another event B occurs is defined to be

Pr fA j Bg D Pr fA \ Bg
Pr fBg (C.14)

whenever Pr fBg ¤ 0. (We read “Pr fA j Bg” as “the probability of A given B .”)
Intuitively, since we are given that event B occurs, the event that A also occurs
is A \ B . That is, A \ B is the set of outcomes in which both A and B occur.
Because the outcome is one of the elementary events in B , we normalize the prob-
abilities of all the elementary events in B by dividing them by Pr fBg, so that they
sum to 1. The conditional probability of A given B is, therefore, the ratio of the
probability of event A \ B to the probability of event B . In the example above, A

is the event that both coins are heads, and B is the event that at least one coin is a
head. Thus, Pr fA j Bg D .1=4/=.3=4/ D 1=3.

Two events are independent if

Pr fA \ Bg D Pr fAg Pr fBg ; (C.15)

which is equivalent, if Pr fBg ¤ 0, to the condition

C.2 Probability 1193

Pr fA j Bg D Pr fAg :

For example, suppose that we flip two fair coins and that the outcomes are inde-
pendent. Then the probability of two heads is .1=2/.1=2/ D 1=4. Now suppose
that one event is that the first coin comes up heads and the other event is that the
coins come up differently. Each of these events occurs with probability 1=2, and
the probability that both events occur is 1=4; thus, according to the definition of
independence, the events are independent—even though you might think that both
events depend on the first coin. Finally, suppose that the coins are welded to-
gether so that they both fall heads or both fall tails and that the two possibilities are
equally likely. Then the probability that each coin comes up heads is 1=2, but the
probability that they both come up heads is 1=2 ¤ .1=2/.1=2/. Consequently, the
event that one comes up heads and the event that the other comes up heads are not
independent.

A collection A1; A2; : : : ; An of events is said to be pairwise independent if

Pr fAi \ Aj g D Pr fAigPr fAj g
for all 1 � i < j � n. We say that the events of the collection are (mutually)
independent if every k-subset Ai1 ; Ai2 ; : : : ; Aik of the collection, where 2 � k � n

and 1 � i1 < i2 < � � � < ik � n, satisfies

Pr fAi1 \ Ai2 \ � � � \ Aikg D Pr fAi1g Pr fAi2g � � � Pr fAikg :

For example, suppose we flip two fair coins. Let A1 be the event that the first coin
is heads, let A2 be the event that the second coin is heads, and let A3 be the event
that the two coins are different. We have

Pr fA1g D 1=2 ;

Pr fA2g D 1=2 ;

Pr fA3g D 1=2 ;

Pr fA1 \ A2g D 1=4 ;

Pr fA1 \ A3g D 1=4 ;

Pr fA2 \ A3g D 1=4 ;

Pr fA1 \ A2 \ A3g D 0 :

Since for 1 � i < j � 3, we have Pr fAi \ Aj g D Pr fAig Pr fAj g D 1=4, the
events A1, A2, and A3 are pairwise independent. The events are not mutually inde-
pendent, however, because Pr fA1 \ A2 \ A3g D 0 and Pr fA1g Pr fA2g Pr fA3g D
1=8 ¤ 0.

1194 Appendix C Counting and Probability

Bayes’s theorem

From the definition of conditional probability (C.14) and the commutative law
A \ B D B \ A, it follows that for two events A and B , each with nonzero
probability,

Pr fA \ Bg D Pr fBg Pr fA j Bg (C.16)

D Pr fAgPr fB j Ag :

Solving for Pr fA j Bg, we obtain

Pr fA j Bg D Pr fAg Pr fB j Ag
Pr fBg ; (C.17)

which is known as Bayes’s theorem. The denominator Pr fBg is a normalizing
constant, which we can reformulate as follows. Since B D .B \ A/ [.B \ A/,
and since B \ A and B \ A are mutually exclusive events,

Pr fBg D Pr fB \ Ag C Pr
˚
B \ A

D Pr fAgPr fB j Ag C Pr

˚
A

Pr
˚
B j A
 :

Substituting into equation (C.17), we obtain an equivalent form of Bayes’s theo-
rem:

Pr fA j Bg D Pr fAg Pr fB j Ag
Pr fAg Pr fB j Ag C Pr

˚
A

Pr
˚
B j A
 : (C.18)

Bayes’s theorem can simplify the computing of conditional probabilities. For
example, suppose that we have a fair coin and a biased coin that always comes up
heads. We run an experiment consisting of three independent events: we choose
one of the two coins at random, we flip that coin once, and then we flip it again.
Suppose that the coin we have chosen comes up heads both times. What is the
probability that it is biased?

We solve this problem using Bayes’s theorem. Let A be the event that we choose
the biased coin, and let B be the event that the chosen coin comes up heads both
times. We wish to determine Pr fA j Bg. We have Pr fAg D 1=2, Pr fB j Ag D 1,
Pr
˚
A

 D 1=2, and Pr

˚
B j A
 D 1=4; hence,

Pr fA j Bg D .1=2/ � 1
.1=2/ � 1C .1=2/ � .1=4/

D 4=5 :

Exercises

C.2-1
Professor Guildenstern flips a fair

?
coin twice. What is the probability that Professor Rosencrantz obtains more heads
Professor Rosencrantz flips a fair coin once.

than Professor Guildenstern

C.2 Probability 1195

C.2-2
Prove Boole’s inequality: For any finite or countably infinite sequence of events
A1; A2; : : :,

Pr fA1 [A2 [� � �g � Pr fA1g C Pr fA2g C � � � : (C.19)

C.2-3
Suppose we shuffle a deck of 10 cards, each bearing a distinct number from 1 to 10,
to mix the cards thoroughly. We then remove three cards, one at a time, from the
deck. What is the probability that we select the three cards in sorted (increasing)
order?

C.2-4
Prove that

Pr fA j Bg C Pr
˚
A j B
 D 1 :

C.2-5
Prove that for any collection of events A1; A2; : : : ; An,

Pr fA1 \ A2 \ � � � \ Ang D Pr fA1g � Pr fA2 j A1g � Pr fA3 j A1 \ A2g � � �
Pr fAn j A1 \ A2 \ � � � \ An�1g :

C.2-6 ?

Describe a procedure that takes as input two integers a and b such that 0 < a < b

and, using fair coin flips, produces as output heads with probability a=b and tails
with probability .b � a/=b. Give a bound on the expected number of coin flips,
which should be O.1/. (Hint: Represent a=b in binary.)

C.2-7 ?

Show how to construct a set of n events that are pairwise independent but such that
no subset of k > 2 of them is mutually independent.

C.2-8 ?

Two events A and B are conditionally independent, given C , if

Pr fA \ B j C g D Pr fA j C g � Pr fB j C g :

Give a simple but nontrivial example of two events that are not independent but are
conditionally independent given a third event.

C.2-9 ?

You are a contestant in a game show in which a prize is hidden behind one of
three curtains. You will win the prize if you select the correct curtain. After you

1196 Appendix C Counting and Probability

have picked one curtain but before the curtain is lifted, the emcee lifts one of the
other curtains, knowing that it will reveal an empty stage, and asks if you would
like to switch from your current selection to the remaining curtain. How would
your chances change if you switch? (This question is the celebrated Monty Hall
problem, named after a game-show host who often presented contestants with just
this dilemma.)

C.2-10 ?

A prison warden has randomly picked one prisoner among three to go free. The
other two will be executed. The guard knows which one will go free but is forbid-
den to give any prisoner information regarding his status. Let us call the prisoners
X , Y , and Z. Prisoner X asks the guard privately which of Y or Z will be exe-
cuted, arguing that since he already knows that at least one of them must die, the
guard won’t be revealing any information about his own status. The guard tells X

that Y is to be executed. Prisoner X feels happier now, since he figures that either
he or prisoner Z will go free, which means that his probability of going free is
now 1=2. Is he right, or are his chances still 1=3? Explain.

C.3 Discrete random variables

A (discrete) random variable X is a function from a finite or countably infinite
sample space S to the real numbers. It associates a real number with each possible
outcome of an experiment, which allows us to work with the probability distribu-
tion induced on the resulting set of numbers. Random variables can also be defined
for uncountably infinite sample spaces, but they raise technical issues that are un-
necessary to address for our purposes. Henceforth, we shall assume that random
variables are discrete.

For a random variable X and a real number x, we define the event X D x to be
fs 2 S W X.s/ D xg; thus,

Pr fX D xg D
X

s2S WX.s/Dx

Pr fsg :

The function

f .x/ D Pr fX D xg
is the probability density function of the random variable X . From the probability
axioms, Pr fX D xg � 0 and

P
x Pr fX D xg D 1.

As an example, consider the experiment of rolling a pair of ordinary, 6-sided
dice. There are 36 possible elementary events in the sample space. We assume

C.3 Discrete random variables 1197

that the probability distribution is uniform, so that each elementary event s 2 S is
equally likely: Pr fsg D 1=36. Define the random variable X to be the maximum of
the two values showing on the dice. We have Pr fX D 3g D 5=36, since X assigns
a value of 3 to 5 of the 36 possible elementary events, namely, .1; 3/, .2; 3/, .3; 3/,
.3; 2/, and .3; 1/.

We often define several random variables on the same sample space. If X and Y

are random variables, the function

f .x; y/ D Pr fX D x and Y D yg
is the joint probability density function of X and Y . For a fixed value y,

Pr fY D yg D
X

x

Pr fX D x and Y D yg ;

and similarly, for a fixed value x,

Pr fX D xg D
X

y

Pr fX D x and Y D yg :

Using the definition (C.14) of conditional probability, we have

Pr fX D x j Y D yg D Pr fX D x and Y D yg
Pr fY D yg :

We define two random variables X and Y to be independent if for all x and y, the
events X D x and Y D y are independent or, equivalently, if for all x and y, we
have Pr fX D x and Y D yg D Pr fX D xgPr fY D yg.

Given a set of random variables defined over the same sample space, we can
define new random variables as sums, products, or other functions of the original
variables.

Expected value of a random variable

The simplest and most useful summary of the distribution of a random variable is
the “average” of the values it takes on. The expected value (or, synonymously,
expectation or mean) of a discrete random variable X is

E ŒX� D
X

x

x � Pr fX D xg ; (C.20)

which is well defined if the sum is finite or converges absolutely. Sometimes the
expectation of X is denoted by
X or, when the random variable is apparent from
context, simply by
.

Consider a game in which you flip two fair coins. You earn $3 for each head but
lose $2 for each tail. The expected value of the random variable X representing

1198 Appendix C Counting and Probability

your earnings is

E ŒX� D 6 � Pr f2 H’sg C 1 � Pr f1 H, 1 Tg � 4 � Pr f2 T’sg
D 6.1=4/C 1.1=2/ � 4.1=4/

D 1 :

The expectation of the sum of two random variables is the sum of their expecta-
tions, that is,

E ŒX C Y � D E ŒX�C E ŒY � ; (C.21)

whenever E ŒX� and E ŒY � are defined. We call this property linearity of expecta-
tion, and it holds even if X and Y are not independent. It also extends to finite and
absolutely convergent summations of expectations. Linearity of expectation is the
key property that enables us to perform probabilistic analyses by using indicator
random variables (see Section 5.2).

If X is any random variable, any function g.x/ defines a new random vari-
able g.X/. If the expectation of g.X/ is defined, then

E Œg.X/� D
X

x

g.x/ � Pr fX D xg :

Letting g.x/ D ax, we have for any constant a,

E ŒaX� D aE ŒX� : (C.22)

Consequently, expectations are linear: for any two random variables X and Y and
any constant a,

E ŒaX C Y � D aE ŒX�C E ŒY � : (C.23)

When two random variables X and Y are independent and each has a defined
expectation,

E ŒXY � D
X

x

X
y

xy � Pr fX D x and Y D yg

D
X

x

X
y

xy � Pr fX D xg Pr fY D yg

D
 X

x

x � Pr fX D xg
! X

y

y � Pr fY D yg
!

D E ŒX� E ŒY � :

In general, when n random variables X1; X2; : : : ; Xn are mutually independent,

E ŒX1X2 � � �Xn� D E ŒX1� E ŒX2� � � �E ŒXn� : (C.24)

C.3 Discrete random variables 1199

When a random variable X takes on values from the set of natural numbers
N D f0; 1; 2; : : :g, we have a nice formula for its expectation:

E ŒX� D
1X

iD0

i � Pr fX D ig

D
1X

iD0

i.Pr fX � ig � Pr fX � i C 1g/

D
1X

iD1

Pr fX � ig ; (C.25)

since each term Pr fX � ig is added in i times and subtracted out i � 1 times
(except Pr fX � 0g, which is added in 0 times and not subtracted out at all).

When we apply a convex function f .x/ to a random variable X , Jensen’s in-
equality gives us

E Œf .X/� � f .E ŒX�/ ; (C.26)

provided that the expectations exist and are finite. (A function f .x/ is convex
if for all x and y and for all 0 � � � 1, we have f .�x C .1 � �/y/ �
�f .x/C .1� �/f .y/.)

Variance and standard deviation

The expected value of a random variable does not tell us how “spread out” the
variable’s values are. For example, if we have random variables X and Y for which
Pr fX D 1=4g D Pr fX D 3=4g D 1=2 and Pr fY D 0g D Pr fY D 1g D 1=2,
then both E ŒX� and E ŒY � are 1=2, yet the actual values taken on by Y are farther
from the mean than the actual values taken on by X .

The notion of variance mathematically expresses how far from the mean a ran-
dom variable’s values are likely to be. The variance of a random variable X with
mean E ŒX� is

Var ŒX� D E
�
.X � E ŒX�/2

�
D E

�
X2 � 2XE ŒX�C E2 ŒX�

�
D E

�
X2
� � 2E ŒXE ŒX��C E2 ŒX�

D E
�
X2
� � 2E2 ŒX�C E2 ŒX�

D E
�
X2
� � E2 ŒX� : (C.27)

To justify the equality E ŒE2 ŒX�� D E2 ŒX�, note that because E ŒX� is a real num-
ber and not a random variable, so is E2 ŒX�. The equality E ŒXE ŒX�� D E2 ŒX�

1200 Appendix C Counting and Probability

follows from equation (C.22), with a D E ŒX�. Rewriting equation (C.27) yields
an expression for the expectation of the square of a random variable:

E
�
X2
� D Var ŒX�C E2 ŒX� : (C.28)

The variance of a random variable X and the variance of aX are related (see
Exercise C.3-10):

Var ŒaX� D a2Var ŒX� :

When X and Y are independent random variables,

Var ŒX C Y � D Var ŒX�C Var ŒY � :

In general, if n random variables X1; X2; : : : ; Xn are pairwise independent, then

Var

"
nX

iD1

Xi

#
D

nX
iD1

Var ŒXi � : (C.29)

The standard deviation of a random variable X is the nonnegative square root
of the variance of X . The standard deviation of a random variable X is sometimes
denoted 	X or simply 	 when the random variable X is understood from context.
With this notation, the variance of X is denoted 	2.

Exercises

C.3-1
Suppose we roll two ordinary, 6-sided dice. What is the expectation of the sum
of the two values showing? What is the expectation of the maximum of the two
values showing?

C.3-2
An array AŒ1 : : n� contains n distinct numbers that are randomly ordered, with each
permutation of the n numbers being equally likely. What is the expectation of the
index of the maximum element in the array? What is the expectation of the index
of the minimum element in the array?

C.3-3
A carnival game consists of three dice in a cage. A player can bet a dollar on any
of the numbers 1 through 6. The cage is shaken, and the payoff is as follows. If the
player’s number doesn’t appear on any of the dice, he loses his dollar. Otherwise,
if his number appears on exactly k of the three dice, for k D 1; 2; 3, he keeps his
dollar and wins k more dollars. What is his expected gain from playing the carnival
game once?

C.4 The geometric and binomial distributions 1201

C.3-4
Argue that if X and Y are nonnegative random variables, then

E Œmax.X; Y /� � E ŒX�C E ŒY � :

C.3-5 ?

Let X and Y be independent random variables. Prove that f .X/ and g.Y / are
independent for any choice of functions f and g.

C.3-6 ?

Let X be a nonnegative random variable, and suppose that E ŒX� is well defined.
ProveMarkov’s inequality:

Pr fX � tg � E ŒX� =t (C.30)

for all t > 0.

C.3-7 ?

Let S be a sample space, and let X and X 0 be random variables such that
X.s/ � X 0.s/ for all s 2 S . Prove that for any real constant t ,

Pr fX � tg � Pr fX 0 � tg :

C.3-8
Which is larger: the expectation of the square of a random variable, or the square
of its expectation?

C.3-9
Show that for any random variable X that takes on only the values 0 and 1, we have
Var ŒX� D E ŒX� E Œ1 �X�.

C.3-10
Prove that Var ŒaX� D a2Var ŒX� from the definition (C.27) of variance.

C.4 The geometric and binomial distributions

We can think of a coin flip as an instance of a Bernoulli trial, which is an experi-
ment with only two possible outcomes: success, which occurs with probability p,
and failure, which occurs with probability q D 1�p. When we speak of Bernoulli
trials collectively, we mean that the trials are mutually independent and, unless we
specifically say otherwise, that each has the same probability p for success. Two

1202 Appendix C Counting and Probability

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.30

0.35

k

�
2

3

�k�1 �
1

3

�

Figure C.1 A geometric distribution with probability p D 1=3 of success and a probability
q D 1 � p of failure. The expectation of the distribution is 1=p D 3.

important distributions arise from Bernoulli trials: the geometric distribution and
the binomial distribution.

The geometric distribution

Suppose we have a sequence of Bernoulli trials, each with a probability p of suc-
cess and a probability q D 1�p of failure. How many trials occur before we obtain
a success? Let us define the random variable X be the number of trials needed to
obtain a success. Then X has values in the range f1; 2; : : :g, and for k � 1,

Pr fX D kg D qk�1p ; (C.31)

since we have k � 1 failures before the one success. A probability distribution sat-
isfying equation (C.31) is said to be a geometric distribution. Figure C.1 illustrates
such a distribution.

C.4 The geometric and binomial distributions 1203

Assuming that q < 1, we can calculate the expectation of a geometric distribu-
tion using identity (A.8):

E ŒX� D
1X

kD1

kqk�1p

D p

q

1X
kD0

kqk

D p

q
� q

.1� q/2

D p

q
� q

p2

D 1=p : (C.32)

Thus, on average, it takes 1=p trials before we obtain a success, an intuitive result.
The variance, which can be calculated similarly, but using Exercise A.1-3, is

Var ŒX� D q=p2 : (C.33)

As an example, suppose we repeatedly roll two dice until we obtain either a
seven or an eleven. Of the 36 possible outcomes, 6 yield a seven and 2 yield an
eleven. Thus, the probability of success is p D 8=36 D 2=9, and we must roll
1=p D 9=2 D 4:5 times on average to obtain a seven or eleven.

The binomial distribution

How many successes occur during n Bernoulli trials, where a success occurs with
probability p and a failure with probability q D 1 � p? Define the random vari-
able X to be the number of successes in n trials. Then X has values in the range
f0; 1; : : : ; ng, and for k D 0; 1; : : : ; n,

Pr fX D kg D

n

k

!
pkqn�k ; (C.34)

since there are
�

n

k

�
ways to pick which k of the n trials are successes, and the

probability that each occurs is pkqn�k . A probability distribution satisfying equa-
tion (C.34) is said to be a binomial distribution. For convenience, we define the
family of binomial distributions using the notation

b.kIn; p/ D

n

k

!
pk.1� p/n�k : (C.35)

Figure C.2 illustrates a binomial distribution. The name “binomial” comes from the
right-hand side of equation (C.34) being the kth term of the expansion of .pCq/n.
Consequently, since p C q D 1,

1204 Appendix C Counting and Probability

0.05

0.10

0.15

0.20

0.25

k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b (k; 15, 1/3)

Figure C.2 The binomial distribution b.kI 15; 1=3/ resulting from n D 15 Bernoulli trials, each
with probability p D 1=3 of success. The expectation of the distribution is np D 5.

nX
kD0

b.kIn; p/ D 1 ; (C.36)

as axiom 2 of the probability axioms requires.
We can compute the expectation of a random variable having a binomial distri-

bution from equations (C.8) and (C.36). Let X be a random variable that follows
the binomial distribution b.kIn; p/, and let q D 1�p. By the definition of expec-
tation, we have

E ŒX� D
nX

kD0

k � Pr fX D kg

D
nX

kD0

k � b.kIn; p/

D
nX

kD1

k

n

k

!
pkqn�k

D np

nX
kD1

n � 1

k � 1

!
pk�1qn�k (by equation (C.8))

D np

n�1X
kD0

n � 1

k

!
pkq.n�1/�k

C.4 The geometric and binomial distributions 1205

D np

n�1X
kD0

b.kIn � 1; p/

D np (by equation (C.36)) . (C.37)

By using the linearity of expectation, we can obtain the same result with sub-
stantially less algebra. Let Xi be the random variable describing the number of
successes in the i th trial. Then E ŒXi � D p � 1 C q � 0 D p, and by linearity of
expectation (equation (C.21)), the expected number of successes for n trials is

E ŒX� D E

"
nX

iD1

Xi

#

D
nX

iD1

E ŒXi �

D
nX

iD1

p

D np : (C.38)

We can use the same approach to calculate the variance of the distribution. Using
equation (C.27), we have Var ŒXi � D E ŒX2

i � � E2 ŒXi �. Since Xi only takes on the
values 0 and 1, we have X2

i D Xi , which implies E ŒX2
i � D E ŒXi � D p. Hence,

Var ŒXi � D p � p2 D p.1� p/ D pq : (C.39)

To compute the variance of X , we take advantage of the independence of the n

trials; thus, by equation (C.29),

Var ŒX� D Var

"
nX

iD1

Xi

#

D
nX

iD1

Var ŒXi �

D
nX

iD1

pq

D npq : (C.40)

As Figure C.2 shows, the binomial distribution b.kIn; p/ increases with k until
it reaches the mean np, and then it decreases. We can prove that the distribution
always behaves in this manner by looking at the ratio of successive terms:

1206 Appendix C Counting and Probability

b.kIn; p/

b.k � 1In; p/
D

�
n

k

�
pkqn�k�

n

k�1

�
pk�1qn�kC1

D nŠ.k � 1/Š.n � k C 1/Šp

kŠ.n � k/ŠnŠq

D .n � k C 1/p

kq
(C.41)

D 1C .nC 1/p � k

kq
:

This ratio is greater than 1 precisely when .n C 1/p � k is positive. Conse-
quently, b.kIn; p/ > b.k � 1In; p/ for k < .nC 1/p (the distribution increases),
and b.kIn; p/ < b.k � 1In; p/ for k > .n C 1/p (the distribution decreases).
If k D .nC 1/p is an integer, then b.kIn; p/ D b.k � 1In; p/, and so the distri-
bution then has two maxima: at k D .nC1/p and at k�1 D .nC1/p�1 D np � q.
Otherwise, it attains a maximum at the unique integer k that lies in the range
np � q < k < .nC 1/p.

The following lemma provides an upper bound on the binomial distribution.

Lemma C.1
Let n � 0, let 0 < p < 1, let q D 1 � p, and let 0 � k � n. Then

b.kIn; p/ �
�np

k

�k � nq

n � k

�n�k

:

Proof Using equation (C.6), we have

b.kIn; p/ D

n

k

!
pkqn�k

�
�n

k

�k � n

n � k

�n�k

pkqn�k

D
�np

k

�k � nq

n � k

�n�k

:

Exercises

C.4-1
Verify axiom 2 of the probability axioms for the geometric distribution.

C.4-2
How many times on average must we flip 6 fair coins before we obtain 3 heads
and 3 tails?

C.4 The geometric and binomial distributions 1207

C.4-3
Show that b.kIn; p/ D b.n � kIn; q/, where q D 1 � p.

C.4-4
Show that value of the maximum of the binomial distribution b.kIn; p/ is approx-
imately 1=

p
2�npq, where q D 1 � p.

C.4-5 ?

Show that the probability of no successes in n Bernoulli trials, each with probability
p D 1=n, is approximately 1=e. Show that the probability of exactly one success
is also approximately 1=e.

C.4-6 ?

Professor Rosencrantz flips a fair coin n times, and so does Professor Guildenstern.
Show that the probability that they get the same number of heads is

�
2n

n

�
=4n. (Hint:

For Professor Rosencrantz, call a head a success; for Professor Guildenstern, call
a tail a success.) Use your argument to verify the identity

nX
kD0

n

k

!2

D

2n

n

!
:

C.4-7 ?

Show that for 0 � k � n,

b.kIn; 1=2/ � 2n H.k=n/�n ;

where H.x/ is the entropy function (C.7).

C.4-8 ?

Consider n Bernoulli trials, where for i D 1; 2; : : : ; n, the i th trial has probabil-
ity pi of success, and let X be the random variable denoting the total number of
successes. Let p � pi for all i D 1; 2; : : : ; n. Prove that for 1 � k � n,

Pr fX < kg �
k�1X
iD0

b.i In; p/ :

C.4-9 ?

Let X be the random variable for the total number of successes in a set A of n

Bernoulli trials, where the i th trial has a probability pi of success, and let X 0

be the random variable for the total number of successes in a second set A0 of n

Bernoulli trials, where the i th trial has a probability p0
i � pi of success. Prove that

for 0 � k � n,

1208 Appendix C Counting and Probability

Pr fX 0 � kg � Pr fX � kg :

(Hint: Show how to obtain the Bernoulli trials in A0 by an experiment involving
the trials of A, and use the result of Exercise C.3-7.)

? C.5 The tails of the binomial distribution

The probability of having at least, or at most, k successes in n Bernoulli trials,
each with probability p of success, is often of more interest than the probability of
having exactly k successes. In this section, we investigate the tails of the binomial
distribution: the two regions of the distribution b.kIn; p/ that are far from the
mean np. We shall prove several important bounds on (the sum of all terms in) a
tail.

We first provide a bound on the right tail of the distribution b.kIn; p/. We can
determine bounds on the left tail by inverting the roles of successes and failures.

Theorem C.2
Consider a sequence of n Bernoulli trials, where success occurs with probability p.
Let X be the random variable denoting the total number of successes. Then for
0 � k � n, the probability of at least k successes is

Pr fX � kg D
nX

iDk

b.i In; p/

�

n

k

!
pk :

Proof For S � f1; 2; : : : ; ng, we let AS denote the event that the i th trial is a
success for every i 2 S . Clearly Pr fASg D pk if jS j D k. We have

Pr fX � kg D Pr fthere exists S � f1; 2; : : : ; ng W jS j D k and ASg
D Pr

� [
S�f1;2;:::;ngWjS jDk

AS

�
�

X
S�f1;2;:::;ngWjS jDk

Pr fASg (by inequality (C.19))

D

n

k

!
pk :

C.5 The tails of the binomial distribution 1209

The following corollary restates the theorem for the left tail of the binomial
distribution. In general, we shall leave it to you to adapt the proofs from one tail to
the other.

Corollary C.3
Consider a sequence of n Bernoulli trials, where success occurs with probabil-
ity p. If X is the random variable denoting the total number of successes, then for
0 � k � n, the probability of at most k successes is

Pr fX � kg D
kX

iD0

b.i In; p/

�

n

n � k

!
.1� p/n�k

D

n

k

!
.1� p/n�k :

Our next bound concerns the left tail of the binomial distribution. Its corollary
shows that, far from the mean, the left tail diminishes exponentially.

Theorem C.4
Consider a sequence of n Bernoulli trials, where success occurs with probability p

and failure with probability q D 1�p. Let X be the random variable denoting the
total number of successes. Then for 0 < k < np, the probability of fewer than k

successes is

Pr fX < kg D
k�1X
iD0

b.i In; p/

<
kq

np � k
b.kIn; p/ :

Proof We bound the series
Pk�1

iD0 b.i In; p/ by a geometric series using the tech-
nique from Section A.2, page 1151. For i D 1; 2; : : : ; k, we have from equa-
tion (C.41),
b.i � 1In; p/

b.i In; p/
D iq

.n � i C 1/p

<
iq

.n � i/p

� kq

.n � k/p
:

1210 Appendix C Counting and Probability

If we let

x D kq

.n � k/p

<
kq

.n � np/p

D kq

nqp

D k

np

< 1 ;

it follows that

b.i � 1In; p/ < x b.i In; p/

for 0 < i � k. Iteratively applying this inequality k � i times, we obtain

b.i In; p/ < xk�i b.kIn; p/

for 0 � i < k, and hence

k�1X
iD0

b.i In; p/ <

k�1X
iD0

xk�ib.kIn; p/

< b.kIn; p/

1X
iD0

xi

D x

1 � x
b.kIn; p/

D kq

np � k
b.kIn; p/ :

Corollary C.5
Consider a sequence of n Bernoulli trials, where success occurs with probability p

and failure with probability q D 1�p. Then for 0 < k � np=2, the probability of
fewer than k successes is less than one half of the probability of fewer than k C 1

successes.

Proof Because k � np=2, we have

kq

np � k
� .np=2/q

np � .np=2/

C.5 The tails of the binomial distribution 1211

D .np=2/q

np=2

� 1 ; (C.42)

since q � 1. Letting X be the random variable denoting the number of successes,
Theorem C.4 and inequality (C.42) imply that the probability of fewer than k suc-
cesses is

Pr fX < kg D
k�1X
iD0

b.i In; p/ < b.kIn; p/ :

Thus we have

Pr fX < kg
Pr fX < k C 1g D

Pk�1

iD0 b.i In; p/Pk

iD0 b.i In; p/

D
Pk�1

iD0 b.i In; p/Pk�1

iD0 b.i In; p/C b.kIn; p/

< 1=2 ;

since
Pk�1

iD0 b.i In; p/ < b.kIn; p/.

Bounds on the right tail follow similarly. Exercise C.5-2 asks you to prove them.

Corollary C.6
Consider a sequence of n Bernoulli trials, where success occurs with probability p.
Let X be the random variable denoting the total number of successes. Then for
np < k < n, the probability of more than k successes is

Pr fX > kg D
nX

iDkC1

b.i In; p/

<
.n � k/p

k � np
b.kIn; p/ :

Corollary C.7
Consider a sequence of n Bernoulli trials, where success occurs with probability p

and failure with probability q D 1 � p. Then for .np C n/=2 < k < n, the
probability of more than k successes is less than one half of the probability of
more than k � 1 successes.

The next theorem considers n Bernoulli trials, each with a probability pi of
success, for i D 1; 2; : : : ; n. As the subsequent corollary shows, we can use the

1212 Appendix C Counting and Probability

theorem to provide a bound on the right tail of the binomial distribution by setting
pi D p for each trial.

Theorem C.8
Consider a sequence of n Bernoulli trials, where in the i th trial, for i D 1; 2; : : : ; n,
success occurs with probability pi and failure occurs with probability qi D 1�pi .
Let X be the random variable describing the total number of successes, and let

 D E ŒX�. Then for r >
,

Pr fX �
 � rg �
�
e

r

�r

:

Proof Since for any ˛ > 0, the function e˛x is strictly increasing in x,

Pr fX �
 � rg D Pr
˚
e˛.X�
/ � e˛r

; (C.43)

where we will determine ˛ later. Using Markov’s inequality (C.30), we obtain

Pr
˚
e˛.X�
/ � e˛r

 � E
�
e˛.X�
/

�
e�˛r : (C.44)

The bulk of the proof consists of bounding E
�
e˛.X�
/

�
and substituting a suit-

able value for ˛ in inequality (C.44). First, we evaluate E
�
e˛.X�
/

�
. Using the

technique of indicator random variables (see Section 5.2), let Xi D I fthe i th
Bernoulli trial is a successg for i D 1; 2; : : : ; n; that is, Xi is the random vari-
able that is 1 if the i th Bernoulli trial is a success and 0 if it is a failure. Thus,

X D
nX

iD1

Xi ;

and by linearity of expectation,

 D E ŒX� D E

"
nX

iD1

Xi

#
D

nX
iD1

E ŒXi � D
nX

iD1

pi ;

which implies

X �
 D
nX

iD1

.Xi � pi / :

To evaluate E
�
e˛.X�
/

�
, we substitute for X �
, obtaining

E
�
e˛.X�
/

� D E
�
e˛

Pn
iD1.Xi �pi /

�
D E

"
nY

iD1

e˛.Xi �pi /

#

D
nY

iD1

E
�
e˛.Xi �pi /

�
;

C.5 The tails of the binomial distribution 1213

which follows from (C.24), since the mutual independence of the random vari-
ables Xi implies the mutual independence of the random variables e˛.Xi �pi / (see
Exercise C.3-5). By the definition of expectation,

E
�
e˛.Xi �pi /

� D e˛.1�pi /pi C e˛.0�pi /qi

D pie
˛qi C qie

�˛pi

� pie
˛ C 1 (C.45)

� exp.pie
˛/ ;

where exp.x/ denotes the exponential function: exp.x/ D ex . (Inequality (C.45)
follows from the inequalities ˛ > 0, qi � 1, e˛qi � e˛, and e�˛pi � 1, and the last
line follows from inequality (3.12).) Consequently,

E
�
e˛.X�
/

� D nY
iD1

E
�
e˛.Xi �pi /

�
�

nY
iD1

exp.pie
˛/

D exp

nX

iD1

pie
˛

!
D exp.
e˛/ ; (C.46)

since
 D Pn

iD1 pi . Therefore, from equation (C.43) and inequalities (C.44)
and (C.46), it follows that

Pr fX �
 � rg � exp.
e˛ � ˛r/ : (C.47)

Choosing ˛ D ln.r=
/ (see Exercise C.5-7), we obtain

Pr fX �
 � rg � exp.
eln.r=
/ � r ln.r=
//

D exp.r � r ln.r=
//

D er

.r=
/r

D
�
e

r

�r

:

When applied to Bernoulli trials in which each trial has the same probability of
success, Theorem C.8 yields the following corollary bounding the right tail of a
binomial distribution.

1214 Appendix C Counting and Probability

Corollary C.9
Consider a sequence of n Bernoulli trials, where in each trial success occurs with
probability p and failure occurs with probability q D 1 � p. Then for r > np,

Pr fX � np � rg D
nX

kDdnpCre
b.kIn; p/

�
�npe

r

�r

:

Proof By equation (C.37), we have
 D E ŒX� D np.

Exercises

C.5-1 ?

Which is less likely: obtaining no heads when you flip a fair coin n times, or
obtaining fewer than n heads when you flip the coin 4n times?

C.5-2 ?

Prove Corollaries C.6 and C.7.

C.5-3 ?

Show that
k�1X
iD0

n

i

!
ai < .aC 1/n k

na � k.aC 1/
b.kIn; a=.aC 1//

for all a > 0 and all k such that 0 < k < na=.aC 1/.

C.5-4 ?

Prove that if 0 < k < np, where 0 < p < 1 and q D 1� p, then

k�1X
iD0

piqn�i <
kq

np � k

�np

k

�k � nq

n � k

�n�k

:

C.5-5 ?

Show that the conditions of Theorem C.8 imply that

Pr f
 �X � rg �
�

.n �
/e

r

�r

:

Similarly, show that the conditions of Corollary C.9 imply that

Pr fnp �X � rg �
�nqe

r

�r

:

Problems for Appendix C 1215

C.5-6 ?

Consider a sequence of n Bernoulli trials, where in the i th trial, for i D 1; 2; : : : ; n,
success occurs with probability pi and failure occurs with probability qi D 1�pi .
Let X be the random variable describing the total number of successes, and let

 D E ŒX�. Show that for r � 0,

Pr fX �
 � rg � e�r2=2n :

(Hint: Prove that pie
˛qi C qie

�˛pi � e˛2=2. Then follow the outline of the proof
of Theorem C.8, using this inequality in place of inequality (C.45).)

C.5-7 ?

Show that choosing ˛ D ln.r=
/ minimizes the right-hand side of inequal-
ity (C.47).

Problems

C-1 Balls and bins
In this problem, we investigate the effect of various assumptions on the number of
ways of placing n balls into b distinct bins.

a. Suppose that the n balls are distinct and that their order within a bin does not
matter. Argue that the number of ways of placing the balls in the bins is bn.

b. Suppose that the balls are distinct and that the balls in each bin are ordered.
Prove that there are exactly .bC n� 1/Š=.b � 1/Š ways to place the balls in the
bins. (Hint: Consider the number of ways of arranging n distinct balls and b�1

indistinguishable sticks in a row.)

c. Suppose that the balls are identical, and hence their order within a bin does not
matter. Show that the number of ways of placing the balls in the bins is

�
bCn�1

n

�
.

(Hint: Of the arrangements in part (b), how many are repeated if the balls are
made identical?)

d. Suppose that the balls are identical and that no bin may contain more than one
ball, so that n � b. Show that the number of ways of placing the balls is

�
b

n

�
.

e. Suppose that the balls are identical and that no bin may be left empty. Assuming
that n � b, show that the number of ways of placing the balls is

�
n�1

b�1

�
.

1216 Appendix C Counting and Probability

Appendix notes

The first general methods for solving probability problems were discussed in a
famous correspondence between B. Pascal and P. de Fermat, which began in 1654,
and in a book by C. Huygens in 1657. Rigorous probability theory began with the
work of J. Bernoulli in 1713 and A. De Moivre in 1730. Further developments of
the theory were provided by P.-S. Laplace, S.-D. Poisson, and C. F. Gauss.

Sums of random variables were originally studied by P. L. Chebyshev and A. A.
Markov. A. N. Kolmogorov axiomatized probability theory in 1933. Chernoff [66]
and Hoeffding [173] provided bounds on the tails of distributions. Seminal work
in random combinatorial structures was done by P. Erdös.

Knuth [209] and Liu [237] are good references for elementary combinatorics
and counting. Standard textbooks such as Billingsley [46], Chung [67], Drake [95],
Feller [104], and Rozanov [300] offer comprehensive introductions to probability.

D Matrices

Matrices arise in numerous applications, including, but by no means limited to,
scientific computing. If you have seen matrices before, much of the material in this
appendix will be familiar to you, but some of it might be new. Section D.1 covers
basic matrix definitions and operations, and Section D.2 presents some basic matrix
properties.

D.1 Matrices and matrix operations

In this section, we review some basic concepts of matrix theory and some funda-
mental properties of matrices.

Matrices and vectors

A matrix is a rectangular array of numbers. For example,

A D
�

a11 a12 a13

a21 a22 a23

�
D

�
1 2 3

4 5 6

�
(D.1)

is a 2 	 3 matrix A D .aij /, where for i D 1; 2 and j D 1; 2; 3, we denote the
element of the matrix in row i and column j by aij . We use uppercase letters
to denote matrices and corresponding subscripted lowercase letters to denote their
elements. We denote the set of all m	n matrices with real-valued entries by R

m�n

and, in general, the set of m	n matrices with entries drawn from a set S by Sm�n.
The transpose of a matrix A is the matrix AT obtained by exchanging the rows

and columns of A. For the matrix A of equation (D.1),

1218 Appendix D Matrices

AT D
�

1 4

2 5

3 6

�
:

A vector is a one-dimensional array of numbers. For example,

x D
�

2

3

5

�
is a vector of size 3. We sometimes call a vector of length n an n-vector. We
use lowercase letters to denote vectors, and we denote the i th element of a size-n
vector x by xi , for i D 1; 2; : : : ; n. We take the standard form of a vector to be
as a column vector equivalent to an n 	 1 matrix; the corresponding row vector is
obtained by taking the transpose:

xT D . 2 3 5 / :

The unit vector ei is the vector whose i th element is 1 and all of whose other
elements are 0. Usually, the size of a unit vector is clear from the context.

A zero matrix is a matrix all of whose entries are 0. Such a matrix is often
denoted 0, since the ambiguity between the number 0 and a matrix of 0s is usually
easily resolved from context. If a matrix of 0s is intended, then the size of the
matrix also needs to be derived from the context.

Square matrices

Square n 	 n matrices arise frequently. Several special cases of square matrices
are of particular interest:

1. A diagonal matrix has aij D 0 whenever i ¤ j . Because all of the off-diagonal
elements are zero, we can specify the matrix by listing the elements along the
diagonal:

diag.a11; a22; : : : ; ann/ D

˙
a11 0 : : : 0

0 a22 : : : 0
:::

:::
: : :

:::

0 0 : : : ann

�
:

2. The n 	 n identity matrix In is a diagonal matrix with 1s along the diagonal:

In D diag.1; 1; : : : ; 1/

D

˙
1 0 : : : 0

0 1 : : : 0
:::

:::
: : :

:::

0 0 : : : 1

�
:

D.1 Matrices and matrix operations 1219

When I appears without a subscript, we derive its size from the context. The i th
column of an identity matrix is the unit vector ei .

3. A tridiagonal matrix T is one for which tij D 0 if ji � j j > 1. Nonzero entries
appear only on the main diagonal, immediately above the main diagonal (ti;iC1

for i D 1; 2; : : : ; n � 1), or immediately below the main diagonal (tiC1;i for
i D 1; 2; : : : ; n � 1):

T D

�
t11 t12 0 0 : : : 0 0 0

t21 t22 t23 0 : : : 0 0 0

0 t32 t33 t34 : : : 0 0 0
:::

:::
:::

:::
: : :

:::
:::

:::

0 0 0 0 : : : tn�2;n�2 tn�2;n�1 0

0 0 0 0 : : : tn�1;n�2 tn�1;n�1 tn�1;n

0 0 0 0 : : : 0 tn;n�1 tnn

˘
:

4. An upper-triangular matrix U is one for which uij D 0 if i > j . All entries
below the diagonal are zero:

U D

˙
u11 u12 : : : u1n

0 u22 : : : u2n

:::
:::

: : :
:::

0 0 : : : unn

�
:

An upper-triangular matrix is unit upper-triangular if it has all 1s along the
diagonal.

5. A lower-triangular matrix L is one for which lij D 0 if i < j . All entries
above the diagonal are zero:

L D

˙
l11 0 : : : 0

l21 l22 : : : 0
:::

:::
: : :

:::

ln1 ln2 : : : lnn

�
:

A lower-triangular matrix is unit lower-triangular if it has all 1s along the
diagonal.

1220 Appendix D Matrices

6. A permutation matrix P has exactly one 1 in each row or column, and 0s
elsewhere. An example of a permutation matrix is

P D

ˇ
0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

�
:

Such a matrix is called a permutation matrix because multiplying a vector x

by a permutation matrix has the effect of permuting (rearranging) the elements
of x. Exercise D.1-4 explores additional properties of permutation matrices.

7. A symmetric matrix A satisfies the condition A D AT. For example,�
1 2 3

2 6 4

3 4 5

�
is a symmetric matrix.

Basic matrix operations

The elements of a matrix or vector are numbers from a number system, such as
the real numbers, the complex numbers, or integers modulo a prime. The number
system defines how to add and multiply numbers. We can extend these definitions
to encompass addition and multiplication of matrices.

We define matrix addition as follows. If A D .aij / and B D .bij / are m 	 n

matrices, then their matrix sum C D .cij / D ACB is the m	n matrix defined by

cij D aij C bij

for i D 1; 2; : : : ; m and j D 1; 2; : : : ; n. That is, matrix addition is performed
componentwise. A zero matrix is the identity for matrix addition:

AC 0 D A D 0C A :

If � is a number and A D .aij / is a matrix, then �A D .�aij / is the scalar
multiple of A obtained by multiplying each of its elements by �. As a special case,
we define the negative of a matrix A D .aij / to be �1 � A D �A, so that the ij th
entry of �A is �aij . Thus,

AC .�A/ D 0 D .�A/C A :

D.1 Matrices and matrix operations 1221

We use the negative of a matrix to define matrix subtraction: A�B D AC .�B/.
We definematrix multiplication as follows. We start with two matrices A and B

that are compatible in the sense that the number of columns of A equals the number
of rows of B . (In general, an expression containing a matrix product AB is always
assumed to imply that matrices A and B are compatible.) If A D .aik/ is an m	 n

matrix and B D .bkj / is an n	p matrix, then their matrix product C D AB is the
m 	 p matrix C D .cij /, where

cij D
nX

kD1

aikbkj (D.2)

for i D 1; 2; : : : ; m and j D 1; 2; : : : ; p. The procedure SQUARE-MATRIX-
MULTIPLY in Section 4.2 implements matrix multiplication in the straightfor-
ward manner based on equation (D.2), assuming that the matrices are square:
m D n D p. To multiply n 	 n matrices, SQUARE-MATRIX-MULTIPLY per-
forms n3 multiplications and n2.n� 1/ additions, and so its running time is ‚.n3/.

Matrices have many (but not all) of the algebraic properties typical of numbers.
Identity matrices are identities for matrix multiplication:

ImA D AIn D A

for any m 	 n matrix A. Multiplying by a zero matrix gives a zero matrix:

A 0 D 0 :

Matrix multiplication is associative:

A.BC / D .AB/C

for compatible matrices A, B , and C . Matrix multiplication distributes over addi-
tion:

A.B C C / D AB C AC ;

.B C C /D D BD C CD :

For n > 1, multiplication of n 	 n matrices is not commutative. For example, if

A D
�

0 1

0 0

�
and B D

�
0 0

1 0

�
, then

AB D
�

1 0

0 0

�
and

BA D
�

0 0

0 1

�
:

1222 Appendix D Matrices

We define matrix-vector products or vector-vector products as if the vector were
the equivalent n 	 1 matrix (or a 1 	 n matrix, in the case of a row vector). Thus,
if A is an m 	 n matrix and x is an n-vector, then Ax is an m-vector. If x and y

are n-vectors, then

xTy D
nX

iD1

xiyi

is a number (actually a 1	 1 matrix) called the inner product of x and y. The ma-
trix xyT is an n	n matrix Z called the outer product of x and y, with ´ij D xiyj .
The (euclidean) norm kxk of an n-vector x is defined by

kxk D .x2
1 C x2

2 C � � � C x2
n/1=2

D .xTx/1=2 :

Thus, the norm of x is its length in n-dimensional euclidean space.

Exercises

D.1-1
Show that if A and B are symmetric n	n matrices, then so are ACB and A�B .

D.1-2
Prove that .AB/T D BTAT and that ATA is always a symmetric matrix.

D.1-3
Prove that the product of two lower-triangular matrices is lower-triangular.

D.1-4
Prove that if P is an n 	 n permutation matrix and A is an n 	 n matrix, then the
matrix product PA is A with its rows permuted, and the matrix product AP is A

with its columns permuted. Prove that the product of two permutation matrices is
a permutation matrix.

D.2 Basic matrix properties

In this section, we define some basic properties pertaining to matrices: inverses,
linear dependence and independence, rank, and determinants. We also define the
class of positive-definite matrices.

D.2 Basic matrix properties 1223

Matrix inverses, ranks, and determinants

We define the inverse of an n 	 n matrix A to be the n 	 n matrix, denoted A�1 (if
it exists), such that AA�1 D In D A�1A. For example,�

1 1

1 0

��1

D
�

0 1

1 �1

�
:

Many nonzero n 	 n matrices do not have inverses. A matrix without an inverse is
called noninvertible, or singular. An example of a nonzero singular matrix is�

1 0

1 0

�
:

If a matrix has an inverse, it is called invertible, or nonsingular. Matrix inverses,
when they exist, are unique. (See Exercise D.2-1.) If A and B are nonsingular
n 	 n matrices, then

.BA/�1 D A�1B�1 :

The inverse operation commutes with the transpose operation:

.A�1/T D .AT/�1 :

The vectors x1; x2; : : : ; xn are linearly dependent if there exist coefficients
c1; c2; : : : ; cn, not all of which are zero, such that c1x1 C c2x2 C � � � C cnxn D 0.
The row vectors x1 D . 1 2 3 /, x2 D . 2 6 4 /, and x3 D . 4 11 9 / are
linearly dependent, for example, since 2x1 C 3x2 � 2x3 D 0. If vectors are not
linearly dependent, they are linearly independent. For example, the columns of an
identity matrix are linearly independent.

The column rank of a nonzero m 	 n matrix A is the size of the largest set
of linearly independent columns of A. Similarly, the row rank of A is the size
of the largest set of linearly independent rows of A. A fundamental property of
any matrix A is that its row rank always equals its column rank, so that we can
simply refer to the rank of A. The rank of an m	 n matrix is an integer between 0

and min.m; n/, inclusive. (The rank of a zero matrix is 0, and the rank of an n 	 n

identity matrix is n.) An alternate, but equivalent and often more useful, definition
is that the rank of a nonzero m 	 n matrix A is the smallest number r such that
there exist matrices B and C of respective sizes m 	 r and r 	 n such that

A D BC :

A square n 	 n matrix has full rank if its rank is n. An m 	 n matrix has full
column rank if its rank is n. The following theorem gives a fundamental property
of ranks.

1224 Appendix D Matrices

Theorem D.1
A square matrix has full rank if and only if it is nonsingular.

A null vector for a matrix A is a nonzero vector x such that Ax D 0. The
following theorem (whose proof is left as Exercise D.2-7) and its corollary relate
the notions of column rank and singularity to null vectors.

Theorem D.2
A matrix A has full column rank if and only if it does not have a null vector.

Corollary D.3
A square matrix A is singular if and only if it has a null vector.

The ij thminor of an n	n matrix A, for n > 1, is the .n�1/	.n�1/ matrix AŒij �

obtained by deleting the i th row and j th column of A. We define the determinant
of an n 	 n matrix A recursively in terms of its minors by

det.A/ D

‚
a11 if n D 1 ;

nX
j D1

.�1/1Cj a1j det.AŒ1j �/ if n > 1 :

The term .�1/iCj det.AŒij �/ is known as the cofactor of the element aij .
The following theorems, whose proofs are omitted here, express fundamental

properties of the determinant.

Theorem D.4 (Determinant properties)
The determinant of a square matrix A has the following properties:

� If any row or any column of A is zero, then det.A/ D 0.
� The determinant of A is multiplied by � if the entries of any one row (or any

one column) of A are all multiplied by �.
� The determinant of A is unchanged if the entries in one row (respectively, col-

umn) are added to those in another row (respectively, column).
� The determinant of A equals the determinant of AT.
� The determinant of A is multiplied by �1 if any two rows (or any two columns)

are exchanged.

Also, for any square matrices A and B , we have det.AB/ D det.A/ det.B/.

D.2 Basic matrix properties 1225

Theorem D.5
An n 	 n matrix A is singular if and only if det.A/ D 0.

Positive-definite matrices

Positive-definite matrices play an important role in many applications. An n 	 n

matrix A is positive-definite if xTAx > 0 for all n-vectors x ¤ 0. For
example, the identity matrix is positive-definite, since for any nonzero vector
x D . x1 x2 � � � xn /T,

xTInx D xTx

D
nX

iD1

x2
i

> 0 :

Matrices that arise in applications are often positive-definite due to the following
theorem.

Theorem D.6
For any matrix A with full column rank, the matrix ATA is positive-definite.

Proof We must show that xT.ATA/x > 0 for any nonzero vector x. For any
vector x,

xT.ATA/x D .Ax/T.Ax/ (by Exercise D.1-2)

D kAxk2 :

Note that kAxk2 is just the sum of the squares of the elements of the vector Ax.
Therefore, kAxk2 � 0. If kAxk2 D 0, every element of Ax is 0, which is to say
Ax D 0. Since A has full column rank, Ax D 0 implies x D 0, by Theorem D.2.
Hence, ATA is positive-definite.

Section 28.3 explores other properties of positive-definite matrices.

Exercises

D.2-1
Prove that matrix inverses are unique, that is, if B and C are inverses of A, then
B D C .

D.2-2
Prove that the determinant of a lower-triangular or upper-triangular matrix is equal
to the product of its diagonal elements. Prove that the inverse of a lower-triangular
matrix, if it exists, is lower-triangular.

1226 Appendix D Matrices

D.2-3
Prove that if P is a permutation matrix, then P is invertible, its inverse is P T,
and P T is a permutation matrix.

D.2-4
Let A and B be n 	 n matrices such that AB D I . Prove that if A0 is obtained
from A by adding row j into row i , then subtracting column i from column j of B

yields the inverse B 0 of A0.

D.2-5
Let A be a nonsingular n 	 n matrix with complex entries. Show that every entry
of A�1 is real if and only if every entry of A is real.

D.2-6
Show that if A is a nonsingular, symmetric, n 	 n matrix, then A�1 is symmetric.
Show that if B is an arbitrary m 	 n matrix, then the m 	 m matrix given by the
product BABT is symmetric.

D.2-7
Prove Theorem D.2. That is, show that a matrix A has full column rank if and only
if Ax D 0 implies x D 0. (Hint: Express the linear dependence of one column on
the others as a matrix-vector equation.)

D.2-8
Prove that for any two compatible matrices A and B ,

rank.AB/ � min.rank.A/; rank.B// ;

where equality holds if either A or B is a nonsingular square matrix. (Hint: Use
the alternate definition of the rank of a matrix.)

Problems

D-1 Vandermonde matrix
Given numbers x0; x1; : : : ; xn�1, prove that the determinant of the Vandermonde
matrix

V.x0; x1; : : : ; xn�1/ D

˙
1 x0 x2

0 � � � xn�1
0

1 x1 x2
1 � � � xn�1

1
:::

:::
:::

: : :
:::

1 xn�1 x2
n�1 � � � xn�1

n�1

�

Problems for Appendix D 1227

is

det.V .x0; x1; : : : ; xn�1// D
Y

0�j <k�n�1

.xk � xj / :

(Hint: Multiply column i by �x0 and add it to column i C 1 for i D n � 1;

n � 2; : : : ; 1, and then use induction.)

D-2 Permutations defined by matrix-vector multiplication over GF.2/
One class of permutations of the integers in the set Sn D f0; 1; 2; : : : ; 2n � 1g is
defined by matrix multiplication over GF.2/. For each integer x in Sn, we view its
binary representation as an n-bit vector�

x0

x1

x2

:::

xn�1

�
;

where x D Pn�1

iD0 xi2
i . If A is an n 	 n matrix in which each entry is either 0

or 1, then we can define a permutation mapping each value x in Sn to the number
whose binary representation is the matrix-vector product Ax. Here, we perform
all arithmetic over GF.2/: all values are either 0 or 1, and with one exception the
usual rules of addition and multiplication apply. The exception is that 1C 1 D 0.
You can think of arithmetic over GF.2/ as being just like regular integer arithmetic,
except that you use only the least significant bit.

As an example, for S2 D f0; 1; 2; 3g, the matrix

A D
�

1 0

1 1

�
defines the following permutation �A: �A.0/ D 0, �A.1/ D 3, �A.2/ D 2,
�A.3/ D 1. To see why �A.3/ D 1, observe that, working in GF.2/,

�A.3/ D
�

1 0

1 1

��
1

1

�
D

�
1 � 1C 0 � 1
1 � 1C 1 � 1

�
D

�
1

0

�
;

which is the binary representation of 1.

1228 Appendix D Matrices

For the remainder of this problem, we work over GF.2/, and all matrix and
vector entries are 0 or 1. We define the rank of a 0-1 matrix (a matrix for which
each entry is either 0 or 1) over GF.2/ the same as for a regular matrix, but with all
arithmetic that determines linear independence performed over GF.2/. We define
the range of an n 	 n 0-1 matrix A by

R.A/ D fy W y D Ax for some x 2 Sng ;

so that R.A/ is the set of numbers in Sn that we can produce by multiplying each
value x in Sn by A.

a. If r is the rank of matrix A, prove that jR.A/j D 2r . Conclude that A defines a
permutation on Sn only if A has full rank.

For a given n	n matrix A and a given value y 2 R.A/, we define the preimage
of y by

P .A; y/ D fx W Ax D yg ;

so that P .A; y/ is the set of values in Sn that map to y when multiplied by A.

b. If r is the rank of n 	 n matrix A and y 2 R.A/, prove that jP .A; y/j D 2n�r .

Let 0 � m � n, and suppose we partition the set Sn into blocks of consec-
utive numbers, where the i th block consists of the 2m numbers i2m; i2m C 1;

i2m C 2; : : : ; .i C 1/2m � 1. For any subset S � Sn, define B.S; m/ to be the
set of size-2m blocks of Sn containing some element of S . As an example, when
n D 3, m D 1, and S D f1; 4; 5g, then B.S; m/ consists of blocks 0 (since 1 is in
the 0th block) and 2 (since both 4 and 5 are in block 2).

c. Let r be the rank of the lower left .n � m/ 	 m submatrix of A, that is, the
matrix formed by taking the intersection of the bottom n � m rows and the
leftmost m columns of A. Let S be any size-2m block of Sn, and let S 0 D
fy W y D Ax for some x 2 Sg. Prove that jB.S 0; m/j D 2r and that for each
block in B.S 0; m/, exactly 2m�r numbers in S map to that block.

Because multiplying the zero vector by any matrix yields a zero vector, the set
of permutations of Sn defined by multiplying by n 	 n 0-1 matrices with full rank
over GF.2/ cannot include all permutations of Sn. Let us extend the class of per-
mutations defined by matrix-vector multiplication to include an additive term, so
that x 2 Sn maps to Ax C c, where c is an n-bit vector and addition is performed
over GF.2/. For example, when

A D
�

1 0

1 1

�

Notes for Appendix D 1229

and

c D
�

0

1

�
;

we get the following permutation �A;c: �A;c.0/ D 2, �A;c.1/ D 1, �A;c.2/ D 0,
�A;c.3/ D 3. We call any permutation that maps x 2 Sn to AxC c, for some n	 n

0-1 matrix A with full rank and some n-bit vector c, a linear permutation.

d. Use a counting argument to show that the number of linear permutations of Sn

is much less than the number of permutations of Sn.

e. Give an example of a value of n and a permutation of Sn that cannot be achieved
by any linear permutation. (Hint: For a given permutation, think about how
multiplying a matrix by a unit vector relates to the columns of the matrix.)

Appendix notes

Linear-algebra textbooks provide plenty of background information on matrices.
The books by Strang [323, 324] are particularly good.

Bibliography

[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions.
Dover, 1965.

[2] G. M. Adel’son-Vel’skiı̆ and E. M. Landis. An algorithm for the organization of information.
Soviet Mathematics Doklady, 3(5):1259–1263, 1962.

[3] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

[4] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-
matics, 160(2):781–793, 2004.

[5] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[6] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983.

[7] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[8] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tarjan. Faster algorithms
for the shortest path problem. Journal of the ACM, 37:213–223, 1990.

[9] Ravindra K. Ahuja and James B. Orlin. A fast and simple algorithm for the maximum flow
problem. Operations Research, 37(5):748–759, 1989.

[10] Ravindra K. Ahuja, James B. Orlin, and Robert E. Tarjan. Improved time bounds for the
maximum flow problem. SIAM Journal on Computing, 18(5):939–954, 1989.

[11] Miklós Ajtai, Nimrod Megiddo, and Orli Waarts. Improved algorithms and analysis for
secretary problems and generalizations. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, pages 473–482, 1995.

[12] Selim G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, 1989.

[13] Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations. Compu-
tational Optimization and Applications, 10(2):195–210, 1998.

[14] Noga Alon. Generating pseudo-random permutations and maximum flow algorithms. In-
formation Processing Letters, 35:201–204, 1990.

1232 Bibliography

[15] Arne Andersson. Balanced search trees made simple. In Proceedings of the Third Workshop
on Algorithms and Data Structures, volume 709 of Lecture Notes in Computer Science,
pages 60–71. Springer, 1993.

[16] Arne Andersson. Faster deterministic sorting and searching in linear space. In Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, pages 135–141, 1996.

[17] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear
time? Journal of Computer and System Sciences, 57:74–93, 1998.

[18] Tom M. Apostol. Calculus, volume 1. Blaisdell Publishing Company, second edition, 1967.

[19] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of the 10th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 119–129, 1998.

[20] Sanjeev Arora. Probabilistic checking of proofs and the hardness of approximation prob-
lems. PhD thesis, University of California, Berkeley, 1994.

[21] Sanjeev Arora. The approximability of NP-hard problems. In Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, pages 337–348, 1998.

[22] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

[23] Sanjeev Arora and Carsten Lund. Hardness of approximations. In Dorit S. Hochbaum,
editor, Approximation Algorithms for NP-Hard Problems, pages 399–446. PWS Publishing
Company, 1997.

[24] Javed A. Aslam. A simple bound on the expected height of a randomly built binary search
tree. Technical Report TR2001-387, Dartmouth College Department of Computer Science,
2001.

[25] Mikhail J. Atallah, editor. Algorithms and Theory of Computation Handbook. CRC Press,
1999.

[26] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial Optimization Problems and Their Approx-
imability Properties. Springer, 1999.

[27] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. ACM Trans-
actions on Graphics, 26(3), article 10, 2007.

[28] Sara Baase and Alan Van Gelder. Computer Algorithms: Introduction to Design and Anal-
ysis. Addison-Wesley, third edition, 2000.

[29] Eric Bach. Private communication, 1989.

[30] Eric Bach. Number-theoretic algorithms. In Annual Review of Computer Science, volume 4,
pages 119–172. Annual Reviews, Inc., 1990.

[31] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory—Volume I: Efficient Algorithms.
The MIT Press, 1996.

[32] David H. Bailey, King Lee, and Horst D. Simon. Using Strassen’s algorithm to accelerate
the solution of linear systems. The Journal of Supercomputing, 4(4):357–371, 1990.

Bibliography 1233

[33] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental algo-
rithms for maintaining transitive closure and all-pairs shortest paths. Journal of Algorithms,
62(2):74–92, 2007.

[34] R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta
Informatica, 1(4):290–306, 1972.

[35] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indexes.
Acta Informatica, 1(3):173–189, 1972.

[36] Pierre Beauchemin, Gilles Brassard, Claude Crépeau, Claude Goutier, and Carl Pomerance.
The generation of random numbers that are probably prime. Journal of Cryptology, 1(1):53–
64, 1988.

[37] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[38] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

[39] Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, pages 80–86, 1983.

[40] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious B-trees.
In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages
399–409, 2000.

[41] Samuel W. Bent and John W. John. Finding the median requires 2n comparisons. In Pro-
ceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pages 213–
216, 1985.

[42] Jon L. Bentley. Writing Efficient Programs. Prentice Hall, 1982.

[43] Jon L. Bentley. Programming Pearls. Addison-Wesley, 1986.

[44] Jon L. Bentley, Dorothea Haken, and James B. Saxe. A general method for solving divide-
and-conquer recurrences. SIGACT News, 12(3):36–44, 1980.

[45] Daniel Bienstock and Benjamin McClosky. Tightening simplex mixed-integer sets with
guaranteed bounds. Optimization Online, July 2008.

[46] Patrick Billingsley. Probability and Measure. John Wiley & Sons, second edition, 1986.

[47] Guy E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, Department of
Electrical Engineering and Computer Science, MIT, 1989. Available as MIT Laboratory for
Computer Science Technical Report MIT/LCS/TR-463.

[48] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM,
39(3):85–97, 1996.

[49] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling for
languages with fine-grained parallelism. In Proceedings of the 7th Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 1–12, 1995.

[50] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.

[51] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Journal
of Parallel and Distributed Computing, 37(1):55–69, 1996.

1234 Bibliography

[52] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, 1999.

[53] Béla Bollobás. Random Graphs. Academic Press, 1985.

[54] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice Hall, 1996.

[55] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2):201–206, 1974.

[56] Richard P. Brent. An improved Monte Carlo factorization algorithm. BIT, 20(2):176–184,
1980.

[57] J. P. Buhler, H. W. Lenstra, Jr., and Carl Pomerance. Factoring integers with the number
field sieve. In A. K. Lenstra and H. W. Lenstra, Jr., editors, The Development of the Number
Field Sieve, volume 1554 of Lecture Notes in Mathematics, pages 50–94. Springer, 1993.

[58] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979.

[59] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming. The MIT Press, 2007.

[60] Bernard Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type com-
plexity. Journal of the ACM, 47(6):1028–1047, 2000.

[61] Joseph Cheriyan and Torben Hagerup. A randomized maximum-flow algorithm. SIAM
Journal on Computing, 24(2):203–226, 1995.

[62] Joseph Cheriyan and S. N. Maheshwari. Analysis of preflow push algorithms for maximum
network flow. SIAM Journal on Computing, 18(6):1057–1086, 1989.

[63] Boris V. Cherkassky and Andrew V. Goldberg. On implementing the push-relabel method
for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[64] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms:
Theory and experimental evaluation. Mathematical Programming, 73(2):129–174, 1996.

[65] Boris V. Cherkassky, Andrew V. Goldberg, and Craig Silverstein. Buckets, heaps, lists and
monotone priority queues. SIAM Journal on Computing, 28(4):1326–1346, 1999.

[66] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics, 23(4):493–507, 1952.

[67] Kai Lai Chung. Elementary Probability Theory with Stochastic Processes. Springer, 1974.

[68] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

[69] V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983.

[70] V. Chvátal, D. A. Klarner, and D. E. Knuth. Selected combinatorial research problems.
Technical Report STAN-CS-72-292, Computer Science Department, Stanford University,
1972.

[71] Cilk Arts, Inc., Burlington, Massachusetts. Cilk++ Programmer’s Guide, 2008. Available
at http://www.cilk.com/archive/docs/cilk1guide.

http://www.cilk.com/archive/docs/cilk1guide

Bibliography 1235

[72] Alan Cobham. The intrinsic computational difficulty of functions. In Proceedings of the
1964 Congress for Logic, Methodology, and the Philosophy of Science, pages 24–30. North-
Holland, 1964.

[73] H. Cohen and H. W. Lenstra, Jr. Primality testing and Jacobi sums. Mathematics of Com-
putation, 42(165):297–330, 1984.

[74] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.

[75] Stephen Cook. The complexity of theorem proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

[76] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[77] Don Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6(3):169–180, 1993.

[78] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progression.
Journal of Symbolic Computation, 9(3):251–280, 1990.

[79] Thomas H. Cormen, Thomas Sundquist, and Leonard F. Wisniewski. Asymptotically tight
bounds for performing BMMC permutations on parallel disk systems. SIAM Journal on
Computing, 28(1):105–136, 1998.

[80] Don Dailey and Charles E. Leiserson. Using Cilk to write multiprocessor chess programs.
In H. J. van den Herik and B. Monien, editors, Advances in Computer Games, volume 9,
pages 25–52. University of Maastricht, Netherlands, 2001.

[81] Paolo D’Alberto and Alexandru Nicolau. Adaptive Strassen’s matrix multiplication. In
Proceedings of the 21st Annual International Conference on Supercomputing, pages 284–
292, June 2007.

[82] Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill,
2008.

[83] Roman Dementiev, Lutz Kettner, Jens Mehnert, and Peter Sanders. Engineering a sorted list
data structure for 32 bit keys. In Proceedings of the Sixth Workshop on Algorithm Engineer-
ing and Experiments and the First Workshop on Analytic Algorithmics and Combinatorics,
pages 142–151, January 2004.

[84] Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic all pairs shortest paths with real
edge weights. Journal of Computer and System Sciences, 72(5):813–837, 2006.

[85] Eric V. Denardo and Bennett L. Fox. Shortest-route methods: 1. Reaching, pruning, and
buckets. Operations Research, 27(1):161–186, 1979.

[86] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738–761, 1994.

[87] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, IT-22(6):644–654, 1976.

[88] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

1236 Bibliography

[89] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Mathematics Doklady, 11(5):1277–1280, 1970.

[90] Brandon Dixon, Monika Rauch, and Robert E. Tarjan. Verification and sensitivity analysis
of minimum spanning trees in linear time. SIAM Journal on Computing, 21(6):1184–1192,
1992.

[91] John D. Dixon. Factorization and primality tests. The American Mathematical Monthly,
91(6):333–352, 1984.

[92] Dorit Dor, Johan Håstad, Staffan Ulfberg, and Uri Zwick. On lower bounds for selecting
the median. SIAM Journal on Discrete Mathematics, 14(3):299–311, 2001.

[93] Dorit Dor and Uri Zwick. Selecting the median. SIAM Journal on Computing, 28(5):1722–
1758, 1999.

[94] Dorit Dor and Uri Zwick. Median selection requires .2C �/n comparisons. SIAM Journal
on Discrete Mathematics, 14(3):312–325, 2001.

[95] Alvin W. Drake. Fundamentals of Applied Probability Theory. McGraw-Hill, 1967.

[96] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Relaxed heaps:
An alternative to Fibonacci heaps with applications to parallel computation. Communica-
tions of the ACM, 31(11):1343–1354, 1988.

[97] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

[98] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup versus efficiency in
parallel systems. IEEE Transactions on Computers, 38(3):408–423, 1989.

[99] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1987.

[100] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[101] Jack Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1(1):127–
136, 1971.

[102] Jack Edmonds and Richard M. Karp. Theoretical improvements in the algorithmic effi-
ciency for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[103] Shimon Even. Graph Algorithms. Computer Science Press, 1979.

[104] William Feller. An Introduction to Probability Theory and Its Applications. John Wiley &
Sons, third edition, 1968.

[105] Robert W. Floyd. Algorithm 97 (SHORTEST PATH). Communications of the ACM,
5(6):345, 1962.

[106] Robert W. Floyd. Algorithm 245 (TREESORT). Communications of the ACM, 7(12):701,
1964.

[107] Robert W. Floyd. Permuting information in idealized two-level storage. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations, pages 105–
109. Plenum Press, 1972.

Bibliography 1237

[108] Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection. Communica-
tions of the ACM, 18(3):165–172, 1975.

[109] Lestor R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

[110] Lestor R. Ford, Jr. and Selmer M. Johnson. A tournament problem. The American Mathe-
matical Monthly, 66(5):387–389, 1959.

[111] Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM
Journal on Computing, 5(1):83–89, 1976.

[112] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O.1/

worst case access time. Journal of the ACM, 31(3):538–544, 1984.

[113] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data struc-
tures. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
pages 345–354, 1989.

[114] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[115] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

[116] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. Journal of Computer and System Sciences, 48(3):533–551,
1994.

[117] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceed-
ings of the IEEE, 93(2):216–231, 2005.

[118] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. In Proceedings of the 1998 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 212–223, 1998.

[119] Harold N. Gabow. Path-based depth-first search for strong and biconnected components.
Information Processing Letters, 74(3–4):107–114, 2000.

[120] Harold N. Gabow, Z. Galil, T. Spencer, and Robert E. Tarjan. Efficient algorithms for find-
ing minimum spanning trees in undirected and directed graphs. Combinatorica, 6(2):109–
122, 1986.

[121] Harold N. Gabow and Robert E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209–221, 1985.

[122] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network problems.
SIAM Journal on Computing, 18(5):1013–1036, 1989.

[123] Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer
length edges. Information and Computation, 134(2):103–139, 1997.

[124] Zvi Galil and Oded Margalit. All pairs shortest paths for graphs with small integer length
edges. Journal of Computer and System Sciences, 54(2):243–254, 1997.

[125] Zvi Galil and Kunsoo Park. Dynamic programming with convexity, concavity and sparsity.
Theoretical Computer Science, 92(1):49–76, 1992.

1238 Bibliography

[126] Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer and
System Sciences, 26(3):280–294, 1983.

[127] Igal Galperin and Ronald L. Rivest. Scapegoat trees. In Proceedings of the 4th ACM-SIAM
Symposium on Discrete Algorithms, pages 165–174, 1993.

[128] Michael R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analyis of memory al-
location algorithms. In Proceedings of the Fourth Annual ACM Symposium on Theory of
Computing, pages 143–150, 1972.

[129] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[130] Saul Gass. Linear Programming: Methods and Applications. International Thomson Pub-
lishing, fourth edition, 1975.

[131] Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972.

[132] Alan George and Joseph W-H Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, 1981.

[133] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell System Technical
Journal, 38(4):933–967, 1959.

[134] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM, 42(6):1115–1145, 1995.

[135] Michel X. Goemans and David P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In Dorit S. Hochbaum, editor,
Approximation Algorithms for NP-Hard Problems, pages 144–191. PWS Publishing Com-
pany, 1997.

[136] Andrew V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers.
PhD thesis, Department of Electrical Engineering and Computer Science, MIT, 1987.

[137] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on
Computing, 24(3):494–504, 1995.

[138] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. Journal of
the ACM, 45(5):783–797, 1998.

[139] Andrew V. Goldberg, Éva Tardos, and Robert E. Tarjan. Network flow algorithms. In Bern-
hard Korte, László Lovász, Hans Jürgen Prömel, and Alexander Schrijver, editors, Paths,
Flows, and VLSI-Layout, pages 101–164. Springer, 1990.

[140] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, 35(4):921–940, 1988.

[141] D. Goldfarb and M. J. Todd. Linear programming. In G. L. Nemhauser, A. H. G. Rinnooy-
Kan, and M. J. Todd, editors, Handbook in Operations Research and Management Science,
Vol. 1, Optimization, pages 73–170. Elsevier Science Publishers, 1989.

[142] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

Bibliography 1239

[143] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

[144] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins Uni-
versity Press, third edition, 1996.

[145] G. H. Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley, 1984.

[146] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-Wesley,
1992.

[147] Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in Java. John
Wiley & Sons, 1998.

[148] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations, Analysis, and
Internet Examples. John Wiley & Sons, 2001.

[149] Ronald L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45(9):1563–1581, 1966.

[150] Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1(4):132–133, 1972.

[151] Ronald L. Graham and Pavol Hell. On the history of the minimum spanning tree problem.
Annals of the History of Computing, 7(1):43–57, 1985.

[152] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, second edition, 1994.

[153] David Gries. The Science of Programming. Springer, 1981.

[154] M. Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Combi-
natorial Optimization. Springer, 1988.

[155] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science, pages
8–21, 1978.

[156] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997.

[157] H. Halberstam and R. E. Ingram, editors. The Mathematical Papers of Sir William Rowan
Hamilton, volume III (Algebra). Cambridge University Press, 1967.

[158] Yijie Han. Improved fast integer sorting in linear space. In Proceedings of the 12th ACM-
SIAM Symposium on Discrete Algorithms, pages 793–796, 2001.

[159] Yijie Han. An O.n3.log log n= log n/5=4/ time algorithm for all pairs shortest path. Algo-
rithmica, 51(4):428–434, 2008.

[160] Frank Harary. Graph Theory. Addison-Wesley, 1969.

[161] Gregory C. Harfst and Edward M. Reingold. A potential-based amortized analysis of the
union-find data structure. SIGACT News, 31(3):86–95, 2000.

[162] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transac-
tions of the American Mathematical Society, 117:285–306, May 1965.

1240 Bibliography

[163] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the history of the
Fast Fourier Transform. IEEE ASSP Magazine, 1(4):14–21, 1984.

[164] Monika R. Henzinger and Valerie King. Fully dynamic biconnectivity and transitive clo-
sure. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
pages 664–672, 1995.

[165] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. Journal of the ACM, 46(4):502–516, 1999.

[166] Monika R. Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connectivity:
New bounds from old techniques. Journal of Algorithms, 34(2):222–250, 2000.

[167] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. ACM
Transactions on Mathematical Software, 16(4):352–368, 1990.

[168] W. Daniel Hillis and Jr. Guy L. Steele. Data parallel algorithms. Communications of the
ACM, 29(12):1170–1183, 1986.

[169] C. A. R. Hoare. Algorithm 63 (PARTITION) and algorithm 65 (FIND). Communications
of the ACM, 4(7):321–322, 1961.

[170] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[171] Dorit S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing prob-
lems. Discrete Applied Mathematics, 6(3):243–254, 1983.

[172] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company, 1997.

[173] W. Hoeffding. On the distribution of the number of successes in independent trials. Annals
of Mathematical Statistics, 27(3):713–721, 1956.

[174] Micha Hofri. Probabilistic Analysis of Algorithms. Springer, 1987.

[175] Micha Hofri. Analysis of Algorithms. Oxford University Press, 1995.

[176] John E. Hopcroft and Richard M. Karp. An n5=2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[177] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison Wesley, third edition, 2006.

[178] John E. Hopcroft and Robert E. Tarjan. Efficient algorithms for graph manipulation. Com-
munications of the ACM, 16(6):372–378, 1973.

[179] John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM Journal on Com-
puting, 2(4):294–303, 1973.

[180] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[181] Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasekaran. Computer Algorithms. Com-
puter Science Press, 1998.

[182] T. C. Hu and M. T. Shing. Computation of matrix chain products. Part I. SIAM Journal on
Computing, 11(2):362–373, 1982.

[183] T. C. Hu and M. T. Shing. Computation of matrix chain products. Part II. SIAM Journal on
Computing, 13(2):228–251, 1984.

Bibliography 1241

[184] T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-length alphabetic
codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

[185] David A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

[186] Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna Tsao, and Thomas
Turnbull. Implementation of Strassen’s algorithm for matrix multiplication. In Proceedings
of the 1996 ACM/IEEE Conference on Supercomputing, article 32, 1996.

[187] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM, 22(4):463–468, 1975.

[188] E. J. Isaac and R. C. Singleton. Sorting by address calculation. Journal of the ACM,
3(3):169–174, 1956.

[189] R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters, 2(1):18–21, 1973.

[190] David S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9(3):256–278, 1974.

[191] David S. Johnson. The NP-completeness column: An ongoing guide—The tale of the sec-
ond prover. Journal of Algorithms, 13(3):502–524, 1992.

[192] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of
the ACM, 24(1):1–13, 1977.

[193] Richard Johnsonbaugh and Marcus Schaefer. Algorithms. Pearson Prentice Hall, 2004.

[194] A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on automata. Soviet
Physics—Doklady, 7(7):595–596, 1963. Translation of an article in Doklady Akademii Nauk
SSSR, 145(2), 1962.

[195] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-time algorithm
to find minimum spanning trees. Journal of the ACM, 42(2):321–328, 1995.

[196] David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hidden path: Time
bounds for all-pairs shortest paths. SIAM Journal on Computing, 22(6):1199–1217, 1993.

[197] Howard Karloff. Linear Programming. Birkhäuser, 1991.

[198] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984.

[199] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[200] Richard M. Karp. An introduction to randomized algorithms. Discrete Applied Mathemat-
ics, 34(1–3):165–201, 1991.

[201] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

[202] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows.
Soviet Mathematics Doklady, 15(2):434–437, 1974.

1242 Bibliography

[203] Valerie King. A simpler minimum spanning tree verification algorithm. Algorithmica,
18(2):263–270, 1997.

[204] Valerie King, Satish Rao, and Robert E. Tarjan. A faster deterministic maximum flow algo-
rithm. Journal of Algorithms, 17(3):447–474, 1994.

[205] Jeffrey H. Kingston. Algorithms and Data Structures: Design, Correctness, Analysis.
Addison-Wesley, second edition, 1997.

[206] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM Journal
on Computing, 15(2):287–299, 1986.

[207] Philip N. Klein and Neal E. Young. Approximation algorithms for NP-hard optimization
problems. In CRC Handbook on Algorithms, pages 34-1–34-19. CRC Press, 1999.

[208] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006.

[209] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Program-
ming. Addison-Wesley, 1968. Third edition, 1997.

[210] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Program-
ming. Addison-Wesley, 1969. Third edition, 1997.

[211] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, 1973. Second edition, 1998.

[212] Donald E. Knuth. Optimum binary search trees. Acta Informatica, 1(1):14–25, 1971.

[213] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8(2):18–23,
1976.

[214] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[215] J. Komlós. Linear verification for spanning trees. Combinatorica, 5(1):57–65, 1985.

[216] Bernhard Korte and László Lovász. Mathematical structures underlying greedy algorithms.
In F. Gecseg, editor, Fundamentals of Computation Theory, volume 117 of Lecture Notes in
Computer Science, pages 205–209. Springer, 1981.

[217] Bernhard Korte and László Lovász. Structural properties of greedoids. Combinatorica,
3(3–4):359–374, 1983.

[218] Bernhard Korte and László Lovász. Greedoids—A structural framework for the greedy
algorithm. In W. Pulleybank, editor, Progress in Combinatorial Optimization, pages 221–
243. Academic Press, 1984.

[219] Bernhard Korte and László Lovász. Greedoids and linear objective functions. SIAM Journal
on Algebraic and Discrete Methods, 5(2):229–238, 1984.

[220] Dexter C. Kozen. The Design and Analysis of Algorithms. Springer, 1992.

[221] David W. Krumme, George Cybenko, and K. N. Venkataraman. Gossiping in minimal time.
SIAM Journal on Computing, 21(1):111–139, 1992.

[222] Joseph B. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[223] Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.

Bibliography 1243

[224] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart,
and Winston, 1976.

[225] Eugene L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The
Traveling Salesman Problem. John Wiley & Sons, 1985.

[226] C. Y. Lee. An algorithm for path connection and its applications. IRE Transactions on
Electronic Computers, EC-10(3):346–365, 1961.

[227] Tom Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions on
Computers, C-34(4):344–354, 1985.

[228] Tom Leighton. Notes on better master theorems for divide-and-conquer recurrences. Class
notes. Available at http://citeseer.ist.psu.edu/252350.html, October 1996.

[229] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.

[230] Daan Leijen and Judd Hall. Optimize managed code for multi-core machines. MSDN
Magazine, October 2007.

[231] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM Computing Surveys,
19(3):261–296, 1987.

[232] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number field sieve.
In A. K. Lenstra and H. W. Lenstra, Jr., editors, The Development of the Number Field Sieve,
volume 1554 of Lecture Notes in Mathematics, pages 11–42. Springer, 1993.

[233] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987.

[234] L. A. Levin. Universal sorting problems. Problemy Peredachi Informatsii, 9(3):265–266,
1973. In Russian.

[235] Anany Levitin. Introduction to the Design & Analysis of Algorithms. Addison-Wesley,
2007.

[236] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, second edition, 1998.

[237] C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968.

[238] László Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathemat-
ics, 13(4):383–390, 1975.

[239] László Lovász and M. D. Plummer. Matching Theory, volume 121 of Annals of Discrete
Mathematics. North Holland, 1986.

[240] Bruce M. Maggs and Serge A. Plotkin. Minimum-cost spanning tree as a path-finding
problem. Information Processing Letters, 26(6):291–293, 1988.

[241] Michael Main. Data Structures and Other Objects Using Java. Addison-Wesley, 1999.

[242] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.

[243] Conrado Martı́nez and Salvador Roura. Randomized binary search trees. Journal of the
ACM, 45(2):288–323, 1998.

[244] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit dis-
tances. Journal of Computer and System Sciences, 20(1):18–31, 1980.

http://citeseer.ist.psu.edu/252350.html

1244 Bibliography

[245] H. A. Maurer, Th. Ottmann, and H.-W. Six. Implementing dictionaries using binary trees of
very small height. Information Processing Letters, 5(1):11–14, 1976.

[246] Ernst W. Mayr, Hans Jürgen Prömel, and Angelika Steger, editors. Lectures on Proof Verifi-
cation and Approximation Algorithms, volume 1367 of Lecture Notes in Computer Science.
Springer, 1998.

[247] C. C. McGeoch. All pairs shortest paths and the essential subgraph. Algorithmica,
13(5):426–441, 1995.

[248] M. D. McIlroy. A killer adversary for quicksort. Software—Practice and Experience,
29(4):341–344, 1999.

[249] Kurt Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms.
Springer, 1984.

[250] Kurt Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of Data Structures and
Algorithms. Springer, 1984.

[251] Kurt Mehlhorn. Multidimensional Searching and Computational Geometry, volume 3 of
Data Structures and Algorithms. Springer, 1984.

[252] Kurt Mehlhorn and Stefan Näher. Bounded ordered dictionaries in O.log log N / time and
O.n/ space. Information Processing Letters, 35(4):183–189, 1990.

[253] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

[254] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[255] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and
System Sciences, 13(3):300–317, 1976.

[256] John C. Mitchell. Foundations for Programming Languages. The MIT Press, 1996.

[257] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A sim-
ple polynomial-time approximation scheme for geometric TSP, k-MST, and related prob-
lems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

[258] Louis Monier. Algorithmes de Factorisation D’Entiers. PhD thesis, L’Université Paris-Sud,
1980.

[259] Louis Monier. Evaluation and comparison of two efficient probabilistic primality testing
algorithms. Theoretical Computer Science, 12(1):97–108, 1980.

[260] Edward F. Moore. The shortest path through a maze. In Proceedings of the International
Symposium on the Theory of Switching, pages 285–292. Harvard University Press, 1959.

[261] Rajeev Motwani, Joseph (Seffi) Naor, and Prabakhar Raghavan. Randomized approxima-
tion algorithms in combinatorial optimization. In Dorit Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems, chapter 11, pages 447–481. PWS Publishing Company,
1997.

[262] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[263] J. I. Munro and V. Raman. Fast stable in-place sorting with O.n/ data moves. Algorithmica,
16(2):151–160, 1996.

Bibliography 1245

[264] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM Journal
on Computing, 2(1):33–43, 1973.

[265] Ivan Niven and Herbert S. Zuckerman. An Introduction to the Theory of Numbers. John
Wiley & Sons, fourth edition, 1980.

[266] Alan V. Oppenheim and Ronald W. Schafer, with John R. Buck. Discrete-Time Signal
Processing. Prentice Hall, second edition, 1998.

[267] Alan V. Oppenheim and Alan S. Willsky, with S. Hamid Nawab. Signals and Systems.
Prentice Hall, second edition, 1997.

[268] James B. Orlin. A polynomial time primal network simplex algorithm for minimum cost
flows. Mathematical Programming, 78(1):109–129, 1997.

[269] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, second
edition, 1998.

[270] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[271] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, 1982.

[272] Michael S. Paterson. Progress in selection. In Proceedings of the Fifth Scandinavian Work-
shop on Algorithm Theory, pages 368–379, 1996.

[273] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 232–240,
2006.

[274] Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching predecessors.
In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, pages 555–564,
2007.

[275] Pavel A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. The MIT
Press, 2000.

[276] Steven Phillips and Jeffery Westbrook. Online load balancing and network flow. In Pro-
ceedings of the 25th Annual ACM Symposium on Theory of Computing, pages 402–411,
1993.

[277] J. M. Pollard. A Monte Carlo method for factorization. BIT, 15(3):331–334, 1975.

[278] J. M. Pollard. Factoring with cubic integers. In A. K. Lenstra and H. W. Lenstra, Jr., editors,
The Development of the Number Field Sieve, volume 1554 of Lecture Notes in Mathematics,
pages 4–10. Springer, 1993.

[279] Carl Pomerance. On the distribution of pseudoprimes. Mathematics of Computation,
37(156):587–593, 1981.

[280] Carl Pomerance, editor. Proceedings of the AMS Symposia in Applied Mathematics: Com-
putational Number Theory and Cryptography. American Mathematical Society, 1990.

[281] William K. Pratt. Digital Image Processing. John Wiley & Sons, fourth edition, 2007.

[282] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introduction.
Springer, 1985.

1246 Bibliography

[283] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numer-
ical Recipes in C++: The Art of Scientific Computing. Cambridge University Press, second
edition, 2002.

[284] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numer-
ical Recipes: The Art of Scientific Computing. Cambridge University Press, third edition,
2007.

[285] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36(6):1389–1401, 1957.

[286] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of
the ACM, 33(6):668–676, 1990.

[287] Paul W. Purdom, Jr. and Cynthia A. Brown. The Analysis of Algorithms. Holt, Rinehart,
and Winston, 1985.

[288] Michael O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Com-
plexity: New Directions and Recent Results, pages 21–39. Academic Press, 1976.

[289] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980.

[290] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[291] Rajeev Raman. Recent results on the single-source shortest paths problem. SIGACT News,
28(2):81–87, 1997.

[292] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly Media, Inc., 2007.

[293] Edward M. Reingold, Jürg Nievergelt, and Narsingh Deo. Combinatorial Algorithms: The-
ory and Practice. Prentice Hall, 1977.

[294] Edward M. Reingold, Kenneth J. Urban, and David Gries. K-M-P string matching revisited.
Information Processing Letters, 64(5):217–223, 1997.

[295] Hans Riesel. Prime Numbers and Computer Methods for Factorization, volume 126 of
Progress in Mathematics. Birkhäuser, second edition, 1994.

[296] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978. See also U.S. Patent 4,405,829.

[297] Herbert Robbins. A remark on Stirling’s formula. American Mathematical Monthly,
62(1):26–29, 1955.

[298] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several heuristics for the
traveling salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977.

[299] Salvador Roura. An improved master theorem for divide-and-conquer recurrences. In
Proceedings of Automata, Languages and Programming, 24th International Colloquium,
ICALP’97, volume 1256 of Lecture Notes in Computer Science, pages 449–459. Springer,
1997.

[300] Y. A. Rozanov. Probability Theory: A Concise Course. Dover, 1969.

Bibliography 1247

[301] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM,
23(3):555–565, 1976.

[302] A. Schönhage, M. Paterson, and N. Pippenger. Finding the median. Journal of Computer
and System Sciences, 13(2):184–199, 1976.

[303] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

[304] Alexander Schrijver. Paths and flows—A historical survey. CWI Quarterly, 6(3):169–183,
1993.

[305] Robert Sedgewick. Implementing quicksort programs. Communications of the ACM,
21(10):847–857, 1978.

[306] Robert Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

[307] Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 1996.

[308] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computer and System Sciences, 51(3):400–403, 1995.

[309] Raimund Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4–5):464–
497, 1996.

[310] João Setubal and João Meidanis. Introduction to Computational Molecular Biology. PWS
Publishing Company, 1997.

[311] Clifford A. Shaffer. A Practical Introduction to Data Structures and Algorithm Analysis.
Prentice Hall, second edition, 2001.

[312] Jeffrey Shallit. Origins of the analysis of the Euclidean algorithm. Historia Mathematica,
21(4):401–419, 1994.

[313] Michael I. Shamos and Dan Hoey. Geometric intersection problems. In Proceedings of the
17th Annual Symposium on Foundations of Computer Science, pages 208–215, 1976.

[314] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Com-
puters and Mathematics with Applications, 7(1):67–72, 1981.

[315] David B. Shmoys. Computing near-optimal solutions to combinatorial optimization prob-
lems. In William Cook, László Lovász, and Paul Seymour, editors, Combinatorial Opti-
mization, volume 20 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 1995.

[316] Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer
weights. In Proceedings of the 40th Annual Symposium on Foundations of Computer Sci-
ence, pages 605–614, 1999.

[317] Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology,
second edition, 2006.

[318] Steven S. Skiena. The Algorithm Design Manual. Springer, second edition, 1998.

[319] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

1248 Bibliography

[320] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32(3):652–686, 1985.

[321] Joel Spencer. Ten Lectures on the Probabilistic Method, volume 64 of CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics,
1993.

[322] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the sim-
plex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

[323] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.

[324] Gilbert Strang. Linear Algebra and Its Applications. Thomson Brooks/Cole, fourth edition,
2006.

[325] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14(3):354–
356, 1969.

[326] T. G. Szymanski. A special case of the maximal common subsequence problem. Technical
Report TR-170, Computer Science Laboratory, Princeton University, 1975.

[327] Robert E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Com-
puting, 1(2):146–160, 1972.

[328] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215–225, 1975.

[329] Robert E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. Journal of Computer and System Sciences, 18(2):110–127, 1979.

[330] Robert E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1983.

[331] Robert E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and
Discrete Methods, 6(2):306–318, 1985.

[332] Robert E. Tarjan. Class notes: Disjoint set union. COS 423, Princeton University, 1999.

[333] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. Jour-
nal of the ACM, 31(2):245–281, 1984.

[334] George B. Thomas, Jr., Maurice D. Weir, Joel Hass, and Frank R. Giordano. Thomas’
Calculus. Addison-Wesley, eleventh edition, 2005.

[335] Mikkel Thorup. Faster deterministic sorting and priority queues in linear space. In Pro-
ceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, pages 550–555, 1998.

[336] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in
linear time. Journal of the ACM, 46(3):362–394, 1999.

[337] Mikkel Thorup. On RAM priority queues. SIAM Journal on Computing, 30(1):86–109,
2000.

[338] Richard Tolimieri, Myoung An, and Chao Lu. Mathematics of Multidimensional Fourier
Transform Algorithms. Springer, second edition, 1997.

[339] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings
of the 16th Annual Symposium on Foundations of Computer Science, pages 75–84, 1975.

Bibliography 1249

[340] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Information Processing Letters, 6(3):80–82, 1977.

[341] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Mathematical Systems Theory, 10(1):99–127, 1976.

[342] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume A: Algo-
rithms and Complexity. Elsevier Science Publishers and the MIT Press, 1990.

[343] Charles Van Loan. Computational Frameworks for the Fast Fourier Transform. Society for
Industrial and Applied Mathematics, 1992.

[344] Robert J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Academic
Publishers, 1996.

[345] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

[346] Rakesh M. Verma. General techniques for analyzing recursive algorithms with applications.
SIAM Journal on Computing, 26(2):568–581, 1997.

[347] Hao Wang and Bill Lin. Pipelined van Emde Boas tree: Algorithms, analysis, and ap-
plications. In 26th IEEE International Conference on Computer Communications, pages
2471–2475, 2007.

[348] Antony F. Ware. Fast approximate Fourier transforms for irregularly spaced data. SIAM
Review, 40(4):838–856, 1998.

[349] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

[350] Michael S. Waterman. Introduction to Computational Biology, Maps, Sequences and
Genomes. Chapman & Hall, 1995.

[351] Mark Allen Weiss. Data Structures and Problem Solving Using C++. Addison-Wesley,
second edition, 2000.

[352] Mark Allen Weiss. Data Structures and Problem Solving Using Java. Addison-Wesley,
third edition, 2006.

[353] Mark Allen Weiss. Data Structures and Algorithm Analysis in C++. Addison-Wesley, third
edition, 2007.

[354] Mark Allen Weiss. Data Structures and Algorithm Analysis in Java. Addison-Wesley,
second edition, 2007.

[355] Hassler Whitney. On the abstract properties of linear dependence. American Journal of
Mathematics, 57(3):509–533, 1935.

[356] Herbert S. Wilf. Algorithms and Complexity. A K Peters, second edition, 2002.

[357] J. W. J. Williams. Algorithm 232 (HEAPSORT). Communications of the ACM, 7(6):347–
348, 1964.

[358] Shmuel Winograd. On the algebraic complexity of functions. In Actes du Congrès Interna-
tional des Mathématiciens, volume 3, pages 283–288, 1970.

[359] Andrew C.-C. Yao. A lower bound to finding convex hulls. Journal of the ACM, 28(4):780–
787, 1981.

[360] Chee Yap. A real elementary approach to the master recurrence and generalizations. Un-
published manuscript. Available at http://cs.nyu.edu/yap/papers/, July 2008.

http://cs.nyu.edu/yap/papers/

1250 Bibliography

[361] Yinyu Ye. Interior Point Algorithms: Theory and Analysis. John Wiley & Sons, 1997.

[362] Daniel Zwillinger, editor. CRC Standard Mathematical Tables and Formulae. Chapman &
Hall/CRC Press, 31st edition, 2003.

Index

This index uses the following conventions. Numbers are alphabetized as if spelled
out; for example, “2-3-4 tree” is indexed as if it were “two-three-four tree.” When
an entry refers to a place other than the main text, the page number is followed by
a tag: ex. for exercise, pr. for problem, fig. for figure, and n. for footnote. A tagged
page number often indicates the first page of an exercise or problem, which is not
necessarily the page on which the reference actually appears.

˛.n/, 574
� (golden ratio), 59, 108 pr.
y� (conjugate of the golden ratio), 59
�.n/ (Euler’s phi function), 943
�.n/-approximation algorithm, 1106, 1123
o-notation, 50–51, 64
O-notation, 45 fig., 47–48, 64
O 0-notation, 62 pr.eO-notation, 62 pr.
!-notation, 51
�-notation, 45 fig., 48–49, 641
�-notation, 62 pr.e�-notation, 62 pr.
‚-notation, 44–47, 45 fig., 64e‚-notation, 62 pr.
f g (set), 1158
2 (set member), 1158
62 (not a set member), 1158
;

(empty language), 1058
(empty set), 1158
� (subset), 1159

 (proper subset), 1159
W (such that), 1159
\ (set intersection), 1159
[(set union), 1159

� (set difference), 1159
j j

(flow value), 710
(length of a string), 986
(set cardinality), 1161
	

(Cartesian product), 1162
(cross product), 1016
h i

(sequence), 1166
(standard encoding), 1057�n

k

�
(choose), 1185

k k (euclidean norm), 1222
Š (factorial), 57
d e (ceiling), 54
b c (floor), 54
#
p (lower square root), 546
"
p (upper square root), 546P

(sum), 1145Q
(product), 1148

! (adjacency relation), 1169
� (reachability relation), 1170
^ (AND), 697, 1071
: (NOT), 1071
_ (OR), 697, 1071
˚ (group operator), 939
˝ (convolution operator), 901

1252 Index

� (closure operator), 1058
j (divides relation), 927
− (does-not-divide relation), 927
� (equivalent modulo n), 54, 1165 ex.
6� (not equivalent modulo n), 54
Œa�n (equivalence class modulo n), 928
Cn (addition modulo n), 940
�n (multiplication modulo n), 940
. a

p / (Legendre symbol), 982 pr.
" (empty string), 986, 1058
� (prefix relation), 986
� (suffix relation), 986
<x (above relation), 1022
// (comment symbol), 21
� (much-greater-than relation), 574
� (much-less-than relation), 783
�P (polynomial-time reducibility relation),

1067, 1077 ex.

AA-tree, 338
abelian group, 940
ABOVE, 1024
above relation (<x), 1022
absent child, 1178
absolutely convergent series, 1146
absorption laws for sets, 1160
abstract problem, 1054
acceptable pair of integers, 972
acceptance

by an algorithm, 1058
by a finite automaton, 996

accepting state, 995
accounting method, 456–459

for binary counters, 458
for dynamic tables, 465–466
for stack operations, 457–458, 458 ex.

Ackermann’s function, 585
activity-selection problem, 415–422, 450
acyclic graph, 1170

relation to matroids, 448 pr.
add instruction, 23
addition

of binary integers, 22 ex.
of matrices, 1220
modulo n (Cn), 940
of polynomials, 898

additive group modulo n, 940
addressing, open, see open-address hash table

ADD-SUBARRAY, 805 pr.
adjacency-list representation, 590

replaced by a hash table, 593 ex.
adjacency-matrix representation, 591
adjacency relation (!), 1169
adjacent vertices, 1169
admissible edge, 749
admissible network, 749–750
adversary, 190
aggregate analysis, 452–456

for binary counters, 454–455
for breadth-first search, 597
for depth-first search, 606
for Dijkstra’s algorithm, 661
for disjoint-set data structures, 566–567,

568 ex.
for dynamic tables, 465
for Fibonacci heaps, 518, 522 ex.
for Graham’s scan, 1036
for the Knuth-Morris-Pratt algorithm, 1006
for Prim’s algorithm, 636
for rod-cutting, 367
for shortest paths in a dag, 655
for stack operations, 452–454

aggregate flow, 863
Akra-Bazzi method for solving a recurrence,

112–113
algorithm, 5

correctness of, 6
origin of word, 42
running time of, 25
as a technology, 13

Alice, 959
ALLOCATE-NODE, 492
ALLOCATE-OBJECT, 244
allocation of objects, 243–244
all-pairs shortest paths, 644, 684–707

in dynamic graphs, 707
in �-dense graphs, 706 pr.
Floyd-Warshall algorithm for, 693–697, 706
Johnson’s algorithm for, 700–706
by matrix multiplication, 686–693, 706–707
by repeated squaring, 689–691

alphabet, 995, 1057
˛.n/, 574
amortized analysis, 451–478

accounting method of, 456–459
aggregate analysis, 367, 452–456

Index 1253

for bit-reversal permutation, 472 pr.
for breadth-first search, 597
for depth-first search, 606
for Dijkstra’s algorithm, 661
for disjoint-set data structures, 566–567,

568 ex., 572 ex., 575–581, 581–582 ex.
for dynamic tables, 463–471
for Fibonacci heaps, 509–512, 517–518,

520–522, 522 ex.
for the generic push-relabel algorithm, 746
for Graham’s scan, 1036
for the Knuth-Morris-Pratt algorithm, 1006
for making binary search dynamic, 473 pr.
potential method of, 459–463
for restructuring red-black trees, 474 pr.
for self-organizing lists with move-to-front,

476 pr.
for shortest paths in a dag, 655
for stacks on secondary storage, 502 pr.
for weight-balanced trees, 473 pr.

amortized cost
in the accounting method, 456
in aggregate analysis, 452
in the potential method, 459

ancestor, 1176
least common, 584 pr.

AND function (^), 697, 1071
AND gate, 1070
and, in pseudocode, 22
antiparallel edges, 711–712
antisymmetric relation, 1164
ANY-SEGMENTS-INTERSECT, 1025
approximation

by least squares, 835–839
of summation by integrals, 1154–1156

approximation algorithm, 10, 1105–1140
for bin packing, 1134 pr.
for MAX-CNF satisfiability, 1127 ex.
for maximum clique, 1111 ex., 1134 pr.
for maximum matching, 1135 pr.
for maximum spanning tree, 1137 pr.
for maximum-weight cut, 1127 ex.
for MAX-3-CNF satisfiability, 1123–1124,

1139
for minimum-weight vertex cover,

1124–1127, 1139
for parallel machine scheduling, 1136 pr.
randomized, 1123

for set cover, 1117–1122, 1139
for subset sum, 1128–1134, 1139
for traveling-salesman problem, 1111–1117,

1139
for vertex cover, 1108–1111, 1139
for weighted set cover, 1135 pr.
for 0-1 knapsack problem, 1137 pr., 1139

approximation error, 836
approximation ratio, 1106, 1123
approximation scheme, 1107
APPROX-MIN-WEIGHT-VC, 1126
APPROX-SUBSET-SUM, 1131
APPROX-TSP-TOUR, 1112
APPROX-VERTEX-COVER, 1109
arbitrage, 679 pr.
arc, see edge
argument of a function, 1166–1167
arithmetic instructions, 23
arithmetic, modular, 54, 939–946
arithmetic series, 1146
arithmetic with infinities, 650
arm, 485
array, 21

Monge, 110 pr.
passing as a parameter, 21

articulation point, 621 pr.
assignment

multiple, 21
satisfying, 1072, 1079
truth, 1072, 1079

associative laws for sets, 1160
associative operation, 939
asymptotically larger, 52
asymptotically nonnegative, 45
asymptotically positive, 45
asymptotically smaller, 52
asymptotically tight bound, 45
asymptotic efficiency, 43
asymptotic lower bound, 48
asymptotic notation, 43–53, 62 pr.

and graph algorithms, 588
and linearity of summations, 1146

asymptotic upper bound, 47
attribute of an object, 21
augmentation of a flow, 716
augmenting data structures, 339–355
augmenting path, 719–720, 763 pr.
authentication, 284 pr., 960–961, 964

1254 Index

automaton
finite, 995
string-matching, 996–1002

auxiliary hash function, 272
auxiliary linear program, 886
average-case running time, 28, 116
AVL-INSERT, 333 pr.
AVL tree, 333 pr., 337
axioms, for probability, 1190

babyface, 602 ex.
back edge, 609, 613
back substitution, 817
BAD-SET-COVER-INSTANCE, 1122 ex.
BALANCE, 333 pr.
balanced search tree

AA-trees, 338
AVL trees, 333 pr., 337
B-trees, 484–504
k-neighbor trees, 338
red-black trees, 308–338
scapegoat trees, 338
splay trees, 338, 482
treaps, 333 pr., 338
2-3-4 trees, 489, 503 pr.
2-3 trees, 337, 504
weight-balanced trees, 338, 473 pr.

balls and bins, 133–134, 1215 pr.
base-a pseudoprime, 967
base case, 65, 84
base, in DNA, 391
basic feasible solution, 866
basic solution, 866
basic variable, 855
basis function, 835
Bayes’s theorem, 1194
BELLMAN-FORD, 651
Bellman-Ford algorithm, 651–655, 682

for all-pairs shortest paths, 684
in Johnson’s algorithm, 702–704
and objective functions, 670 ex.
to solve systems of difference constraints,

668
Yen’s improvement to, 678 pr.

BELOW, 1024
Bernoulli trial, 1201

and balls and bins, 133–134
and streaks, 135–139

best-case running time, 29 ex., 49
BFS, 595
BIASED-RANDOM, 117 ex.
biconnected component, 621 pr.
big-oh notation, 45 fig., 47–48, 64
big-omega notation, 45 fig., 48–49, 64
bijective function, 1167
binary character code, 428
binary counter

analyzed by accounting method, 458
analyzed by aggregate analysis, 454–455
analyzed by potential method, 461–462
bit-reversed, 472 pr.

binary entropy function, 1187
binary gcd algorithm, 981 pr.
binary heap, see heap
binary relation, 1163
binary search, 39 ex.

with fast insertion, 473 pr.
in insertion sort, 39 ex.
in multithreaded merging, 799–800
in searching B-trees, 499 ex.

BINARY-SEARCH, 799
binary search tree, 286–307

AA-trees, 338
AVL trees, 333 pr., 337
deletion from, 295–298, 299 ex.
with equal keys, 303 pr.
insertion into, 294–295
k-neighbor trees, 338
maximum key of, 291
minimum key of, 291
optimal, 397–404, 413
predecessor in, 291–292
querying, 289–294
randomly built, 299–303, 304 pr.
right-converting of, 314 ex.
scapegoat trees, 338
searching, 289–291
for sorting, 299 ex.
splay trees, 338
successor in, 291–292
and treaps, 333 pr.
weight-balanced trees, 338
see also red-black tree

binary-search-tree property, 287
in treaps, 333 pr.
vs. min-heap property, 289 ex.

Index 1255

binary tree, 1177
full, 1178
number of different ones, 306 pr.
representation of, 246
superimposed upon a bit vector, 533–534
see also binary search tree

binomial coefficient, 1186–1187
binomial distribution, 1203–1206

and balls and bins, 133
maximum value of, 1207 ex.
tails of, 1208–1215

binomial expansion, 1186
binomial heap, 527 pr.
binomial tree, 527 pr.
bin packing, 1134 pr.
bipartite graph, 1172

corresponding flow network of, 732
d -regular, 736 ex.
and hypergraphs, 1173 ex.

bipartite matching, 530, 732–736, 747 ex., 766
Hopcroft-Karp algorithm for, 763 pr.

birthday paradox, 130–133, 142 ex.
bisection of a tree, 1181 pr.
bitonic euclidean traveling-salesman problem,

405 pr.
bitonic sequence, 682 pr.
bitonic tour, 405 pr.
bit operation, 927

in Euclid’s algorithm, 981 pr.
bit-reversal permutation, 472 pr., 918
BIT-REVERSE-COPY, 918
bit-reversed binary counter, 472 pr.
BIT-REVERSED-INCREMENT, 472 pr.
bit vector, 255 ex., 532–536
black-height, 309
black vertex, 594, 603
blocking flow, 765
block structure in pseudocode, 20
Bob, 959
Boole’s inequality, 1195 ex.
boolean combinational circuit, 1071
boolean combinational element, 1070
boolean connective, 1079
boolean formula, 1049, 1066 ex., 1079,

1086 ex.
boolean function, 1187 ex.
boolean matrix multiplication, 832 ex.
Boru̇vka’s algorithm, 641

bottleneck spanning tree, 640 pr.
bottleneck traveling-salesman problem,

1117 ex.
bottom of a stack, 233
BOTTOM-UP-CUT-ROD, 366
bottom-up method, for dynamic programming,

365
bound

asymptotically tight, 45
asymptotic lower, 48
asymptotic upper, 47
on binomial coefficients, 1186–1187
on binomial distributions, 1206
polylogarithmic, 57
on the tails of a binomial distribution,

1208–1215
see also lower bounds

boundary condition, in a recurrence, 67, 84
boundary of a polygon, 1020 ex.
bounding a summation, 1149–1156
box, nesting, 678 pr.
BC-tree, 488
branching factor, in B-trees, 487
branch instructions, 23
breadth-first search, 594–602, 623

in maximum flow, 727–730, 766
and shortest paths, 597–600, 644
similarity to Dijkstra’s algorithm, 662,

663 ex.
breadth-first tree, 594, 600
bridge, 621 pr.
B�-tree, 489 n.
B-tree, 484–504

compared with red-black trees, 484, 490
creating, 492
deletion from, 499–502
full node in, 489
height of, 489–490
insertion into, 493–497
minimum degree of, 489
minimum key of, 497 ex.
properties of, 488–491
searching, 491–492
splitting a node in, 493–495
2-3-4 trees, 489

B-TREE-CREATE, 492
B-TREE-DELETE, 499
B-TREE-INSERT, 495

1256 Index

B-TREE-INSERT-NONFULL, 496
B-TREE-SEARCH, 492, 499 ex.
B-TREE-SPLIT-CHILD, 494
BUBBLESORT, 40 pr.
bucket, 200
bucket sort, 200–204
BUCKET-SORT, 201
BUILD-MAX-HEAP, 157
BUILD-MAX-HEAP0, 167 pr.
BUILD-MIN-HEAP, 159
butterfly operation, 915
by, in pseudocode, 21

cache, 24, 449 pr.
cache hit, 449 pr.
cache miss, 449 pr.
cache obliviousness, 504
caching, off-line, 449 pr.
call

in a multithreaded computation, 776
of a subroutine, 23, 25 n.
by value, 21

call edge, 778
cancellation lemma, 907
cancellation of flow, 717
canonical form for task scheduling, 444
capacity

of a cut, 721
of an edge, 709
residual, 716, 719
of a vertex, 714 ex.

capacity constraint, 709–710
cardinality of a set (j j), 1161
Carmichael number, 968, 975 ex.
Cartesian product (), 1162
Cartesian sum, 906 ex.
cascading cut, 520
CASCADING-CUT, 519
Catalan numbers, 306 pr., 372
ceiling function (d e), 54

in master theorem, 103–106
ceiling instruction, 23
certain event, 1190
certificate

in a cryptosystem, 964
for verification algorithms, 1063

CHAINED-HASH-DELETE, 258
CHAINED-HASH-INSERT, 258

CHAINED-HASH-SEARCH, 258
chaining, 257–260, 283 pr.
chain of a convex hull, 1038
changing a key, in a Fibonacci heap, 529 pr.
changing variables, in the substitution method,

86–87
character code, 428
chess-playing program, 790–791
child

in a binary tree, 1178
in a multithreaded computation, 776
in a rooted tree, 1176

child list in a Fibonacci heap, 507
Chinese remainder theorem, 950–954, 983
chip multiprocessor, 772
chirp transform, 914 ex.
choose

�n
k

�
, 1185

chord, 345 ex.
Cilk, 774, 812
Cilk++, 774, 812
ciphertext, 960
circuit

boolean combinational, 1071
depth of, 919
for fast Fourier transform, 919–920

CIRCUIT-SAT, 1072
circuit satisfiability, 1070–1077
circular, doubly linked list with a sentinel, 239
circular linked list, 236

see also linked list
class

complexity, 1059
equivalence, 1164

classification of edges
in breadth-first search, 621 pr.
in depth-first search, 609–610, 611 ex.
in a multithreaded dag, 778–779

clause, 1081–1082
clean area, 208 pr.
clique, 1086–1089, 1105

approximation algorithm for, 1111 ex.,
1134 pr.

CLIQUE, 1087
closed interval, 348
closed semiring, 707
closest pair, finding, 1039–1044, 1047
closest-point heuristic, 1117 ex.

Index 1257

closure
group property, 939
of a language, 1058
operator (�), 1058
transitive, see transitive closure

cluster
in a bit vector with a superimposed tree of

constant height, 534
for parallel computing, 772
in proto van Emde Boas structures, 538
in van Emde Boas trees, 546

clustering, 272
CNF (conjunctive normal form), 1049, 1082
CNF satisfiability, 1127 ex.
coarsening leaves of recursion

in merge sort, 39 pr.
when recursively spawning, 787

code, 428–429
Huffman, 428–437, 450

codeword, 429
codomain, 1166
coefficient

binomial, 1186
of a polynomial, 55, 898
in slack form, 856

coefficient representation, 900
and fast multiplication, 903–905

cofactor, 1224
coin changing, 446 pr.
colinearity, 1016
collision, 257

resolution by chaining, 257–260
resolution by open addressing, 269–277

collision-resistant hash function, 964
coloring, 1103 pr., 1180 pr.
color, of a red-black-tree node, 308
column-major order, 208 pr.
column rank, 1223
columnsort, 208 pr.
column vector, 1218
combination, 1185
combinational circuit, 1071
combinational element, 1070
combine step, in divide-and-conquer, 30, 65
comment, in pseudocode (//), 21
commodity, 862
common divisor, 929

greatest, see greatest common divisor

common multiple, 939 ex.
common subexpression, 915
common subsequence, 7, 391

longest, 7, 390–397, 413
commutative laws for sets, 1159
commutative operation, 940
COMPACTIFY-LIST, 245 ex.
compact list, 250 pr.
COMPACT-LIST-SEARCH, 250 pr.
COMPACT-LIST-SEARCH0, 251 pr.
comparable line segments, 1022
COMPARE-EXCHANGE, 208 pr.
compare-exchange operation, 208 pr.
comparison sort, 191

and binary search trees, 289 ex.
randomized, 205 pr.
and selection, 222

compatible activities, 415
compatible matrices, 371, 1221
competitive analysis, 476 pr.
complement

of an event, 1190
of a graph, 1090
of a language, 1058
Schur, 820, 834
of a set, 1160

complementary slackness, 894 pr.
complete graph, 1172
complete k-ary tree, 1179

see also heap
completeness of a language, 1077 ex.
complete step, 782
completion time, 447 pr., 1136 pr.
complexity class, 1059

co-NP, 1064
NP, 1049, 1064
NPC, 1050, 1069
P, 1049, 1055

complexity measure, 1059
complex numbers

inverting matrices of, 832 ex.
multiplication of, 83 ex.

complex root of unity, 906
interpolation at, 912–913

component
biconnected, 621 pr.
connected, 1170
strongly connected, 1170

1258 Index

component graph, 617
composite number, 928

witness to, 968
composition, of multithreaded computations,

784 fig.
computational depth, 812
computational geometry, 1014–1047
computational problem, 5–6
computation dag, 777
computation, multithreaded, 777
COMPUTE-PREFIX-FUNCTION, 1006
COMPUTE-TRANSITION-FUNCTION, 1001
concatenation

of languages, 1058
of strings, 986

concrete problem, 1055
concurrency keywords, 774, 776, 785
concurrency platform, 773
conditional branch instruction, 23
conditional independence, 1195 ex.
conditional probability, 1192, 1194
configuration, 1074
conjugate of the golden ratio (y�), 59
conjugate transpose, 832 ex.
conjunctive normal form, 1049, 1082
connected component, 1170

identified using depth-first search, 612 ex.
identified using disjoint-set data structures,

562–564
CONNECTED-COMPONENTS, 563
connected graph, 1170
connective, 1079
co-NP (complexity class), 1064
conquer step, in divide-and-conquer, 30, 65
conservation of flow, 709–710
consistency

of literals, 1088
sequential, 779, 812

CONSOLIDATE, 516
consolidating a Fibonacci-heap root list,

513–517
constraint, 851

difference, 665
equality, 670 ex., 852–853
inequality, 852–853
linear, 846
nonnegativity, 851, 853
tight, 865

violation of, 865
constraint graph, 666–668
contain, in a path, 1170
continuation edge, 778
continuous uniform probability distribution,

1192
contraction

of a dynamic table, 467–471
of a matroid, 442
of an undirected graph by an edge, 1172

control instructions, 23
convergence property, 650, 672–673
convergent series, 1146
converting binary to decimal, 933 ex.
convex combination of points, 1015
convex function, 1199
convex hull, 8, 1029–1039, 1046 pr.
convex layers, 1044 pr.
convex polygon, 1020 ex.
convex set, 714 ex.
convolution (˝), 901
convolution theorem, 913
copy instruction, 23
correctness of an algorithm, 6
corresponding flow network for bipartite

matching, 732
countably infinite set, 1161
counter, see binary counter
counting, 1183–1189

probabilistic, 143 pr.
counting sort, 194–197

in radix sort, 198
COUNTING-SORT, 195
coupon collector’s problem, 134
cover

path, 761 pr.
by a subset, 1118
vertex, 1089, 1108, 1124–1127, 1139

covertical, 1024
CREATE-NEW-RS-VEB-TREE, 557 pr.
credit, 456
critical edge, 729
critical path

of a dag, 657
of a multithreaded computation, 779

cross a cut, 626
cross edge, 609
cross product (), 1016

Index 1259

cryptosystem, 958–965, 983
cubic spline, 840 pr.
currency exchange, 390 ex., 679 pr.
curve fitting, 835–839
cut

capacity of, 721
cascading, 520
of a flow network, 720–724
minimum, 721, 731 ex.
net flow across, 720
of an undirected graph, 626
weight of, 1127 ex.

CUT, 519
CUT-ROD, 363
cutting, in a Fibonacci heap, 519
cycle of a graph, 1170

hamiltonian, 1049, 1061
minimum mean-weight, 680 pr.
negative-weight, see negative-weight cycle
and shortest paths, 646–647

cyclic group, 955
cyclic rotation, 1012 ex.
cycling, of simplex algorithm, 875

dag, see directed acyclic graph
DAG-SHORTEST-PATHS, 655
d -ary heap, 167 pr.

in shortest-paths algorithms, 706 pr.
data-movement instructions, 23
data-parallel model, 811
data structure, 9, 229–355, 481–585

AA-trees, 338
augmentation of, 339–355
AVL trees, 333 pr., 337
binary search trees, 286–307
binomial heaps, 527 pr.
bit vectors, 255 ex., 532–536
B-trees, 484–504
deques, 236 ex.
dictionaries, 229
direct-address tables, 254–255
for disjoint sets, 561–585
for dynamic graphs, 483
dynamic sets, 229–231
dynamic trees, 482
exponential search trees, 212, 483
Fibonacci heaps, 505–530
fusion trees, 212, 483

hash tables, 256–261
heaps, 151–169
interval trees, 348–354
k-neighbor trees, 338
linked lists, 236–241
mergeable heap, 505
order-statistic trees, 339–345
persistent, 331 pr., 482
potential of, 459
priority queues, 162–166
proto van Emde Boas structures, 538–545
queues, 232, 234–235
radix trees, 304 pr.
red-black trees, 308–338
relaxed heaps, 530
rooted trees, 246–249
scapegoat trees, 338
on secondary storage, 484–487
skip lists, 338
splay trees, 338, 482
stacks, 232–233
treaps, 333 pr., 338
2-3-4 heaps, 529 pr.
2-3-4 trees, 489, 503 pr.
2-3 trees, 337, 504
van Emde Boas trees, 531–560
weight-balanced trees, 338

data type, 23
deadline, 444
deallocation of objects, 243–244
decision by an algorithm, 1058–1059
decision problem, 1051, 1054

and optimization problems, 1051
decision tree, 192–193
DECREASE-KEY, 162, 505
decreasing a key

in Fibonacci heaps, 519–522
in 2-3-4 heaps, 529 pr.

DECREMENT, 456 ex.
degeneracy, 874
degree

of a binomial-tree root, 527 pr.
maximum, of a Fibonacci heap, 509,

523–526
minimum, of a B-tree, 489
of a node, 1177
of a polynomial, 55, 898
of a vertex, 1169

1260 Index

degree-bound, 898
DELETE, 230, 505
DELETE-LARGER-HALF, 463 ex.
deletion

from binary search trees, 295–298, 299 ex.
from a bit vector with a superimposed binary

tree, 534
from a bit vector with a superimposed tree of

constant height, 535
from B-trees, 499–502
from chained hash tables, 258
from direct-address tables, 254
from dynamic tables, 467–471
from Fibonacci heaps, 522, 526 pr.
from heaps, 166 ex.
from interval trees, 349
from linked lists, 238
from open-address hash tables, 271
from order-statistic trees, 343–344
from proto van Emde Boas structures, 544
from queues, 234
from red-black trees, 323–330
from stacks, 232
from sweep-line statuses, 1024
from 2-3-4 heaps, 529 pr.
from van Emde Boas trees, 554–556

DeMorgan’s laws
for propositional logic, 1083
for sets, 1160, 1162 ex.

dense graph, 589
�-dense, 706 pr.

density
of prime numbers, 965–966
of a rod, 370 ex.

dependence
and indicator random variables, 119
linear, 1223
see also independence

depth
average, of a node in a randomly built binary

search tree, 304 pr.
of a circuit, 919
of a node in a rooted tree, 1177
of quicksort recursion tree, 178 ex.
of a stack, 188 pr.

depth-determination problem, 583 pr.
depth-first forest, 603
depth-first search, 603–612, 623

in finding articulation points, bridges, and
biconnected components, 621 pr.

in finding strongly connected components,
615–621, 623

in topological sorting, 612–615
depth-first tree, 603
deque, 236 ex.
DEQUEUE, 235
derivative of a series, 1147
descendant, 1176
destination vertex, 644
det, see determinant
determinacy race, 788
determinant, 1224–1225

and matrix multiplication, 832 ex.
deterministic algorithm, 123

multithreaded, 787
DETERMINISTIC-SEARCH, 143 pr.
DFS, 604
DFS-VISIT, 604
DFT (discrete Fourier transform), 9, 909
diagonal matrix, 1218

LUP decomposition of, 827 ex.
diameter of a tree, 602 ex.
dictionary, 229
difference constraints, 664–670
difference equation, see recurrence
difference of sets (�), 1159

symmetric, 763 pr.
differentiation of a series, 1147
digital signature, 960
digraph, see directed graph
DIJKSTRA, 658
Dijkstra’s algorithm, 658–664, 682

for all-pairs shortest paths, 684, 704
implemented with a Fibonacci heap, 662
implemented with a min-heap, 662
with integer edge weights, 664 ex.
in Johnson’s algorithm, 702
similarity to breadth-first search, 662,

663 ex.
similarity to Prim’s algorithm, 634, 662

DIRECT-ADDRESS-DELETE, 254
direct addressing, 254–255, 532–536
DIRECT-ADDRESS-INSERT, 254
DIRECT-ADDRESS-SEARCH, 254
direct-address table, 254–255
directed acyclic graph (dag), 1172

Index 1261

and back edges, 613
and component graphs, 617
and hamiltonian paths, 1066 ex.
longest simple path in, 404 pr.
for representing a multithreaded

computation, 777
single-source shortest-paths algorithm for,

655–658
topological sort of, 612–615, 623

directed graph, 1168
all-pairs shortest paths in, 684–707
constraint graph, 666
Euler tour of, 623 pr., 1048
hamiltonian cycle of, 1049
and longest paths, 1048
path cover of, 761 pr.
PERT chart, 657, 657 ex.
semiconnected, 621 ex.
shortest path in, 643
single-source shortest paths in, 643–683
singly connected, 612 ex.
square of, 593 ex.
transitive closure of, 697
transpose of, 592 ex.
universal sink in, 593 ex.
see also directed acyclic graph, graph,

network
directed segment, 1015–1017
directed version of an undirected graph, 1172
DIRECTION, 1018
dirty area, 208 pr.
DISCHARGE, 751
discharge of an overflowing vertex, 751
discovered vertex, 594, 603
discovery time, in depth-first search, 605
discrete Fourier transform, 9, 909
discrete logarithm, 955
discrete logarithm theorem, 955
discrete probability distribution, 1191
discrete random variable, 1196–1201
disjoint-set data structure, 561–585

analysis of, 575–581, 581 ex.
in connected components, 562–564
in depth determination, 583 pr.
disjoint-set-forest implementation of,

568–572
in Kruskal’s algorithm, 631
linear-time special case of, 585

linked-list implementation of, 564–568
in off-line least common ancestors, 584 pr.
in off-line minimum, 582 pr.
in task scheduling, 448 pr.

disjoint-set forest, 568–572
analysis of, 575–581, 581 ex.
rank properties of, 575, 581 ex.
see also disjoint-set data structure

disjoint sets, 1161
disjunctive normal form, 1083
disk, 1028 ex.
disk drive, 485–487

see also secondary storage
DISK-READ, 487
DISK-WRITE, 487
distance

edit, 406 pr.
euclidean, 1039
Lm, 1044 ex.
Manhattan, 225 pr., 1044 ex.
of a shortest path, 597

distributed memory, 772
distribution

binomial, 1203–1206
continuous uniform, 1192
discrete, 1191
geometric, 1202–1203
of inputs, 116, 122
of prime numbers, 965
probability, 1190
sparse-hulled, 1046 pr.
uniform, 1191

distributive laws for sets, 1160
divergent series, 1146
divide-and-conquer method, 30–35, 65

analysis of, 34–35
for binary search, 39 ex.
for conversion of binary to decimal, 933 ex.
for fast Fourier transform, 909–912
for finding the closest pair of points,

1040–1043
for finding the convex hull, 1030
for matrix inversion, 829–831
for matrix multiplication, 76–83, 792–797
for maximum-subarray problem, 68–75
for merge sort, 30–37, 797–805
for multiplication, 920 pr.

1262 Index

for multithreaded matrix multiplication,
792–797

for multithreaded merge sort, 797–805
for quicksort, 170–190
relation to dynamic programming, 359
for selection, 215–224
solving recurrences for, 83–106, 112–113
for Strassen’s algorithm, 79–83

divide instruction, 23
divides relation (j), 927
divide step, in divide-and-conquer, 30, 65
division method, 263, 268–269 ex.
division theorem, 928
divisor, 927–928

common, 929
see also greatest common divisor

DNA, 6–7, 390–391, 406 pr.
DNF (disjunctive normal form), 1083
does-not-divide relation (−), 927
domain, 1166
dominates relation, 1045 pr.
double hashing, 272–274, 277 ex.
doubly linked list, 236

see also linked list
downto, in pseudocode, 21
d -regular graph, 736 ex.
duality, 879–886, 895 pr.

weak, 880–881, 886 ex.
dual linear program, 879
dummy key, 397
dynamic graph, 562 n.

all-pairs shortest paths algorithms for, 707
data structures for, 483
minimum-spanning-tree algorithm for,

637 ex.
transitive closure of, 705 pr., 707

dynamic multithreaded algorithm, see
multithreaded algorithm

dynamic multithreading, 773
dynamic order statistics, 339–345
dynamic-programming method, 359–413

for activity selection, 421 ex.
for all-pairs shortest paths, 686–697
for bitonic euclidean traveling-salesman

problem, 405 pr.
bottom-up, 365
for breaking a string, 410 pr.

compared with greedy algorithms, 381,
390 ex., 418, 423–427

for edit distance, 406 pr.
elements of, 378–390
for Floyd-Warshall algorithm, 693–697
for inventory planning, 411 pr.
for longest common subsequence, 390–397
for longest palindrome subsequence, 405 pr.
for longest simple path in a weighted

directed acyclic graph, 404 pr.
for matrix-chain multiplication, 370–378
and memoization, 387–389
for optimal binary search trees, 397–404
optimal substructure in, 379–384
overlapping subproblems in, 384–386
for printing neatly, 405 pr.
reconstructing an optimal solution in, 387
relation to divide-and-conquer, 359
for rod-cutting, 360–370
for seam carving, 409 pr.
for signing free agents, 411 pr.
top-down with memoization, 365
for transitive closure, 697–699
for Viterbi algorithm, 408 pr.
for 0-1 knapsack problem, 427 ex.

dynamic set, 229–231
see also data structure

dynamic table, 463–471
analyzed by accounting method, 465–466
analyzed by aggregate analysis, 465
analyzed by potential method, 466–471
load factor of, 463

dynamic tree, 482

e, 55
E Œ � (expected value), 1197
early-first form, 444
early task, 444
edge, 1168

admissible, 749
antiparallel, 711–712
attributes of, 592
back, 609
bridge, 621 pr.
call, 778
capacity of, 709
classification in breadth-first search, 621 pr.
classification in depth-first search, 609–610

Index 1263

continuation, 778
critical, 729
cross, 609
forward, 609
inadmissible, 749
light, 626
negative-weight, 645–646
residual, 716
return, 779
safe, 626
saturated, 739
spawn, 778
tree, 601, 603, 609
weight of, 591

edge connectivity, 731 ex.
edge set, 1168
edit distance, 406 pr.
Edmonds-Karp algorithm, 727–730
elementary event, 1189
elementary insertion, 465
element of a set (2), 1158
ellipsoid algorithm, 850, 897
elliptic-curve factorization method, 984
elseif, in pseudocode, 20 n.
else, in pseudocode, 20
empty language (;), 1058
empty set (;), 1158
empty set laws, 1159
empty stack, 233
empty string ("), 986, 1058
empty tree, 1178
encoding of problem instances, 1055–1057
endpoint

of an interval, 348
of a line segment, 1015

ENQUEUE, 235
entering a vertex, 1169
entering variable, 867
entropy function, 1187
�-dense graph, 706 pr.
�-universal hash function, 269 ex.
equality

of functions, 1166
linear, 845
of sets, 1158

equality constraint, 670 ex., 852
and inequality constraints, 853
tight, 865

violation of, 865
equation

and asymptotic notation, 49–50
normal, 837
recurrence, see recurrence

equivalence class, 1164
modulo n (Œa�n), 928

equivalence, modular (�), 54, 1165 ex.
equivalence relation, 1164

and modular equivalence, 1165 ex.
equivalent linear programs, 852
error, in pseudocode, 22
escape problem, 760 pr.
EUCLID, 935
Euclid’s algorithm, 933–939, 981 pr., 983
euclidean distance, 1039
euclidean norm (k k), 1222
Euler’s constant, 943
Euler’s phi function, 943
Euler’s theorem, 954, 975 ex.
Euler tour, 623 pr., 1048

and hamiltonian cycles, 1048
evaluation of a polynomial, 41 pr., 900, 905 ex.

derivatives of, 922 pr.
at multiple points, 923 pr.

event, 1190
event point, 1023
event-point schedule, 1023
EXACT-SUBSET-SUM, 1129
excess flow, 736
exchange property, 437
exclusion and inclusion, 1163 ex.
execute a subroutine, 25 n.
expansion of a dynamic table, 464–467
expectation, see expected value
expected running time, 28, 117
expected value, 1197–1199

of a binomial distribution, 1204
of a geometric distribution, 1202
of an indicator random variable, 118

explored vertex, 605
exponential function, 55–56
exponential height, 300
exponential search tree, 212, 483
exponential series, 1147
exponentiation instruction, 24
exponentiation, modular, 956
EXTENDED-BOTTOM-UP-CUT-ROD, 369

1264 Index

EXTENDED-EUCLID, 937
EXTEND-SHORTEST-PATHS, 688
extension of a set, 438
exterior of a polygon, 1020 ex.
external node, 1176
external path length, 1180 ex.
extracting the maximum key

from d -ary heaps, 167 pr.
from max-heaps, 163

extracting the minimum key
from Fibonacci heaps, 512–518
from 2-3-4 heaps, 529 pr.
from Young tableaus, 167 pr.

EXTRACT-MAX, 162–163
EXTRACT-MIN, 162, 505

factor, 928
twiddle, 912

factorial function (Š), 57–58
factorization, 975–980, 984

unique, 931
failure, in a Bernoulli trial, 1201
fair coin, 1191
fan-out, 1071
Farkas’s lemma, 895 pr.
farthest-pair problem, 1030
FASTER-ALL-PAIRS-SHORTEST-PATHS, 691,

692 ex.
fast Fourier transform (FFT), 898–925

circuit for, 919–920
iterative implementation of, 915–918
multidimensional, 921 pr.
multithreaded algorithm for, 804 ex.
recursive implementation of, 909–912
using modular arithmetic, 923 pr.

feasibility problem, 665, 894 pr.
feasible linear program, 851
feasible region, 847
feasible solution, 665, 846, 851
Fermat’s theorem, 954
FFT, see fast Fourier transform
FFTW, 924
FIB, 775
FIB-HEAP-CHANGE-KEY, 529 pr.
FIB-HEAP-DECREASE-KEY, 519
FIB-HEAP-DELETE, 522
FIB-HEAP-EXTRACT-MIN, 513
FIB-HEAP-INSERT, 510

FIB-HEAP-LINK, 516
FIB-HEAP-PRUNE, 529 pr.
FIB-HEAP-UNION, 512
Fibonacci heap, 505–530

changing a key in, 529 pr.
compared with binary heaps, 506–507
creating, 510
decreasing a key in, 519–522
deletion from, 522, 526 pr.
in Dijkstra’s algorithm, 662
extracting the minimum key from, 512–518
insertion into, 510–511
in Johnson’s algorithm, 704
maximum degree of, 509, 523–526
minimum key of, 511
potential function for, 509
in Prim’s algorithm, 636
pruning, 529 pr.
running times of operations on, 506 fig.
uniting, 511–512

Fibonacci numbers, 59–60, 108 pr., 523
computation of, 774–780, 981 pr.

FIFO (first-in, first-out), 232
see also queue

final-state function, 996
final strand, 779
FIND-DEPTH, 583 pr.
FIND-MAX-CROSSING-SUBARRAY, 71
FIND-MAXIMUM-SUBARRAY, 72
find path, 569
FIND-SET, 562

disjoint-set-forest implementation of, 571,
585

linked-list implementation of, 564
finished vertex, 603
finishing time, in depth-first search, 605

and strongly connected components, 618
finish time, in activity selection, 415
finite automaton, 995

for string matching, 996–1002
FINITE-AUTOMATON-MATCHER, 999
finite group, 940
finite sequence, 1166
finite set, 1161
first-fit heuristic, 1134 pr.
first-in, first-out, 232

see also queue
fixed-length code, 429

Index 1265

floating-point data type, 23
floor function (b c), 54

in master theorem, 103–106
floor instruction, 23
flow, 709–714

aggregate, 863
augmentation of, 716
blocking, 765
cancellation of, 717
excess, 736
integer-valued, 733
net, across a cut, 720
value of, 710

flow conservation, 709–710
flow network, 709–714

corresponding to a bipartite graph, 732
cut of, 720–724
with multiple sources and sinks, 712

FLOYD-WARSHALL, 695
FLOYD-WARSHALL0, 699 ex.
Floyd-Warshall algorithm, 693–697,

699–700 ex., 706
multithreaded, 797 ex.

FORD-FULKERSON, 724
Ford-Fulkerson method, 714–731, 765
FORD-FULKERSON-METHOD, 715
forest, 1172–1173

depth-first, 603
disjoint-set, 568–572

for, in pseudocode, 20–21
and loop invariants, 19 n.

formal power series, 108 pr.
formula satisfiability, 1079–1081, 1105
forward edge, 609
forward substitution, 816–817
Fourier transform, see discrete Fourier

transform, fast Fourier transform
fractional knapsack problem, 426, 428 ex.
free agent, 411 pr.
freeing of objects, 243–244
free list, 243
FREE-OBJECT, 244
free tree, 1172–1176
frequency domain, 898
full binary tree, 1178, 1180 ex.

relation to optimal code, 430
full node, 489
full rank, 1223

full walk of a tree, 1114
fully parenthesized matrix-chain product, 370
fully polynomial-time approximation scheme,

1107
for subset sum, 1128–1134, 1139

function, 1166–1168
Ackermann’s, 585
basis, 835
convex, 1199
final-state, 996
hash, see hash function
linear, 26, 845
objective, 664, 847, 851
potential, 459
prefix, 1003–1004
quadratic, 27
reduction, 1067
suffix, 996
transition, 995, 1001–1002, 1012 ex.

functional iteration, 58
fundamental theorem of linear programming,

892
furthest-in-future strategy, 449 pr.
fusion tree, 212, 483
fuzzy sorting, 189 pr.

Gabow’s scaling algorithm for single-source
shortest paths, 679 pr.

gap character, 989 ex., 1002 ex.
gap heuristic, 760 ex., 766
garbage collection, 151, 243
gate, 1070
Gaussian elimination, 819, 842
gcd, see greatest common divisor
general number-field sieve, 984
generating function, 108 pr.
generator

of a subgroup, 944
of Z

�
n, 955

GENERIC-MST, 626
GENERIC-PUSH-RELABEL, 741
generic push-relabel algorithm, 740–748
geometric distribution, 1202–1203

and balls and bins, 134
geometric series, 1147
geometry, computational, 1014–1047
GF.2/, 1227 pr.
gift wrapping, 1037, 1047

1266 Index

global variable, 21
Goldberg’s algorithm, see push-relabel

algorithm
golden ratio (�), 59, 108 pr.
gossiping, 478
GRAFT, 583 pr.
Graham’s scan, 1030–1036, 1047
GRAHAM-SCAN, 1031
graph, 1168–1173

adjacency-list representation of, 590
adjacency-matrix representation of, 591
algorithms for, 587–766
and asymptotic notation, 588
attributes of, 588, 592
breadth-first search of, 594–602, 623
coloring of, 1103 pr.
complement of, 1090
component, 617
constraint, 666–668
dense, 589
depth-first search of, 603–612, 623
dynamic, 562 n.
�-dense, 706 pr.
hamiltonian, 1061
incidence matrix of, 448 pr., 593 ex.
interval, 422 ex.
nonhamiltonian, 1061
shortest path in, 597
singly connected, 612 ex.
sparse, 589
static, 562 n.
subproblem, 367–368
tour of, 1096
weighted, 591
see also directed acyclic graph, directed

graph, flow network, undirected graph,
tree

graphic matroid, 437–438, 642
GRAPH-ISOMORPHISM, 1065 ex.
gray vertex, 594, 603
greatest common divisor (gcd), 929–930,

933 ex.
binary gcd algorithm for, 981 pr.
Euclid’s algorithm for, 933–939, 981 pr., 983
with more than two arguments, 939 ex.
recursion theorem for, 934

greedoid, 450
GREEDY, 440

GREEDY-ACTIVITY-SELECTOR, 421
greedy algorithm, 414–450

for activity selection, 415–422
for coin changing, 446 pr.
compared with dynamic programming, 381,

390 ex., 418, 423–427
Dijkstra’s algorithm, 658–664
elements of, 423–428
for fractional knapsack problem, 426
greedy-choice property in, 424–425
for Huffman code, 428–437
Kruskal’s algorithm, 631–633
and matroids, 437–443
for minimum spanning tree, 631–638
for multithreaded scheduling, 781–783
for off-line caching, 449 pr.
optimal substructure in, 425
Prim’s algorithm, 634–636
for set cover, 1117–1122, 1139
for task scheduling, 443–446, 447–448 pr.
on a weighted matroid, 439–442
for weighted set cover, 1135 pr.

greedy-choice property, 424–425
of activity selection, 417–418
of Huffman codes, 433–434
of a weighted matroid, 441

greedy scheduler, 782
GREEDY-SET-COVER, 1119
grid, 760 pr.
group, 939–946

cyclic, 955
operator (˚), 939

guessing the solution, in the substitution
method, 84–85

half 3-CNF satisfiability, 1101 ex.
half-open interval, 348
Hall’s theorem, 735 ex.
halting problem, 1048
halving lemma, 908
HAM-CYCLE, 1062
hamiltonian cycle, 1049, 1061, 1091–1096,

1105
hamiltonian graph, 1061
hamiltonian path, 1066 ex., 1101 ex.
HAM-PATH, 1066 ex.
handle, 163, 507
handshaking lemma, 1172 ex.

Index 1267

harmonic number, 1147, 1153–1154
harmonic series, 1147, 1153–1154
HASH-DELETE, 277 ex.
hash function, 256, 262–269

auxiliary, 272
collision-resistant, 964
division method for, 263, 268–269 ex.
�-universal, 269 ex.
multiplication method for, 263–264
universal, 265–268

hashing, 253–285
with chaining, 257–260, 283 pr.
double, 272–274, 277 ex.
k-universal, 284 pr.
in memoization, 365, 387
with open addressing, 269–277
perfect, 277–282, 285
to replace adjacency lists, 593 ex.
universal, 265–268

HASH-INSERT, 270, 277 ex.
HASH-SEARCH, 271, 277 ex.
hash table, 256–261

dynamic, 471 ex.
secondary, 278
see also hashing

hash value, 256
hat-check problem, 122 ex.
head

in a disk drive, 485
of a linked list, 236
of a queue, 234

heap, 151–169
analyzed by potential method, 462 ex.
binomial, 527 pr.
building, 156–159, 166 pr.
compared with Fibonacci heaps, 506–507
d -ary, 167 pr., 706 pr.
deletion from, 166 ex.
in Dijkstra’s algorithm, 662
extracting the maximum key from, 163
Fibonacci, see Fibonacci heap
as garbage-collected storage, 151
height of, 153
in Huffman’s algorithm, 433
to implement a mergeable heap, 506
increasing a key in, 163–164
insertion into, 164
in Johnson’s algorithm, 704

max-heap, 152
maximum key of, 163
mergeable, see mergeable heap
min-heap, 153
in Prim’s algorithm, 636
as a priority queue, 162–166
relaxed, 530
running times of operations on, 506 fig.
and treaps, 333 pr.
2-3-4, 529 pr.

HEAP-DECREASE-KEY, 165 ex.
HEAP-DELETE, 166 ex.
HEAP-EXTRACT-MAX, 163
HEAP-EXTRACT-MIN, 165 ex.
HEAP-INCREASE-KEY, 164
HEAP-MAXIMUM, 163
HEAP-MINIMUM, 165 ex.
heap property, 152

maintenance of, 154–156
vs. binary-search-tree property, 289 ex.

heapsort, 151–169
HEAPSORT, 160
heel, 602 ex.
height

of a binomial tree, 527 pr.
black-, 309
of a B-tree, 489–490
of a d -ary heap, 167 pr.
of a decision tree, 193
exponential, 300
of a heap, 153
of a node in a heap, 153, 159 ex.
of a node in a tree, 1177
of a red-black tree, 309
of a tree, 1177

height-balanced tree, 333 pr.
height function, in push-relabel algorithms, 738
hereditary family of subsets, 437
Hermitian matrix, 832 ex.
high endpoint of an interval, 348
high function, 537, 546
HIRE-ASSISTANT, 115
hiring problem, 114–115, 123–124, 145

on-line, 139–141
probabilistic analysis of, 120–121

hit
cache, 449 pr.
spurious, 991

1268 Index

HOARE-PARTITION, 185 pr.
HOPCROFT-KARP, 764 pr.
Hopcroft-Karp bipartite matching algorithm,

763 pr.
horizontal ray, 1021 ex.
Horner’s rule, 41 pr., 900

in the Rabin-Karp algorithm, 990
HUFFMAN, 431
Huffman code, 428–437, 450
hull, convex, 8, 1029–1039, 1046 pr.
Human Genome Project, 6
hyperedge, 1172
hypergraph, 1172

and bipartite graphs, 1173 ex.

ideal parallel computer, 779
idempotency laws for sets, 1159
identity, 939
identity matrix, 1218
if, in pseudocode, 20
image, 1167
image compression, 409 pr., 413
inadmissible edge, 749
incidence, 1169
incidence matrix

and difference constraints, 666
of a directed graph, 448 pr., 593 ex.
of an undirected graph, 448 pr.

inclusion and exclusion, 1163 ex.
incomplete step, 782
INCREASE-KEY, 162
increasing a key, in a max-heap, 163–164
INCREMENT, 454
incremental design method, 29

for finding the convex hull, 1030
in-degree, 1169
indentation in pseudocode, 20
independence

of events, 1192–1193, 1195 ex.
of random variables, 1197
of subproblems in dynamic programming,

383–384
independent family of subsets, 437
independent set, 1101 pr.

of tasks, 444
independent strands, 789
index function, 537, 546
index of an element of Z

�
n, 955

indicator random variable, 118–121
in analysis of expected height of a randomly

built binary search tree, 300–303
in analysis of inserting into a treap, 333 pr.
in analysis of streaks, 138–139
in analysis of the birthday paradox, 132–133
in approximation algorithm for

MAX-3-CNF satisfiability, 1124
in bounding the right tail of the binomial

distribution, 1212–1213
in bucket sort analysis, 202–204
expected value of, 118
in hashing analysis, 259–260
in hiring-problem analysis, 120–121
and linearity of expectation, 119
in quicksort analysis, 182–184, 187 pr.
in randomized-selection analysis, 217–219,

226 pr.
in universal-hashing analysis, 265–266

induced subgraph, 1171
inequality constraint, 852

and equality constraints, 853
inequality, linear, 846
infeasible linear program, 851
infeasible solution, 851
infinite sequence, 1166
infinite set, 1161
infinite sum, 1145
infinity, arithmetic with, 650
INITIALIZE-PREFLOW, 740
INITIALIZE-SIMPLEX, 871, 887
INITIALIZE-SINGLE-SOURCE, 648
initial strand, 779
injective function, 1167
inner product, 1222
inorder tree walk, 287, 293 ex., 342
INORDER-TREE-WALK, 288
in-place sorting, 17, 148, 206 pr.
input

to an algorithm, 5
to a combinational circuit, 1071
distribution of, 116, 122
to a logic gate, 1070
size of, 25

input alphabet, 995
INSERT, 162, 230, 463 ex., 505
insertion

into binary search trees, 294–295

Index 1269

into a bit vector with a superimposed binary
tree, 534

into a bit vector with a superimposed tree of
constant height, 534

into B-trees, 493–497
into chained hash tables, 258
into d -ary heaps, 167 pr.
into direct-address tables, 254
into dynamic tables, 464–467
elementary, 465
into Fibonacci heaps, 510–511
into heaps, 164
into interval trees, 349
into linked lists, 237–238
into open-address hash tables, 270
into order-statistic trees, 343
into proto van Emde Boas structures, 544
into queues, 234
into red-black trees, 315–323
into stacks, 232
into sweep-line statuses, 1024
into treaps, 333 pr.
into 2-3-4 heaps, 529 pr.
into van Emde Boas trees, 552–554
into Young tableaus, 167 pr.

insertion sort, 12, 16–20, 25–27
in bucket sort, 201–204
compared with merge sort, 14 ex.
compared with quicksort, 178 ex.
decision tree for, 192 fig.
in merge sort, 39 pr.
in quicksort, 185 ex.
using binary search, 39 ex.

INSERTION-SORT, 18, 26, 208 pr.
instance

of an abstract problem, 1051, 1054
of a problem, 5

instructions of the RAM model, 23
integer data type, 23
integer linear programming, 850, 895 pr.,

1101 ex.
integers (Z), 1158
integer-valued flow, 733
integrality theorem, 734
integral, to approximate summations,

1154–1156
integration of a series, 1147
interior of a polygon, 1020 ex.

interior-point method, 850, 897
intermediate vertex, 693
internal node, 1176
internal path length, 1180 ex.
interpolation by a cubic spline, 840 pr.
interpolation by a polynomial, 901, 906 ex.

at complex roots of unity, 912–913
intersection

of chords, 345 ex.
determining, for a set of line segments,

1021–1029, 1047
determining, for two line segments,

1017–1019
of languages, 1058
of sets (\), 1159

interval, 348
fuzzy sorting of, 189 pr.

INTERVAL-DELETE, 349
interval graph, 422 ex.
INTERVAL-INSERT, 349
INTERVAL-SEARCH, 349, 351
INTERVAL-SEARCH-EXACTLY, 354 ex.
interval tree, 348–354
interval trichotomy, 348
intractability, 1048
invalid shift, 985
inventory planning, 411 pr.
inverse

of a bijective function, 1167
in a group, 940
of a matrix, 827–831, 842, 1223, 1225 ex.
multiplicative, modulo n, 949

inversion
in a self-organizing list, 476 pr.
in a sequence, 41 pr., 122 ex., 345 ex.

inverter, 1070
invertible matrix, 1223
isolated vertex, 1169
isomorphic graphs, 1171
iterated function, 63 pr.
iterated logarithm function, 58–59
ITERATIVE-FFT, 917
ITERATIVE-TREE-SEARCH, 291
iter function, 577

Jarvis’s march, 1037–1038, 1047
Jensen’s inequality, 1199
JOHNSON, 704

1270 Index

Johnson’s algorithm, 700–706
joining

of red-black trees, 332 pr.
of 2-3-4 trees, 503 pr.

joint probability density function, 1197
Josephus permutation, 355 pr.

Karmarkar’s algorithm, 897
Karp’s minimum mean-weight cycle algorithm,

680 pr.
k-ary tree, 1179
k-CNF, 1049
k-coloring, 1103 pr., 1180 pr.
k-combination, 1185
k-conjunctive normal form, 1049
kernel of a polygon, 1038 ex.
key, 16, 147, 162, 229

dummy, 397
interpreted as a natural number, 263
median, of a B-tree node, 493
public, 959, 962
secret, 959, 962
static, 277

keywords, in pseudocode, 20–22
multithreaded, 774, 776–777, 785–786

“killer adversary” for quicksort, 190
Kirchhoff’s current law, 708
Kleene star (�), 1058
KMP algorithm, 1002–1013
KMP-MATCHER, 1005
knapsack problem

fractional, 426, 428 ex.
0-1, 425, 427 ex., 1137 pr., 1139

k-neighbor tree, 338
knot, of a spline, 840 pr.
Knuth-Morris-Pratt algorithm, 1002–1013
k-permutation, 126, 1184
Kraft inequality, 1180 ex.
Kruskal’s algorithm, 631–633, 642

with integer edge weights, 637 ex.
k-sorted, 207 pr.
k-string, 1184
k-subset, 1161
k-substring, 1184
kth power, 933 ex.
k-universal hashing, 284 pr.

Lagrange’s formula, 902

Lagrange’s theorem, 944
Lamé’s theorem, 936
language, 1057

completeness of, 1077 ex.
proving NP-completeness of, 1078–1079
verification of, 1063

last-in, first-out, 232
see also stack

late task, 444
layers

convex, 1044 pr.
maximal, 1045 pr.

LCA, 584 pr.
lcm (least common multiple), 939 ex.
LCS, 7, 390–397, 413
LCS-LENGTH, 394
leading submatrix, 833, 839 ex.
leaf, 1176
least common ancestor, 584 pr.
least common multiple, 939 ex.
least-squares approximation, 835–839
leaving a vertex, 1169
leaving variable, 867
LEFT, 152
left child, 1178
left-child, right-sibling representation, 246,

249 ex.
LEFT-ROTATE, 313, 353 ex.
left rotation, 312
left spine, 333 pr.
left subtree, 1178
Legendre symbol . a

p /, 982 pr.
length

of a path, 1170
of a sequence, 1166
of a spine, 333 pr.
of a string, 986, 1184

level
of a function, 573
of a tree, 1177

level function, 576
lexicographically less than, 304 pr.
lexicographic sorting, 304 pr.
lg (binary logarithm), 56
lg� (iterated logarithm function), 58–59
lgk (exponentiation of logarithms), 56
lg lg (composition of logarithms), 56
LIFO (last-in, first-out), 232

Index 1271

see also stack
light edge, 626
linear constraint, 846
linear dependence, 1223
linear equality, 845
linear equations

solving modular, 946–950
solving systems of, 813–827
solving tridiagonal systems of, 840 pr.

linear function, 26, 845
linear independence, 1223
linear inequality, 846
linear-inequality feasibility problem, 894 pr.
linearity of expectation, 1198

and indicator random variables, 119
linearity of summations, 1146
linear order, 1165
linear permutation, 1229 pr.
linear probing, 272
linear programming, 7, 843–897

algorithms for, 850
applications of, 849
duality in, 879–886
ellipsoid algorithm for, 850, 897
finding an initial solution in, 886–891
fundamental theorem of, 892
interior-point methods for, 850, 897
Karmarkar’s algorithm for, 897
and maximum flow, 860–861
and minimum-cost circulation, 896 pr.
and minimum-cost flow, 861–862
and minimum-cost multicommodity flow,

864 ex.
and multicommodity flow, 862–863
simplex algorithm for, 864–879, 896
and single-pair shortest path, 859–860
and single-source shortest paths, 664–670,

863 ex.
slack form for, 854–857
standard form for, 850–854
see also integer linear programming, 0-1

integer programming
linear-programming relaxation, 1125
linear search, 22 ex.
linear speedup, 780
line segment, 1015

comparable, 1022
determining turn of, 1017

determining whether any intersect,
1021–1029, 1047

determining whether two intersect,
1017–1019

link
of binomial trees, 527 pr.
of Fibonacci-heap roots, 513
of trees in a disjoint-set forest, 570–571

LINK, 571
linked list, 236–241

compact, 245 ex., 250 pr.
deletion from, 238
to implement disjoint sets, 564–568
insertion into, 237–238
neighbor list, 750
searching, 237, 268 ex.
self-organizing, 476 pr.

list, see linked list
LIST-DELETE, 238
LIST-DELETE0, 238
LIST-INSERT, 238
LIST-INSERT0, 240
LIST-SEARCH, 237
LIST-SEARCH0, 239
literal, 1082
little-oh notation, 50–51, 64
little-omega notation, 51
Lm-distance, 1044 ex.
ln (natural logarithm), 56
load factor

of a dynamic table, 463
of a hash table, 258

load instruction, 23
local variable, 21
logarithm function (log), 56–57

discrete, 955
iterated (lg�), 58–59

logical parallelism, 777
logic gate, 1070
longest common subsequence, 7, 390–397, 413
longest palindrome subsequence, 405 pr.
LONGEST-PATH, 1060 ex.
LONGEST-PATH-LENGTH, 1060 ex.
longest simple cycle, 1101 ex.
longest simple path, 1048

in an unweighted graph, 382
in a weighted directed acyclic graph, 404 pr.

LOOKUP-CHAIN, 388

1272 Index

loop, in pseudocode, 20
parallel, 785–787

loop invariant, 18–19
for breadth-first search, 595
for building a heap, 157
for consolidating the root list of a Fibonacci

heap, 517
for determining the rank of an element in an

order-statistic tree, 342
for Dijkstra’s algorithm, 660
and for loops, 19 n.
for the generic minimum-spanning-tree

method, 625
for the generic push-relabel algorithm, 743
for Graham’s scan, 1034
for heapsort, 160 ex.
for Horner’s rule, 41 pr.
for increasing a key in a heap, 166 ex.
initialization of, 19
for insertion sort, 18
maintenance of, 19
for merging, 32
for modular exponentiation, 957
origin of, 42
for partitioning, 171
for Prim’s algorithm, 636
for the Rabin-Karp algorithm, 993
for randomly permuting an array, 127,

128 ex.
for red-black tree insertion, 318
for the relabel-to-front algorithm, 755
for searching an interval tree, 352
for the simplex algorithm, 872
for string-matching automata, 998, 1000
and termination, 19

low endpoint of an interval, 348
lower bounds

on approximations, 1140
asymptotic, 48
for average sorting, 207 pr.
on binomial coefficients, 1186
for comparting water jugs, 206 pr.
for convex hull, 1038 ex., 1047
for disjoint-set data structures, 585
for finding the minimum, 214
for finding the predecessor, 560
for length of an optimal traveling-salesman

tour, 1112–1115

for median finding, 227
for merging, 208 pr.
for minimum-weight vertex cover,

1124–1126
for multithreaded computations, 780
and potential functions, 478
for priority-queue operations, 531
and recurrences, 67
for simultaneous minimum and maximum,

215 ex.
for size of an optimal vertex cover, 1110,

1135 pr.
for sorting, 191–194, 205 pr., 211, 531
for streaks, 136–138, 142 ex.
on summations, 1152, 1154

lower median, 213
lower square root

�
#
p �

, 546
lower-triangular matrix, 1219, 1222 ex.,

1225 ex.
low function, 537, 546
LU decomposition, 806 pr., 819–822
LU-DECOMPOSITION, 821
LUP decomposition, 806 pr., 815

computation of, 822–825
of a diagonal matrix, 827 ex.
in matrix inversion, 828
and matrix multiplication, 832 ex.
of a permutation matrix, 827 ex.
use of, 815–819

LUP-DECOMPOSITION, 824
LUP-SOLVE, 817

main memory, 484
MAKE-HEAP, 505
MAKE-SET, 561

disjoint-set-forest implementation of, 571
linked-list implementation of, 564

makespan, 1136 pr.
MAKE-TREE, 583 pr.
Manhattan distance, 225 pr., 1044 ex.
marked node, 508, 519–520
Markov’s inequality, 1201 ex.
master method for solving a recurrence, 93–97
master theorem, 94

proof of, 97–106
matched vertex, 732
matching

bipartite, 732, 763 pr.

Index 1273

maximal, 1110, 1135 pr.
maximum, 1135 pr.
and maximum flow, 732–736, 747 ex.
perfect, 735 ex.
of strings, 985–1013
weighted bipartite, 530

matric matroid, 437
matrix, 1217–1229

addition of, 1220
adjacency, 591
conjugate transpose of, 832 ex.
determinant of, 1224–1225
diagonal, 1218
Hermitian, 832 ex.
identity, 1218
incidence, 448 pr., 593 ex.
inversion of, 806 pr., 827–831, 842
lower-triangular, 1219, 1222 ex., 1225 ex.
multiplication of, see matrix multiplication
negative of, 1220
permutation, 1220, 1222 ex.
predecessor, 685
product of, with a vector, 785–787, 789–790,

792 ex.
pseudoinverse of, 837
scalar multiple of, 1220
subtraction of, 1221
symmetric, 1220
symmetric positive-definite, 832–835, 842
Toeplitz, 921 pr.
transpose of, 797 ex., 1217
transpose of, multithreaded, 792 ex.
tridiagonal, 1219
unit lower-triangular, 1219
unit upper-triangular, 1219
upper-triangular, 1219, 1225 ex.
Vandermonde, 902, 1226 pr.

matrix-chain multiplication, 370–378
MATRIX-CHAIN-MULTIPLY

MATRIX-CHAIN-ORDER, 375
matrix multiplication, 75–83, 1221

for all-pairs shortest paths, 686–693,
706–707

boolean, 832 ex.
and computing the determinant, 832 ex.
divide-and-conquer method for, 76–83
and LUP decomposition, 832 ex.
and matrix inversion, 828–831, 842

multithreaded algorithm for, 792–797,
806 pr.

Pan’s method for, 82 ex.
Strassen’s algorithm for, 79–83, 111–112

MATRIX-MULTIPLY, 371
matrix-vector multiplication, multithreaded,

785–787, 792 ex.
with race, 789–790

matroid, 437–443, 448 pr., 450, 642
for task scheduling, 443–446

MAT-VEC, 785
MAT-VEC-MAIN-LOOP, 786
MAT-VEC-WRONG, 790
MAX-CNF satisfiability, 1127 ex.
MAX-CUT problem, 1127 ex.
MAX-FLOW-BY-SCALING, 763 pr.
max-flow min-cut theorem, 723
max-heap, 152

building, 156–159
d -ary, 167 pr.
deletion from, 166 ex.
extracting the maximum key from, 163
in heapsort, 159–162
increasing a key in, 163–164
insertion into, 164
maximum key of, 163
as a max-priority queue, 162–166
mergeable, 250 n., 481 n., 505 n.

MAX-HEAPIFY, 154
MAX-HEAP-INSERT, 164

building a heap with, 166 pr.
max-heap property, 152

maintenance of, 154–156
maximal element, of a partially ordered set,

1165
maximal layers, 1045 pr.
maximal matching, 1110, 1135 pr.
maximal point, 1045 pr.
maximal subset, in a matroid, 438
maximization linear program, 846

and minimization linear programs, 852
maximum, 213

in binary search trees, 291
of a binomial distribution, 1207 ex.
in a bit vector with a superimposed binary

tree, 533
in a bit vector with a superimposed tree of

constant height, 535

1274 Index

finding, 214–215
in heaps, 163
in order-statistic trees, 347 ex.
in proto van Emde Boas structures, 544 ex.
in red-black trees, 311
in van Emde Boas trees, 550

MAXIMUM, 162–163, 230
maximum bipartite matching, 732–736,

747 ex., 766
Hopcroft-Karp algorithm for, 763 pr.

maximum degree, in a Fibonacci heap, 509,
523–526

maximum flow, 708–766
Edmonds-Karp algorithm for, 727–730
Ford-Fulkerson method for, 714–731, 765
as a linear program, 860–861
and maximum bipartite matching, 732–736,

747 ex.
push-relabel algorithms for, 736–760, 765
relabel-to-front algorithm for, 748–760
scaling algorithm for, 762 pr., 765
updating, 762 pr.

maximum matching, 1135 pr.
maximum spanning tree, 1137 pr.
maximum-subarray problem, 68–75, 111
max-priority queue, 162
MAX-3-CNF satisfiability, 1123–1124, 1139
MAYBE-MST-A, 641 pr.
MAYBE-MST-B, 641 pr.
MAYBE-MST-C, 641 pr.
mean, see expected value
mean weight of a cycle, 680 pr.
median, 213–227

multithreaded algorithm for, 805 ex.
of sorted lists, 223 ex.
of two sorted lists, 804 ex.
weighted, 225 pr.

median key, of a B-tree node, 493
median-of-3 method, 188 pr.
member of a set (2), 1158
membership

in proto van Emde Boas structures, 540–541
in Van Emde Boas trees, 550

memoization, 365, 387–389
MEMOIZED-CUT-ROD, 365
MEMOIZED-CUT-ROD-AUX, 366
MEMOIZED-MATRIX-CHAIN, 388
memory, 484

memory hierarchy, 24
MERGE, 31
mergeable heap, 481, 505

binomial heaps, 527 pr.
linked-list implementation of, 250 pr.
relaxed heaps, 530
running times of operations on, 506 fig.
2-3-4 heaps, 529 pr.
see also Fibonacci heap

mergeable max-heap, 250 n., 481 n., 505 n.
mergeable min-heap, 250 n., 481 n., 505
MERGE-LISTS, 1129
merge sort, 12, 30–37

compared with insertion sort, 14 ex.
multithreaded algorithm for, 797–805, 812
use of insertion sort in, 39 pr.

MERGE-SORT, 34
MERGE-SORT0, 797
merging

of k sorted lists, 166 ex.
lower bounds for, 208 pr.
multithreaded algorithm for, 798–801
of two sorted arrays, 30

MILLER-RABIN, 970
Miller-Rabin primality test, 968–975, 983
MIN-GAP, 354 ex.
min-heap, 153

analyzed by potential method, 462 ex.
building, 156–159
d -ary, 706 pr.
in Dijkstra’s algorithm, 662
in Huffman’s algorithm, 433
in Johnson’s algorithm, 704
mergeable, 250 n., 481 n., 505
as a min-priority queue, 165 ex.
in Prim’s algorithm, 636

MIN-HEAPIFY, 156 ex.
MIN-HEAP-INSERT, 165 ex.
min-heap ordering, 507
min-heap property, 153, 507

maintenance of, 156 ex.
in treaps, 333 pr.
vs. binary-search-tree property, 289 ex.

minimization linear program, 846
and maximization linear programs, 852

minimum, 213
in binary search trees, 291

Index 1275

in a bit vector with a superimposed binary
tree, 533

in a bit vector with a superimposed tree of
constant height, 535

in B-trees, 497 ex.
in Fibonacci heaps, 511
finding, 214–215
off-line, 582 pr.
in order-statistic trees, 347 ex.
in proto van Emde Boas structures, 541–542
in red-black trees, 311
in 2-3-4 heaps, 529 pr.
in van Emde Boas trees, 550

MINIMUM, 162, 214, 230, 505
minimum-cost circulation, 896 pr.
minimum-cost flow, 861–862
minimum-cost multicommodity flow, 864 ex.
minimum-cost spanning tree, see minimum

spanning tree
minimum cut, 721, 731 ex.
minimum degree, of a B-tree, 489
minimum mean-weight cycle, 680 pr.
minimum node, of a Fibonacci heap, 508
minimum path cover, 761 pr.
minimum spanning tree, 624–642

in approximation algorithm for
traveling-salesman problem, 1112

Boru̇vka’s algorithm for, 641
on dynamic graphs, 637 ex.
generic method for, 625–630
Kruskal’s algorithm for, 631–633
Prim’s algorithm for, 634–636
relation to matroids, 437, 439–440
second-best, 638 pr.

minimum-weight spanning tree, see minimum
spanning tree

minimum-weight vertex cover, 1124–1127,
1139

minor of a matrix, 1224
min-priority queue, 162

in constructing Huffman codes, 431
in Dijkstra’s algorithm, 661
in Prim’s algorithm, 634, 636

miss, 449 pr.
missing child, 1178
mod, 54, 928
modifying operation, 230
modular arithmetic, 54, 923 pr., 939–946

modular equivalence, 54, 1165 ex.
modular exponentiation, 956
MODULAR-EXPONENTIATION, 957
modular linear equations, 946–950
MODULAR-LINEAR-EQUATION-SOLVER,

949
modulo, 54, 928
Monge array, 110 pr.
monotone sequence, 168
monotonically decreasing, 53
monotonically increasing, 53
Monty Hall problem, 1195 ex.
move-to-front heuristic, 476 pr., 478
MST-KRUSKAL, 631
MST-PRIM, 634
MST-REDUCE, 639 pr.
much-greater-than (�), 574
much-less-than (�), 783
multicommodity flow, 862–863

minimum-cost, 864 ex.
multicore computer, 772
multidimensional fast Fourier transform,

921 pr.
multigraph, 1172

converting to equivalent undirected graph,
593 ex.

multiple, 927
of an element modulo n, 946–950
least common, 939 ex.
scalar, 1220

multiple assignment, 21
multiple sources and sinks, 712
multiplication

of complex numbers, 83 ex.
divide-and-conquer method for, 920 pr.
of matrices, see matrix multiplication
of a matrix chain, 370–378
matrix-vector, multithreaded, 785–787,

789–790, 792 ex.
modulo n (�n), 940
of polynomials, 899

multiplication method, 263–264
multiplicative group modulo n, 941
multiplicative inverse, modulo n, 949
multiply instruction, 23
MULTIPOP, 453
multiprocessor, 772
MULTIPUSH, 456 ex.

1276 Index

multiset, 1158 n.
multithreaded algorithm, 10, 772–812

for computing Fibonacci numbers, 774–780
for fast Fourier transform, 804 ex.
Floyd-Warshall algorithm, 797 ex.
for LU decomposition, 806 pr.
for LUP decomposition, 806 pr.
for matrix inversion, 806 pr.
for matrix multiplication, 792–797, 806 pr.
for matrix transpose, 792 ex., 797 ex.
for matrix-vector product, 785–787,

789–790, 792 ex.
for median, 805 ex.
for merge sorting, 797–805, 812
for merging, 798–801
for order statistics, 805 ex.
for partitioning, 804 ex.
for prefix computation, 807 pr.
for quicksort, 811 pr.
for reduction, 807 pr.
for a simple stencil calculation, 809 pr.
for solving systems of linear equations,

806 pr.
Strassen’s algorithm, 795–796

multithreaded composition, 784 fig.
multithreaded computation, 777
multithreaded scheduling, 781–783
mutually exclusive events, 1190
mutually independent events, 1193

N (set of natural numbers), 1158
naive algorithm, for string matching, 988–990
NAIVE-STRING-MATCHER, 988
natural cubic spline, 840 pr.
natural numbers (N), 1158

keys interpreted as, 263
negative of a matrix, 1220
negative-weight cycle

and difference constraints, 667
and relaxation, 677 ex.
and shortest paths, 645, 653–654, 692 ex.,

700 ex.
negative-weight edges, 645–646
neighbor, 1172
neighborhood, 735 ex.
neighbor list, 750
nested parallelism, 776, 805 pr.
nesting boxes, 678 pr.

net flow across a cut, 720
network

admissible, 749–750
flow, see flow network
residual, 715–719
for sorting, 811

NEXT-TO-TOP, 1031
NIL, 21
node, 1176

see also vertex
nonbasic variable, 855
nondeterministic multithreaded algorithm, 787
nondeterministic polynomial time, 1064 n.

see also NP
nonhamiltonian graph, 1061
noninstance, 1056 n.
noninvertible matrix, 1223
nonnegativity constraint, 851, 853
nonoverlappable string pattern, 1002 ex.
nonsaturating push, 739, 745
nonsingular matrix, 1223
nontrivial power, 933 ex.
nontrivial square root of 1, modulo n, 956
no-path property, 650, 672
normal equation, 837
norm of a vector, 1222
NOT function (:), 1071
not a set member (62), 1158
not equivalent (6�), 54
NOT gate, 1070
NP (complexity class), 1049, 1064, 1066 ex.,

1105
NPC (complexity class), 1050, 1069
NP-complete, 1050, 1069
NP-completeness, 9–10, 1048–1105

of the circuit-satisfiability problem,
1070–1077

of the clique problem, 1086–1089, 1105
of determining whether a boolean formula is

a tautology, 1086 ex.
of the formula-satisfiability problem,

1079–1081, 1105
of the graph-coloring problem, 1103 pr.
of the half 3-CNF satisfiability problem,

1101 ex.
of the hamiltonian-cycle problem,

1091–1096, 1105
of the hamiltonian-path problem, 1101 ex.

Index 1277

of the independent-set problem, 1101 pr.
of integer linear programming, 1101 ex.
of the longest-simple-cycle problem,

1101 ex.
proving, of a language, 1078–1079
of scheduling with profits and deadlines,

1104 pr.
of the set-covering problem, 1122 ex.
of the set-partition problem, 1101 ex.
of the subgraph-isomorphism problem,

1100 ex.
of the subset-sum problem, 1097–1100
of the 3-CNF-satisfiability problem,

1082–1085, 1105
of the traveling-salesman problem,

1096–1097
of the vertex-cover problem, 1089–1091,

1105
of 0-1 integer programming, 1100 ex.

NP-hard, 1069
n-set, 1161
n-tuple, 1162
null event, 1190
null tree, 1178
null vector, 1224
number-field sieve, 984
numerical stability, 813, 815, 842
n-vector, 1218

o-notation, 50–51, 64
O-notation, 45 fig., 47–48, 64
O 0-notation, 62 pr.eO-notation, 62 pr.
object, 21

allocation and freeing of, 243–244
array implementation of, 241–246
passing as parameter, 21

objective function, 664, 847, 851
objective value, 847, 851
oblivious compare-exchange algorithm, 208 pr.
occurrence of a pattern, 985
OFF-LINE-MINIMUM, 583 pr.
off-line problem

caching, 449 pr.
least common ancestors, 584 pr.
minimum, 582 pr.

Omega-notation, 45 fig., 48–49, 64
1-approximation algorithm, 1107

one-pass method, 585
one-to-one correspondence, 1167
one-to-one function, 1167
on-line convex-hull problem, 1039 ex.
on-line hiring problem, 139–141
ON-LINE-MAXIMUM, 140
on-line multithreaded scheduler, 781
ON-SEGMENT, 1018
onto function, 1167
open-address hash table, 269–277

with double hashing, 272–274, 277 ex.
with linear probing, 272
with quadratic probing, 272, 283 pr.

open interval, 348
OpenMP, 774
optimal binary search tree, 397–404, 413
OPTIMAL-BST, 402
optimal objective value, 851
optimal solution, 851
optimal subset, of a matroid, 439
optimal substructure

of activity selection, 416
of binary search trees, 399–400
in dynamic programming, 379–384
of the fractional knapsack problem, 426
in greedy algorithms, 425
of Huffman codes, 435
of longest common subsequences, 392–393
of matrix-chain multiplication, 373
of rod-cutting, 362
of shortest paths, 644–645, 687, 693–694
of unweighted shortest paths, 382
of weighted matroids, 442
of the 0-1 knapsack problem, 426

optimal vertex cover, 1108
optimization problem, 359, 1050, 1054

approximation algorithms for, 10,
1106–1140

and decision problems, 1051
OR function (_), 697, 1071
order

of a group, 945
linear, 1165
partial, 1165
total, 1165

ordered pair, 1161
ordered tree, 1177
order of growth, 28

1278 Index

order statistics, 213–227
dynamic, 339–345
multithreaded algorithm for, 805 ex.

order-statistic tree, 339–345
querying, 347 ex.

OR gate, 1070
origin, 1015
or, in pseudocode, 22
orthonormal, 842
OS-KEY-RANK, 344 ex.
OS-RANK, 342
OS-SELECT, 341
out-degree, 1169
outer product, 1222
output

of an algorithm, 5
of a combinational circuit, 1071
of a logic gate, 1070

overdetermined system of linear equations, 814
overflow

of a queue, 235
of a stack, 233

overflowing vertex, 736
discharge of, 751

overlapping intervals, 348
finding all, 354 ex.
point of maximum overlap, 354 pr.

overlapping rectangles, 354 ex.
overlapping subproblems, 384–386
overlapping-suffix lemma, 987

P (complexity class), 1049, 1055, 1059,
1061 ex., 1105

package wrapping, 1037, 1047
page on a disk, 486, 499 ex., 502 pr.
pair, ordered, 1161
pairwise disjoint sets, 1161
pairwise independence, 1193
pairwise relatively prime, 931
palindrome, 405 pr.
Pan’s method for matrix multiplication, 82 ex.
parallel algorithm, 10, 772

see also multithreaded algorithm
parallel computer, 772

ideal, 779
parallel for, in pseudocode, 785–786
parallelism

logical, 777

of a multithreaded computation, 780
nested, 776
of a randomized multithreaded algorithm,

811 pr.
parallel loop, 785–787, 805 pr.
parallel-machine-scheduling problem, 1136 pr.
parallel prefix, 807 pr.
parallel random-access machine, 811
parallel slackness, 781

rule of thumb, 783
parallel, strands being logically in, 778
parameter, 21

costs of passing, 107 pr.
parent

in a breadth-first tree, 594
in a multithreaded computation, 776
in a rooted tree, 1176

PARENT, 152
parenthesis structure of depth-first search, 606
parenthesis theorem, 606
parenthesization of a matrix-chain product, 370
parse tree, 1082
partially ordered set, 1165
partial order, 1165
PARTITION, 171
PARTITION0, 186 pr.
partition function, 361 n.
partitioning, 171–173

around median of 3 elements, 185 ex.
Hoare’s method for, 185 pr.
multithreaded algorithm for, 804 ex.
randomized, 179

partition of a set, 1161, 1164
Pascal’s triangle, 1188 ex.
path, 1170

augmenting, 719–720, 763 pr.
critical, 657
find, 569
hamiltonian, 1066 ex.
longest, 382, 1048
shortest, see shortest paths
simple, 1170
weight of, 643

PATH, 1051, 1058
path compression, 569
path cover, 761 pr.
path length, of a tree, 304 pr., 1180 ex.
path-relaxation property, 650, 673

Index 1279

pattern, in string matching, 985
nonoverlappable, 1002 ex.

pattern matching, see string matching
penalty, 444
perfect hashing, 277–282, 285
perfect linear speedup, 780
perfect matching, 735 ex.
permutation, 1167

bit-reversal, 472 pr., 918
Josephus, 355 pr.
k-permutation, 126, 1184
linear, 1229 pr.
in place, 126
random, 124–128
of a set, 1184
uniform random, 116, 125

permutation matrix, 1220, 1222 ex., 1226 ex.
LUP decomposition of, 827 ex.

PERMUTE-BY-CYCLIC, 129 ex.
PERMUTE-BY-SORTING, 125
PERMUTE-WITH-ALL, 129 ex.
PERMUTE-WITHOUT-IDENTITY, 128 ex.
persistent data structure, 331 pr., 482
PERSISTENT-TREE-INSERT, 331 pr.
PERT chart, 657, 657 ex.
P-FIB, 776
phase, of the relabel-to-front algorithm, 758
phi function (�.n/), 943
PISANO-DELETE, 526 pr.
pivot

in linear programming, 867, 869–870,
878 ex.

in LU decomposition, 821
in quicksort, 171

PIVOT, 869
platter, 485
P-MATRIX-MULTIPLY-RECURSIVE, 794
P-MERGE, 800
P-MERGE-SORT, 803
pointer, 21

array implementation of, 241–246
trailing, 295

point-value representation, 901
polar angle, 1020 ex.
Pollard’s rho heuristic, 976–980, 980 ex., 984
POLLARD-RHO, 976
polygon, 1020 ex.

kernel of, 1038 ex.

star-shaped, 1038 ex.
polylogarithmically bounded, 57
polynomial, 55, 898

addition of, 898
asymptotic behavior of, 61 pr.
coefficient representation of, 900
derivatives of, 922 pr.
evaluation of, 41 pr., 900, 905 ex., 923 pr.
interpolation by, 901, 906 ex.
multiplication of, 899, 903–905, 920 pr.
point-value representation of, 901

polynomial-growth condition, 113
polynomially bounded, 55
polynomially related, 1056
polynomial-time acceptance, 1058
polynomial-time algorithm, 927, 1048
polynomial-time approximation scheme, 1107

for maximum clique, 1134 pr.
polynomial-time computability, 1056
polynomial-time decision, 1059
polynomial-time reducibility (�P), 1067,

1077 ex.
polynomial-time solvability, 1055
polynomial-time verification, 1061–1066
POP, 233, 452
pop from a run-time stack, 188 pr.
positional tree, 1178
positive-definite matrix, 1225
post-office location problem, 225 pr.
postorder tree walk, 287
potential function, 459

for lower bounds, 478
potential method, 459–463

for binary counters, 461–462
for disjoint-set data structures, 575–581,

582 ex.
for dynamic tables, 466–471
for Fibonacci heaps, 509–512, 517–518,

520–522
for the generic push-relabel algorithm, 746
for min-heaps, 462 ex.
for restructuring red-black trees, 474 pr.
for self-organizing lists with move-to-front,

476 pr.
for stack operations, 460–461

potential, of a data structure, 459
power

of an element, modulo n, 954–958

1280 Index

kth, 933 ex.
nontrivial, 933 ex.

power series, 108 pr.
power set, 1161
Pr f g (probability distribution), 1190
PRAM, 811
predecessor

in binary search trees, 291–292
in a bit vector with a superimposed binary

tree, 534
in a bit vector with a superimposed tree of

constant height, 535
in breadth-first trees, 594
in B-trees, 497 ex.
in linked lists, 236
in order-statistic trees, 347 ex.
in proto van Emde Boas structures, 544 ex.
in red-black trees, 311
in shortest-paths trees, 647
in Van Emde Boas trees, 551–552

PREDECESSOR, 230
predecessor matrix, 685
predecessor subgraph

in all-pairs shortest paths, 685
in breadth-first search, 600
in depth-first search, 603
in single-source shortest paths, 647

predecessor-subgraph property, 650, 676
preemption, 447 pr.
prefix

of a sequence, 392
of a string (�), 986

prefix code, 429
prefix computation, 807 pr.
prefix function, 1003–1004
prefix-function iteration lemma, 1007
preflow, 736, 765
preimage of a matrix, 1228 pr.
preorder, total, 1165
preorder tree walk, 287
presorting, 1043
Prim’s algorithm, 634–636, 642

with an adjacency matrix, 637 ex.
in approximation algorithm for

traveling-salesman problem, 1112
implemented with a Fibonacci heap, 636
implemented with a min-heap, 636
with integer edge weights, 637 ex.

similarity to Dijkstra’s algorithm, 634, 662
for sparse graphs, 638 pr.

primality testing, 965–975, 983
Miller-Rabin test, 968–975, 983
pseudoprimality testing, 966–968

primal linear program, 880
primary clustering, 272
primary memory, 484
prime distribution function, 965
prime number, 928

density of, 965–966
prime number theorem, 965
primitive root of Z

�
n, 955

principal root of unity, 907
principle of inclusion and exclusion, 1163 ex.
PRINT-ALL-PAIRS-SHORTEST-PATH, 685
PRINT-CUT-ROD-SOLUTION, 369
PRINT-INTERSECTING-SEGMENTS, 1028 ex.
PRINT-LCS, 395
PRINT-OPTIMAL-PARENS, 377
PRINT-PATH, 601
PRINT-SET, 572 ex.
priority queue, 162–166

in constructing Huffman codes, 431
in Dijkstra’s algorithm, 661
heap implementation of, 162–166
lower bounds for, 531
max-priority queue, 162
min-priority queue, 162, 165 ex.
with monotone extractions, 168
in Prim’s algorithm, 634, 636
proto van Emde Boas structure

implementation of, 538–545
van Emde Boas tree implementation of,

531–560
see also binary search tree, binomial heap,

Fibonacci heap
probabilistically checkable proof, 1105, 1140
probabilistic analysis, 115–116, 130–142

of approximation algorithm for
MAX-3-CNF satisfiability, 1124

and average inputs, 28
of average node depth in a randomly built

binary search tree, 304 pr.
of balls and bins, 133–134
of birthday paradox, 130–133
of bucket sort, 201–204, 204 ex.
of collisions, 261 ex., 282 ex.

Index 1281

of convex hull over a sparse-hulled
distribution, 1046 pr.

of file comparison, 995 ex.
of fuzzy sorting of intervals, 189 pr.
of hashing with chaining, 258–260
of height of a randomly built binary search

tree, 299–303
of hiring problem, 120–121, 139–141
of insertion into a binary search tree with

equal keys, 303 pr.
of longest-probe bound for hashing, 282 pr.
of lower bound for sorting, 205 pr.
of Miller-Rabin primality test, 971–975
and multithreaded algorithms, 811 pr.
of on-line hiring problem, 139–141
of open-address hashing, 274–276, 277 ex.
of partitioning, 179 ex., 185 ex., 187–188 pr.
of perfect hashing, 279–282
of Pollard’s rho heuristic, 977–980
of probabilistic counting, 143 pr.
of quicksort, 181–184, 187–188 pr., 303 ex.
of Rabin-Karp algorithm, 994
and randomized algorithms, 123–124
of randomized selection, 217–219, 226 pr.
of searching a compact list, 250 pr.
of slot-size bound for chaining, 283 pr.
of sorting points by distance from origin,

204 ex.
of streaks, 135–139
of universal hashing, 265–268

probabilistic counting, 143 pr.
probability, 1189–1196
probability density function, 1196
probability distribution, 1190
probability distribution function, 204 ex.
probe sequence, 270
probing, 270, 282 pr.

see also linear probing, quadratic probing,
double hashing

problem
abstract, 1054
computational, 5–6
concrete, 1055
decision, 1051, 1054
intractable, 1048
optimization, 359, 1050, 1054
solution to, 6, 1054–1055
tractable, 1048

procedure, 6, 16–17
product .

Q
/, 1148

Cartesian, 1162
cross, 1016
inner, 1222
of matrices, 1221, 1226 ex.
outer, 1222
of polynomials, 899
rule of, 1184
scalar flow, 714 ex.

professional wrestler, 602 ex.
program counter, 1073
programming, see dynamic programming,

linear programming
proper ancestor, 1176
proper descendant, 1176
proper subgroup, 944
proper subset (
), 1159
proto van Emde Boas structure, 538–545

cluster in, 538
compared with van Emde Boas trees, 547
deletion from, 544
insertion into, 544
maximum in, 544 ex.
membership in, 540–541
minimum in, 541–542
predecessor in, 544 ex.
successor in, 543–544
summary in, 540

PROTO-VEB-INSERT, 544
PROTO-VEB-MEMBER, 541
PROTO-VEB-MINIMUM, 542
proto-vEB structure, see proto van Emde Boas

structure
PROTO-VEB-SUCCESSOR, 543
prune-and-search method, 1030
pruning a Fibonacci heap, 529 pr.
P-SCAN-1, 808 pr.
P-SCAN-2, 808 pr.
P-SCAN-3, 809 pr.
P-SCAN-DOWN, 809 pr.
P-SCAN-UP, 809 pr.
pseudocode, 16, 20–22
pseudoinverse, 837
pseudoprime, 966–968
PSEUDOPRIME, 967
pseudorandom-number generator, 117
P-SQUARE-MATRIX-MULTIPLY, 793

1282 Index

P-TRANSPOSE, 792 ex.
public key, 959, 962
public-key cryptosystem, 958–965, 983
PUSH

push-relabel operation, 739
stack operation, 233, 452

push onto a run-time stack, 188 pr.
push operation (in push-relabel algorithms),

738–739
nonsaturating, 739, 745
saturating, 739, 745

push-relabel algorithm, 736–760, 765
basic operations in, 738–740
by discharging an overflowing vertex of

maximum height, 760 ex.
to find a maximum bipartite matching,

747 ex.
gap heuristic for, 760 ex., 766
generic algorithm, 740–748
with a queue of overflowing vertices, 759 ex.
relabel-to-front algorithm, 748–760

quadratic function, 27
quadratic probing, 272, 283 pr.
quadratic residue, 982 pr.
quantile, 223 ex.
query, 230
queue, 232, 234–235

in breadth-first search, 595
implemented by stacks, 236 ex.
linked-list implementation of, 240 ex.
priority, see priority queue
in push-relabel algorithms, 759 ex.

quicksort, 170–190
analysis of, 174–185
average-case analysis of, 181–184
compared with insertion sort, 178 ex.
compared with radix sort, 199
with equal element values, 186 pr.
good worst-case implementation of, 223 ex.
“killer adversary” for, 190
with median-of-3 method, 188 pr.
multithreaded algorithm for, 811 pr.
randomized version of, 179–180, 187 pr.
stack depth of, 188 pr.
tail-recursive version of, 188 pr.
use of insertion sort in, 185 ex.
worst-case analysis of, 180–181

QUICKSORT, 171
QUICKSORT0, 186 pr.
quotient, 928

R (set of real numbers), 1158
Rabin-Karp algorithm, 990–995, 1013
RABIN-KARP-MATCHER, 993
race, 787–790
RACE-EXAMPLE, 788
radix sort, 197–200

compared with quicksort, 199
RADIX-SORT, 198
radix tree, 304 pr.
RAM, 23–24
RANDOM, 117
random-access machine, 23–24

parallel, 811
randomized algorithm, 116–117, 122–130

and average inputs, 28
comparison sort, 205 pr.
for fuzzy sorting of intervals, 189 pr.
for hiring problem, 123–124
for insertion into a binary search tree with

equal keys, 303 pr.
for MAX-3-CNF satisfiability, 1123–1124,

1139
Miller-Rabin primality test, 968–975, 983
multithreaded, 811 pr.
for partitioning, 179, 185 ex., 187–188 pr.
for permuting an array, 124–128
Pollard’s rho heuristic, 976–980, 980 ex.,

984
and probabilistic analysis, 123–124
quicksort, 179–180, 185 ex., 187–188 pr.
randomized rounding, 1139
for searching a compact list, 250 pr.
for selection, 215–220
universal hashing, 265–268
worst-case performance of, 180 ex.

RANDOMIZED-HIRE-ASSISTANT, 124
RANDOMIZED-PARTITION, 179
RANDOMIZED-QUICKSORT, 179, 303 ex.

relation to randomly built binary search
trees, 304 pr.

randomized rounding, 1139
RANDOMIZED-SELECT, 216
RANDOMIZE-IN-PLACE, 126

Index 1283

randomly built binary search tree, 299–303,
304 pr.

random-number generator, 117
random permutation, 124–128

uniform, 116, 125
RANDOM-SAMPLE, 130 ex.
random sampling, 129 ex., 179
RANDOM-SEARCH, 143 pr.
random variable, 1196–1201

indicator, see indicator random variable
range, 1167

of a matrix, 1228 pr.
rank

column, 1223
full, 1223
of a matrix, 1223, 1226 ex.
of a node in a disjoint-set forest, 569, 575,

581 ex.
of a number in an ordered set, 300, 339
in order-statistic trees, 341–343, 344–345 ex.
row, 1223

rate of growth, 28
ray, 1021 ex.
RB-DELETE, 324
RB-DELETE-FIXUP, 326
RB-ENUMERATE, 348 ex.
RB-INSERT, 315
RB-INSERT-FIXUP, 316
RB-JOIN, 332 pr.
RB-TRANSPLANT, 323
reachability in a graph (�), 1170
real numbers (R), 1158
reconstructing an optimal solution, in dynamic

programming, 387
record, 147
rectangle, 354 ex.
recurrence, 34, 65–67, 83–113

solution by Akra-Bazzi method, 112–113
solution by master method, 93–97
solution by recursion-tree method, 88–93
solution by substitution method, 83–88

recurrence equation, see recurrence
recursion, 30
recursion tree, 37, 88–93

in proof of master theorem, 98–100
and the substitution method, 91–92

RECURSIVE-ACTIVITY-SELECTOR, 419
recursive case, 65

RECURSIVE-FFT, 911
RECURSIVE-MATRIX-CHAIN, 385
red-black tree, 308–338

augmentation of, 346–347
compared with B-trees, 484, 490
deletion from, 323–330
in determining whether any line segments

intersect, 1024
for enumerating keys in a range, 348 ex.
height of, 309
insertion into, 315–323
joining of, 332 pr.
maximum key of, 311
minimum key of, 311
predecessor in, 311
properties of, 308–312
relaxed, 311 ex.
restructuring, 474 pr.
rotation in, 312–314
searching in, 311
successor in, 311
see also interval tree, order-statistic tree

REDUCE, 807 pr.
reduced-space van Emde Boas tree, 557 pr.
reducibility, 1067–1068
reduction algorithm, 1052, 1067
reduction function, 1067
reduction, of an array, 807 pr.
reflexive relation, 1163
reflexivity of asymptotic notation, 51
region, feasible, 847
regularity condition, 95
rejection

by an algorithm, 1058
by a finite automaton, 996

RELABEL, 740
relabeled vertex, 740
relabel operation, in push-relabel algorithms,

740, 745
RELABEL-TO-FRONT, 755
relabel-to-front algorithm, 748–760

phase of, 758
relation, 1163–1166
relatively prime, 931
RELAX, 649
relaxation

of an edge, 648–650
linear programming, 1125

1284 Index

relaxed heap, 530
relaxed red-black tree, 311 ex.
release time, 447 pr.
remainder, 54, 928
remainder instruction, 23
repeated squaring

for all-pairs shortest paths, 689–691
for raising a number to a power, 956

repeat, in pseudocode, 20
repetition factor, of a string, 1012 pr.
REPETITION-MATCHER, 1013 pr.
representative of a set, 561
RESET, 459 ex.
residual capacity, 716, 719
residual edge, 716
residual network, 715–719
residue, 54, 928, 982 pr.
respecting a set of edges, 626
return edge, 779
return, in pseudocode, 22
return instruction, 23
reweighting

in all-pairs shortest paths, 700–702
in single-source shortest paths, 679 pr.

rho heuristic, 976–980, 980 ex., 984
�.n/-approximation algorithm, 1106, 1123
RIGHT, 152
right child, 1178
right-conversion, 314 ex.
right horizontal ray, 1021 ex.
RIGHT-ROTATE, 313
right rotation, 312
right spine, 333 pr.
right subtree, 1178
rod-cutting, 360–370, 390 ex.
root

of a tree, 1176
of unity, 906–907
of Z

�
n, 955

rooted tree, 1176
representation of, 246–249

root list, of a Fibonacci heap, 509
rotation

cyclic, 1012 ex.
in a red-black tree, 312–314

rotational sweep, 1030–1038
rounding, 1126

randomized, 1139

row-major order, 394
row rank, 1223
row vector, 1218
RSA public-key cryptosystem, 958–965, 983
RS-vEB tree, 557 pr.
rule of product, 1184
rule of sum, 1183
running time, 25

average-case, 28, 116
best-case, 29 ex., 49
expected, 28, 117
of a graph algorithm, 588
and multithreaded computation, 779–780
order of growth, 28
rate of growth, 28
worst-case, 27, 49

sabermetrics, 412 n.
safe edge, 626
SAME-COMPONENT, 563
sample space, 1189
sampling, 129 ex., 179
SAT, 1079
satellite data, 147, 229
satisfiability, 1072, 1079–1081, 1105,

1123–1124, 1127 ex., 1139
satisfiable formula, 1049, 1079
satisfying assignment, 1072, 1079
saturated edge, 739
saturating push, 739, 745
scalar flow product, 714 ex.
scalar multiple, 1220
scaling

in maximum flow, 762 pr., 765
in single-source shortest paths, 679 pr.

scan, 807 pr.
SCAN, 807 pr.
scapegoat tree, 338
schedule, 444, 1136 pr.

event-point, 1023
scheduler, for multithreaded computations,

777, 781–783, 812
centralized, 782
greedy, 782
work-stealing algorithm for, 812

scheduling, 443–446, 447 pr., 450, 1104 pr.,
1136 pr.

Schur complement, 820, 834

Index 1285

Schur complement lemma, 834
SCRAMBLE-SEARCH, 143 pr.
seam carving, 409 pr., 413
SEARCH, 230
searching, 22 ex.

binary search, 39 ex., 799–800
in binary search trees, 289–291
in B-trees, 491–492
in chained hash tables, 258
in compact lists, 250 pr.
in direct-address tables, 254
for an exact interval, 354 ex.
in interval trees, 350–353
linear search, 22 ex.
in linked lists, 237
in open-address hash tables, 270–271
in proto van Emde Boas structures, 540–541
in red-black trees, 311
in an unsorted array, 143 pr.
in Van Emde Boas trees, 550

search tree, see balanced search tree, binary
search tree, B-tree, exponential search
tree, interval tree, optimal binary search
tree, order-statistic tree, red-black tree,
splay tree, 2-3 tree, 2-3-4 tree

secondary clustering, 272
secondary hash table, 278
secondary storage

search tree for, 484–504
stacks on, 502 pr.

second-best minimum spanning tree, 638 pr.
secret key, 959, 962
segment, see directed segment, line segment
SEGMENTS-INTERSECT, 1018
SELECT, 220
selection, 213

of activities, 415–422, 450
and comparison sorts, 222
in expected linear time, 215–220
multithreaded, 805 ex.
in order-statistic trees, 340–341
in worst-case linear time, 220–224

selection sort, 29 ex.
selector vertex, 1093
self-loop, 1168
self-organizing list, 476 pr., 478
semiconnected graph, 621 ex.
sentinel, 31, 238–240, 309

sequence (h i)
bitonic, 682 pr.
finite, 1166
infinite, 1166
inversion in, 41 pr., 122 ex., 345 ex.
probe, 270

sequential consistency, 779, 812
serial algorithm versus parallel algorithm, 772
serialization, of a multithreaded algorithm,

774, 776
series, 108 pr., 1146–1148

strands being logically in, 778
set (f g), 1158–1163

cardinality (j j), 1161
convex, 714 ex.
difference (�), 1159
independent, 1101 pr.
intersection (\), 1159
member (2), 1158
not a member (62), 1158
union ([), 1159

set-covering problem, 1117–1122, 1139
weighted, 1135 pr.

set-partition problem, 1101 ex.
shadow of a point, 1038 ex.
shared memory, 772
Shell’s sort, 42
shift, in string matching, 985
shift instruction, 24
short-circuiting operator, 22
SHORTEST-PATH, 1050
shortest paths, 7, 643–707

all-pairs, 644, 684–707
Bellman-Ford algorithm for, 651–655
with bitonic paths, 682 pr.
and breadth-first search, 597–600, 644
convergence property of, 650, 672–673
and difference constraints, 664–670
Dijkstra’s algorithm for, 658–664
in a directed acyclic graph, 655–658
in �-dense graphs, 706 pr.
estimate of, 648
Floyd-Warshall algorithm for, 693–697,

700 ex., 706
Gabow’s scaling algorithm for, 679 pr.
Johnson’s algorithm for, 700–706
as a linear program, 859–860
and longest paths, 1048

1286 Index

by matrix multiplication, 686–693, 706–707
and negative-weight cycles, 645, 653–654,

692 ex., 700 ex.
with negative-weight edges, 645–646
no-path property of, 650, 672
optimal substructure of, 644–645, 687,

693–694
path-relaxation property of, 650, 673
predecessor-subgraph property of, 650, 676
problem variants, 644
and relaxation, 648–650
by repeated squaring, 689–691
single-destination, 644
single-pair, 381, 644
single-source, 643–683
tree of, 647–648, 673–676
triangle inequality of, 650, 671
in an unweighted graph, 381, 597
upper-bound property of, 650, 671–672
in a weighted graph, 643

sibling, 1176
side of a polygon, 1020 ex.
signature, 960
simple cycle, 1170
simple graph, 1170
simple path, 1170

longest, 382, 1048
simple polygon, 1020 ex.
simple stencil calculation, 809 pr.
simple uniform hashing, 259
simplex, 848
SIMPLEX, 871
simplex algorithm, 848, 864–879, 896–897
single-destination shortest paths, 644
single-pair shortest path, 381, 644

as a linear program, 859–860
single-source shortest paths, 643–683

Bellman-Ford algorithm for, 651–655
with bitonic paths, 682 pr.
and difference constraints, 664–670
Dijkstra’s algorithm for, 658–664
in a directed acyclic graph, 655–658
in �-dense graphs, 706 pr.
Gabow’s scaling algorithm for, 679 pr.
as a linear program, 863 ex.
and longest paths, 1048

singleton, 1161
singly connected graph, 612 ex.

singly linked list, 236
see also linked list

singular matrix, 1223
singular value decomposition, 842
sink vertex, 593 ex., 709, 712
size

of an algorithm’s input, 25, 926–927,
1055–1057

of a binomial tree, 527 pr.
of a boolean combinational circuit, 1072
of a clique, 1086
of a set, 1161
of a subtree in a Fibonacci heap, 524
of a vertex cover, 1089, 1108

skip list, 338
slack, 855
slack form, 846, 854–857

uniqueness of, 876
slackness

complementary, 894 pr.
parallel, 781

slack variable, 855
slot

of a direct-access table, 254
of a hash table, 256

SLOW-ALL-PAIRS-SHORTEST-PATHS, 689
smoothed analysis, 897
?Socrates, 790
solution

to an abstract problem, 1054
basic, 866
to a computational problem, 6
to a concrete problem, 1055
feasible, 665, 846, 851
infeasible, 851
optimal, 851
to a system of linear equations, 814

sorted linked list, 236
see also linked list

sorting, 5, 16–20, 30–37, 147–212, 797–805
bubblesort, 40 pr.
bucket sort, 200–204
columnsort, 208 pr.
comparison sort, 191
counting sort, 194–197
fuzzy, 189 pr.
heapsort, 151–169
insertion sort, 12, 16–20

Index 1287

k-sorting, 207 pr.
lexicographic, 304 pr.
in linear time, 194–204, 206 pr.
lower bounds for, 191–194, 211, 531
merge sort, 12, 30–37, 797–805
by oblivious compare-exchange algorithms,

208 pr.
in place, 17, 148, 206 pr.
of points by polar angle, 1020 ex.
probabilistic lower bound for, 205 pr.
quicksort, 170–190
radix sort, 197–200
selection sort, 29 ex.
Shell’s sort, 42
stable, 196
table of running times, 149
topological, 8, 612–615, 623
using a binary search tree, 299 ex.
with variable-length items, 206 pr.
0-1 sorting lemma, 208 pr.

sorting network, 811
source vertex, 594, 644, 709, 712
span law, 780
spanning tree, 439, 624

bottleneck, 640 pr.
maximum, 1137 pr.
verification of, 642
see also minimum spanning tree

span, of a multithreaded computation, 779
sparse graph, 589

all-pairs shortest paths for, 700–705
and Prim’s algorithm, 638 pr.

sparse-hulled distribution, 1046 pr.
spawn, in pseudocode, 776–777
spawn edge, 778
speedup, 780

of a randomized multithreaded algorithm,
811 pr.

spindle, 485
spine

of a string-matching automaton, 997 fig.
of a treap, 333 pr.

splay tree, 338, 482
spline, 840 pr.
splitting

of B-tree nodes, 493–495
of 2-3-4 trees, 503 pr.

splitting summations, 1152–1154

spurious hit, 991
square matrix, 1218
SQUARE-MATRIX-MULTIPLY, 75, 689
SQUARE-MATRIX-MULTIPLY-RECURSIVE,

77
square of a directed graph, 593 ex.
square root, modulo a prime, 982 pr.
squaring, repeated

for all-pairs shortest paths, 689–691
for raising a number to a power, 956

stability
numerical, 813, 815, 842
of sorting algorithms, 196, 200 ex.

stack, 232–233
in Graham’s scan, 1030
implemented by queues, 236 ex.
linked-list implementation of, 240 ex.
operations analyzed by accounting method,

457–458
operations analyzed by aggregate analysis,

452–454
operations analyzed by potential method,

460–461
for procedure execution, 188 pr.
on secondary storage, 502 pr.

STACK-EMPTY, 233
standard deviation, 1200
standard encoding (h i), 1057
standard form, 846, 850–854
star-shaped polygon, 1038 ex.
start state, 995
start time, 415
state of a finite automaton, 995
static graph, 562 n.
static set of keys, 277
static threading, 773
stencil, 809 pr.
stencil calculation, 809 pr.
Stirling’s approximation, 57
storage management, 151, 243–244, 245 ex.,

261 ex.
store instruction, 23
straddle, 1017
strand, 777

final, 779
independent, 789
initial, 779
logically in parallel, 778

1288 Index

logically in series, 778
Strassen’s algorithm, 79–83, 111–112

multithreaded, 795–796
streaks, 135–139
strictly decreasing, 53
strictly increasing, 53
string, 985, 1184
string matching, 985–1013

based on repetition factors, 1012 pr.
by finite automata, 995–1002
with gap characters, 989 ex., 1002 ex.
Knuth-Morris-Pratt algorithm for,

1002–1013
naive algorithm for, 988–990
Rabin-Karp algorithm for, 990–995, 1013

string-matching automaton, 996–1002,
1002 ex.

strongly connected component, 1170
decomposition into, 615–621, 623

STRONGLY-CONNECTED-COMPONENTS, 617
strongly connected graph, 1170
subgraph, 1171

predecessor, see predecessor subgraph
subgraph-isomorphism problem, 1100 ex.
subgroup, 943–946
subpath, 1170
subproblem graph, 367–368
subroutine

calling, 21, 23, 25 n.
executing, 25 n.

subsequence, 391
subset (�), 1159, 1161

hereditary family of, 437
independent family of, 437

SUBSET-SUM, 1097
subset-sum problem

approximation algorithm for, 1128–1134,
1139

NP-completeness of, 1097–1100
with unary target, 1101 ex.

substitution method, 83–88
and recursion trees, 91–92

substring, 1184
subtract instruction, 23
subtraction of matrices, 1221
subtree, 1176

maintaining sizes of, in order-statistic trees,
343–344

success, in a Bernoulli trial, 1201
successor

in binary search trees, 291–292
in a bit vector with a superimposed binary

tree, 533
in a bit vector with a superimposed tree of

constant height, 535
finding i th, of a node in an order-statistic

tree, 344 ex.
in linked lists, 236
in order-statistic trees, 347 ex.
in proto van Emde Boas structures, 543–544
in red-black trees, 311
in Van Emde Boas trees, 550–551

SUCCESSOR, 230
such that (W), 1159
suffix (�), 986
suffix function, 996
suffix-function inequality, 999
suffix-function recursion lemma, 1000
sum .

P
/, 1145

Cartesian, 906 ex.
infinite, 1145
of matrices, 1220
of polynomials, 898
rule of, 1183
telescoping, 1148

SUM-ARRAYS, 805 pr.
SUM-ARRAYS0, 805 pr.
summary

in a bit vector with a superimposed tree of
constant height, 534

in proto van Emde Boas structures, 540
in van Emde Boas trees, 546

summation, 1145–1157
in asymptotic notation, 49–50, 1146
bounding, 1149–1156
formulas and properties of, 1145–1149
linearity of, 1146

summation lemma, 908
supercomputer, 772
superpolynomial time, 1048
supersink, 712
supersource, 712
surjection, 1167
SVD, 842
sweeping, 1021–1029, 1045 pr.

rotational, 1030–1038

Index 1289

sweep line, 1022
sweep-line status, 1023–1024
symbol table, 253, 262, 265
symmetric difference, 763 pr.
symmetric matrix, 1220, 1222 ex., 1226 ex.
symmetric positive-definite matrix, 832–835,

842
symmetric relation, 1163
symmetry of ‚-notation, 52
sync, in pseudocode, 776–777
system of difference constraints, 664–670
system of linear equations, 806 pr., 813–827,

840 pr.

TABLE-DELETE, 468
TABLE-INSERT, 464
tail

of a binomial distribution, 1208–1215
of a linked list, 236
of a queue, 234

tail recursion, 188 pr., 419
TAIL-RECURSIVE-QUICKSORT, 188 pr.
target, 1097
Tarjan’s off-line least-common-ancestors

algorithm, 584 pr.
task, 443
Task Parallel Library, 774
task scheduling, 443–446, 448 pr., 450
tautology, 1066 ex., 1086 ex.
Taylor series, 306 pr.
telescoping series, 1148
telescoping sum, 1148
testing

of primality, 965–975, 983
of pseudoprimality, 966–968

text, in string matching, 985
then clause, 20 n.
Theta-notation, 44–47, 64
thread, 773
Threading Building Blocks, 774
3-CNF, 1082
3-CNF-SAT, 1082
3-CNF satisfiability, 1082–1085, 1105

approximation algorithm for, 1123–1124,
1139

and 2-CNF satisfiability, 1049
3-COLOR, 1103 pr.
3-conjunctive normal form, 1082

tight constraint, 865
time, see running time
time domain, 898
time-memory trade-off, 365
timestamp, 603, 611 ex.
Toeplitz matrix, 921 pr.
to, in pseudocode, 20
TOP, 1031
top-down method, for dynamic programming,

365
top of a stack, 232
topological sort, 8, 612–615, 623

in computing single-source shortest paths in
a dag, 655

TOPOLOGICAL-SORT, 613
total order, 1165
total path length, 304 pr.
total preorder, 1165
total relation, 1165
tour

bitonic, 405 pr.
Euler, 623 pr., 1048
of a graph, 1096

track, 486
tractability, 1048
trailing pointer, 295
transition function, 995, 1001–1002, 1012 ex.
transitive closure, 697–699

and boolean matrix multiplication, 832 ex.
of dynamic graphs, 705 pr., 707

TRANSITIVE-CLOSURE, 698
transitive relation, 1163
transitivity of asymptotic notation, 51
TRANSPLANT, 296, 323
transpose

conjugate, 832 ex.
of a directed graph, 592 ex.
of a matrix, 1217
of a matrix, multithreaded, 792 ex.

transpose symmetry of asymptotic notation, 52
traveling-salesman problem

approximation algorithm for, 1111–1117,
1139

bitonic euclidean, 405 pr.
bottleneck, 1117 ex.
NP-completeness of, 1096–1097
with the triangle inequality, 1112–1115
without the triangle inequality, 1115–1116

1290 Index

traversal of a tree, 287, 293 ex., 342, 1114
treap, 333 pr., 338
TREAP-INSERT, 333 pr.
tree, 1173–1180

AA-trees, 338
AVL, 333 pr., 337
binary, see binary tree
binomial, 527 pr.
bisection of, 1181 pr.
breadth-first, 594, 600
B-trees, 484–504
decision, 192–193
depth-first, 603
diameter of, 602 ex.
dynamic, 482
free, 1172–1176
full walk of, 1114
fusion, 212, 483
heap, 151–169
height-balanced, 333 pr.
height of, 1177
interval, 348–354
k-neighbor, 338
minimum spanning, see minimum spanning

tree
optimal binary search, 397–404, 413
order-statistic, 339–345
parse, 1082
recursion, 37, 88–93
red-black, see red-black tree
rooted, 246–249, 1176
scapegoat, 338
search, see search tree
shortest-paths, 647–648, 673–676
spanning, see minimum spanning tree,

spanning tree
splay, 338, 482
treap, 333 pr., 338
2-3, 337, 504
2-3-4, 489, 503 pr.
van Emde Boas, 531–560
walk of, 287, 293 ex., 342, 1114
weight-balanced trees, 338

TREE-DELETE, 298, 299 ex., 323–324
tree edge, 601, 603, 609
TREE-INSERT, 294, 315
TREE-MAXIMUM, 291
TREE-MINIMUM, 291

TREE-PREDECESSOR, 292
TREE-SEARCH, 290
TREE-SUCCESSOR, 292
tree walk, 287, 293 ex., 342, 1114
trial, Bernoulli, 1201
trial division, 966
triangle inequality, 1112

for shortest paths, 650, 671
triangular matrix, 1219, 1222 ex., 1225 ex.
trichotomy, interval, 348
trichotomy property of real numbers, 52
tridiagonal linear systems, 840 pr.
tridiagonal matrix, 1219
trie (radix tree), 304 pr.

y-fast, 558 pr.
TRIM, 1130
trimming a list, 1130
trivial divisor, 928
truth assignment, 1072, 1079
truth table, 1070
TSP, 1096
tuple, 1162
twiddle factor, 912
2-CNF-SAT, 1086 ex.
2-CNF satisfiability, 1086 ex.

and 3-CNF satisfiability, 1049
two-pass method, 571
2-3-4 heap, 529 pr.
2-3-4 tree, 489

joining, 503 pr.
splitting, 503 pr.

2-3 tree, 337, 504

unary, 1056
unbounded linear program, 851
unconditional branch instruction, 23
uncountable set, 1161
underdetermined system of linear equations,

814
underflow

of a queue, 234
of a stack, 233

undirected graph, 1168
articulation point of, 621 pr.
biconnected component of, 621 pr.
bridge of, 621 pr.
clique in, 1086
coloring of, 1103 pr., 1180 pr.

Index 1291

computing a minimum spanning tree in,
624–642

converting to, from a multigraph, 593 ex.
d -regular, 736 ex.
grid, 760 pr.
hamiltonian, 1061
independent set of, 1101 pr.
matching of, 732
nonhamiltonian, 1061
vertex cover of, 1089, 1108
see also graph

undirected version of a directed graph, 1172
uniform hashing, 271
uniform probability distribution, 1191–1192
uniform random permutation, 116, 125
union

of dynamic sets, see uniting
of languages, 1058
of sets ([), 1159

UNION, 505, 562
disjoint-set-forest implementation of, 571
linked-list implementation of, 565–567,

568 ex.
union by rank, 569
unique factorization of integers, 931
unit (1), 928
uniting

of Fibonacci heaps, 511–512
of heaps, 506
of linked lists, 241 ex.
of 2-3-4 heaps, 529 pr.

unit lower-triangular matrix, 1219
unit-time task, 443
unit upper-triangular matrix, 1219
unit vector, 1218
universal collection of hash functions, 265
universal hashing, 265–268
universal sink, 593 ex.
universe, 1160

of keys in van Emde Boas trees, 532
universe size, 532
unmatched vertex, 732
unsorted linked list, 236

see also linked list
until, in pseudocode, 20
unweighted longest simple paths, 382
unweighted shortest paths, 381
upper bound, 47

upper-bound property, 650, 671–672
upper median, 213
upper square root

�
"
p �

, 546
upper-triangular matrix, 1219, 1225 ex.

valid shift, 985
value

of a flow, 710
of a function, 1166
objective, 847, 851

value over replacement player, 411 pr.
Vandermonde matrix, 902, 1226 pr.
van Emde Boas tree, 531–560

cluster in, 546
compared with proto van Emde Boas

structures, 547
deletion from, 554–556
insertion into, 552–554
maximum in, 550
membership in, 550
minimum in, 550
predecessor in, 551–552
with reduced space, 557 pr.
successor in, 550–551
summary in, 546

Var Œ � (variance), 1199
variable

basic, 855
entering, 867
leaving, 867
nonbasic, 855
in pseudocode, 21
random, 1196–1201
slack, 855
see also indicator random variable

variable-length code, 429
variance, 1199

of a binomial distribution, 1205
of a geometric distribution, 1203

VEB-EMPTY-TREE-INSERT, 553
vEB tree, see van Emde Boas tree
VEB-TREE-DELETE, 554
VEB-TREE-INSERT, 553
VEB-TREE-MAXIMUM, 550
VEB-TREE-MEMBER, 550
VEB-TREE-MINIMUM, 550
VEB-TREE-PREDECESSOR, 552
VEB-TREE-SUCCESSOR, 551

1292 Index

vector, 1218, 1222–1224
convolution of, 901
cross product of, 1016
orthonormal, 842
in the plane, 1015

Venn diagram, 1160
verification, 1061–1066

of spanning trees, 642
verification algorithm, 1063
vertex

articulation point, 621 pr.
attributes of, 592
capacity of, 714 ex.
in a graph, 1168
intermediate, 693
isolated, 1169
overflowing, 736
of a polygon, 1020 ex.
relabeled, 740
selector, 1093

vertex cover, 1089, 1108, 1124–1127, 1139
VERTEX-COVER, 1090
vertex-cover problem

approximation algorithm for, 1108–1111,
1139

NP-completeness of, 1089–1091, 1105
vertex set, 1168
violation, of an equality constraint, 865
virtual memory, 24
Viterbi algorithm, 408 pr.
VORP, 411 pr.

walk of a tree, 287, 293 ex., 342, 1114
weak duality, 880–881, 886 ex., 895 pr.
weight

of a cut, 1127 ex.
of an edge, 591
mean, 680 pr.
of a path, 643

weight-balanced tree, 338, 473 pr.
weighted bipartite matching, 530
weighted matroid, 439–442
weighted median, 225 pr.
weighted set-covering problem, 1135 pr.
weighted-union heuristic, 566
weighted vertex cover, 1124–1127, 1139
weight function

for a graph, 591

in a weighted matroid, 439
while, in pseudocode, 20
white-path theorem, 608
white vertex, 594, 603
widget, 1092
wire, 1071
WITNESS, 969
witness, to the compositeness of a number, 968
work law, 780
work, of a multithreaded computation, 779
work-stealing scheduling algorithm, 812
worst-case running time, 27, 49

Yen’s improvement to the Bellman-Ford
algorithm, 678 pr.

y-fast trie, 558 pr.
Young tableau, 167 pr.

Z (set of integers), 1158
Zn (equivalence classes modulo n), 928
Z

�
n (elements of multiplicative group

modulo n), 941
Z

C
n (nonzero elements of Zn), 967

zero matrix, 1218
zero of a polynomial modulo a prime, 950 ex.
0-1 integer programming, 1100 ex., 1125
0-1 knapsack problem, 425, 427 ex., 1137 pr.,

1139
0-1 sorting lemma, 208 pr.
zonk, 1195 ex.

	Contents
	Preface
	I Foundations
	1 The Role of Algorithms in Computing
	2 Getting Started
	3 Growth of Functions
	4 Divide-and-Conquer
	5 Probabilistic Analysis and Randomized Algorithms

	II Sorting and Order Statistics
	6 Heapsort
	7 Quicksort
	8 Sorting in Linear Time
	9 Medians and Order Statistics

	III Data Structures
	10 Elementary Data Structures
	11 Hash Tables
	12 Binary Search Trees
	13 Red-Black Trees
	14 Augmenting Data Structures

	IV Advanced Design and Analysis Techniques
	15 Dynamic Programming
	16 Greedy Algorithms
	17 Amortized Analysis

	V Advanced Data Structures
	18 B-Trees
	19 Fibonacci Heaps
	20 van Emde Boas Trees
	21 Data Structures for Disjoint Sets

	VI Graph Algorithms
	22 Elementary Graph Algorithms
	23 Minimum Spanning Trees
	24 Single-Source Shortest Paths
	25 All-Pairs Shortest Paths
	26 Maximum Flow

	VII Selected Topics
	27 Multithreaded Algorithms
	28 Matrix Operations
	29 Linear Programming
	30 Polynomials and the FFT
	31 Number-Theoretic Algorithms
	32 String Matching
	33 Computational Geometry
	34 NP-Completeness
	35 Approximation Algorithms

	VIII Appendix: Mathematical Background
	A Summations
	B Sets, Etc.
	C Counting and Probability
	D Matrices

	Bibliography
	Index

